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Abstract 

Various numerical methods have been recently employed to model microstructure of ceramics 

with different level of accuracy. The simplicity of the models based on regular morphologies 

results in a low computational cost, but these methods produce less realistic geometries with 

lower precision. Additional methods are able to reconstruct irregular structures by simulating the 

grain-growth kinetics but are restricted due to their high computational cost and complexity. In 

this paper, an innovative approach is proposed to replicate a three-dimensional (3D) complex 

microstructure with a low computational cost and the realistic features for porous polycrystalline 

ceramics. 

We present a package, written in MATLAB, that develops upon the basic Voronoi tessellation 

method for representing realistic microstructures to describe the evolution during the solid-state 

sintering process. The method is based on a cohesive prism that links the interconnect cells and 

thus simulates the neck formation. Spline surfaces are employed to represent more realistic 

features. The method efficiently controls shape and size and is able to reconstruct a wide range 

of microstructures composed of grains, grain boundaries, interconnected (open) and isolated 

(closed) pores. The numerical input values can be extracted from 2D imaging of real polished 

surfaces and through theoretical analysis. The capability of the method to replicate different 

structural properties is tested using some examples with various configurations. 
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1. Introduction 

The significant effect of microstructural heterogeneities on material processing explains why it is 

essential to generate digital materials which statistically correspond the real microstructures and 

moreover correlate the digital description to finite element (FE) simulations. Microstructures are 

generally implemented to FE models by two strategies. First, microstructural properties are 

implicitly considered in constitutive equations, and second, structural features are explicitly 

modelled [1-5]. Sometimes, the first strategy is associated with multiple simplifications and causes 

a high computational cost, especially in non-linear problems. To solve the issue, the second 

strategy as an alternative method can increase the accuracy and reduce the computational cost 

using a geometry model with realistic features. 

To replicate a microstructure, there are two main approaches including image-based and 

virtual generation method. In comparison among these two approaches, virtual microstructure 

generation is much faster and more cost-effective against an image-based method, which 

typically depends on complex processes such as sample fabrication, image digitalization and 

model reconstruction. Besides, the desired number of models with comparable structural 

properties can be produced independently of any pre-existing image. However, a proper algorithm 

is essential in the procedure of virtual generation to achieve an exact representation of the real 

microstructure and this paper is concentrated on this matter. 

Microstructure modelling approaches can be used for a wide range of applications in different 

fields such as generation of polycrystalline materials [6-9], porous geometry [10, 11], particulate 

composites [12-14] and cellular structures [15, 16]. Voronoi tessellation method (VTM) has been 

broadly considered to model the microstructures of porous polycrystalline materials [17, 18]. Even 

in an image-based software like DREAM.3D [19], VTM is associated with digital image processing 

to replicate a fully dense polycrystalline microstructure [20, 21]. DREAM.3D as a commonly 

known package reconstructs an accurate realistic model, but they are still limited by the image 

resolution. Briefly, VTM is a discretisation of a domain into a number of cells using a set of seed 

points; there is one cell for each seed, consisting of all points closer to that seed than any other 

[22]. Mathematically it can be expressed as: {𝑅𝑃𝑖} = {𝑥 ∈ ℜ3: ‖𝑷𝒊 − 𝒙‖ ≤ ‖𝑷𝒋 − 𝒙‖} (1) 
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𝑗 = 1, 2, … , 𝑁: 𝑗 ≠ 𝑖 
where 𝑷𝒋 is the position of the j-th seed points, 𝑅𝑃𝑖 is the cell related to the position 𝑷𝒊, and 𝒙 is 

the position of a generic point in ℜ3. 

As shown in Figure 1, the generated Voronoi cells can be morphologically similar to a grain, 

pore or particle [23]. However, in some cases, polygonal or polyhedron shape of Voronoi cells 

does not appropriately represent a structural attribute and a better description of the geometry 

with more details is required. For example, in a FE simulation of mechanical behaviour of a porous 

brittle material, sharp corners and edges of the Voronoi-shaped pore can generate a local stress 

concentration or even induce a singularity and as such large numerical error in the solutions. In 

the previous work [10], 2D Voronoi diagram was associated with B-Spline curve [24] to improve 

the shape and eliminate the sharpness of polygonal pores. Another limitation of this and other 

similar approaches [25-27] is the weak relationship between the model and the underlying 

physical background of microstructure formation. It has remained a challenge to form a strong 

connection between the input for a finite element model and realistic materials processing. The 

current work aims to develop an approach to simulate porosity inspired by microstructure 

evolution during ceramics processing. 

A microstructure is a signature of the ceramic’s processing. Sintering as a part of processing 

plays a key role in how pores or grains are formed through a microstructure. The main role of 

sintering is increasing density by decreasing surface energy to the highest possible level [28]. 

Many applications desire 100% of theoretical density for improved performance [29], but in other 

applications, porosity can be required such as bio-scaffolds, bone replacements, filters, etc. [30]. 

Pressureless sintering can be mainly categorized into solid-state and liquid phase process. 

Sintering theory has been developed continuously, but the prediction of microstructure 

evolution has been always challenging even during solid-state sintering of ceramics in a simple 

case. Different theories were used to treat sintering and they presumed extremely simplified 

geometries of two or three spherical or composition of other idealized geometries with a number 

of diffusion paths to analytically predict shrinkage rates [31-33]. Recently, numerical simulation 

approaches have been broadly developed to model sintering such as FE methods [34], 

micromechanical approach [35], molecular dynamics simulation [36], continuum thermodynamics 
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solution [37] and unit cell solutions [38]. The main objective of these works is to provide insights 

and more exact solutions to this problem. However, their complication and high computational 

cost limit their use to model the real microstructure evolution mechanism. 

The current paper is mainly concerned with solid state sintering. The background will be 

briefly presented related to pore morphology evolution during sintering in the following section. 

The purpose of this work is to introduce a new methodology for the accurate geometry model of 

porous polycrystalline ceramics using VTM inspired by a sintering process. The constructed 

microstructures can be exported to FE calculations in order to perform various types of material 

characterisation. 

2. Background 

There have been several theories to describe pore morphology during sintering process [39, 40]. 

Solid state sintering and microstructure evolution process are geometrically described in three 

stages based on the theoretical models as illustrated in Figure 2a. The initial stage is enlargement 

of the contact areas between particles and creation of necks due to diffusion, vapour transport, 

plastic flow or viscous flow [41]. For a powder system consisting of spherical particles, neck 

growth in contact area during densification process is a notable attribute. In the second stage, a 

tubular interconnected pore network (open porosity) is formed. A different regime is observed in 

the final stage which tubular pores disappear gradually and then turn to closed (isolated) form at 

the corners of grains. Based on the theories of pore closure [42, 43], an idealised grain structure 

in the second and third stages is a tetrakaidekahedron with the pores on edges and corners 

(Figure 2b). Tetrakaidecahedron or truncated octahedron is a polyhedral geometry with 36 edges, 

14 faces including 6 squares and 8 hexagons. 

The presence of grain boundaries in polycrystalline materials dictates how the pores are 

shaped. Therefore, geometry of grains and their interconnectivity are important characteristics in 

microstructure of a sintered ceramics. Therefore, we focus on modelling grain boundaries and 

neck formation. The proposed approach is a cost-effective computational framework since it is 

inspired by physical process but is not coupled with the complex physical theories which would 

increase the computational cost.  
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3. The computational approach 

In the previous work, the composition of the Voronoi diagram and B-spline curve were used to 

model 2D irregular porous structure [10]. The generated Voronoi-spline cells (VSC) represented 

pores and were subtracted from the domain. On the contrary, here, 3D VSCs represent grains 

and porosity will be available space formed between interconnected grains. The basic approach 

to generate VSCs was elaborated in [10] but for making the current article self-contained, the 

principle is presented with the complement explanations for other developments in 3D. 

Afterwards, a methodology to interconnect VSCs and model neck formation will be described. 

The previous and current approaches have been coded and developed in MATLAB. All models 

were meshed using the mesh module in MATLAB by tetrahedral elements. 

3.1 Generation of Voronoi-spline cell 

The main procedures to construct VSCs are described in the following: 

I. Seeding generator points: a random set of points are produced in a domain. The points form 

the centroid of Voronoi cells. In the following steps, it will be shown how generator points 

induce different structural behaviour to a model and control grain shape, distribution and 

size. 

II. Discretisation: the spatial domain is tessellated into Voronoi cells and a series of 

compartments are created. Figure 3 shows that various discretization systems are 

implemented into the models using different sets of generator points. An individual module 

is added to the code in order to seed the points based on an arbitrary distribution pattern. 

The generator points are scattered according to either a semi-regular (Figure 3a) or an 

irregular pattern (Figure 3b). The type of pattern influences on the general shape of Voronoi 

cells in the whole domain. For instance, as seen in Figure 3b, a set of points, which are 

randomly distributed, generate cells with an irregular polygonal shape. Also, weighted 

distribution helps to locally control the cell size. For example, seeding a greater number of 

points in a region results in the smaller Voronoi cells in comparison to other regions in a 

domain (Figure 3c). Thus, seeding the generator points plays a leading role in the modelling 

process and utilization of this technique enables to imitate a variety of microstructures. 
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III. Loop subdivision surfaces: the method is generally used to generate smooth surfaces from 

arbitrary initial meshes. This technique allows representing surfaces of any complexity with 

a single B-spline surface using few control points [44]. Each subdivision step results in a 

new control mesh and a smoother surface. The rules to compute new control points are 

based on Loop’s algorithm [45] which include two main steps. The first step is subdividing 

a triangulated control mesh of Voronoi cells using quadrisecting each face and connecting 

edge midpoints as shown in Figure 4a. The second step is computation of vertex positions 

as a weighted average of old adjacent positions. The weights allocated to the old vertices 

are named masks. To compute the new geometry, two sets of vertices are updated; the 

edge midpoints generated from the previous step and the original vertices. Figure 4b shows 

the two types of masks used in Loop’s algorithm. The vertex mask applied to an original 

mesh vertex, are calculated as follows: 

𝛼 = (38 + 14 cos 2𝜋𝑛 )2 + 38 

𝛽 = 1𝑛 (1 − 𝛼) 

(2) 

where 𝑛 denotes the number of neighbours. 

Therefore, new sets of edge midpoints 𝑉𝐴∗ and the original vertices 𝑉𝑂𝑅𝐼𝐺∗  are computed from 

the old original vertices, 𝑉𝑂, as: 

𝑉𝐴∗ = 38 (𝑉𝐵𝑂 + 𝑉𝐶𝑂) + 18 (𝑉𝐷𝑂 + 𝑉𝐸𝑂) 

𝑉𝑂𝑅𝐼𝐺∗ = 𝛼𝑉𝑂𝑅𝐼𝐺𝑂 + 𝛽 ∑(𝑉𝑁𝐵𝑅,𝑖𝑂 )𝑛
𝑖=1  

(3) 

As seen in Figure 5, the subdivision technique defines a smooth surface as the limit of a 

sequence of successive refinements. The increasing number of subdivision levels results in a 

well-behaved mesh but at the same time, the number of elements increases. Therefore, iteration 

number of subdivision should be reasonably selected to avoid expensive computations. In this 

paper, two iterations are considered. 

No intersection occurs between adjacent cells as the splined surfaces are constructed inside 

Voronoi cells (Figure 6). This method is not either implicit or parametric but due to code and 
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numerical simplicity, it can be an effective tool for controlling the shape parameters such as 

roundness and sphericity. 

IV. Scaling: the control points and the centroid are used to scale a unit cell. First, the cell centre 

position 𝑢𝑐 is calculated from Equation (4) and second the scaled cell vertices obtained from 

Equation (5). 

𝑢𝑐 = 1𝑚 ∑ 𝑢𝑖𝑚
𝑖=1  (4) 

𝑢𝑖𝑛𝑒𝑤 = 𝑢𝑐 + 𝑞(𝑢𝑖 − 𝑢𝑐) (5) 

where 𝑢𝑖 and 𝑢𝑖𝑛𝑒𝑤 are the coordinates of the original and scaled vertices respectively. 𝑚 is 

number of vertices in each cell and 𝑞 is the scale factor which varies between 0 to 1, as the 

original cells are only allowed to be shrunk to prevent intersection. 

Figure 7a exemplifies how a unit cell is schematically scaled and Figure 7b shows how the 

cells in the entire domain are scaled down with respect to their original size.  

3.2  Geometric analogy 

To simulate the necking formation, a geometric analogy is introduced between Coble’s 

geometrical model [43] and Voronoi cells. As shown in Figure 2b, grain geometries can be 

represented by the truncated polyhedrons. There is a geometric analogy between polyhedral 

shape of Voronoi cell and tetrakaidecahedron. In Figure 8, to highlight the similarities, the 

truncated polygons are simply subdivided into two segmentations. From this point of view, the 

structure can be potentially defined by either regular or irregular polyhedral Voronoi cells which 

are interconnected by prismatic geometries. A prism is simply defined as a solid object with 

identical ends, flat faces, and the same cross section all along its length. The methodologies to 

reconstruct VSCs and the code abilities for controlling the shape and size are the basis of the 

model and will be developed based on the geometric analogy. 

3.3 Cohesive prism insertion 

To connect two adjacent Voronoi cells by a prism, the interfaces are firstly detected by finding the 

shared vertices (Figure 9a). Then, a new set of vertices are duplicated with the same coordinates 

but different indices for each cell (Figure 9b). The cell connectivity is updated by the new vertices. 

Afterwards, new connectivity is defined between the new vertices to generate the cohesive 
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interface prism (CIP). It results in two cells being connected via a CIP. CIP is characterised by 𝐿𝑒 

which is the distance between the centroids of two end shared faces. 𝐿𝑒 equals to zero meaning 

that the cells are directly connected with no prism. 𝐿𝑒 automatically changes when Voronoi cells 

size changes. For instance, by shrinking the cells, CIPs are consequently elongated and 𝐿𝑒 

increases (Figure 10). 

The last stage is fitting B-Spline surfaces through the Voronoi cells and the CIPs. In advance, 

the cells and CIPs are merged by removing the end faces of prisms. This step is essential to 

generate a continuous splined surface at the boundaries of cells and CIPs. Figure 11 shows the 

examples of the adjacent cells and the CIP merged with and without the end faces, and it indicates 

how this matter influences on the produced geometries. 

A pore network is automatically reconstructed by applying the subdivision surface technique 

to the merged Voronoi cells and CIPs. A sample of the structure generated by 100 cells and 𝑞 =0.95 is illustrated in Figure 12. 

4. Model configurations 

4.1. Cell size distribution 

Figure 13 simply shows the typical densification curve of a powder compact through three 

overlapping stages versus sintering time [28]. During the second stage, when interconnected 

pores are formed, the relative density increases up to ~93%. The final stage includes densification 

from the open/closed pore state to final densification. Due to this high density and the low volume 

fraction of necks, the equivalent grain size distribution calculated from the experimental 

measurements can be potentially used as an initial configuration for the original Voronoi cells. 

Thus, the VTM is the first key to correlate real and virtual microstructure. In some cases, a VTM 

underestimates the variability in size and overestimates the number of faces of the grains [46]. 

However, between randomly produced morphologies, the VTM has the advantage of replicating 

a wide range of variability of both the size and shape of the grain [47]. In general, VTMs have 

been successfully verified with experimental data in several case studies some of which have 

been mentioned earlier. 

Either grain size distribution or average equivalent grain size can correspond to Voronoi cell 

distribution or mean cell size. As an example, one of the simple methods to obtain the average 
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equivalent grain size, 𝐺̅, is the broadly accepted Mendelson linear intercept technique [48]. It 

contains counting the number of grain boundaries intercepted (𝑁) by straight lines of total length 𝐿 on SEM images with a magnification 𝑀 and can be expressed as: 

𝐺̅ = 1.56 ( 𝐿𝑀𝑁) (6) 

where the correction factor, 1.56, is imposed due to the three-dimensionality of the grains [27]. 

Moreover, the grain size can be reported as an Equivalent Spherical Diameter (ESD). This is the 

diameter of a sphere having the same volume of the grain. It can be measured by some methods 

like 2D or 3D image analysis [49, 50]. 

The Voronoi cell size and shape can be implicitly controlled by imposing constraints on the 

nuclei seeding procedure. To understand the effect of seeding points mode on controlling the cell 

volume distribution around the mean value, an approach is proposed by introducing a degree of 

irregularity in the structure. It allows the generator points to migrate from the initial positions 

according to a semi-regular distribution. The degree of displacement of the seed points is 

controlled by three random variables, a distance 𝑑 that is distributed normally and angles 𝜃 and 𝜑 which are uniformly distributed between 0 and 2𝜋. The effect of irregularity on the tessellated 

models is shown in Figure 14. The probability density function (PDF) curve against the normalised 

cell volume indicates that by increasing the irregularity in the microstructure, the number of cells 

with the average size decreases. For a very irregular mode, grain size distribution can be a better 

way for experimental verification. 

4.2 Neck size 

During pore closure, the pore channels are disconnected and become isolated while necks grow. 

Coble modelled the shape changes using two simple geometries through the second and the third 

stage sintering based on body centred cubic (bcc)-packed tetradecahedron grains with cylinder-

shaped pores along all of the grain edges (Figure 2a). According to Coble’s model and the 

analogy mentioned above, it is possible to adjust channel size by regulating a CIP. 𝐷 and 2𝑟 can 

be interpreted as the size of end faces of a CIP and 𝐿𝑒, respectively. 𝑟 is related to the scale factor 

(𝑞) and the mean cell size (𝐺̅), as shown in Figure 15 and expressed by: 
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𝑟 = 𝐺̅2 (1 − 𝑞) (7) 

Depending on a case, the value of 𝑟 can be theoretically calculated from a neck growth law 

under different sintering mechanisms such as vapor transport, grain boundary, volume and 

surface diffusion [41]. The end faces size of the CIP depends on 𝐿𝑒 and it cannot be adjusted 

directly. As an example, by decreasing 𝐿𝑒, the end faces are simultaneously extended (Figure 

10), which leads to shrinking of the channels. It should be noted that the tubular shape of pores 

changes to the closed form when 𝑟 is very small and 𝑞 nearly equals 1. In reality, the shrinkage 

of the interconnected pores is not uniform due to the non-constant size of the pore channels and 

complexity of microstructures. In order to model such a variable behaviour, 𝑞 can either randomly 

changes in an arbitrary range for each cell. If for example, 𝑞 varies between 0.8 and 1, both types 

of interconnected and closed pores are possibly reconstructed. 

In Figure 16a-c, the 3D cross-sections are presented to show three different porosity systems 

include open, closed and hybrid open-closed pores. For visual and quantitative comparison with 

the real 3D microstructure, an example is provided in Figure 16d [51]. The perovskite 𝐿𝑎0.6𝑆𝑟0.4𝐶𝑜0.2𝐹𝑒0.8𝑂3−𝛿 (LSCF) as a porous ceramic was sintered at 1200 oC. The microstructure 

of volume of interest 20×15×20 𝜇𝑚 was reconstructed using focused ion beam/scanning electron 

microscope (FIB/SEM) tomography technique. The relative density of the specimen is 84.8±1.2% 

and the grain size reported as ESD is 1700±630 𝑛𝑚. As it is seen, the virtual models can be 

morphologically compared to the actual irregular microstructure. Another example is presented in 

Figure 16e [52] to demonstrates the similarity in two dimensions. The image shows the real 

microstructure consisting of grain, grain boundaries and pores after incomplete elimination of 

porosity. It is to be reminded that the structures of grain and the neck were merged in the model 

through the splining process (Figure 11). So, the grain boundaries are not explicitly displayed 

although they implicitly exist in the virtual microstructure. 

4.3 Effect of number of control points 

By fitting the spline surfaces through the vertices of the polyhedral cells, the angular shapes are 

transformed into rounded structures. Simultaneously, however, the surface area of the original 

cell is reduced, and the cell becomes smaller. The transformation level can be implicitly regulated 
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by number of control points. To generate more points on the faces, the Voronoi cells are re-

meshed by smaller elements before splining surfaces. Figure 17 indicates how the additional 

number of control points preserves the size and shape similar to the original polyhedral cell. This 

technique modifies the grains shape when it is more like a polyhedron (Figure 17c) than an 

irregular particle (Figure 17a or b). Also, the overall density can raise as the grain size is relatively 

increased.  However, the additional points made by more elements drastically increase the 

computational cost. 

5. Examples and discussion 

In a microstructure composed of irregular shapes in the form of either grains or pores, the 

definition or simulation of shape is therefore inevitably complex. The main advantage of the 

proposed modelling approach is controlling the shape and size of an irregular microstructure to 

replicate closely what is observed experimentally. The efficiency of the approach has been tested 

on simulating relative density, which is an important property of a porous microstructure. It should 

be noted that no statistical analysis has been done because we only propose to describe how the 

model works and is not possible to cover all possible extensive variation of models generated by 

different configurations. 

The cubes with a dimension of 50 units were tessellated with a semi-regular distribution 

pattern and two irregularity degrees as we defined earlier (𝑑 = 0 and 0.01). Figure 18 shows how 

the number and size of the cells change for 11 samples. The Voronoi cells become smaller by 

increasing the number of cells but for these specific examples, the average cell size does not 

change by increasing irregularity. For more than 400 Voronoi cells, the mean cell size does not 

vary significantly, and cell size distributions are mostly uniform. Figure 18b shows the relative 

density values against the average equivalent cell size for different scale factors 𝑞 as it was 

typified in Figure 16: Two constant values of 𝑞 were used for producing the open (0.8) and closed 

(0.99) porosity; The variable 𝑞 between 0.8 and 0.99 leads to the open-closed porosity system. 

The relative density is the ratio of the grain volumes to the volume of the cube. The grain volumes 

are computed by the volume of the solid tetrahedral elements. The average equivalent cell size 

equals to an effective radius of a sphere with a volume as same as Voronoi cell. To avoid 
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complexity, 𝑟 is assumed to be a function of the average equivalent cell size and 𝑞 instead of an 

independent input. 

As observed in Figure 18, the smaller cells make a model denser in comparison to the coarse 

cells. An upper and lower bound can be defined for the relative density for each configuration. For 

a given 𝑞, the microstructure is allowed to be regulated in the range between minimum and 

maximum density by changing the mean cell size. It allows the modelling to have greater flexibility 

in terms of size control. It is noticeable that the densities of the irregular and semi-regular models 

are mostly identical except close to the lower bound where more scattering is seen. 𝑞 can be 

properly used as the initial estimation of the relative density because of its deviation from the mid-

ranges and the maximum values. For the open porosity model, 𝑞 is 2% and 3% less than the mid-

range (0.82) and the maximum value of the relative density, respectively. For the open-closed 

porosity system, the mean value of 𝑞 (0.9) is 3% and 2% less than the mid-range (0.87) and the 

maximum value, respectively. In the closed porosity system, the mid-range (0.94) and the 

maximum values are 5% and 3% less than 𝑞, respectively; the relative density varies with a 

smaller amplitude (0.05 units) in comparison with other systems (0.1 units). 

The relative density 84.8±1.2% reported in Figures 16d can be achieved by the configurations 

used in this example. This density value is equivalent to the density of typical ceramics in the last 

stage of sintering in reference to the range specified by the densification curve (Figure 13). By 

increasing the sintering temperature up to 1200 oC, more pore connectivity was observed in the 

LSCF specimen [51]. Therefore, according to Figure 18b, the corresponding model can be set up 

by either 𝑞 = 0.8 and the mean cell size of 8.71 unit, thereby giving the density of 84.31%; or 0.8 < 𝑞 < 0.99 with the mean cell size of 20.73 unit and the density of 84.83% (in both settings 𝑑 = 0). The dimensions of the model and the real sample can be compared if 1 unit is assumed 

to be 1 𝜇𝑚. It is found that the average cell size is greater than the actual size of grains based on 

the ESD value equal to 1.7±0.63 𝜇𝑚. Although, if required, it is certainly expected that the average 

equivalent cell size is regulated by decreasing the dimensions of the cube from 503 to 203 𝜇𝑚3 

and increasing the number of cells more than 450. 

If one of the following states is found, the increase of control points helps to regulate the 

model: 𝑞 and the mean cell size either must be fixed or cannot change anymore; less rounded 
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grains are needed. To exemplify, a microstructure as a basic model is constructed by 𝑞 of 0.8 and 

93 Voronoi cells with the mean cell size of 14.7. The density is raised by adding the control points 

in 10 steps. Figure 19a depicts that 3% density increment is achieved. The numbers of elements 

are shown as labels on the data points are seen to be growing at the same time as the number 

of control points, up to ~3.6 times more than the basic model. It consequently increases the time 

length of the model generation. The times reported in Figure 19a are based on simulation on an 

ordinary laptop computer (DELL Latitude 7490) configured with Intel® CoreTM i7-8650U 1.90 GHz 

processor and 16.0 GB RAM. It is noteworthy that if the mesh module available in MATLAB or 

even the mesh technique to generate tetrahedron elements was replaced with more efficient one, 

the times and number of elements would be less than the amounts reported in this study. The 

increased number of elements in each model might cause a significantly higher computational 

cost if it is further used as a geometry model in any physical finite element simulation. As shown 

in Figure 17 for the cells and Figure 19b for the open pores, the roundness over the 

microstructures decreases. The pore structure can be analogized to a foam geometry. An 

example of open-cell foam morphology with a polycrystalline structure was presented in [21]. 

In summary, a porous geometry is produced based on the initial numerical inputs. If the 

density is not equal to the anticipated value, further calibration can be performed. The model 

needs to be verified by the experimental results when employed to accurately predict the relative 

density. 

6. Conclusions 

The model approach here provides a simulation tool with the purpose to characterise porous 

polycrystalline materials. The model can be effectively used as representative volume elements 

(RVEs) in statistical analysis because of the reproducibility. It is possible to quantitatively analyse 

different types of porosity because of the ability of the method to simulate open/closed porosity. 

Due to the adjustability of the model, the accuracy of generated models can be significantly 

improved and properly validated by experiments. If required, a parametric study may be 

performed based on the numerical inputs and experimental data. 

The novelty of the method stands on its advantage in reproducing a complex structure using 

the Voronoi tessellation methods and the Coble’s model, which are simple and have been widely 
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accepted. For improvement or modification, any other different Voronoi tessellation algorithm 

available in the open literature can be replaced by the algorithm used in this article. For instance, 

the outputs of the software DREAM.3D are potentially compatible with the framework presented 

here. Either seed points or the Voronoi cells generated by this package can make the model more 

accurate, as they are based on experimental data such as the location of grains and grain 

boundaries. It is worth mentioning that to avoid inevitable intersections when irregularity 

increases, the simple algorithm of Loop subdivision surface might be changed with other 

advanced algorithms. 
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Figure captions 

 Figure 1. The analogy between (a) a typical porous polycrystalline microstructure of 

sintered magnetic ceramic [27] and a model comprised by Voronoi polygons representing 

grains (light) and pores (dark). 

 Figure 2. (a) Microstructure changes during sintering in three main stages. (b) 

Tetrakaidecahedron with tubular pores on its edges represents grain structure (Coble’s 

geometrical model) [43]. 

 Figure 3. Three cubic domains are tessellated to 400 Voronoi cells by different 

discretization strategies. Also, 2D models are schematically displayed for better 

visualization of the relationship between Voronoi cells and the generator points. 

 Figure 4. Two main steps in Loop subdivision scheme. 

 Figure 5. Schematic diagram of the shape transformation of the polygonal Voronoi cell 

through the fitting B-Spline surface procedure after three iterations. In each iteration, the 

control points and their connectivity are restructured by the geometry in the previous step. 

 Figure 6. VSCs constructed inside the Voronoi cells with no intersection between adjacent 

cells. For better visualization, the original Voronoi cells are shown in the transparent 

surface. 

 Figure 7. (a) In the unit cell, the shrunk cell vertices (red point) are computed using the 

original polygon vertices (black points) and the centroid (white point). (b) Two samples of 

the scaled Voronoi cells (left) and VSCs (right) are shown. The original cells are 

represented in the transparent surface from. 

 Figure 8. The theoretical model (shown in Figure 2b) is simplified and segmented into 

different parts. The grains and interconnections are represented by polygonal Voronoi 

cells and prismatic geometries, respectively. 

 Figure 9. Two main steps to insert the cohesive prism between the adjacent cells are: (a) 

detecting the shared vertices and the interface; (b) creating the cohesive interface prism 
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using the duplicated nodes. 𝐿𝑒 is the characteristic length that states the distance 

between two ends of the prism. 

 Figure 10. CIPs (red) are elongated from (a) to (c) while the 50 Voronoi cells (grey) are 

shrunk by applying different scale factors. 

 Figure 11. The presence of end faces of prism fails the merging process and keeps the 

cells isolated. 

 Figure 12. The splined surfaces are generated through the merged Voronoi cells and the 

pore network is automatically created. 

 Figure 13. The schematic depicts the densification curve of a powder compact during 

three stages of sintering [28]. 

 Figure 14. Probability density function (PDF) against the normalized grain volume values. 

The maximum value around the mean value is decreasing while the irregularity is 

increasing while the number of cells is constant. The models are shown on the side as a 

guide for the eye. 

 Figure 15. Schematic diagram of the geometric relationship between the theoretical and 

the numerical model parameters. 

 Figure 16. 3D cross-sectional view of three models. Where q = 0.8, the model includes 

open porosity (a); by the variable value of q in a range between 0.8 and 0.99, an open-

closed porosity is reconstructed (b); and for q = 0.99, the closed pore system dominates 

through the structure (c). As an example, the actual digital 3D microstructure of porous 

LSCF ceramic sintered at 1200 oC is used for comparison [51]. It was reconstructed using 

FIB/SEM tomography (d). The planar cross-sectional view of the virtual model is 

compared to the real microstructure of CeO2 [52] after incomplete removal of the porosity 

(e). 

 Figure 17. The effect of control points number on the splined surfaces. 
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 Figure 18. (a) The number against the average equivalent size of the cell is plotted. 

Similar results are obtained for two levels of irregularity (𝑑 = 0 and 1). The dotted line is 

a guide for the eye to show the general trends; (b) The relative density versus the average 

equivalent cell size is shown for different values of 𝑞 and 𝑑. 

 Figure 19. (a) Relative density against the number of control points and the time length 

to generate model based on a model generated with the configurations of 𝑞 = 0.8, 93 and 

the mean cell size of 14.7 units. The numbers of elements are also labelled on the data 

points. The simulations were run on a laptop computer (DELL Latitude 7490) with the 

specifications of Intel® CoreTM i7-8650U 1.90 GHz processor and 16.0 GB RAM; (b) 

Cross-sections of the open pores before (left) and after (right) 10 steps increasing the 

number of the control points. 
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Figure 1. The analogy between (a) a typical porous polycrystalline microstructure of sintered 

magnetic ceramic [27] and a model comprised by Voronoi polygons representing grains (light) 

and pores (dark). 
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Figure 2. (a) Microstructure changes during sintering in three main stages. (b) 

Tetrakaidecahedron with tubular pores on its edges represents grain structure (Coble’s 

geometrical model) [43]. 
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Figure 3. Three cubic domains are tessellated to 400 Voronoi cells by different discretization strategies. 

Also, 2D models are schematically displayed for better visualization of the relationship between Voronoi 

cells and the generator points. 
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(a) Triangle split (b) Edge and vertex masks 

 

Figure 4. Two main steps in Loop subdivision scheme. 
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Figure 5. Schematic diagram of the shape transformation of the polygonal Voronoi cell 

through the fitting B-Spline surface procedure after three iterations. In each iteration, the 

control points and their connectivity are restructured by the geometry in the previous step. 
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Figure 6. VSCs constructed inside the Voronoi cells with no intersection between adjacent 

cells. For better visualization, the original Voronoi cells are shown in the transparent surface. 
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Figure 7. (a) In the unit cell, the shrunk cell vertices (red point) are computed using the 

original polygon vertices (black points) and the centroid (white point). (b) Two samples of the 

scaled Voronoi cells (left) and VSCs (right) are shown. The original cells are represented in 

the transparent surface from. 
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Figure 8. The theoretical model (shown in Figure 2b) is simplified and segmented into 

different parts. The grains and interconnections are represented by polygonal Voronoi cells 

and prismatic geometries, respectively. 
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(a)  (b) 

 

Figure 9. Two main steps to insert the cohesive prism between the adjacent cells are: (a) 

detecting the shared vertices and the interface; (b) creating the cohesive interface prism 

using the duplicated nodes. 𝐿𝑒 is the characteristic length that states the distance between 

two ends of the prism. 
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(a) 𝒒 = 𝟎. 𝟖 (b) 𝒒 = 𝟎. 𝟓 (c) 𝒒 = 𝟎. 𝟐 

 

Figure 10. CIPs (red) are elongated from (a) to (c) while the 50 Voronoi cells (grey) are 

shrunk by applying different scale factors. 
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(a) With End Faces (b) Without End Faces 

 

Figure 11. The presence of end faces of prism fails the merging process and keeps the cells 

isolated. 
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(a) 3D Mesh Surface (b) Transparent Form 

 

Figure 12. The splined surfaces are generated through the merged Voronoi cells and the pore 

network is automatically created. 

 

  



34 
 

 

 

Figure 13. The schematic depicts the densification curve of a powder compact during three 

stages of sintering [28]. 
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Figure 14. Probability density function (PDF) against the normalized grain volume values. The 

maximum value around the mean value is decreasing while the irregularity is increasing while 

the number of cells is constant. The models are shown on the side as a guide for the eye. 
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Figure 15. Schematic diagram of the geometric relationship between the theoretical and the 

numerical model parameters. 
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(a) 𝒒 = 𝟎. 𝟖 (b) 𝟎. 𝟖 ≤ 𝒒 ≤ 𝟎. 𝟗𝟗 (c) 𝒒 = 𝟎. 𝟗𝟗 

 

(d) 𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 = 𝟖𝟒. 𝟖 ± 𝟏. 𝟐%, 𝑬𝑺𝑫 = 𝟏𝟕𝟎𝟎 ± 𝟔𝟑𝟎 𝒏𝒎 

 

(e)  
 

Figure 16. 3D cross-sectional view of three models. Where 𝑞 = 0.8, the model includes open 

porosity (a); by the variable value of 𝑞 in a range between 0.8 and 0.99, an open-closed 

porosity is reconstructed (b); and for 𝑞 = 0.99, the closed pore system dominates through the 

structure (c). As an example, the actual digital 3D microstructure of porous LSCF ceramic 
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sintered at 1200 oC is used for comparison [51]. It was reconstructed using FIB/SEM 

tomography (d). The planar cross-sectional view of the virtual model is compared to the real 

microstructure of 𝐶𝑒𝑂2 [52] after incomplete removal of the porosity (e). 
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(a) 26 Points (b) 48 Points (c) 228 Points 

 

Figure 17. The effect of control points number on the splined surfaces. 
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(a) (b) 

 

Figure 18. (a) The number against the average equivalent size of the cell is plotted. Similar 

results are obtained for two levels of irregularity (𝑑 = 0 and 1). The dotted line is a guide for 

the eye to show the general trends; (b) The relative density versus the average equivalent 

cell size is shown for different values of 𝑞 and 𝑑. 
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(b) 

  

  1594 Points 5978 Points  

 

Figure 19. (a) Relative density against the number of control points and the time length to 

generate model based on a model generated with the configurations of 𝑞 = 0.8, 93 and the 

mean cell size of 14.7 units. The numbers of elements are also labelled on the data points. 

The simulations were run on a laptop computer (DELL Latitude 7490) with the specifications 

of Intel® CoreTM i7-8650U 1.90 GHz processor and 16.0 GB RAM; (b) Cross-sections of the 

open pores before (left) and after (right) 10 steps increasing the number of the control points. 

 


