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Abstract

Legal judgment prediction is the task of au-

tomatically predicting the outcome of a court

case, given a text describing the case’s facts.

Previous work on using neural models for this

task has focused on Chinese; only feature-

based models (e.g., using bags of words and

topics) have been considered in English. We

release a new English legal judgment predic-

tion dataset, containing cases from the Euro-

pean Court of Human Rights. We evaluate

a broad variety of neural models on the new

dataset, establishing strong baselines that sur-

pass previous feature-based models in three

tasks: (1) binary violation classification; (2)

multi-label classification; (3) case importance

prediction. We also explore if models are

biased towards demographic information via

data anonymization. As a side-product, we

propose a hierarchical version of BERT, which

bypasses BERT’s length limitation.

1 Introduction

Legal information is often represented in textual

form (e.g., legal cases, contracts, bills). Hence, le-

gal text processing is a growing area in NLP with

various applications such as legal topic classifi-

cation (Nallapati and Manning, 2008; Chalkidis

et al., 2019), court opinion generation (Ye et al.,

2018) and analysis (Wang et al., 2012), legal infor-

mation extraction (Chalkidis et al., 2018), and en-

tity recognition (Cardellino et al., 2017; Chalkidis

et al., 2017). Here, we focus on legal judgment

prediction, where given a text describing the facts

of a legal case, the goal is to predict the court’s out-

come (Aletras et al., 2016; Şulea et al., 2017; Luo

et al., 2017; Zhong et al., 2018; Hu et al., 2018).

Such models may assist legal practitioners and

citizens, while reducing legal costs and improv-

ing access to justice (Lawlor, 1963; Katz, 2012;

Stevenson and Wagoner, 2015). Lawyers and

judges can use them to estimate the likelihood of

winning a case and come to more consistent and

informed judgments, respectively. Human rights

organizations and legal scholars can employ them

to scrutinize the fairness of judicial decisions un-

veiling if they correlate with biases (Doshi-Velez

and Kim, 2017; Binns et al., 2018).

This paper contributes a new publicly avail-

able English legal judgment prediction dataset of

cases from the European Court of Human Rights

(ECHR).1 Unlike Aletras et al. (2016), who pro-

vide only features from approx. 600 ECHR cases,

our dataset is substantially larger (∼11.5k cases)

and provides access to the raw text. As a sec-

ond contribution, we evaluate several neural mod-

els in legal judgment prediction for the first time

in English. We consider three tasks: (1) binary

classification (i.e., violation of a human rights ar-

ticle or not), the only task considered by Ale-

tras et al. (2016); (2) multi-label classification

(type of violation, if any); (3) case importance de-

tection. In all tasks, neural models outperform

an SVM with bag-of-words (Aletras et al., 2016;

Medvedeva et al., 2018), the only method tested

in English legal judgment prediction so far. As

a third contribution, we use an approach based

on data anonymization to study, for the first time,

whether the legal predictive models are biased to-

wards demographic information or factual infor-

mation relevant to human rights. Finally, as a

side-product, we propose a hierarchical version of

BERT (Devlin et al., 2019), which bypasses BERT’s

length limitation and leads to the best results.

2 ECHR Dataset

ECHR hears allegations that a state has breached

human rights provisions of the European Conven-

1The dataset is submitted at https://archive.

org/details/ECHR-ACL2019.

https://archive.org/details/ECHR-ACL2019
https://archive.org/details/ECHR-ACL2019
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tion of Human Rights.2 Our dataset contains ap-

prox. 11.5k cases from ECHR’s public database.3

For each case, the dataset provides a list of facts

extracted using regular expressions from the case

description, as in Aletras et al. (2016)4 (see Fig. 1).

Each case is also mapped to articles of the Con-

vention that were violated (if any). An importance

score is also assigned by ECHR (see Section 3).

The dataset is split into training, development,

and test sets (Table 1). The training and develop-

ment sets contain cases from 1959 through 2013,

and the test set from 2014 through 2018. The train-

ing and development sets are balanced, i.e., they

contain equal numbers of cases with and without

violations. We opted to use a balanced training set

to make sure that our data and consequently our

models are not biased towards a particular class.

The test set contains more (66%) cases with vi-

olations, which is the approximate ratio of cases

with violations in the database. We also note that

45 out of 66 labels are not present in the training

set, while another 11 are present in fewer than 50

cases. Hence, the dataset of this paper is also a

good testbed for few-shot learning.

3 Legal Prediction Tasks

3.1 Binary Violation

Given the facts of a case, we aim to classify it as

positive if any human rights article or protocol has

been violated and negative otherwise.

3.2 Multi-label Violation

Similarly, the second task is to predict which spe-

cific human rights articles and/or protocols have

been violated (if any). The total number of arti-

cles and protocols of the European Convention of

Human Rights are 66 up to day. For that purpose,

we define a multi-label classification task where

no labels are assigned when there is no violation.

3.3 Case Importance

We also predict the importance of a case on a scale

from 1 (key case) to 4 (unimportant) in a regres-

sion task. These scores, provided by the ECHR,

2An up-to-date copy of the European Convention of Hu-
man Rights is available at https://www.echr.coe.
int/Documents/Convention_ENG.pdf.

3See https://hudoc.echr.coe.int. Licensing
conditions are compatible with the release of our dataset.

4Using regular expressions to segment legal text from
ECHR is usually trivial, as the text has a specific structure.
See an example from ECHR’s Data Repository (http://
hudoc.echr.coe.int/eng?i=001-193071).

Subset Cases (C) Words/C Facts/C Articles/C
Train 7,100 2,421 43 0.71
Dev. 1,380 1,931 30 0.96
Test 2,998 2,588 45 0.71

Table 1: Statistics of the ECHR dataset. The size of the

label set (ECHR articles) per case (C) is L = 66.

denote a case’s contribution in the development

of case-law allowing legal practitioners to identify

pivotal cases. Overall in the dataset, the scores

are: 1 (1096 documents), 2 (904), 3 (2,982) and 4

(6,496), indicating that approx. 10% are landmark

cases, while the vast majority (83%) are consid-

ered more or less unimportant for further review.

4 Neural Models

BiGRU-Att: The fisrt model is a BIGRU with

self-attention (Xu et al., 2015) where the facts

of a case are concatenated into a word sequence.

Words are mapped to embeddings and passed

through a stack of BIGRUs. A single case embed-

ding (h) is computed as the sum of the resulting

context-aware embeddings (
∑

i aihi) weighted by

self-attention scores (ai). The case embedding (h)

is passed to the output layer using a sigmoid for

binary violation, softmax for multi-label violation,

or no activation for case importance regression.

HAN: The Hierarchical Attention Network

(Yang et al., 2016) is a state-of-the-art model for

text classification. We use a slightly modified ver-

sion where a BIGRU with self-attention reads the

words of each fact, as in BIGRU-ATT, producing

fact embeddings. A second-level BIGRU with self-

attention reads the fact embeddings, producing a

single case embedding that goes through a similar

output layer as in BIGRU-ATT.

LWAN: The Label-Wise Attention Network

(Mullenbach et al., 2018) has been shown to be ro-

bust in multi-label classification. Instead of a sin-

gle attention mechanism, LWAN employs L atten-

tions, one for each possible label. This produces

L case embeddings (h(l) =
∑

i al,ihi) per case,

each one specialized to predict the corresponding

label. Each of the case embeddings goes through a

separate linear layer (L linear layers in total), each

with a sigmoid, to decide if the corresponding la-

bel should be assigned. Since this is a multi-label

model, we use it only in multi-label violation.

BERT and HIER-BERT: BERT (Devlin et al.,

2019) is a language model based on Transformers

(Vaswani et al., 2017) pretrained on large corpora.

https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://hudoc.echr.coe.int
http://hudoc.echr.coe.int/eng?i=001-193071
http://hudoc.echr.coe.int/eng?i=001-193071
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For a new task, a task-specific layer is added on

top of BERT and is trained jointly by fine-tuning

on task-specific data. We add a linear layer on

top of BERT, with a sigmoid, softmax, or no acti-

vation, for binary violation, multi-label violation,

and case importance, respectively.5 BERT can pro-

cess texts up to 512 wordpieces, whereas our case

descriptions are up to 2.6k words, thus we truncate

them to BERT’s maximum length, which affects

its performance. This also highlights an important

limitation of BERT in processing long documents,

a common characteristic in legal text processing.

To surpass BERT’s maximum length limita-

tion, we also propose a hierarchical version of

BERT (HIER-BERT). Firstly BERT-BASE reads the

words of each fact, producing fact embeddings.

Then a self-attention mechanism reads fact em-

beddings, producing a single case embedding that

goes through a similar output layer as in HAN.

5 Experiments

5.1 Experimental Setup

Hyper-parameters: We use pre-trained GLOVE

(Pennington et al., 2014) embeddings (d = 200)

for all experiments. Hyper-parameters are tuned

by random sampling 50 combinations and select-

ing the values with the best development loss in

each task.6 Given the best hyper-parameters, we

perform five runs for each model reporting mean

scores and standard deviations. We use categorical

cross-entropy loss for the classification tasks and

mean absolute error for the regression task, Glo-

rot initialization (Glorot and Bengio, 2010), Adam

(Kingma and Ba, 2015) with default learning rate

0.001, and early stopping on the development loss.

Baselines: A majority-class (MAJORITY) classi-

fier is used in binary violation and case impor-

tance. A second baseline (COIN-TOSS) randomly

predicts violation or not in binary violation task.

We also compare our methods against a linear

SVM with bag-of-words features (most frequent

[1, 5]-grams across all training cases weighted

by TF-IDF), dubbed BOW-SVM, similar to Aletras

et al. (2016) and Medvedeva et al. (2018) for the

binary task; multiple one-vs-rest classifiers for the

5The extra linear layer is fed with the ‘classification’ to-
ken of the BERT-BASE version of Devlin et al. (2019).

6Ranges: GRU hidden units {200, 300, 400}, number of
stacked BIGRU layers {1, 2}, batch size {8, 12, 16}, dropout
rate {0.1, 0.2, 0.3, 0.4}, word dropout rate {0.0, 0.01, 0.02}.

P R F1

MAJORITY 32.9 ± 0.0 50.0 ± 0.0 39.7 ± 0.0
COIN-TOSS 50.4 ± 0.7 50.5 ± 0.8 49.1 ± 0.7

Non-Anonymized

BOW-SVM 71.5 ± 0.0 72.0 ± 0.0 71.8 ± 0.0
BIGRU-ATT 87.1 ± 1.0 77.2 ± 3.4 79.5 ± 2.7
HAN 88.2 ± 0.4 78.0 ± 0.2 80.5 ± 0.2
BERT 24.0 ± 0.2 50.0 ± 0.0 17.0 ± 0.5
HIER-BERT 90.4 ± 0.3 79.3 ± 0.9 82.0 ± 0.9

Anonymized

BOW-SVM 71.6 ± 0.0 70.5 ± 0.0 70.9 ± 0.0
BIGRU-ATT 87.0 ± 1.0 76.6 ± 1.9 78.9 ± 1.9
HAN 85.2 ± 4.9 78.3 ± 2.0 80.2 ± 2.7
BERT 17.0 ± 3.0 50.0 ± 0.0 25.4 ± 0.4
HIER-BERT 85.2 ± 0.3 78.1 ± 1.3 80.1 ± 1.1

Table 2: Macro precision (P), recall (R), F1 for the bi-

nary violation prediction task (± std. dev.).

multi-label task; and Support Vector Regression

(BOW-SVR) for the case importance prediction.7

5.2 Binary Violation Results

Table 2 (upper part) shows the results for bi-

nary violation. We evaluate models using macro-

averaged precision (P), recall (P), F1. The weak

baselines (MAJORITY, COIN-TOSS) are widely

outperformed by the rest of the methods. BIGRU-

ATT outperforms in F1 (79.5 vs. 71.8) the previ-

ous best performing method (Aletras et al., 2016)

in English judicial prediction. This is aligned with

results in Chinese (Luo et al., 2017; Zhong et al.,

2018; Hu et al., 2018). HAN slightly improves over

BIGRU-ATT (80.5 vs. 79.5), while being more ro-

bust across runs (0.2% vs. 2.7% std. dev.). BERT’s

poor performance is due to the truncation of case

descriptions, while HIER-BERT that uses the full

case leads to the best results. We omit BERT from

the following tables, since it performs poorly.

Fig. 1 shows the attention scores over words and

facts of HAN for a case that ECHR found to violate

Article 3, which prohibits torture and ‘inhuman

or degrading treatment or punishment’. Although

fact-level attention wrongly assigns high attention

to the first fact, which seems irrelevant, it then suc-

cessfully focuses on facts 2–4, which report that

police officers beat the applicant for several hours,

that the applicant complained, was referred for

forensic examination, diagnosed with concussion

etc. Word attention also successfully focuses on

words like ‘concussion’, ‘bruises’, ‘damaged’, but

it also highlights entities like ‘Kharkiv’, its ‘Dis-

trict Police Station’ and ‘City Prosecutor’s office’,

which may be indications of bias.

7We tune the hyper-parameters of BOW-SVM/SVR and se-
lect kernel (RBF, linear) with a grid search on the dev. set.
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Figure 1: Attention over words (colored words) and facts (vertical heat bars) as produced by HAN.

Models Biases: We next investigate how sensi-

tive our models are to demographic information

appearing in the facts of a case. Our assumption

is that an unbiased model should not rely on infor-

mation about nationality, gender, age, etc. To test

the sensitivity of our models to such information,

we train and evaluate them in an anonymized ver-

sion of the dataset. The data is anonymized by

using SPACY’s (https://spacy.io) Named

Enity Recognizer, replacing all recognized entities

with type tags (e.g., ‘Kharkiv’ → LOCATION).

While neural methods seem to exploit named

entities among other information, as in Figure 1,

the results in Table 2 indicate that performance

is comparable even when this information is

masked, with the exception of HIER-BERT that

has quite worse results (2%) compared to using

non-anonymized data, suggesting model bias. We

speculate that HIER-BERT is more prone to over-

fitting compared to the other neural methods that

rely on frozen GLOVE embeddings, because the

embeddings of BERT’s wordpieces are trainable

and thus can freely adjust to the vocabulary of the

training documents including demographic infor-

mation.

5.3 Multi-label Violation Results

Table 3 reports micro-averaged precision (P), re-

call (R), and F1 results for all methods, now in-

cluding LWAN, in multi-label violation prediction.

The results are also grouped by label frequency for

all (OVERALL), FREQUENT, and FEW labels (arti-

cles), counting frequencies on the training subset.

We observe that predicting specific articles that

have been violated is a much more difficult task

than predicting if any article has been violated in

a binary setup (cf. Table 2). Overall, HIER-BERT

outperforms BIGRU-ATT and LWAN (60.0 vs. 57.6

OVERALL (all labels)

P R F1

BOW-SVM 56.3 ± 0.0 45.5 ± 0.0 50.4 ± 0.0
BIGRU-ATT 62.6 ± 1.2 50.9 ± 1.5 56.2 ± 1.3
HAN 65.0 ± 0.4 55.5 ± 0.7 59.9 ± 0.5
LWAN 62.5 ± 1.0 53.5 ± 1.1 57.6 ± 1.0
HIER-BERT 65.9 ± 1.4 55.1 ± 3.2 60.0 ± 1.3

FREQUENT (≥50)

BOW-SVM 56.3 ± 0.0 45.6 ± 0.0 50.4 ± 0.0
BIGRU-ATT 62.7 ± 1.2 52.2 ± 1.6 57.0 ± 1.4
HAN 65.1 ± 0.3 57.0 ± 0.8 60.8 ± 1.3
LWAN 62.8 ± 1.2 54.7 ± 1.2 58.5 ± 1.0
HIER-BERT 66.0 ± 1.4 56.5 ± 3.3 60.8 ± 1.3

FEW ([1,50))

BOW-SVM - - -
BIGRU-ATT 36.3 ± 13.8 03.2 ± 23.1 05.6 ± 03.8
HAN 30.2 ± 35.1 01.6 ± 01.2 02.8 ± 01.9
LWAN 24.9 ± 06.3 07.0 ± 04.1 10.6 ± 05.2
HIER-BERT 43.6 ± 14.5 05.0 ± 02.8 08.9 ± 04.9

Table 3: Micro precision, recall, F1 in multi-label vio-

lation for all, frequent, and few training instances.

micro-F1), which is tailored for multi-labeling

tasks, while being comparable with HAN (60.0 vs.

59.9 micro-F1). All models under-perform in la-

bels with FEW training examples, demonstrating

the difficulty of few-shot learning in ECHR legal

judgment prediction. The main reason is that la-

bels in the FEW group, 11 in total, are extremely

rare and have been assigned in 1.25% of the docu-

ments across all datasets, while the most frequent

4 labels overall (Articles 3, 5, 6 and 13) have been

assigned in approx. 42% of the documents.

5.4 Case Importance Results

Table 4 shows the mean absolute error (MAE) ob-

tained when predicting case importance. Surpris-

ingly, MAJORITY outperforms the rest of the meth-

ods. As already noted in Section 3, the distribution

of importance scores is highly skewed in favour of

the majority class, thus MAJORITY can correctly

predict the score in most cases with zero mean

absolute error (MAE). BOW-SVR performs worse

https://spacy.io
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MAE SPEARMAN’s ρ
MAJORITY .369 ± .000 N/A*
BOW-SVR .585 ± .000 .370 ± .000
BIGRU-ATT .539 ± .073 .459 ± .034
HAN .524 ± .049 .437 ± .018
HIER-BERT .437 ± .018 .527 ± .024

Table 4: Mean Absolute Error and Spearman’s ρ for

case importance. Importance ranges from 1 (most im-

portant) to 4 (least). * Not Applicable.

than BIGRU-ATT, while HAN is 10% and 3% bet-

ter, respectively. HIER-BERT further improves the

results, outperforming HAN by 17%.

While MAJORITY has the lowest mean absolute

error, it cannot distinguish important from unim-

portant cases, thus it is practically useless. To

evaluate the methods on that matter, we measure

the correlation between the gold scores and each

method’s predictions with SPEARMAN’s ρ. HIER-

BERT has the best ρ (.527), indicating a moderate

positive correlation (> 0.5), which is not the case

for the rest of the methods. The overall results in-

dicate that a case’s importance cannot be predicted

solely by the case facts and possibly also relies on

background knowledge (e.g., judges’ experience,

court’s history, rarity of article’s violation).

5.5 Discussion

We can only speculate that HAN’s fact embeddings

distill importance-related features from each fact,

allowing its second-level GRU to operate on a se-

quence of fact embeddings that are being exploited

by the fact-level attention mechanism and provide

a more concise view of the entire case. The same

applies to HIER-BERT, which relies on BERT’s

fact embeddings and the same fact-level attention

mechanism. By contrast, BIGRU-ATT operates on

a single long sequence of concatenated facts, mak-

ing it more difficult for its BIGRU to combine in-

formation from multiple, especially distant, facts.

This may explain the good performance of HAN

and HIER-BERT across all tasks.

6 Related Work

Previous work on legal judgment prediction in En-

glish used linear models with features based on

bags of words and topics to represent legal textual

information extracted from cases (Aletras et al.,

2016; Medvedeva et al., 2018).

More sophisticated neural models have been

considered only in Chinese. Luo et al. (2017) use

HANs to encode the facts of a case and a subset

of predicted relevant law articles to predict crim-

inal charges that have been manually annotated.

In their experiments, the importance of few-shot

learning is not taken into account since the crim-

inal charges that appear fewer than 80 times are

filtered out. However in reality, a court is able to

judge even under rare conditions. Hu et al. (2018)

focused on few-shot charges prediction using a

multi-task learning scenario, predicting in paral-

lel a set of discriminative attributes as an auxiliary

task. Both the selection and annotation of these at-

tributes are manually crafted and dependent to the

court. Zhong et al. (2018) decompose the problem

of charge prediction into different subtasks that are

tailored to the Chinese criminal court using multi-

task learning.

7 Limitations and Future Work

The neural models we considered outperform pre-

vious feature-based models, but provide no jus-

tification for their predictions. Attention scores

(Fig. 1) provide some indications of which parts

of the texts affect the predictions most, but are

far from being justifications that legal practitioners

could trust; see also Jain and Wallace (2019). Pro-

viding valid justifications is an important priority

for future work and an emerging topic in the NLP

community.8 In this direction, we plan to expand

the scope of this study by exploring the automated

analysis of additional resources (e.g., relevant case

law, dockets, prior judgments) that could be then

utilized in a multi-input fashion to further improve

performance and justify system decisions. We also

plan to apply neural methods to data from other

courts, e.g., the European Court of Justice, the US

Supreme Court, and multiple languages, to gain a

broader perspective of their potential in legal jus-

tice prediction. Finally, we plan to adapt bespoke

models proposed for the Chinese Criminal Court

(Luo et al., 2017; Zhong et al., 2018; Hu et al.,

2018) to data from other courts and explore multi-

task learning.
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