
This is a repository copy of Towards an Energy-Aware Framework for Application
Development and Execution in Heterogeneous Parallel Architectures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/149054/

Version: Accepted Version

Book Section:

Djemame, K orcid.org/0000-0001-5811-5263, Kavanagh, R
orcid.org/0000-0002-9357-2459, Kelefouras, V et al. (9 more authors) (2018) Towards an
Energy-Aware Framework for Application Development and Execution in Heterogeneous
Parallel Architectures. In: Kachris, C, Falsafi, B and Soudris, D, (eds.) Hardware
Accelerators in Data Centers. Springer , pp. 129-148. ISBN 9783319927916

https://doi.org/10.1007/978-3-319-92792-3_7

© 2019 Springer International Publishing AG, part of Springer Nature. This is a
post-peer-review, pre-copyedit version of a book chapter published in Hardware
Accelerators in Data Centers. The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-92792-3_7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Towards an Energy-aware Framework for
application development and execution in
Heterogeneous parallel architectures

Karim Djemame, Richard Kavanagh, Vasilios Kelefouras, Adrià Aguilà, Jorge

Ejarque, Rosa M. Badia, David Garcı́a Pérez, Clara Pezuela, Jean-Christophe

Deprez, Lotfi Guedria, Renaud De Landtsheer, and Yiannis Georgiou

Abstract The Transparent heterogeneous hardware Architecture deployment for

eNergy Gain in Operation (TANGO) project’s goal is to characterise factors which

affect power consumption in software development and operation for Heteroge-

neous Parallel Hardware (HPA) environments. Its main contribution is the combi-

nation of requirements engineering and design modelling for self-adaptive software

systems, with power consumption awareness in relation to these environments. The

energy efficiency and application quality factors are integrated in the application

lifecycle (design, implementation, operation). To support this, the key novelty of the

project is a reference architecture and its implementation. Moreover, a programming

model with built-in support for various hardware architectures including heteroge-

neous clusters, heterogeneous chips and programmable logic devices is provided.

This leads to a new cross-layer programming approach for heterogeneous paral-

lel hardware architectures featuring software and hardware modelling. Application

power consumption and performance, data location and time criticality optimiza-

tion, as well as security and dependability requirements on the target hardware ar-

chitecture are supported by the architecture.

Karim Djemame, Richard Kavanagh, and Vasilios Kelefouras

School of Computing, University of Leeds, UK e-mail:

{K.Djemame,R.E.Kavanagh,V.Kelefouras}@leeds.ac.uk

Adrià Aguilà, Jorge Ejarque and Rosa M. Badia

Barcelona Supercomputing Center (BSC), Spain e-mail: {adria.aguila, jorge.ejarque,

rosa.m.badia}@bsc.es

David Garcı́a Pérez, Clara Pezuela

Atos Research & Innovation, Atos Spain SA, Spain e-mail: {david.garciaperez,

clara.pezuela}@atos.net

Jean-Christophe Deprez, Lotfi Guedria, and Renaud De Landtsheer

Name, Address of Institute, e-mail: name@email.address

Yiannis Georgiou

Bull Atos Technologies, France e-mail: yiannis.georgiou@atos.net

1

2 Authors Suppressed Due to Excessive Length

1 Introduction

The emergence of new applications (as well business models) in the Internet of

Things (IoT), Cyber Physical Systems (CPS), embedded systems, cloud and edge

computing domains are transforming the way we live and work [1].

As the range of these applications continues to grow there is an urgent need

to design more flexible software abstractions and improved system architectures

to fully exploit the benefits of the heterogeneous architectures on which they op-

erate, e.g. CPU, GPU, heterogeneous CPU+GPU chips, FPGA and heterogeneous

multi-processor clusters all of which with various memory hierarchies, size and ac-

cess performance properties. In addition to showcasing such achievement, part of

the process requires opening up the technologies to an even broader basis of users,

making it possible for less specialized programming environments to use effec-

tively hiding complexity through novel programming models. Therefore, software

plays an important role in this context.

On the other hand, computer systems have faced significant power consumption

challenges over the past 20 years. These challenges have shifted from the devices

and circuits level, to their current position as first-order constraints for system ar-

chitects and software developers. A common theme is the need for low-power com-

puting systems that are fully interconnected, self-aware, context-aware and self-

optimising within application boundaries [8]. Thus, power saving, performance and

fast computational speed are key requirements in the development of applications

such as IoT and related computing solutions.

The project Transparent heterogeneous hardware Architecture deployment for

eNergy Gain in Operation (TANGO) aims to simplify the way developers approach

the development of next-generation applications based in heterogeneous hardware

architectures, configurations and software systems including heterogeneous clus-

ters, chips and programmable logic devices. The chapter will therefore present: 1)

the incorporation of a novel approach that combines energy-awareness related to

heterogeneous parallel architectures with the principles of requirements engineer-

ing and design modelling for self-adaptive software-intensive systems. This way,

the energy efficiency of both heterogeneous infrastructures and software are con-

sidered in the application development and operation lifecycle, and 2) an energy

efficiency aware system architecture, its components, and their roles to support key

requirements in the environment where it runs such as performance, time-criticality,

dependability, data movement, security and cost-effectiveness.

The remainder of the chapter is structured as follows: Section 2 describes the

proposed architecture to support energy-awareness. Section 3-5 discuss key archi-

tectural components and their role to enact optimal, in terms of requirements and

Key Performance Indicators (KPIs), application construction, deployment and op-

eration, respectively. Section 6 presents related work. In conclusion, Section 7 pro-

vides a summary of the research and plans for future work.

Title Suppressed Due to Excessive Length 3

2 System Architecture

The high level architecture is introduced on a per component basis, as shown in

Figure 1. Its aim is to control and abstract underlying heterogeneous hardware ar-

chitectures, configurations and software systems including heterogeneous clusters,

chips and programmable logic devices while providing tools to optimize various di-

mensions of software design and operations (energy efficiency, performance, data

movement and location, cost, time-criticality, security, dependability on target ar-

chitectures).

Fig. 1 Reference Architecture

Next, the architecture is discussed in the context of the application life cycle:

construction, deployment, and operation. It is separated into remote processing ca-

pabilities in the upper layers, which in turn is separated into distinct blocks that

support the standard application deployment model (construct, deploy, run, monitor,

adapt) and local processing capabilities in the lowest layer. This illustrates support

for secure embedded management of IoT devices and associated I/O.

The first block, Integrated Development Environment (IDE) is a collection of

components to facilitate the modelling, design and construction of applications. The

components aid in evaluating power consumption of an application during its con-

struction. A number of plug-ins are provided for a front end IDE as a means for

developers to interact with components within this layer. Lastly, this layer enables

architecture agnostic deployment of the constructed application, while also main-

taining low power consumption awareness. The components in this block are: 1)

Requirements and Design Tooling: aims at guiding the development and configura-

tion of applications to determine what can be targeted in terms of Quality of Service

4 Authors Suppressed Due to Excessive Length

(QoS), Quality of Protection (QoP), cost of operation and power consumption be-

haviour when exploiting the potential of the underlying heterogeneous hardware

devices; 2) Programming model (PM): supports developers when coding their ap-

plications. Although complex applications are often written in a sequential fashion

without clearly identified APIs, the PM let programmers annotate their programs in

such a way that the Programming Model Runtime can then execute them in paral-

lel on heterogeneous parallel architectures. At runtime, applications described for

execution with the Programming Model runtime are aware of the power consump-

tion of components implementation, and 3) Code Profiler: plays an essential role in

the reduction of energy consumed by an application. This is achieved through the

adaptation of the software development process and by providing software devel-

opers the ability to directly understand the energy foot print of the code they write.

The proposed novelty of this component is in its generic code based static analysis

and energy profiling capabilities (Java, C, C++, etc. available in the discipline of

mobile computing) that enables the energy assessment of code out-of-band of an

application’s normal operation within a developer’s IDE.

The second block consists of a set of components to handle the placement of

an application considering energy models on target heterogeneous parallel archi-

tectures. It aggregates the tools that are able to assess and predict performance and

energy consumption of an application. Application level monitoring is also accom-

modated, in addition to support of self-adaptation for the purpose of making deci-

sions using application level objectives given the current state of the application.

The components in this block are: 1) Application Life cycle Deployment Engine:

this component manages the life cycle of an application deployed by the IDE. Once

a deployment request is received, this component must choose the infrastructure

that is most suitable according to various criteria, e.g. energy constraints/goals that

indicate the minimum energy efficiency that is required/desired for the deployment

and operation of an application; 2) Monitor Infrastructure: this component is able

to monitor the heterogeneous parallel devices (CPU, memory, network ...) that are

being consumed by a given application by providing historical statistics for device

metrics. The monitoring of an application must be performed in terms of power/en-

ergy consumed (e.g. Watts that an application requires during a given period of its

execution), and performance (e.g. CPU that an application is consuming during a

given period of its execution); 3) Self-Adaptation Manager: This component pro-

vides key functionality to manage the entire adaptation strategy applied to applica-

tions and Heterogeneous Parallel Devices (HPDs). This entails the dynamic optimi-

sation of: energy efficiency, time-criticality, data movement and cost-effectiveness

through continuous feedback to other components within the architecture and a set

of architecture specific actuators that enable environmental change. Examples of

such actuators could be: redeployment to another HPD, restructuring a workflow

task graph or dynamic recompilation. Furthermore, the component provides func-

tionality to guide the deployment of an application to a specific HPD through pre-

dictive energy modelling capabilities and polices, defined within a decision support

engine, which specify cost constraints via Business Level Objectives (BLOs).

Title Suppressed Due to Excessive Length 5

The last block above the network fabric line, addresses the heterogeneous parallel

devices and their management. The application admission, allocation and manage-

ment of HPDs are performed through the orchestration of a number of components.

Power consumption is monitored, estimated and optimized using translated applica-

tion level metrics. These metrics are gathered via a monitoring infrastructure and a

number of software probes. At runtime HPDs will be continually monitored to give

continuous feedback to the Self-Adaptation Manager. This will ensure the architec-

ture adapts to changes in the current environment and in the demand for energy.

Optimizations take into account several approaches, e.g. redeployment to another

HPD, dynamic power management policies considering heterogeneous execution

platforms and application energy models. The components in this block are: 1) De-

vice Supervisor: provides scheduling capabilities across devices during application

deployment and operation. This covers the scheduling of workloads of both clusters

(Macro level, including distributed network and data management) and HPDs (Mi-

cro level, including memory hierarchy management). The component essentially

realises abstract workload graphs, provided to it by the Application Life-cycle De-

ployment Engine component, by mapping tasks to appropriate HPDs; 2) Device

Emulator:is responsible for delivering the initial mapping of the application tasks

onto the nodes/cores (at compile time), i.e., which application task should run on

each node/core. The mapping procedure is static and thus it does not take into ac-

count any run-time constraints or run-time task mapping decisions. The TANGO

user can choose between a) a good solution in low time and b) a (near)-optimum

solution in a reasonable amount of time (depending on the application complexity

and on the number of the available nodes/cores). Emulation of the application tasks

on the HPDs is necessary in order to compute the corresponding performance and

energy consumption values. The novelty of the DE component is that it reduces the

number of different emulations required by order(s) of magnitude and therefore the

time needed to map the tasks on the HPDs.

Furthermore, a Secure Gateway supports pervasive authentication and authoriza-

tion, which at the core of the proposed architecture enables both mobility and dy-

namic security. This protects components and thus applications from unauthorised

access, which in turn improves the dependability of the architecture as a whole.

3 Application Development

3.1 Design-time Tooling: Guiding software design decision for

exploiting heterogeneous hardware platforms capabilities

Designing and developing software with an efficient execution on distributed envi-

ronment with fairly standard homogeneous processing devices is already a difficult

exercise. This complexity explodes when targeting a heterogeneous environment

composed not only of distributed multi-core CPU nodes but also including acceler-

6 Authors Suppressed Due to Excessive Length

ators with many-core CPUs, GPUs and FPGAs. In the current era of heterogeneous

hardware, software development teams thus face the daunting task of designing soft-

ware capable to exploit underlying heterogeneous hardware devices available to the

most of their capability with the goal to achieve optimal runtime and energy perfor-

mance.

The algorithmic decomposition chosen to solve the problem at hand and the se-

lected granularity of computing task determine software execution efficiency on a

given underlying hardware hence affect time and energy performance. For instance,

many algorithms exist for matrix operations, data sorting, or finding a shortest path

in a graph. Developers already take into account data properties such as matrix sizes

or degree of graph connectedness to select an algorithm with optimal time and en-

ergy performance. Nowadays, they must also consider capabilities offered by hard-

ware in terms of parallel processing and data throughput. Such hardware capabilities

influence design decision on algorithmic decomposition and task granularity choices

to achieve efficient performance. For instance, time and energy performance asso-

ciated with matrix multiplication on GPU or FPGA is directly influenced by matrix

data sizes as well as the level of parallelism possible on each different kind of pro-

cessing nodes as well as their clock speed, their memory capacity, their data transfer

latencies, internally within the chip and externally through their I/O interfaces. In

other words, the most appropriate algorithmic decomposition and task granularity

is jointly influenced by data properties as well as the capabilities of the underlying

heterogeneous hardware available.

In addition to designing software for today’s operational conditions, developers

must strike the right balance between achieving an optimal performance now and

keeping a design implementation flexible and evolvable for tomorrow’s new hard-

ware. The most efficient algorithmic decomposition and task granularity for todays

heterogeneous hardware and dataset properties might evolve. In the worst case, evo-

lution in hardware or data properties impacts software design and architecture forc-

ing developers to adapt drastically the application code, that is, another algorithm

must be implemented in order to better exploit the new hardware or the new kind of

data. In less radical situations, a given overall software architecture and algorithms

can remain unaltered. Only the task granularity must be adapted to process larger

quantity of data at once for instance. New technologies and programming model

such as OpenCL or OmpSs/COmpS can facilitate accommodating task granularity

changes without much effort hence keeping software implementation fairly evolv-

able. However, it still remains the job of developers to identify the appropriate task

granularity for achieving improved time and energy performance and to provide this

granularity information to the underlying technology or programming modelling

tools. One of the goal of TANGO project is to provide design-time tooling to help

developers to make insightful design decisions to implement their software so as to

exploit the underlying hardware irrespective of the programming technologies and

programming models chosen.

The initial approach to guide design decision, proposed in the first year of

TANGO, relies on the rapid prototyping of the various simple software building

blocks needed in a given application. The first step for developers consists of devel-

Title Suppressed Due to Excessive Length 7

oping a set of simple prototypes for selected building blocks, for instance, for the

different algorithms needed to solve multi-physics problems or to perform efficient

image processing. Each prototype implements a particular algorithmic decomposi-

tion and task granularities for one of the identified simple software building blocks.

For instance, a C or CUDA implementation of matrix multiplication will respec-

tively target CPUs or NVIDIA GPUs nodes.

Developers can usually find alternative implementations of simple software

building blocks that targets processors with fixed instruction set such as multi-core,

many-core and GPU. These implementations rely on programming technologies

such as MPI, OpenMP, CUDA or OpenCL. On the other hand, the use of FPGA and

other reconfigurable hardware has so far remained more complex and only used by

much fewer experts. To address this issue, the TANGO development-time tooling

proposes a tool, named Poroto, to ease porting segments of standard higher-level

code to FPGA. While OpenCL has recently proposed synthetisation for FPGA as

part of its compilation tool chain, in many cases, developers only have implemen-

tation of simple building blocks in C code (or other programming languages). In

such cases, an initial prototype implementation may be easier with Poroto than hav-

ing to re-write the current C code in OpenCL. By annotating portions of C code

with Poroto pragmas enables the generation of associated FPGA kernels and their

interfacing to the code running on the CPU of the host machine through a PCI bus.

The main processing program remains in C and is augmented with the necessary

code, encapsulated in a C wrapper file that handles data transfer control to and from

the offloaded FPGA computations. The C portion to be offloaded on FPGA is ac-

tually transformed into an equivalent VHDL program leveraging open source C to

VHDL compilers such as ROCCC, PandA or other HDL code generation tools. Sub-

sequently, the VHDL can be passed to the lower level synthesis tool chains from the

particular FPGA vendor like Xilinx or Intel/Altera to generate to bitstream for a

specific FPGA target. Concerning data transfer to/from the FPGA, Poroto currently

relies on a proprietary technology. However an on-going TANGO effort consists of

replacing this proprietary technology with RIFFA (an open source framework) to

achieve similar data transfer operations.

Once the various prototypes of the different simple software building blocks have

been implemented, compiled and deployed on the different targeted heterogeneous

hardware, it becomes possible to obtain benchmarks with different representative

datasets on each of the prototype variants. The benchmarking exercise is not re-

stricted to FPGA implementation, the initial code of simple software block can be

executed on multicore and many-core CPUs and if code also exists for GPU, it can

also be included in the benchmarking exercise.

After time and energy benchmarks for the different prototype implementations

of the various simple blocks have been collected from the execution on the different

heterogeneous hardware targeted, developers must then identify an optimal way to

place a combination of prototype implementations on the various hardware devices

available in order to implement their complete solution. This optimisation problem

between time and energy is not simple to solve in particular when considering dif-

ferent prototype implementations of several simple blocks competing for various

8 Authors Suppressed Due to Excessive Length

heterogeneous hardware resources thus it becomes very useful to automate this op-

timisation exercise.

In TANGO, the development-time tooling relies on an open source optimisation

engine originated from operational research named OscaR to search optimal ways to

map the implementation of different software blocks on the different heterogeneous

hardware nodes. Specifically, Placer finds optimal mappings of software component

onto heterogeneous hardware, selects appropriate implementations of these tasks,

and performs software tasks scheduling for optimising energy performance while

meeting specified timing constraints. Placer is implemented on the top of the con-

straint programming engine of OscaR.

From an initial performance application design, it is then possible to further op-

timise application code by migrating from Poroto annotations to the ComPS and

OmpSs programming model in order to achieve concurrent execution of an algo-

rithm on different heterogeneous processing node. This programming model is pre-

sented in the next subsection.

3.2 Programming Model

To manage the implementation of parallel applications for heterogeneous distributed

computing environments, TANGO programming model proposes the combination

of two StarSs programming models and runtimes developed at Barcelona Super-

computing Center (BSC). StarSs is a family of task-based programming models

where developers define some parts of the application as tasks indicating the direc-

tion of the data required by those tasks. Based on these annotations the program-

ming model runtime analyzes data dependencies between the defined tasks, detect-

ing the inherent parallelism and scheduling the tasks on the available computing

resources, managing the required data transfers and performing the task execution.

The StarSs family is currently composed by two frameworks: COMP superscalar

(COMPSs) [5], which provides the programming model and runtime implemen-

tation for distributed platforms such as Clusters, Grids and Clouds, and Omp Su-

perscalar (OmpSs) [9], which provides the programming model and runtime im-

plementation for shared memory environments such as multicore architectures and

accelerators (such as GPUs and FPGAs).

In the case of TANGO, we propose to combine these programming models in

a hierarchical way, where an application is mainly implemented by a workflow of

coarse-grain tasks annotated with the COMPSs Programming Models. Each of these

coarse-grain tasks can be implemented as a workflow of fine-grain tasks developed

with OmpSs. At runtime, coarse-grain tasks will be managed by COMPSs runtime

optimizing the execution in a platform level by distributing tasks in the different

compute nodes according to the task requirements and the cluster heterogeneity. On

the other hand, fine-grain tasks will be managed by OmpSs which will optimize

the execution of tasks in a node level by scheduling them in the different devices

available on the assigned node.

Title Suppressed Due to Excessive Length 9

This combination presents different advantages with respect of other approaches:

First, it allows developers to implement parallel application in a distributed hetero-

geneous resources without changing the programming model paradigm. The pro-

grammer do not require programming model and APIs. It just require to decide

which parts are tasks, the direction of its data and its granularity. Second, developers

do not have to deal with programming data movements like in MPI. The program-

ming model will analyze data dependencies and keep track of the data locations

during the execution. So, it will try to schedule tasks as close as data or transpar-

ently doing the required data transfer to exploit the maximum parallelism. Third,

we have extended the versioning and constraints capabilities of these programming

models. With these extensions, developers will be able to define different versions

of tasks for different computing devices (CPU, GPUs, FPGA) or combinations of

them. So, the same application will be able to adapt to the different capabilities of

the heterogeneous platform without having to modify the application. During the

execution, the programming model runtime will be in charge of optimizing the ex-

ecution to the available resources in a coordinated way. In platform scheduling the

runtime will schedule the task in the different compute node resources, deciding

which task can run in parallel in each node and managing that the different tasks are

not colliding in the use of resources by the affinity of task to devices. At the node

level, the runtime is in charge of scheduling the fine-grain tasks in the resources

assigned in the platform level scheduling.

3.2.1 Application Implementation Example

An example of how an application is implemented with TANGO programming

model is shown next. This example implements a matrix multiplication by blocks in

two levels. The first level splits the matrices in blocks and computes the matrix mul-

tiplication by block. Each block multiplication is defined as coarse-grain task. Each

matrix block can be decomposed in smaller blocks, and each block multiplication

can be decomposed as a workflow of small block multiplications.

Figure 2 shows the main code of the benchmark application where a loop of the

multiplyBlocks coarse-grain tasks is implemented.

Figure 3 shows the interface file where the developer can define the methods

which are defined as tasks. In this case we have defined a task which has two im-

plementations one which runs in 4 CPU cores and another which runs in a GPU.

Finally, Figure 4 depicts the implementation of the big block multiplication. In

the first case, the fine grain tasks are the computation of the different elements of

the resultant matrix block. In the second case, the big matrix block is decomposed

in smaller block in order to fit in the GPU device memory and finer-grain tasks are

defined as the multiplication of these small blocks. The fine-grain task in this case

is the CUDA kernel defined by the Muld function.

10 Authors Suppressed Due to Excessive Length

i n t main (i n t argc , char ∗∗ a rgv) {
i n t N = a t o i (a r gv [1]) ;

i n t M = a t o i (a rgv [2]) ;

compss on () ;

c o u t << ” Loading M a t r i c e s . . . \ n ” ;

Ma t r i x A = M at r i x : : i n i t (N, Ml) ;

Ma t r i x B = M at r i x : : i n i t (N,M) ;

Ma t r i x C = M at r i x : : i n i t (N,M) ;

c o u t << ” E x e c u t i n g M u l t i p l i c a t i o n . . . \ n ” ;

f o r (i n t i =0 ; i<N; i ++) {
f o r (i n t j =0 ; j<N; j ++) {

f o r (i n t k =0; k<N; k ++) {
C . d a t a [i] [j]−>m u l t i p l y B l o c k s (∗A. d a t a [i] [k] , ∗B . d a t a [k] [j]) ;

}
}

}
c o m p s s o f f () ;

}

Fig. 2 Main workflow of the Matrix multiplication.

i n t e r f a c e Matmul

{
@ C o n s t r a i n t s (p r o c e s s o r s ={@Processor (P r o c e s s o r T y p e =CPU,

Comput ingUni t s = 4)}) ;

void Block : : m u l t i p l y B l o c k s (i n Block block1 , i n Block b l oc k2) ;

@ C o n s t r a i n t s (p r o c e s s o r s ={@Processor (P r o c e s s o r T y p e =GPU,

Comput ingUni t s = 1)}) ;

@Implements (Block : : m u l t i p l y B l o c k s) ;

void Block : : mul t ip lyBlocks GPU (i n Block block1 , i n Block b lo ck 2) ;

} ;

Fig. 3 Coarse-grain tasks definitions

4 Application Deployment

The application deployment is taking care by the Application Lifecycle Deployment

Engine (ALDE) that takes cares of the following tasks: provide the application de-

velopment tools information about the possible targeted architectures; build the ap-

plication for different configurations of heterogeneous hardware architectures and

libraries; prepare the application packets for deployment also, if possible, deploy

the application to the targeted testbed; finally, if the connection with the device su-

pervisor is possible, it will report and monitor the execution of the application to

Title Suppressed Due to Excessive Length 11

void Block : : m u l t i p l y B l o c k s (Block block1 , Block b l oc k2) {
f o r (i n t i =0 ; i<M; i ++) {

f o r (i n t j =0 ; j<M; j ++) {
pragma omp t a s k i n (b lo ck 1 . d a t a [i] [0 :M] , \

b l oc k2 . d a t a [0 :M] [j]) o u t (d a t a [i] [j])

f o r (i n t k =0; k<M; k ++) {
d a t a [i] [j] += b l ock 1 . d a t a [i] [k]∗ b l oc k2 . d a t a [k] [j] ;

}
}

}
pragma omp t a s k w a i t

}

void Block : : mul t ip lyBlocks GPU (Block block1 , Block b lo ck 2) {
i n t NB = M/ BSIZE ;

f o r (i n t i =0 ; i<NB; i ++) {
f o r (i n t j =0 ; j<NB; j ++) {

f o r (i n t k =0; k<NB; k ++) {
Muld (b l oc k1 . d a t a [i ∗NB+k] , b lo ck 2 . d a t a [k∗NB+ j] ,

d a t a [i ∗NB+ j] , NB) ;

}
}

}
pragma omp t a s k w a i t

}

#pragma omp t a r g e t d e v i c e (cuda) nd range (2 , 64 , 64 , 32 , 32)

#pragma omp t a s k i n (A[0 :NB∗NB] , B [0 :NB∗NB]) i n o u t (C [0 :NB∗NB])

g l o b a l void Muld (double∗ A, double∗ B , i n t wA, i n t wB,

double∗ C , i n t NB) ;

Fig. 4 Fine-grain tasks definitions

the user. Each one of these steps are going to be explained in more detail in the

following paragraphs:

An installation of ALDE can register several testbed that can have a TANGO

device supervisor or not. If the testbed does not have a device supervisor, the user

or administration needs to input the hardware heterogeneous characteristics of it:

RAM, CPUs, GPUs, number of nodes, etc. If the testbed has a TANGO device su-

pervisor, ALDE will automatically connect to the testbed an recollect the node hard-

ware information. This information will be exposed to the application development

tools so they can notify the application developer the testbed heterogeneous capa-

bilities also, some of the development tools could use this information to determine

which is the best testbed to run a given application.

The building process of the application will be done by ALDE compiling the

application for different combinations of targeted heterogeneous architectures and

libraries. The usage of tools like EasyBuild [26] or Spack [16]. The different compi-

12 Authors Suppressed Due to Excessive Length

lations could then be manually selected by the user of the self-adaptation manager to

deploy the optimal code for the given available resources by the device supervisor.

After the application is compiled it needs to be packetized. The final packet for-

mat will depend on the targeted architecture. ALDE supports just submitting the

application to the device supervisor by simple binaries (typical HPC scenario); It

also supports the creation of containers based on Docker [14] or Singularity [15],

this is both targeted to HPC and embedded environments that allow containers as

an application distribution system; Finally, it also supports the generation of ISO

images to be installed into heterogeneous embedded devices.

If the targeted heterogeneous architecture has an on-line device supervisor,

ALDE has the possibility to connect to it and monitor the execution of the applica-

tion. During the third year of the project, in this case, it is also expected that ALDE

would supervise the data transfer to the selected architecture for the execution of the

application.

5 Application Execution

5.1 Device Supervisor

The device supervisor (DS) is responsible for efficiently delivering the computing

power of heterogeneous devices to the applications based on their needs. It provides

the means to enable the execution of applications upon the platforms’ resources. In

particular, it offers a number of parameters that enable the fine specification and us-

age of different types of resources (CPUs, GPUs, Memory, etc) and their constraints

for the optimal execution of the applications. Furthermore, it enables task placement

and isolation upon devices during application deployment and operation.

Besides the various features and parameters for single application execution; this

component allows the usage of the compute platform by multiple users where jobs

may even compete for the same resources. Hence its main intelligence relies on

resource selection techniques to find the most adapted resources to schedule the

users’ jobs while keeping a high system utilization and low fragmentation.

Within the Tango framework, the DS can get inputs from the Application Life-

cycle Deployment Engine to execute jobs under particular parameters and it can

follow the execution of the application and return intermediate state or final results

to the ALDE. Optimization criteria (such as power consumption) and environment

state are provided as input by the Self-Adaptation Manager and Monitoring Infras-

tructure components respectively.

The device supervisor in Tango is represented by Slurm [28] which is an open-

source resource and job management system. Slurm performs workload manage-

ment on five of the ten most powerful computers in the world of the Top500 list1

1 https://www.top500.org/list/2016/06/

Title Suppressed Due to Excessive Length 13

including the system ranked number two, Tianhe-2, which features 3,120,000 com-

puting cores.

Slurm is specifically designed for the scalability requirements of state-of-the-art

supercomputers. It is based upon a centralized server daemon, slurmctld also

known as the controller, which communicates with client daemons slurmd run-

ning on each computing node. Users can request the controller for resources to exe-

cute interactive or batch applications, referred to as jobs. The controller dispatches

the jobs on the available resources, whether full nodes or partial nodes, according

to a configurable set of rules. The Slurm controller also features a modular archi-

tecture composed of plugins responsible for different actions and tasks such as: job

prioritization, resources selection, task placement or accounting.

Most Resource and Job Management Systems today do not handle heteroge-

neous resources efficiently. They provide a complete SPMD (Single Program Mul-

tiple Data) support but limited MPMD (Multiple Program Multiple Data) support.

Limited MPMD support means that even if users can specify different binaries to

be used within a parallel job, all the tasks are currently associated with the same

resources requirements. To be able to leverage all the benefits of platforms with

heterogeneous resources we need to be able to specify different heterogeneous re-

sources within the same job and be able to support the MPMD model. This support

will enable users willing to harness different types of hardware resources inside the

same MPI application, having part of their code run on GPUs while other parts are

executed on standard CPUs with specific low amount of memory and a last part on

CPUs with large amount of memory. Currently we are obliged to request the most

complete set of resources for each task wasting some of the hardware with tasks

that will not need all of them. In some cases, the total configuration required to run

such a job does not even exist as all the nodes of the cluster may not provide all the

hardware features.

Hence, the device supervisor component of Tango will be represented by an en-

hanced version of Slurm resource and job management system specifically designed

to support heterogeneous resources.

5.2 Energy Modeller

Energy modelling can be used at multiple phases of an application life cycle. At

deployment time it helps with the assignment of resources to an application and at

runtime it aids a continuing energy mitigation strategy.

The Energy Modeller (EM) provides power and energy consumption information

for compute devices in the current, future and historical contexts. Thus providing

key information that guides the selection of the most appropriate configuration of

an application within a heterogeneous environment, with the aim of minimising

energy consumption. Acting as a key advisory component in the energy reduction

process. It provides the mathematical models that estimate the power consumption

and energy usage of a given deployment decision. Thus it is able to advise and

14 Authors Suppressed Due to Excessive Length

drive the selection of hardware for service deployment and advise the process of

self-adaptation.

The energy modeller’s facility to assess historic energy consumption forms the

heart of any advisory service for end users who wish to understand the energy con-

sumption of their application. The advice to end users goes further by informing

them of the current power consumption of their software and hardware setup, thus

they can gauge the current impact of running their applications.

The energy modeller requires the use of models to determine from a hosts re-

sources usage the likely future energy consumption, as well as providing a means of

attributing power consumption to a particular application.

An estimation of the power consumption of an application or physical resource

derives from two aspects. The first is the correct profiling of the resources char-

acteristics, encompassing aspects such as its idle energy consumption and energy

consumption under various load conditions. The second aspect is the profiling of

the workload to be performed. This workload derives from the application that is to

be characterised based upon the hardware it runs upon. These two profiles combined

therefore advances the understanding of how much energy a application is expected

to consume in the future.

The aspect of correctly charactering, resource takes care during the calibration

process. The calibration process must provide repeatable conditions that generate a

sequence of precise loads on the physical host undergoing measurement. The aim is

to tightly control the environment while running an experiment to gain an accurate

mapping between the resource utilisation and power consumption. This data can

then be used as the basis of predicting future power consumption/energy usage, at-

tributing power to a given workload as well as providing faster and more responsive

measures of current power consumption especially for short runs of an application.

The process of applying fixed calibration loads is illustrated in Figure 5.

A sequence of runs (marked as (a)) are shown with increasing utilisation, with

small gaps between each run. The duration (a) can be chosen based upon any aver-

aging window of the reported sensor data. A longer time period (a) gives a greater

chance of the reported utilisation and power level stabilising. Issues such as: aver-

aging, unsynchronised metrics, network delay, or caching mechanisms can all have

their effects on calibration accuracy. A key solution to this is to discard values at

the start and end of an experimental run (indicated by (c) in Figure 5). In addition

to this, it eliminates experimental error such as load spike above the intended tar-

get load when each run starts. The final set of datapoints in the area indicated by

(b), represent the best calibration data. One advantage of a model is that Once it is

calibrated, even if the power measurement sensor reports an average value, an in-

stantaneous estimated power consumption value can be obtained without averaging

and at a higher temporal granularity through the model.

The second aspect of attributing power to a given application needs reasonable

way to allocate power consumption. One such way is to consider the system’s idle

energy usage as well any active power consumption, given a specific application’s

load. The idle energy/power consumption should be evenly distributed among the

applications that are running upon the host machine. The remaining energy is then

Title Suppressed Due to Excessive Length 15

Fig. 5 The construction of artificial traces for Calibration

allocated based upon the induced load. This is described in Equation 1 where EU Px

is the application’s power consumption, Host P is the measured host power con-

sumption. EU Utilx is the application’s CPU utilisation, EU Count is the count of

applications on the host machine. EU Utily is the CPU utilisation of a member of

the set of applications on the named host. Host Idle is the host’s measured idle

power consumption.

EU Px = Host Idle+(HostP −Host Idle)×
EU Utilx

∑
EU Count
y=1 EU Utily

(1)

5.3 Self Adaptation Manager

The Self-Adaptation Manager (SAM) is the principle component in the middleware

for co-ordinating self-adaptation. It plays an essential role in maintaining power,

energy and performance and goals of an application at runtime. Its primary focus is

upon providing the Infrastructure runtime self-adaptation capabilities with a partic-

ular focus on trade-off management for the applications. This is achieved through

the careful consideration of violations in service quality and the actuators that can

be utilised to perform self-adaptation. This adaptation covers both macro and micro

aspects of an applications deployment upon heterogeneous parallel architectures.

The levels differ in that deployed applications may be submitted to a given node,

but the node also has heterogeneity in that various accelerators might be utilised

and configured for usage by the varying applications that are running.

16 Authors Suppressed Due to Excessive Length

The self-adaptation manager follows a MAPE [13] control loop pattern of moni-

tor analyse, plan and execute. Adaptation in this cycle considers these main aspects:

• the varying level of QoS required, mainly either real-time high quality of service,

or best effort services

• the various implementations of an application, which will have means to use

various accelerators

• the performance of each implementation on the accelerators (affinity towards an

adaptor)

• the availability/demand for accelerators and resources

• the malleability of an application

• the required pace of response (how quickly change occurs and real time require-

ments)

• the acceptable frequency of adaptation (avoiding over adaptation)

These collectively will give an application an affinity towards various accelera-

tors and application configurations. QoS in Tango is formed of two distinct cate-

gories of application. The first is real-time applications that require a high level of

quality of service, i.e. that they have priority to resources while, best effort services

are expected to comprise the rest of the tasks.

Applications are expected to have various different implementations, each of

which will be able to be executed on only some of the accelerators. The availability

of these variations will be important as it offers the possibility for the SAM to select

and switch between actuators dependent upon their availability. The quality of each

implementation varies and will depend upon if the implementation can be structured

in a way that takes advantage of the accelerator. This will give varying degrees of

speed up, which will give a notion of affinity of an application to a given adaptor.

The adaptors are a limited valuable resource that is not in all cases shareable. Fine

grain pre-emption in NVidia GPUs has only become available in the Pascal archi-

tecture, which was released in mid-2016 [24]. Given the limited access to resources

some applications may throughout their lifecycle be able to scale or shrink their

resource usage.

A portion of jobs will be rigid and unable to change their resource requirements,

while some others will be mouldable to the resources that are available at deploy-

ment. A further set will be malleable and will be able to dynamically change their

resource requirements. This is particularly useful in regards to the availability of

accelerators. Added to the limits of access to accelerators, some adaptations will be

required to be completed with very limited delay, such as video processing. This

places limits on the types of actuation that is permitted. This gives rise to a bias

towards smaller control loops that handle specific QoS requirements. In cases of

adaptation there is an acceptable frequency by which actuation is allowed to occur,

such as once per minute. This is an important factor as in ensures applications are

not interfered with and are allowed to perform useful work.

Title Suppressed Due to Excessive Length 17

6 Related Work

Computing nodes are incorporating different types of devices in order to be more

efficient when computing different types of applications by accelerating the com-

putation at lower-power. However, this heterogeneity brings more complexity in

the application development, each of these devices have their own programming

language or API to spawn the computation in the different devices. For instance,

for FPGA, they are traditionally programmed with the VHDL language; and for de-

ploying and running the computation, developers have to use the tool chain provided

by the FPGA vendor. A similar problem happens with the General Purpose GPUs.

nVIDIA offers the CUDA framework [20] for programming and running applica-

tions in its devices and other vendors offer similar frameworks to do the same.

Current research is focusing their efforts in reducing the complexity of program-

ming these heterogeneous nodes, as well as, providing portability between archi-

tectures allowing the reuse the code for similar devices. One of these examples

is OpenCL [25]. It was born with the ambition of providing a common program-

ming interface for heterogeneous devices (including not only GPUs, but also DSPs

and FPGAs). With a syntax based on C, it has had a significant impact because

the same code could be used in several accelerators. However, similar to CUDA, it

requires the programmer to write specific code for the device handling, which re-

duces programmability. OpenACC [2] is another example of programming standard

for parallel computing designed to simplify parallel programming of heterogeneous

CPU/GPU systems. Based on directives, the programmer can annotate the code to

indicate those parts that should be run in the heterogeneous device. The OpenMP

standard [21] tackles the programmability issues in a similar way as OpenACC with

regard the heterogeneous devices and also considers many other aspects of paral-

lelism which makes it a stronger option.

However, these solutions are just managing the heterogeneity inside a node. If

the application requires to run in several nodes (e.g. big amount of data or large

parallelism), solutions mentioned before must be combined with other frameworks

which manages the spawning of processes and data movements between the differ-

ent computing nodes. Developers can attempt to do it by hand by using the TCP/IP

and threading libraries, which require a lot of programming effort and skills or use

one of the parallel distributed computing frameworks. One of this framework is

MPI [18], which provides an API for interchanging data messages between the dif-

ferent processes for SPMD applications. Another option are PGAS programming

models such as UPC [10], which allow to create a global address space and use

shared memory programs in different nodes. Both options are working quite well

running Single Process Multiple Data (SPMD) application in homogeneous clusters

interconnected with a very fast network and SPMD application. However, in het-

erogeneous environments distributed across different locations they are to reaching

good performance. For these reason we have proposed to combine COMPSs and

OmpSs which have good results in managing heterogeneity at platform and node

level and its programmability relies in the same task-based paradigm.

18 Authors Suppressed Due to Excessive Length

Prior to runtime considerations, developers must provide application code tai-

lored for executing on heterogeneous hardware. Whether relying on MPI, Ope-

nACC, OpenMP, OpenCL, CUDA or plain old C in application code, develop-

ers must craft their implementation, i.e., decompose their algorithms and identify

granularity of subtask of these algorithms in order to exploit the available hetero-

geneous hardware devices optimally. While full development tool chains exist in

open source for fast prototyping on standard multi- and many-core CPU [22] and

on GPU [11, 19], no integrated tool chain is available in open source for fast proto-

typing offloading on FPGA. Poroto provides such an integration over existing open

source frameworks such as ROCCC for the high level synthesis from C to VHDL.

Future plans include support of pandA framework and also better integration with

RIFFA for generic and portable handling of data transfers between the main CPU

and the FPGA board. Regarding the optimal mapping of software component and

scheduling of tasks using this software component, PREESM [22] and Silexica [23]

both have studied the problem. However they are not publishing their ad-hoc algo-

rithms. Placer is implemented on the top of the operational research optimisation

framework OscaR, whose foundations have been validated in several Industry grade

projects and products. Thus Placer only needs to implement additional problem spe-

cific code. This allows for high flexibility to support various requirements such as

power cap, DVFS among others as well as better readability for verifying the cor-

rectness of the optimisation search algorithm.

Resource Management and Job Scheduling in traditional HPC systems is being

performed by specialized software called RJMS. This software holds an important

position in the HPC stack since it stands between the user workloads (jobs) and the

hardware platform (resources). It is responsible for delivering computing power to

applications efficiently. More than 2 decades of research and developments in the

field has resulted into various open-source and proprietary versions of RJMS that

exist today [6],[17],[29],[7],[4] offering basic and advanced functionalities to deal

with HPC specialized platforms and workloads.

Since 2010 some newer generation schedulers such as Mesos [12] and Yarn [27]

can execute both compute and data intensive workloads based on new types of inter-

nal architectures trying to deal with scalability, efficiency and fault-tolerance issues.

In this group we can also add Flux [3] which is currently under active development

and destined for extreme scale HPC systems.

7 Conclusions

This chapter has highlighted the importance of providing novel methods and tools

to support software developers aiming to optimise energy efficiency resulting from

designing, developing, deploying and running software on HPAs while maintaining

other quality aspects of software to adequate and agreed levels.

The specification of a proposed architecture has been presented, which includes

the architectural roles and scope of the components. This architecture complies with

Title Suppressed Due to Excessive Length 19

standard HPAs and supports an IDE, an application deployment on HPA environ-

ments, and heterogeneous parallel device environments. The design of the various

architectural components was described, with emphasis on the requirements in order

to support energy efficiency management, which is addressed during the complete

life cycle of an application.

Future work includes the implementation of the capabilities to perform contin-

uous autonomic self-adaptation during runtime. This leverages fine-grained moni-

tored metrics of heterogeneous parallel devices and application software to create

an adaptation plan supporting the performance and cost goals of an application. It

is achieved through advances in modelling and prototyping that enable power, cost

and performance awareness during operation through emulation and simulation un-

der various ”what-if” scenarios.

8 Acknowledgment

This work has been supported by the European Commission through the Horizon

2020 Research and Innovation program under contract 687584 (TANGO project) by

the Spanish Government under contract TIN2015-65316 and grant SEV-2015-0493

(Severo Ochoa Program) and by Generalitat de Catalunya under contracts 2014-

SGR-1051 and 2014-SGR-1272.

References

1. Iot’s challenges and opportunities in 2017: A gartner trend insight report, April 2017.

2. OpenACC Application Programming Interface Specification. Web page at

http://www.openacc.org/specification, (Date of last access: 3rd May, 2017).

3. Dong H. Ahn, Jim Garlick, Mark Grondona, Don Lipari, Becky Springmeyer, and Martin

Schulz. Flux: A next-generation resource management framework for large HPC centers. In

43rd International Conference on Parallel Processing Workshops, ICPPW 2014, Minneapolis,

MN, USA, September 9-12, 2014, pages 9–17, 2014.

4. Altair. Pbs pro open source, 2017.

5. Rosa M Badia, Javier Conejero, Carlos Diaz, Jorge Ejarque, Daniele Lezzi, Francesc Lordan,

Cristian Ramon-Cortes, and Raul Sirvent. Comp superscalar, an interoperable programming

framework. SoftwareX, 3:32–36, 2015.

6. Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille Martin,

Grégory Mounié, Pierre Neyron, and Olivier Richard. A batch scheduler with high level

components. In 5th International Symposium on Cluster Computing and the Grid (CCGrid

2005), 9-12 May, 2005, Cardiff, UK, pages 776–783, 2005.

7. Adaptive Computing. Moab hpc basic edition, 2017.

8. K Djemame, D Armstrong, RE Kavanagh, JC Deprez, AJ Ferrer, DG Perez, RM Badia, R Sir-

vent, J Ejarque, and Y Georgiou. Tango: Transparent heterogeneous hardware architecture

deployment for energy gain in operation. In Proceedings of the First Workshop on Program

Transformation for Programmability in Heterogeneous Architectures, arXiv:1603.01407.

arXiv preprint, 2016.

20 Authors Suppressed Due to Excessive Length

9. Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell, Xavier Mar-

torell, and Judit Planas. Ompss: a proposal for programming heterogeneous multi-core archi-

tectures. Parallel Processing Letters, 21(02):173–193, 2011.

10. Tarek El-Ghazawi and Lauren Smith. Upc: unified parallel c. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, page 27. ACM, 2006.

11. GPU Open Consortium. Code XL. Web page at http://gpuopen.com/compute-product/codexl/,

(Date of last access: 17th May, 2017).

12. Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph,

Randy H. Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource

sharing in the data center. In Proceedings of the 8th USENIX Symposium on Networked Sys-

tems Design and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011,

2011.

13. IBM. An architectural blueprint for autonomic computing, 2005.

14. Docker Inc. Docker - a better way to build apps, 2017.

15. Gregory M. Kurtzer. Singularity, 2017.

16. Lawrence Livermore National Laboratory. Spack - package management tool, 2017.

17. Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - A hunter of idle workstations.

In Proceedings of the 8th International Conference on Distributed Computing Systems, San

Jose, California, USA, June 13-17, 1988, pages 104–111, 1988.

18. MPI Forum. Message Passing Interface Specification. Web page at http://mpi-forum.org/,

(Date of last access: 3rd May, 2017).

19. NVIDIA. NVIDIA CUDA Toolkit. Web page at https://developer.nvidia.com/cuda-toolkit,

(Date of last access: 17th May, 2017).

20. NVIDIA Corp. CUDA Homepage. Web page at

http://www.nvidia.es/object/cuda home new.htm, (Date of last access: 3rd May, 2017).

21. OpenMP Architecture Review Board. OpenMP Application Programming Interface Speci-

fication. Web page at http://www.openmp.org/specifications/, (Date of last access: 3rd May,

2017).

22. M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi. Preesm: A dataflow-based

rapid prototyping framework for simplifying multicore dsp programming. In Education and

Research Conference (EDERC), 2014 6th European Embedded Design in, pages 36–40, Sept

2014.

23. Silexica GmbH. SOFTWARE DESIGN FOR MULTICORE. Web page at

https://silexica.com/, (Date of last access: 17th May, 2017).

24. R. Smith. Preemption Improved: Fine-Grained Preemption for Time-Critical Tasks, 2016.

25. John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard for

heterogeneous computing systems. Computing in science & engineering, 12(3):66–73, 2010.

26. HPC UGent. Easybuild: building software with ease, 2017.

27. Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,

Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo

Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache

hadoop YARN: yet another resource negotiator. In ACM Symposium on Cloud Computing,

SOCC ’13, Santa Clara, CA, USA, October 1-3, 2013, pages 5:1–5:16, 2013.

28. AndyB. Yoo, MorrisA. Jette, and Mark Grondona. Slurm: Simple linux utility for resource

management. In Job Scheduling Strategies for Parallel Processing, pages 44–60. 2003.

29. Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Utopia: a load shar-

ing facility for large, heterogeneous distributed computer systems. Softw., Pract. Exper.,

23(12):1305–1336, 1993.

