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Abstract 39 

The primary objective of the European Space Agency’s 7th Earth Explorer mission, BIOMASS, is to 40 

determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the 41 

major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial 42 

biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest 43 

regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band 44 

synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and 45 

forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m 46 

resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). 47 

After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase 48 

during which there will be global coverage by SAR tomography. In the succeeding interferometric 49 

phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to 50 

the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering 51 

from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB 52 

can then be estimated from the remaining volume scattering using non-linear inversion of a 53 

backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated 54 

with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, 55 

double bounce scattering appears to carry important information about the AGB of boreal forests, so 56 

ground cancellation may not be appropriate and the best approach for such forests remains to be 57 

finalized. Several methods to exploit these new data in carbon cycle calculations have already been 58 

demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data 59 

from other missions that will measure forest biomass, structure, height and change, including the 60 

NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station 61 

after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch 62 

in 2022. More generally, space-based measurements of biomass are a core component of a carbon 63 

cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary 64 

objectives of the mission include imaging of sub-surface geological structures in arid environments, 65 

generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of 66 
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glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the 67 

data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along 68 

the dawn-dusk orbit of the mission.  69 

 70 

1. Introduction : The role of biomass in the global carbon cycle and climate 71 

For millennia, humanity has depended on woody biomass from forests as a source of materials and 72 

energy (Rackham and Moody, 1996; Radkau, 2012), and this dependence shows no sign of abating. 73 

For example, around a third of the world’s population relies on biomass for energy, and in sub-74 

Saharan Africa around 81% of the energy use by households is provided by burning woody biomass 75 

(World Bank, 2011). At the same time, forest, and its associated biomass, has often been treated as an 76 

impediment to development, and huge tracts have been cleared, and continue to be cleared, to make 77 

way for agriculture, pasture and agro-forestry (FAO, 2016). However, a significant shift in the 78 

relationship between mankind and biomass has occurred as climate change has become of pressing 79 

international concern and the role of forest biomass within this process has become clearer (IPCC, 80 

2007, 2013).  81 

Climate change is intimately connected with the global carbon balance and the fluxes of greenhouses 82 

gases, especially carbon dioxide (CO2), between the Earth’s surface and the atmosphere 83 

(Intergovernmental Panel on Climate Change (IPCC), 2007, 2013). In particular, an unequivocal 84 

indication of man’s effect on our planet is the accelerating growth of atmospheric CO2. The principal 85 

contribution (around 88%) to this growth is emissions from fossil fuel burning, with most of the 86 

remainder arising from Land Use Change in the tropics (Le Quéré, 2018). However, the increase in the 87 

concentration of atmospheric CO2 between 2007 and 2016 is only about half (44%) of the emissions. 88 

Because CO2 is chemically inert in the atmosphere, the “missing” half of the emissions must flow back 89 

into the Earth’s surface.  90 

Current estimates (Le Quéré et al., 2018) suggest that around 28% of the total emissions are taken up 91 

by the land and 22% by the oceans (leaving around 6% unaccounted for), but there are large 92 

Φορmαττεδ: Λινε σπαχινγ:  Dουβλε
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uncertainties in these values, especially the land uptake, whose value has usually been estimated as a 93 

residual that ensures the total amount of carbon is conserved, as expressed in eq. (1): 94 

 Uland = Eff + Elb – (ǻCatmos + Uocean) .      (1) 95 

Here Eff denotes fossil fuel emissions; Elb is net land biospheric emissions, comprising both Land Use 96 

Change and ecosystem dynamics, and including alterations to biomass stocks linked to process 97 

responses to climate change, nitrogen deposition and rising atmospheric CO2; ǻCatmos is the change in 98 

atmospheric CO2; and Uland and Uocean are net average uptake by the land and ocean respectively. In eq. 99 

(1) the quantities on the right-hand side are typically estimated on an annual basis or as a decadal 100 

average, using a mixture of measurements and models, to yield Uland. However, in Le Quéré et al. 101 

(2018) Uland is estimated independently using dynamic global vegetation models. 102 

Current estimates (Le Quéré et al., 2018) suggest that around 28% of the total emissions are taken up 103 

by the land and 22% by the oceans (leaving around 6% unaccounted for), but there are large 104 

uncertainties in these values, especially the land uptake, whose value has usually been estimated as a 105 

residual that ensures the total amount of carbon is conserved, as expressed in eq. (1): 106 

 Uland = Eff + Elb – (ǻCatmos + Uocean) .      (1) 107 

Here Eff denotes fossil fuel emissions; Elb is net land biospheric emissions, comprising both Land Use 108 

Change and ecosystem dynamics, and including alterations to biomass stocks linked to process 109 

responses to climate change, nitrogen deposition and rising atmospheric CO2; ǻCatmos is the change in 110 

atmospheric CO2; and Uland and Uocean are net average uptake by the land and ocean respectively. In eq. 111 

(1) the quantities on the right-hand side are typically estimated on an annual basis or as a decadal 112 

average, using a mixture of measurements and models, to yield Uland. However, in Le Quéré et al. 113 

(2018) Uland is estimated independently using dynamic global vegetation models. Under both 114 

approaches Uland has the largest uncertainty of any term in eq. (1), estimated as 0.8 GtC/yr, which is 115 

26% of its estimated value of 3.0 GtC/yr (1 GtC = 109 t of C which is equivalent to 3.67x109 t of CO2). 116 

Moreover, the Land Use Change flux (which is the difference between emissions from forest loss and 117 

uptake of CO2 by forest regrowth) has an uncertainty of 0.7 GtC/yr, which is 54% of its estimated 118 
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value of 1.3 GtC/yr. Since the fractional carbon content of dry biomass is around 50% (though with 119 

significant inter-species differences [Thomas and Martin, 2012]), biomass change is a fundamental 120 

component in these two land fluxes, controlling the emissions from forest disturbance and the uptake 121 

of carbon by forest growth (e.g. Pan et al. 2011). This is why above-ground biomass (AGB) is 122 

recognised as an Essential Climate Variable (ECV) within the Global Climate Observing System 123 

(2015, 2017). 124 

Climate change concerns have therefore made it imperative to obtain accurate estimates of biomass 125 

and its changes. Unfortunately, where this information is most needed – the tropics – is where almost 126 

no data have been gathered (Schimel et al., 2015). This is in contrast to forests in the temperate and 127 

southern parts of the boreal zones whose economic importance has driven the development of 128 

extensive national inventories (although there are vast areas of Alaska, Northern Canada, and East 129 

Eurasia that do not have forest inventories because of their low economic importance). 130 

This is in contrast to forests in the temperate and southern parts of the boreal zones whose economic 131 

importance has driven the development of extensive national inventories (although there are vast areas 132 

of Alaska, Northern Canada, and East Eurasia that do not have forest inventories because of their low 133 

economic importance). The tropical forests cover an enormous area (~18 million km2) and offer huge 134 

logistical challenges for ground-based biomass inventory. They are also crucial in political efforts to 135 

mitigate climate change. In particular, the United Nations Convention on Climate Change (UNFCCC) 136 

through its Reduction of Emissions from Deforestation and Degradation (REDD+) initiative 137 

(UNFCCC, 2016) aims to use market and financial incentives to transfer funds from the developed 138 

world to the developing countries in the tropical belt to help them reduce emissions by preservation 139 

and management of their forests (UN-REDD Programme, 2008).  140 

Estimates of biomass losses have focused on deforestation, i.e. conversion of forest land to other land 141 

use, which results in complete removal of AGB. However, also significant, but missing from most 142 

current estimates, is forest degradation. This is the loss of part of biomass, for instance removal of 143 

large stems for timber or of understorey plants for replacement by cocoa, or through increased fire 144 

along forest edges.  145 

Φορmαττεδ: Λινε σπαχινγ:  Dουβλε
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UN-REDD and related programmes have given significant impetus to the acquisition of more in situ 146 

data in developing countries and this adds to the information available in the periodic reports of the 147 

United Nations (UN) Food and Agriculture Organisation (FAO) (FAO 2006, 2010, 2016). However 148 

national data in many cases have large gaps, sampling biases, inconsistency of methods, lack spatially 149 

explicit information and contain unrepresentative samples, particularly in developing countries. As a 150 

result, major efforts have been made to formulate more consistent global approaches that combine 151 

forest inventory and satellite data to estimate AGB. Such endeavours have been greatly hampered by 152 

the fact that, up until the launch of the Global Ecosystem Dynamics Investigation (GEDI) instrument 153 

(see below), there has never been any spaceborne sensor designed to measure biomass, so space-based 154 

estimates of biomass have relied on opportunistic methods applied to non-optimal sensors, with the 155 

limitations this implies. 156 

In the tropics, the most significant developments have been based on forest height estimates derived 157 

from the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation 158 

Satellite (ICESat) before its failure in 2009 (Lefsky, 2005, 2010). Combining GLAS data with other 159 

EO and environmental datasets and in situ biomass measurements has led to the production of two 160 

pan-tropical biomass maps (Saatchi et al. 2010; Baccini et al. 2012) at grid scales of 1 km and 500 m 161 

respectively; differences between these maps and differences between the maps and in situ data are 162 

discussed in Mitchard et al. (2013, 2014). Refinements of these maps have been produced by 163 

Avitabile et al. (2016) and Baccini et al. (2017) based on essentially the same satellite datasets. 164 

For boreal and temperate forests, methods have been developed to estimate Growing Stock Volume 165 

(GSV, defined as the volume of wood in all living trees in an area with diameter at breast height above 166 

a given threshold) from very long time series of C-band Envisat satellite radar data (Santoro et al. 167 

2011). Multiplying these GSV estimates by wood density allowed Thurner et al. (2014) to estimate the 168 

carbon stock of forests north of 30°N. Reliable GSV estimates using these methods are only possible 169 

at spatial resolutions much coarser than the underlying radar data: by averaging to 0.5°, the relative 170 

RMS difference between estimated GSV and reference data was consistently found to lie in the range 171 

20–30% (Santoro et al. 2013). Further refinements to the methodology and its combination with 172 

Φορmαττεδ: Λινε σπαχινγ:  Dουβλε
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ALOS PALSAR-2 data are given in the Final Report of the ESA GlobBiomass project (Schmullius et 173 

al., 2017). 174 

L-band radar offers access to biomass values up to around 100 t/ha before losing sensitivity (e.g. 175 

Mitchard et al., 2009). Under the JAXA Kyoto and Carbon Initiative, the ALOS L-band PALSAR-1 176 

acquired a systematic five-year archive of forest data before its failure in April 2011 (Rosenqvist et 177 

al., 2014). PALSAR-2 launched in spring 2014 and has continued this systematic acquisition strategy, 178 

but current JAXA data policy makes scene data very expensive. Annual mosaics are freely available 179 

and have been used to map woodland savanna biomass at continental scale (Bouvet et al., 2018), but 180 

the mosaics combine data from different times and environmental conditions, so further processing 181 

may be needed to exploit them for biomass estimation (Schmullius et al., 2017). L-band data will also 182 

be acquired by the two Argentinian Microwave Observation Satellites (SAOCOM), the first of which 183 

was launched on October 8, 2018, with the second due in 2019. Their main objectives are 184 

measurements of soil moisture and monitoring of hazards, such as oil spills and floods, and their value 185 

for global forest observations is not yet clear.  186 

C-band (Sentinel-1, Radarsat) and X-band (Tandem-X) radar instruments are in orbit but at these 187 

frequencies most of the backscatter is from the leaves and small twigs, so they have limited value for 188 

biomass estimation except within the context of long time series at C-band (Santoro et al. 2011) and, 189 

for  TanDEM-X, when a ground Digital Terrain Model (DTM) is available and the height-to-biomass 190 

allometry is robust (Persson et al., 2017; Askne et al., 2017). 191 

For boreal and temperate forests, methods have been developed to estimate Growing Stock Volume 192 

(GSV, defined as the volume of wood in all living trees in an area with diameter at breast height above 193 

a given threshold) from very long time series of C-band Envisat satellite radar data (Santoro et al. 194 

2011). Multiplying these GSV estimates by wood density allowed Thurner et al. (2014) to estimate the 195 

carbon stock of forests north of 30°N. Reliable GSV estimates using these methods are only possible 196 

at spatial resolutions much coarser than the underlying radar data: by averaging to 0.5°, the relative 197 

RMS difference between estimated GSV and reference data was consistently found to lie in the range 198 

20–30% (Santoro et al. 2013). Further refinements to the methodology and its combination with 199 
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ALOS PALSAR-2 data are given in the Final Report of the ESA GlobBiomass project (Schmullius et 200 

al., 2017). 201 

L-band radar offers access to biomass values up to around 100 t/ha before losing sensitivity (e.g. 202 

Mitchard et al., 2009). Under the JAXA Kyoto and Carbon Initiative, the ALOS L-band PALSAR-1 203 

acquired a systematic five-year archive of forest data before its failure in April 2011 (Rosenqvist et 204 

al., 2014). PALSAR-2 launched in spring 2014 and has continued this systematic acquisition strategy, 205 

but current JAXA data policy makes scene data very expensive. Annual mosaics are freely available 206 

and have been used to map woodland savanna biomass at continental scale (Bouvet et al., 2018), but 207 

the mosaics combine data from different times and environmental conditions, so further processing 208 

may be needed to exploit them for biomass estimation (Schmullius et al., 2017). L-band data will also 209 

be acquired by the two Argentinian Microwave Observation Satellites (SAOCOM), the first of which 210 

was launched on October 8, 2018, with the second due in 2019. Their main objectives are 211 

measurements of soil moisture and monitoring of hazards, such as oil spills and floods, and their value 212 

for global forest observations is not yet clear.  213 

C-band (Sentinel-1, Radarsat) and X-band (Tandem-X) radar instruments are in orbit but at these 214 

frequencies most of the backscatter is from the leaves and small twigs, so they have limited value for 215 

biomass estimation except within the context of long time series at C-band (Santoro et al. 2011) and, 216 

for TanDEM-X, when a ground Digital Terrain Model (DTM) is available and the height-to-biomass 217 

allometry is robust (Persson et al., 2017; Askne et al., 2017). 218 

An exciting new development is the deployment on the International Space Station of the NASA 219 

GEDI lidar instrument after its launch on December 5, 2018 (see Section 10). This mission aims to 220 

sample forest vertical structure across all forests between 51.5 S and 51.5 N, from which estimates 221 

of the mean and variance of AGB on a 1 km grid will be derived. In addition, ICESat-2 launched on 222 

September 15, 2018; although it is optimised for icesheet, cloud and aerosol applications, and uses a 223 

different technical approach from ICESat-1 based on photon counting, preliminary results suggest that 224 

it can provide information on both forest height and structure.  225 
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It is against this scientific and observational background that BIOMASS was selected by the 226 

European Space Agency (ESA) in 2013 as its 7th Earth Explorer mission, and the satellite is now 227 

under production by a consortium led by Airbus UK for launch in 2022. The initial mission concept is 228 

described in Le Toan et al. (2011), but there have been major developments since that time in almost 229 

all aspects of the mission: the measurement and calibration concepts, the scientific context, the 230 

methods to recover biomass from the satellite data, the exploitation of biomass in carbon cycle and 231 

climate modelling, the availability of P-band airborne campaign data and high quality in situ data, and 232 

the overall capability to estimate biomass from space. It is therefore timely to provide a 233 

comprehensive description of the current mission concept, and this paper sets out to do so.  234 

After a review of the mission objectives (Section 2), the associated measurement techniques 235 

(polarimetry, polarimetric interferometry [Pol-InSAR] and SAR tomography [TomoSAR]) are 236 

described in Section 3.  Pol-InSAR and TomoSAR require the combination of multi-temporal stacks 237 

of data; this imposes very strong conditions on the BIOMASS orbit pattern, with significant 238 

consequences for the production of global biomass products (Section 4). The orbit pattern also 239 

imposes strong requirements on the ability of the AGB and height inversion techniques, discussed in 240 

Section 5, to adapt to changing environmental conditions. Section 6 deals with the use of BIOMASS 241 

data to estimate severe forest disturbance, while Section 7 describes the development of the reference 242 

datasets to be used for algorithm calibration and product validation. In Section 8 we discuss 243 

developments in how BIOMASS data can be used to estimate key carbon cycle and climate variables. 244 

Section 9 addresses a range of secondary objectives. Section 10 provides a view on how BIOMASS 245 

complements other upcoming missions devoted to forest structure and biomass, in particular the 246 

GEDI lidar and the NASA-ISRO NISAR L- and S-band mission. Finally, Section 11 discusses how 247 

BIOMASS will contribute to an overall system for measuring biomass and its changes in the context 248 

of a global carbon cycle management scheme and presents our general conclusions. 249 

2. BIOMASS mission objectives and data properties 250 

The primary objective of the BIOMASS mission is to determine the worldwide distribution of forest 251 

above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon 252 
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stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with 253 

Land Use Change, forest degradation and forest regrowth. In doing so, it will provide support for 254 

international agreements such as REDD+ and UN Sustainable Development Goals (#13: climate 255 

action; #15: life on land). In addition it has several secondary objectives, including mapping sub-256 

surface geology, measuring terrain topography under dense vegetation and estimating glacier and 257 

icesheet velocities (ESA, 2012). 258 

Although BIOMASS aims at full global coverage, it will at least cover forested areas between 75 N 259 

and 56 S, subject to US Department of Defense Space Object Tracking Radar (SOTR) restrictions. 260 

These restrictions do not currently allow BIOMASS to operate within line-of-sight of the SOTR 261 

radars and mainly exclude the North American continent and Europe (Fig. 1, reproduced from 262 

Carreiras et al., 2017). For secondary applications, if global coverage is not possible, data will be 263 

collected on a best effort basis after covering the primary objectives, with priorities defined as in ESA 264 

(2015).  265 

 

 266 

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects 267 

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas between 65o South and 85o 268 

North are represented (figure reproduced courtesy of Joao Carreiras). 269 
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 270 

The BIOMASS data product requirements to meet the primary mission objectives are (ESA, 2015): 271 

1. Above-ground forest biomass (AGB), defined as the dry weight of live organic matter above 272 

the soil, including stem, stump, branches, bark, seeds and foliage woody matter per unit area, 273 

expressed in t ha-1 (FAO, 2009). It does not include dead mass, litter and below-ground 274 

biomass. Biomass maps will be produced with a grid-size of 200m x 200m (4 ha). 275 

2. Forest height, defined as upper canopy height according to the H100 standard used in forestry 276 

expressed in m, mapped using the same 4 ha grid as for biomass. H100 is defined as the 277 

average height of the 100 tallest trees/ha (Philip, 1994). 278 

3. Severe disturbance, defined as an area where an intact patch of forest has been cleared, 279 

expressed as a binary classification of intact vs deforested or logged areas, with detection of 280 

forest loss being fixed at a given level of statistical significance. 281 

Further properties of these products are defined in Table 1. Note that:  282 

 The biomass and height products will be produced on a 4 ha grid, while the disturbance 283 

product is at the full resolution of the instrument after averaging to 6 looks in azimuth, i.e., 284 

around 50 m x 50 m.while the disturbance product is at the full resolution of the instrument 285 

after averaging to 6 looks in azimuth, i.e., around 50 m x 50 m. This is because the large 286 

changes in backscatter associated with forest clearance mean that disturbance can be detected 287 

using less precise estimates of the polarimetric covariance and coherence matrices than are 288 

needed for biomass and height estimation.  289 

 If the true AGB exceeds 50 t ha–1 then the RMS error (RMSE) of its estimate is expected to 290 

depend on biomass and be less than AGB/5. For all values of AGB < 50 t ha–1 the RMSE is 291 

stipulated to be 10 t ha–1 or better, though it is likely that changes in ground conditions, such 292 

as soil moisture, may cause the RMSE to increase beyond this value. Similarly, the RMSE of 293 

estimates of forest height should be less than 30% of the true forest height for trees higher 294 

than 10 m. 295 
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 Below-ground biomass cannot be measured by BIOMASS (or any other remote sensing 296 

instrument), but can be inferred from above-ground biomass using allometric relations 297 

combined with climate data (Cairn et al., 1997; Mokany et al., 2006; Thurner et al., 2014). In 298 

particular, Ledo et al. (2018) used an extensive tropical, temperate and boreal forest dataset to 299 

develop a regression, with just tree size and mean water deficit as predictor variables, which 300 

explains 62% of the variance in the root-to-shoot ratio. Therefore, throughout this paper, 301 

‘biomass’ denotes ‘above-ground biomass’Below-ground biomass cannot be measured by 302 

BIOMASS (or any other remote sensing instrument), but can be inferred from above-ground 303 

biomass using allometric relations combined with climate data (Cairn et al., 1997; Mokany et 304 

al., 2006; Thurner et al., 2014). In particular, Ledo et al. (2018) used an extensive tropical, 305 

temperate and boreal forest dataset to develop a regression, with just tree size and mean water 306 

deficit as predictor variables, which explains 62% of the variance in the root-to-shoot ratio. 307 

Therefore, throughout this paper, ‘biomass’ denotes ‘above-ground biomass’. 308 

Table 1 Summary of primary BIOMASS Level 2 products. Achieving global coverage requires 425 309 

days during the initial Tomographic Phase and 228 days for each cycle of the subsequent 310 

Interferometric Phase. RMSE indicates Root Mean Square Error. “Global” is to be understood as 311 

subject to Space Object Tracking Radar restrictions (Carreiras et al., 2017). 312 

 313 

Level 2 

Product 
Definition  Information Requirements 

Forest 

biomass 

Above-ground biomass expressed 

in t ha–1. 

 200 m resolution 

 RMSE of 20% or 10 t ha–1 for biomass < 

50 t ha–1 

 1 biomass map every observation cycle 

 global coverage of forested areas 

Forest height Upper canopy height defined 

according to the H100 standard  

 200 m resolution  

 accuracy required is biome-dependent, but 
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RMSE should be better than 30% for trees 

higher than 10 m 

 1 height map every observation cycle 

 global coverage of forested areas 

Severe 

disturbance 

Map product showing areas of 

forest clearance 

 50 m resolution 

 detection at a specified level of significance 

 1 map every observation cycle 

 global coverage of forested areas 

 314 

3. The BIOMASS system and measurement techniques 315 

 316 

BIOMASS will be a fully polarimetric SAR mission operating at P-band (centre frequency 435 MHz) 317 

with 6 MHz bandwidth, as permitted by the International Telecommunications Union under a 318 

secondary allocation (the primary allocation is to the SOTR system). The choice of P-band is 319 

mandatory for measuring biomass with a single radar satellite (necessary for affordability within the 320 

ESA cost envelope) for three main reasons (ESA, 2008, 2012; Le Toan et al., 2011): 321 

1. P-band radiation can penetrate the canopy in all forest biomes and interacts preferentially with 322 

the large woody vegetation elements in which most of the biomass resides; 323 

2. Backscatter at P-band is more sensitive to biomass than at higher frequencies (X-, C-, S- and 324 

L-bands); lower frequencies (e.g. VHF) display even greater sensitivity (Fransson et al., 325 

2000) but present formidable challenges for spaceborne SAR because of ionospheric 326 

effectsBackscatter at P-band is more sensitive to biomass than at higher frequencies (X-, C-, 327 

S- and L-bands); lower frequencies (e.g. VHF) display even greater sensitivity (Fransson et 328 

al., 2000) but present formidable challenges for spaceborne SAR because of ionospheric 329 

effects;  330 



15 
 

3. P-band displays high temporal coherence between passes separated by several weeks, even in 331 

dense forest (Ho Tong Minh et al., 2012), allowing the use of Pol-InSAR to estimate forest 332 

height and retrieval of forest vertical structure using tomography. 333 

Here (1) is the crucial physical condition: it underlies the sensitivity in point (2) and, through the 334 

relative positional stability of the large woody elements, combined with the greater phase tolerance at 335 

longer wavelengths, permits the long-term coherence needed for (3). 336 

The satellite will carry a 12 m diameter reflector antenna, yielding a single-look azimuth resolution of 337 

~7.9 m. A polarimetric covariance product will also be generated by averaging 6 looks in azimuth, 338 

giving pixels with azimuth resolution ~50 m. Because of the allotted 6 MHz bandwidth, the single-339 

look slant range resolution will be 25 m, equivalent to a ground range resolution of 59.2 m at an 340 

incidence angle of 25. Roll manoeuvres will allow the satellite to successively generate three sub-341 

swaths of width 54.32, 54.41 and 46.06 km, giving a range of incidence angles across the combined 342 

swath from 23 to 33.9. It will be in a sun-synchronous orbit with a near dawn-dusk (06:00 ± 15 min) 343 

equatorial crossing time; the Local Time of the Ascending Node (LTAN) will be on the dawn-side, 344 

the system will be left-looking and the orbit inclination will be 98, with the highest latitude in the 345 

northern hemisphere attained on the night-side. This orbit is chosen to avoid the severe scintillations 346 

that occur in the post-sunset equatorial ionosphere (Rogers et al., 2013). Observations will be made 347 

during both the ascending and descending passes. 348 

BIOMASS displays major advances compared to all previous SAR missions in its use of three 349 

complementary technologies to provide information on forest properties: polarimetry (PolSAR), Pol-350 

InSAR and TomoSAR. All acquisitions will be fully polarimetric, i.e. the amplitude and phase of the 351 

HH, VV, HV & VH channels will be measured (HV indicates horizontal polarization on transmit and 352 

vertical polarization on receive, with the other channels being similarly defined).  This is in itself an 353 

advance, but BIOMASS will also be the first mission to systematically employ the Pol-InSAR 354 

technique to measure forest height. Even more innovative is its tomographic capability, which will 355 

allow three-dimensional imaging of forests. 356 
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The Tomographic Phase will immediately follow the initial 3-month Commissioning Phase, and will 357 

provide tomographic mapping of all imaged forest areas. Global coverage requires 425 days (~14 358 

months) in order to provide 7 passes, each separated by 3 days, for each tomographic acquisition. The 359 

remainder of the 5-year mission will be taken up by the Interferometric Phase, during which 3 passes, 360 

each separated by 3 days, will be combined in 3-baseline Pol-InSAR. Each cycle of the 361 

Interferometric Phase will require 228 days (~7 months) to provide global coverage. Note that these 362 

techniques are nested: the data gathered for tomography will yield multiple Pol-InSAR and PolSAR 363 

measurements, and each Pol-InSAR image triplet also provides three PolSAR images.  364 

Associated with the highly innovative measurement concepts of the mission are completely new 365 

challenges in external calibration arising from the orbital pattern needed for the tomographic and Pol-366 

InSAR phases of the mission (Section 4), the strong effects of the ionosphere at P-band, and the lack 367 

of pre-existing P-band data except over very limited parts of the globe. Together these create 368 

problems that can only be solved by combining infrequent visits to instrumented calibration sites with 369 

systematic exploitation of the properties of distributed targets and targets of opportunity. An overall 370 

approach to addressing these problems, including ionospheric correction, radiometric and polarimetric 371 

calibration, and providing the required geolocation accuracy is described in Quegan et al. (2018). 372 

4. The BIOMASS orbit and its implications 373 

In the Tomographic Phase, BIOMASS needs to be placed in a very precise repeat orbit in which a 374 

given scene is imaged 7 times with 3-day spacing. These acquisitions will be from slightly different 375 

positions separated by 15% of the critical baseline (i.e. 0.823 km) at the equator, which is necessary to 376 

preserve coherence. In this orbit, it takes 18 days to acquire the 7 images needed for each of the 3 sub-377 

swaths, so that tomography over the full swath (comprising the 3 sub-swaths) occupies a period of 60 378 

days. Once this has been achieved, a drift manœuvre will raise the satellite in altitude and then return 379 

it to its nominal altitude of 671.9 km. This allows the Earth to rotate below the satellite, and the next 380 

tomographic acquisition period covers a new swath that is adjacent to the previous one. Repeating this 381 

sequence 6 + 1/3 times yields global coverage and takes 425 days (the extra third corresponds to 382 

coverage in swath 1). The orbit pattern for the Interferometric Phase uses essentially the same 383 
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concept, but because only 3 images are needed to form the Pol-InSAR product, imaging a full swath 384 

requires only 24 days, and global coverage takes 228 days. 385 

These properties of the BIOMASS orbit pattern, driven by the requirement for global coverage using 386 

coherent imaging techniques, have profound implications for biomass retrieval in time and space. 387 

Acquisitions in adjacent swaths are separated by 2 months in the Tomographic Phase and by a little 388 

less than a month in each cycle of the Interferometric Phase. Hence there are likely to be significant 389 

changes in environmental conditions between different swaths that make up the global coverage. In 390 

addition, because each cycle of the Interferometric Phase takes 7 months, the acquisitions become 391 

steadily more out of phase with annual geophysical cycles, such as the Amazonian and West African 392 

inundation cycles. This means that the BIOMASS inversion algorithms have to be sufficiently robust 393 

that they are negligibly affected by environmental changesThis means that the BIOMASS inversion 394 

algorithms have to be sufficiently robust that they are negligibly affected by environmental changes. 395 

Incomplete compensation for such changes will manifest themselves as systematic differences 396 

between adjacent swaths or repeat swaths gathered in different cycles. As an example, boreal forests 397 

freeze during winter and their backscatter significantly decreases, so the winter season will most 398 

likely not be useful for biomass estimation. 399 

 400 

5. Forest AGB and height estimation techniques 401 

 402 

BIOMASS will exploit properties of all three SAR techniques, PolSAR, Pol-InSAR and TomoSAR, 403 

to estimate biomass, while both Pol-InSAR and TomoSAR will provide estimates of forest height. 404 

However, because BIOMASS will be the first spaceborne P-band SAR, the experimental data needed 405 

to support the development and testing of these techniques is based on limited airborne and ground-406 

based measurements. Six major ESA airborne campaigns were carried out (BioSAR-1, -2 and -3 in 407 

the boreal zone, and three in tropical ecosystems: TropiSAR in French Guiana, AfriSAR in Gabon 408 

and Indrex-2 in Indonesia) using the E-SAR and F-SAR (DLR, Germany) and SETHI (ONERA, 409 

France) P-band SARs (see Table 2, which includes the objectives of the campaigns and essential 410 

Φορmαττεδ: Φοντ: 11 πτ
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properties of the test-sites). These campaigns have provided the most accurate and complete set of P-411 

band SAR (PolSAR, Pol-InSAR and TomoSAR) and associated in situ data currently available over 412 

boreal and tropical forests. In addition, long-term continuous P-band tower-based measurements were 413 

made in French Guiana (Tropiscat), Ghana (Afriscat) and Sweden (Borealscat) to investigate diurnal 414 

and seasonal variations in backscatter and temporal coherence. Earlier P-band datasets from the 415 

NASA AirSAR system were also helpful, especially tropical forest data from Costa Rica, to extend 416 

the range of tropical biomass values (Saatchi et al., 2011), and NASA was heavily involved in the 417 

AfriSAR campaign, providing lidar coverage of the AfriSAR test-sites (Labrière et al., 2018). No 418 

specific ESA campaigns were conducted in temperate forests, but substantial amounts of tomographic 419 

data are available for such forests from experimental campaigns carried out by DLR. 420 

Table 2 Campaign data used in developing and testing BIOMASS retrieval algorithms. 421 

 422 

Campaign Objectives Test sites Time Forest conditions 

TropiSAR, SETHI 

(Dubois-Fernandez et 

al., 2012) 

Biomass estimation 

in tropical forest; 

temporal stability of 

coherence  

Paracou & 

Nouragues, 

French Guiana 

Aug. 2009 Tropical rain 

forest, AGB 300-

500 t/ha, lowland 

and hilly terrain 

Indrex-2, E-SAR 

(Hajnsek et al., 

2009a) ; not 

tomographic 

Height retrieval in 

tropical forest ; 

measurement of 

repeat-pass temporal 

decorrelation 

Sungai-Wai & 

Mawas, Borneo, 

Indonesia 

Nov. 2004 Tropical rain 

forest. 

Sungai-Wai: 

lowland, AGB ≤ 

600 t/ha; Mawas: 

peat swamp, AGB 

≤ 200 t/ha 

Tropiscat: 

Ground-based high 

temporal resolution 

Measurement of 

long-term temporal 

coherence and 

Paracou, French 

Guiana 

Aug. 2011 

- Dec. 

2012 

Tropical rain 

forest, AGB ca. 

400 t/ha 
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measurements 

(Koleck et al., 2012) 

temporal variation of 

backscatter in 

tropical forest 

BioSAR-1, E-SAR 

(Hajnsek et al., 2008) 

Biomass estimation 

and measurement of 

multi-month 

temporal 

decorrelation 

Remningstorp, 

southern Sweden 

Mar. - 

May 2007 

Hemi-boreal 

forest, low 

topography, AGB 

≤ 300 t/ha 

BioSAR-2, E-SAR  

(Hajnsek et al., 

2009b) 

Topographic 

influence on biomass 

estimation  

Krycklan, 

northern Sweden 

Oct. 2008 Boreal forest, 

hilly, AGB ≤ 300 

t/ha 

BioSAR-3, E-SAR  

(Ulander et al., 2011a, 

b) 

Forest change and 

multi-year coherence 

relative to BioSAR-1 

Remningstorp, 

southern Sweden 

Sept. 2010 Hemi-boreal 

forest, low 

topography, AGB 

≤ 400 t/ha (more 

high biomass 

stands than in 

BIOSAR-1) 

AfriSAR, SETHI and 

F-SAR 

Biomass estimation 

in tropical forest; 

temporal stability of 

coherence 

Sites at Lopé, 

Mondah, 

Mabounie and 

Rabi, Gabon 

July 2015 

(SETHI) 

Feb. 2016 

(F-SAR) 

Tropical forest and 

savannah, AGB 

from 50 to 500 

t/ha 

Afriscat: Ground-

based high temporal 

resolution 

measurements 

Measurement of 

long-term temporal 

coherence and 

temporal variation of 

backscatter in 

Ankasa, Ghana July 2015 

- July 

2016 

Tropical forest, 

low topography,  

AGB from 100 to 

300 t/ha 
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tropical forest 

Borealscat: Ground-

based high temporal 

resolution 

measurements 

(Ulander et al., 2018; 

Monteith and Ulander, 

2018) 

Time series of 

backscatter, 

tomography, 

coherence and 

environmental 

parameters in boreal 

forest. 

Remningstorp, 

southern Sweden 

Dec. 2016, 

ongoing 

Hemi-boreal 

forest, spruce-

dominated stand, 

low topography, 

AGB = 250 t/ha  

 423 

5.1 Estimating AGB 424 

Some key findings from these campaigns are illustrated in Fig. 2, where the P-band HV backscatter 425 

(given as 0 in dB) is plotted against the biomass of reference plots from a boreal site (Remningstorp, 426 

Sweden) and two tropical sites (Paracou, French Guiana and La Selva, Costa Rica). The data are not 427 

corrected for topographic or soil moisture effects, and the lines correspond to linear regression fits to 428 

the log-log form of the data. The sensitivity of backscatter to biomass is clear across the whole range 429 

of biomass covered, though with large dispersion in the boreal forest and the high biomass tropical 430 

forest in French Guiana. Also clear is that, for a given biomass, the HV backscatter is considerably 431 

larger in boreal than tropical forest. This corrects an error in Fig. 2 of Le Toan et al. (2011) where 432 

mean backscatter differences between the boreal and tropical data were ascribed to calibration errors 433 

and removed by shifting the data. The careful calibration of the datasets shown in Fig. 2 indicates that 434 

the difference is real and that different physical and biological factors (such as forest structure) are at 435 

play in the different forest types. 436 
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 437 

Fig. 2. P-band backscatter at HV polarisation (ߛு ) over tropical and boreal forests against the 438 

biomass of in situ reference plots. Data from Paracou, French Guiana, were acquired by the SETHI 439 

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the 440 

AIRSAR system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by the E-SAR 441 

system in 2007 (Sandberg et al., 2011).  442 

 443 

The regression lines indicate that in natural units the HV backscatter is approximately related to 444 

biomass, W, by a power law relationship, i.e. 445 

ுߛ  ൌ ܹܿ          (2) 446 

where c and p are parameters. Analysis in Schlund et al. (2018) indicates such relationships are found 447 

for the full set of available P-band SAR datasets that are supported by adequate in situ data except 448 

where there is strong topography. Although the model coefficients (and their coefficients of 449 

determination) vary across datasets, they are not significantly different when similar AGB ranges are 450 

considered.  451 

Despite this strong regularity in the relation between HV backscatter and biomass, exploiting it to 452 

estimate biomass faces a number of problems: 453 
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a. Dispersion in the data. For the boreal data in Fig. 2, major factors causing dispersion in the 454 

backscatter values are slope and soil moisture variations.  The Krycklan campaign over boreal 455 

forest in Sweden (Table 2) clearly shows that topography severely affects the power law 456 

relationship given by eq. (2) (Soja et al., 2013The Krycklan campaign over boreal forest in 457 

Sweden (Table 2) clearly shows that topography severely affects the power law relationship given 458 

by eq. (2) (Soja et al., 2013). This is particularly obvious in Krycklan because in this region most 459 

of the highest biomass stands are located in sloping areas. As demonstrated in Soja et al. (2013), 460 

however, adding terms involving the ߛுு Ȁߛ  ratio and slope to the regression significantly 461 

reduces the dispersion, at the expense of including two extra parameters. Note that the HH/VV 462 

ratio was included because of its lower sensitivity to soil moisture, and that the regression inferred 463 

from the Krycklan site in N. Sweden could be successfully transferred to Remningstorp 720 km 464 

away in S. Sweden. The associated relative RMSEs in AGB using the combined BioSAR-1 and -2 465 

data were 27% (35 t/ha) or greater at Krycklan and 22% (40 t/ha) or greater at Remningstorp. 466 

However, more recent unpublished analysis including the BIOSAR-3 data indicates that further 467 

coefficients are needed to achieve adequate accuracy. Another study for Remningstorp (Sandberg 468 

et al., 2014) found that AGB change could be estimated more accurately than AGB itself: analysis 469 

based on 2007 and 2010 data gave a RMSE of 20 t/ha in the estimated biomass change, i.e. 470 

roughly half the RMSEs of the individual AGB estimates. The algorithm used was based on 471 

finding areas of little or no change using the HH/VV ratio and applying polarization-dependent 472 

correction factors to reduce the effect of moisture variation. 473 

Unlike in Sweden, very little environmental change occurred during the TropiSAR campaign in 474 

French Guiana, and the major effect affecting the relation given by eq. (2) was topography, which 475 

greatly increased the dispersion. Methods to reduce this were based on rotating the spatial axes 476 

and normalization to account for the variation in the volume and double bounce backscatter with 477 

incidence angle (Villard and Le Toan, 2015). This allowed the sensitivity of the HV backscatter to 478 

biomass to be recovered, and AGB could then be estimated from the polarimetric data with 479 

relative RMSE < 20%. However, because the approach is based on regression and there was little 480 

temporal change in conditions during the campaign, it contains no provision for dealing with large 481 
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seasonal variations in backscatter like those observed in the Tropiscat data (Bai et al., 2018) and 482 

expected in BIOMASS data.  483 

b. Algorithm training . Regression methods need training data, but in many parts of the world, and 484 

especially in the tropics, there are very few high quality permanent in situ sampling plots, almost 485 

all funded under science grants. Significant efforts are being made by ESA, in collaboration with 486 

NASA, to work with and extend the existing in situ networks in order to establish a set of well-487 

documented reference sites that could be using for training and validation. Part of the challenge in 488 

doing so is to ensure that the set of reference sites is large enough and representative enough to 489 

capture the major variations in forest types and conditions.  490 

c. Physical explanation. Despite its remarkable generality, as demonstrated in Schlund et al. 491 

(2018), the physical basis of eq. (2) is not well-understood except in certain limiting cases (see 492 

below). Hence it is essentially empirical and at present we cannot in general attach meaningful 493 

physical properties to the fitting parameters or derive them from scattering models. In particular, 494 

it has no clear links to well-known decompositions of polarimetric backscatter into physical 495 

mechanisms (e.g. Freeman and Durden (1998); Cloude and Pottier (1996)). In addition, in boreal 496 

forests this relation depends on both total AGB and tree number density, so that unambiguous 497 

estimates of AGB require information on number density or use of height information combined 498 

with height- biomass allometric relations (Smith-Jonforsen et al., 2007) 499 

To get round these problems with the regression-based approaches, the current emphasis is on 500 

estimating biomass using a model-based approach that brings together three key factors: the 501 

capabilities of the BIOMASS system, the observed properties of the vertical distribution of forest 502 

biomass and our knowledge about the physics of radar-canopy interactions as embodied in scattering 503 

models.  504 

Its starting point is a simplified scattering model that describes the backscattering coefficient in each 505 

of the HH, HV and VV channels as an incoherent sum of volume, surface and double-bounce 506 

scattering (Truong-Loï et al., 2015). The model involves 6 real parameters per polarization, which are 507 

estimated using a combination of a scattering model and reference data. Biomass, soil roughness and 508 
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soil moisture are then treated as variables to be estimated from the data. Initial analysis found that this 509 

model was too complex and the associated parameter estimation was too unstable for this to be a 510 

viable approach for BIOMASS. However, a crucial technical development was to demonstrate that 511 

both tomographic and Pol-InSAR data can be used to cancel out the terms involving the ground 512 

(surface scatter and double bounce) and isolate the volume scattering term (Mariotti d’Alessandro et 513 

al., 2013; Mariotti d’Alessandro et al., 2018). In the Truong-Loï et al. (2015) formulation, this term 514 

can be written as 515 

௩ߪ  ൌ ܣܹఈ ߠ    ቆͳ െ    ൬െ ௐഁୡ୭ୱఏ ൰ቇ      (3) 516 

where ܣǡ ܤ  ǡ ߚ   andߙ  are coefficients for polarization configuration pq, W is AGB, and ߠ is 517 

the local incidence angle. The coefficients ߙ  and ߚ relate to forest structure, ܤ  Ͳ is an 518 

extinction coefficient and ܣ  Ͳ is a scaling factor.  519 

Assuming that ܣ ǡ ܤ  ǡ   are space-invariant at a certain scale, these parameters and 520ߚ   andߙ

AGB can be estimated simultaneously from the measured values of ߪ௩  in the three polarizations, pq 521 

= HH, HV and VV, using a non-linear optimization scheme (Soja et al., 2017, 2018). However, in 522 

model (3), the two biomass-dependent factors, ܣܹఈ   and ͳ െ    ൬െ ഁୡ୭ୱ ൰, both increase 523 

with increasing AGB for realistic parameters (ߙ  Ͳ and ߚ  Ͳሻ, so interactions between 524 ߙ ǡ   render the inversion difficult. This problem can be mitigated by using two special 525ߚ      ܤ 

cases of the model, both of which lead to a power law expression as in eq. (2). For the low-attenuation 526 

case, i.e., ܤ ఉ ا ͳ, eq. (3) can be simplified using a series expansion to: 527 ߪ௩ ൌ  Ԣܹ         (4) 528ܣ

where  ൌ ߙ  Ԣܣ   andߚ ൌ  ఉܤ ,., and in the high-attenuation case, i.eܤܣ ب ͳ, eq. (3) 529 

can be simplified to:  530 

௩ߪ ൌ Ԣܹܣ  531 (5)          ߠ   

where  ൌ Ԣܣ  andߙ ൌ  can then be estimated using the scheme 532  ᇱǡܹ  andܣ ,. In both casesܣ

proposed in Soja et al. (2017, 2018). 533 
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Note that there is still an inherent scaling ambiguity since the scheme cannot distinguish the unbiased 534 

estimate of AGB, ܹ , from any function of the form ܹܽ , where ܽ   and ܾ  are calibration constants. 535 

Hence reference data are needed, but these data do not need to cover a wide range of backscatter, 536 

slope and incidence angle conditions, as would be required if any of the models (3) - (5) were to be 537 

trained directly. One complication is that the temporal and spatial variations of ܽ  and ܾ  are are 538 

currently unknown and further work is needed to quantity them. Further refinements may also be 539 

needed to reduce residual effects from moisture variations by, for example, use of the VV/HH ratio in 540 

boreal forests as discussed above. 541 

The effectiveness of this approach is illustrated by Fig. 3, which plots values of AGB estimated with 542 

this scheme against AGB values estimated from in situ and airborne laser scanning data for a set of 543 

200 m x 200 m regions of interest (ROIs). The airborne P-band data used are from the AfriSAR 544 

campaign and were filtered to 6 MHz to match the BIOMASS bandwidth. The estimates are highly 545 

correlated with the reference data (r = 0.97), exhibit only a small amount of bias across the whole 546 

biomass range, and give a RMSE of 41 t/ha (16% of the average biomass). 547 

 548 

Fig. 3. Estimated AGB using the approach described in the text against AGB estimated from in situ 549 

and airborne laser scanning at the La Lopé site in Gabon during the AfriSAR campaign. The running 550 

average given by the blue line indicates only a small positive bias across the whole range of AGB. 551 

ROI denotes Region of Interest. 552 
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Further confirmation of the importance of isolating the volume backscatter by using the full power of 553 

tomography is from the TropiSAR tropical forest campaign, where the tomographic intensity (in dB) 554 

measured at 30 m above the ground (representing scattering from canopy elements between ca. 17.5 555 

m and 42.5 m, given the roughly 25 m vertical resolution of tomographic imaging) was found to be 556 

highly correlated with AGB (Ho Tong Minh et al., 2014, 2016). The observed sensitivity is about 50 557 

tons/ha per dB, and the correlation coefficient is about 0.84 at the scale of 1 ha. This striking result 558 

has been replicated in the forest sites investigated during the AfriSAR campaign (Fig. 4), and suggests 559 

that the backscatter from the forest layer centred 30 m above ground should be strongly correlated 560 

with total AGB in the case of dense tropical forests. 561 

Importantly, this finding is consistent with the TROLL ecological model (Chave, 1999), which 562 

predicts that for dense tropical forests the fraction of biomass contained between 20 m and 40 m 563 

accounts for about 35% to 40% of the total AGB, and that this relation is stable over a large range of 564 

AGB values (Ho Tong Minh et al., 2014). Another element in support of the ecological relevance of 565 

the 30 m layer is provided by two recent studies of tropical forests, which observed that: a) correlation 566 

between AGB and the area occupied at different heights by large trees (as derived from lidar) is 567 

maximal at a height of about 30 m (Meyer et al., 2017); b) about 35% of the total volume tends to be 568 

concentrated at approximately 24-40 m above the ground (Tang, 2018).  569 

However, tomographic data will only be available in the first phase of the mission. In addition, 570 

exploiting the relation between AGB and the 30 m tomographic layer requires knowledge of how the 571 

regression coefficients vary in time and space, hence substantial amounts of training data. In contrast, 572 

ground cancellation can be carried out with both tomographic and Pol-InSAR data (so throughout the 573 

mission). This allows the volume scattering term (eq. (3)) to be isolated and hence AGB to be 574 

estimated using the scheme described in Soja et al. (2018), which makes much less demand on the 575 

availability of reference data. 576 
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 577 

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measured by tomography 578 

against in situ AGB in 1 ha plots at tropical forest sites investigated during the TropiSAR (Paracou 579 

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns. 580 

 581 

The value of tomography for estimating AGB in boreal and temperate forests is less clear, since (a) 582 

these forests in general have smaller heights than in the tropics (so it is more problematical to isolate 583 

the signal from a canopy layer without corruption by a ground contribution, given the roughly 25 m 584 

vertical resolution of the tomographic product from BIOMASS), and (b) the double bounce 585 

mechanism appears to be important in recovering the AGB of boreal forests. Hence ground 586 

cancellation (which also cancels double bounce scattering, since this appears at ground level in the 587 

tomographic image) may noto help biomass estimation in such forests, and the preferred algorithm for 588 

BIOMASS in these cases is still not fixed.  Recent results indicate that ground cancellation improves 589 

results in Krycklan, but not in Remningstorp, most likely because it suppresses direct ground 590 

backscattering, which is unrelated to AGB but is of higher relative importance in Krycklan due to the 591 

pronounced topography. 592 

 593 

5.2 Estimating forest height 594 



28 
 

Forest height estimates will be available throughout the Tomographic and Interferometric Phases, in 595 

the latter case using polarimetric interferometric (Pol-InSAR) techniques (Cloude and Papathanassiou, 596 

1998, 2003; Papathanassiou and Cloude, 2001) applied to three polarimetric acquisitions performed in 597 

a 3-day repeat-pass interferometric mode. The use of Pol-InSAR to estimate forest height has been 598 

demonstrated at frequencies from X- to P-band for a variety of temperate, boreal and tropical sites, 599 

with widely different stand and terrain conditions (Praks et al., 2007; Kugler et al., 2014; Hajnsek et 600 

al., 2009; Garestier et al., 2008), and several dedicated studies have addressed its likely performance 601 

and limitations when applied to BIOMASS data.  602 

Estimation of forest height from Pol-InSAR requires a model that relates forest height to the Pol-603 

InSAR measurements (i.e. primarily to the interferometric coherence at different polarisations and for 604 

different spatial baselines) together with a methodology to invert the established model. Most of the 605 

established inversion algorithms use the two-layer Random Volume over Ground (RVoG) model to 606 

relate forest height to interferometric coherence (Treuhaft et al., 1996). This relies on two 607 

assumptions: 1) all polarizations “see” (up to a scalar scaling factor) the same vertical distribution of 608 

scatterers in the vegetation (volume) layer; 2) the ground layer is impenetrable, i.e. for all 609 

polarizations, the reflectivity of the ground scattering component is given by a Dirac delta function 610 

modulated by a polarimetrically dependent amplitude. The RVoG model has been extensively 611 

validated and its strong and weak points are well understood. Use of this model to obtain a forest 612 

height map is illustrated in Fig. 5 which is derived by inverting P-band Pol-InSAR data acquired 613 

during the AfriSAR campaign in February 2017 over the Pongara National Park, Gabon. This site is 614 

covered mainly by mangrove forests, which are among the tallest mangrove forests in the world, 615 

towering up to 60 m. 616 

 617 

 618 

 619 

 620 

 621 
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 622 

 623 

 624 

 625 

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquired over the Pongara 626 

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017. 627 

The main challenge for BIOMASS is therefore the development of an inversion formulation able to 628 

provide unique, unbiased and robust height estimates, and which accounts for: 1) the scattering 629 

characteristics at P-band, since the limited attenuation by the forest canopy means that a ground 630 

scattering component is present in all polarisations; 2) the constraints imposed by the BIOMASS 631 

configuration, both the 6 MHz bandwidth and the fact that some temporal decorrelation is inevitable 632 

in the repeat-pass mode (Lee et al., 2013; Kugler et al., 2015). To meet this challenge a flexible multi-633 

baseline inversion scheme has been developed that allows the inversion of the RVoG model by 634 

including: 1) a polarimetric three-dimensional ground scattering component; 2) a vertical distribution 635 

of volume scattering that can adapt to high (tropical) and low (boreal) attenuation scenarios; 3) a 636 

scalar temporal decorrelation that accounts for wind-induced temporal decorrelation of the vegetation 637 

layer. The inversion can then be performed using the three polarimetric acquisitions in the 638 

Interferometric Phase, allowing global forest height maps to be produced every 7 months.  639 

The main limitations in generating the forest height product arise not from the inversion methodology 640 

but from the 6 MHz bandwidth, which constrains the generation of large baselines as well as the 641 

spatial resolution of the data, and the low frequency, which reduces the sensitivity to forest height in 642 

certain sparse forest conditions. On the other hand, the low frequency will provide high temporal 643 

stability over the 3-day repeat period of the Interferometric Phase, which is necessary to establish 644 

uniqueness and optimum conditioning of the inversion problem.  645 

An alternative approach to estimating forest height is by tracing the upper envelope of the observed 646 

tomographic intensities, as reported in Tebaldini and Rocca (2012) and Ho Tong Minh et al. (2016) 647 

for boreal and tropical forests, respectively. This has the advantage of being less computationally 648 
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expensive than model-based inversion, and it can be applied in the absence of a specific model of the 649 

forest vertical structure. Importantly, it has been demonstrated using synthetic 6 MHz data simulating 650 

BIOMASS acquisitions over boreal forests (Tebaldini and Rocca, 2012). However, this approach will 651 

only be possible during the Tomographic Phase of the mission. 652 

 653 

6. Severe forest disturbance  654 

The BIOMASS disturbance product aims to detect high-intensity forest disturbance (effectively forest 655 

clearance) occurring between satellite revisit times. This is a natural extra use of the data gathered for 656 

biomass and height estimation, rather than a driver for the BIOMASS mission, and will contribute to 657 

the overall capability to measure forest loss from space using optical (e.g., Hansen et al., 2013) and 658 

radar sensors (e.g., the pair of Sentinel-1 C-band radar satellites). Changes in the polarimetric 659 

covariance matrix caused by deforestation are relatively large; for example, Fig. 1 indicates that ߛ௩  660 

changes by 5 dB as biomass decreases from 500 t ha-1 to nearly zero, while a change in AGB from 661 

100 to 200 t ha-1 causes ߛ௩  to change by only ~1 dB. Hence change detection is less affected by the 662 

statistical variability inherent in the radar signal, allowing the disturbance product to be produced at a 663 

spatial resolution of ~50 m, instead of 200 m, as for the biomass and height products.  664 

The method proposed for detecting disturbance is firmly rooted in the statistical properties of the 6-665 

look polarimetric covariance data and uses a likelihood ratio (Conradsen et al., 2016) to test, at a 666 

given level of statistical significance, whether change has occurred relative to previous acquisitions in 667 

each new polarimetric acquisition over forest. Note that this approach does not specify the detection 668 

probability, which would require an explicit form of the multi-variate probability distribution function 669 

associated with disturbed forest. This would be very difficult to characterise in any general sense 670 

because change may affect the covariance matrix in many different ways. Instead it provides a 671 

quantitative way to determine how sure we are that change has occurred; in this respect it is closely 672 

related to the Constant False Alarm Rate approach to target detection (e.g. Scharf, 1991). 673 

A current unknown in this approach is to what extent changes in the covariance matrix of undisturbed 674 

forest caused by environmental effects, such as changing soil moisture due to rainfall events, will 675 
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increase the false detection rateA current unknown in this approach is to what extent changes in the 676 

covariance matrix of undisturbed forest caused by environmental effects, such as changing soil 677 

moisture due to rainfall events, will increase the false detection rate. A further issue is that detections 678 

are only sought in forest pixels, so an accurate initial forest map is required, preferably estimated from 679 

the radar data themselves but possibly from some other source; this will be progressively updated 680 

after each new acquisition.  681 

Some insight into the performance of this approach can be gained using multi-temporal polarimetric 682 

data from PALSAR-2. Fig. 6 shows at the top Pauli format slant range representations of a pair of 683 

images gathered on 8 August 2014 and 8 August 2015 (so in this case the time series has length 2), 684 

below left the detection of change at 99% significance and below right the pixels at which change 685 

occurred marked in red on the image from 2014 (with no forest mask applied). It can be seen that the 686 

areas where change was detected occur in the non-forest regions, while detections in the forest regions 687 

occur as isolated pixels consistent with the 1% false alarm rate implied by the level of significance of 688 

the test.  689 
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 690 

Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 2015 691 

displayed in Pauli image format (red = HH + VV; blue = HH - VV; green = 2HV) and slant range 692 

geometry. (Bottom left) Detection of change at 99% significance level; changed pixels are marked as 693 

black. (Bottom right) Image from 8 August 2014 with changed pixels marked as red. 694 

7. In situ and lidar reference biomass data 695 

Although the model-based inversion proposed for estimating biomass (Section 5.1) minimises the 696 

need for in situ reference data, such data are critical for algorithm development and testing, 697 

investigation of regression-based approaches, and product calibration and validation. The BIOMASS 698 

mission faces three major challenges in providing these supporting data: (i) the key region where 699 

reference data are needed is the tropics, but high quality biomass data are available at only a very 700 

limited number of tropical sites; (ii) biomass will be estimated at a scale of 4 ha (200 m by 200 m 701 
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pixels) but most plot data are available at scales of 1 ha or less and the geographical locations of the 702 

plots is often not known to high accuracy; (iii) because of SOTR restrictions (Section 2), reference 703 

sites in the temperate and boreal zones will need to be outside N America and Europe.  704 

ESA are addressing challenge (i) and (ii) by working with existing networks to develop suitable 705 

extensive in situ reference data before launch through the Forest Observation System (http://forest-706 

observation-system.net/). A further encouraging development is the ESA-NASA initiative to 707 

collaborate in developing the in situ data requirements for GEDI, BIOMASS and NISAR. Co-708 

operation along these lines is already in evidence from joint contributions to the AfriSAR campaign 709 

by ESA and NASA. As regards (iii), for the temperate zone, southern hemisphere sites, e.g. in 710 

Tasmania, would be suitable, while Siberia is the most desirable region for the boreal zone. However, 711 

concrete plans to gather in situ data in these regions are not currently in place. 712 

An important complement to in situ data that helps to address challenge (ii) is airborne lidar data. This 713 

can provide a forest height map and information on canopy structure which, when combined with 714 

field data, allows biomass to be estimated. Lidar data offer many advantages, including: 715 

 A scanning lidar provides a relatively fine scale and accurate map of biomass, which can be 716 

aggregated to the 4 ha resolution cell of BIOMASS (this will allow the effects of variability in 717 

biomass at sub-resolution size to be assessed). Precision at this scale is typically below 10% 718 

and the vast majority of relevant studies indicate that the associated pan-tropical allometry 719 

(Chave et al. 2014) has negligible bias. 720 

 Lidar mapping can cover landscapes with a wide range of biomass levels and different forest 721 

conditions (degraded, regrowth, selectively logged, etc.). 722 

Forest height can be estimated at the same time as biomass, and with fine resolution (around 1 m)An 723 

important complement to in situ data that helps to address challenge (ii) is airborne lidar data. This 724 

can provide a forest height map and information on canopy structure which, when combined with 725 

field data, allows biomass to be estimated. Lidar data offer many advantages, including: 726 

 A scanning lidar provides a relatively fine scale and accurate map of biomass, which can be 727 

aggregated to the 4 ha resolution cell of BIOMASS (this will allow the effects of variability in 728 

Φορmαττεδ: Λινε σπαχινγ:  Dουβλε
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biomass at sub-resolution size to be assessed). Precision at this scale is typically below 10% 729 

and the vast majority of relevant studies indicate that the associated pan-tropical allometry 730 

(Chave et al. 2014) has negligible bias. 731 

 Lidar mapping can cover landscapes with a wide range of biomass levels and different forest 732 

conditions (degraded, regrowth, selectively logged, etc.). 733 

 Forest height with fine resolution (around 1 m) can be estimated at the same time as biomass. 734 

Hence the validation strategy for BIOMASS will involve a combination of in situ reference forest 735 

plots and lidar-derived biomass/height maps. 736 

8. Exploiting BIOMASS data in carbon cycle and climate analysis 737 

Although the primary objectives of BIOMASS are to reduce the major uncertainties in carbon fluxes 738 

linked to Land Use Change, forest degradation and regrowth and to provide support for international 739 

agreements (UNFCCC & REDD+), its products will also play a key role in advancing fundamental 740 

knowledge of forest ecology and biogeochemistry. For example, BIOMASS data will help in 741 

constraining critical carbon cycle parameters, initialising and testing the land component of carbon 742 

cycle and Earth System models (ESMs), and quantifying the forest disturbance regime. 743 

Differences between ESM forecasts of the carbon cycle are currently significant, and lead to major 744 

uncertainties in predictions (Exbrayat et al., 2018). These differences have been linked to variations in 745 

the internal processing of carbon, particularly in the large pools in biomass and soil organic matter 746 

(Friend et al. 2014). Linking biomass mapping to estimates of net primary production (NPP) provides 747 

a constraint on the turnover rate of the biomass pool, a critical model diagnostic (Carvalhais et al., 748 

2014; Thurner et al., 2014). A recent study (Thurner et al., 2017) found observed boreal and temperate 749 

forest carbon turnover rates up to 80% greater than estimates from global vegetation models involved 750 

in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014). The 751 

relative difference between modelled and observed values is shown in Fig. 7, where the red boxes 752 

indicate regions analysed in Thurner et al. (2017) in order to explain these discrepancies. In the boreal 753 

zone (boxes b1 - 4) they were mainly attributed to the neglect of the effects of frost damage on 754 
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mortality in the models, while most of the models did not reproduce observation-based relationships 755 

between mortality and drought in temperate forest transects (boxes t1 - 3).  756 

 757 

 758 

Fig 7. Relative difference between modelled carbon turnover rates and turnover rates inferred from 759 

observations. 1.0 means modelled rate is 100% higher (from Thurner et al., 2017). Red boxes labelled 760 

b (boreal) and t (temperate) were analysed further in Thurner et al. (2017) to explain these 761 

discrepancies (figure reproduced courtesy of Martin Thurner). 762 

The more accurate estimates from BIOMASS, particularly over the tropical belt, will greatly improve 763 

estimation of turnover across the tropics (Bloom et al., 2016). This information will support improved 764 

parameterisation of carbon cycling for ESMs, allowing identification of regional variations in carbon 765 

turnover currently missing from tropical plant functional types (Exbrayat et al., 2018a). A sensitivity 766 

analysis performed using the CARDAMOM system (Bloom et al., 2016; Exbrayat et al. 2018b) 767 

indicates an average reduction of 49.5 ± 29.2% (mean ± 2 std) in the 95% confidence interval of the 768 

estimated vegetation carbon turnover time when the recent pan-tropical biomass map due to Avitabile 769 

et al. (2016) is assimilated. The analysis shows how this error reduction has clear spatial variability 770 

with latitude and between continents (Fig. 8).  771 

Another component of uncertainty in ESMs is in their initialisation of biomass stocks, arising from 772 

the paucity of data in the tropics, Land Use Change and internal model steady states. Data from 773 

BIOMASS will provide the modelling community with a compelling resource with which to 774 

understand both steady state and transient forest carbon dynamics. Observations of the disturbance 775 

regime will constrain modelling of both natural processes of disturbance and mortality and the role of 776 
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humans (Williams et al., 2013). The potential for BIOMASS to monitor degradation (partial loss of 777 

biomass) will be critical for modelling the subtle and slow processes of carbon loss associated with 778 

forest edges, fires and human communities (Ryan et al, 2012; Brinck et al., 2017).  779 

 780 

Fig. 8. The relative reduction in the size of the 95% confidence interval of estimated vegetation 781 

carbon turnover times when using a prior value for biomass at each pixel compared to a run without a 782 

biomass prior. Turnover times were estimated using the CARDAMOM system. The darker areas 783 

show where reduction in relative uncertainty is largest. 784 

Repeated measurements of biomass will allow significant improvements in global monitoring of 785 

forest dynamics, and analysis of associated carbon cycling at fine spatial scales. Current biomass 786 

maps (e.g., Saatchi et al., 2011) provide maps of stocks at a fixed time (or combine observations from 787 

several times). While such data help to constrain the steady state biomass, relevant at regional scales 788 

(~1º), they give little information on the dynamics of forests at finer (ha to km2) scales over time. 789 

BIOMASS will allow detailed, localised, and temporally resolved analyses of forest dynamics to be 790 

constrained. The value of such detailed information has been illustrated in a site level analysis for an 791 

aggrading forest in North Carolina (Smallman et al., 2017). Using in situ carbon stock information as 792 

a baseline, the analysis showed that a model analysis constrained purely by assimilation of 9 793 

sequential annual biomass estimates (corresponding to the BIOMASS scenario, with 1 estimate in the 794 

Tomographic Phase and 8 in the Interferometric Phase) together with time series of Leaf Area Index 795 

(LAI, e.g. from an operational satellite like Sentinel-2) led to significantly smaller bias and narrower 796 

confidence intervals in biomass increment estimates than when LAI and just one biomass estimate, or 797 
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only management information, were assimilated. Bias in estimated carbon use efficiency (the ratio of 798 

NPP to gross primary production) was also significantly reduced by repeated biomass observations. 799 

This indicates the potential of BIOMASS to improve significantly our knowledge of the internal 800 

processing of carbon in forests.  801 

9. Secondary objectives 802 

BIOMASS will be the first P-band SAR in space and thus will offer previously unavailable 803 

opportunities for measuring properties of the Earth. As a result, mission planning includes provision 804 

for several secondary objectives, including mapping sub-surface geology, measuring terrain 805 

topography under dense vegetation, estimating glacier and ice sheet velocities and investigating 806 

properties of the ionosphere.  807 

9.1 Sub-surface geology 808 

In very dry environments, long wavelength SAR is able to probe the sub-surface down to several 809 

metres, as was demonstrated at L-band (1.25 GHz) during the first Shuttle Imaging Radar SIR-A 810 

mission (Elachi et al., 1984), which revealed buried and previously unknown palaeo-drainage 811 

channels in southern Egypt (McCauley et al., 1982; Paillou et al., 2003). More complete L-band 812 

coverage of the eastern Sahara acquired by the JAXA JERS-1 satellite was used to produce the first 813 

regional-scale radar mosaic covering Egypt, northern Sudan, eastern Libya and northern Chad, from 814 

which numerous unknown crater structures were identified (Paillou et al., 2006). In 2006, JAXA 815 

launched the Advanced Land Observing Satellite (ALOS-1), carrying a fully polarimetric L-band SAR, 816 

PALSAR, which offered higher resolution and much better signal to noise ratio than JERS-1. This 817 

provided an unprecedented opportunity to study the palaeo-environment and palaeo-climate of 818 

terrestrial deserts (Paillou et al., 2010), and led to the discovery of two major palaeo-rivers in North 819 

Africa: the Kufrah river, a 900 km long palaeo-drainage system, which in the past connected 820 

southeastern Libya to the Gulf of Sirt (Paillou et al., 2009; Paillou et al., 2012), and the Tamanrasett 821 

River in Mauritania, which connected a vast ancient river system in the western Sahara to a large 822 

submarine channel system, the Cap Timiris Canyon (Skonieczny et al., 2015). Besides its value in 823 

studying the past climates of desert regions, the sub-surface imaging capability of L-band SAR also 824 
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helps to build more complete and accurate geological maps in support of future water prospecting in 825 

arid and semi-arid regions (Paillou, 2017). 826 

 827 

Deeper probing of the sub-surface requires longer radar wavelengths: while L-band can penetrate 1-2 828 

m into dry sand, a P-band system should be able to probe down to more than 5 m. In June 2010, the 829 

first ever airborne P-band SAR campaign over the Sahara was conducted at a desert site in southern 830 

Tunisia using the SETHI system developed by ONERA (Paillou et al., 2011). Figure 9 shows a 831 

comparison between an ALOS-2 L-band scene and a P-band scene acquired by SETHI over the Ksar 832 

Ghilane oasis, an arid area at the border between past alluvial plains and present day sand dunes.. The 833 

P-band data better reveal the sub-surface features under the superficial sand layer because of the higher 834 

penetration depth and lower sensitivity to the covering sand surface. A two-layer scattering model for 835 

the surface and sub-surface geometry is able to reproduce both the L- and P-band measured backscatter 836 

levels, and indicates that the backscatter from the sub-surface layer is about 30 times weaker than from 837 

the surface at L-band, while at P-band the sub-surface contribution is about 30 times stronger than that 838 

from the surface. As a result, the total backscatter is comparable at P- and L-band, as the data show, but 839 

the P-band return is dominated by the sub-surface layer (Paillou et al., 2017). Hence BIOMASS should 840 

be a very effective tool for mapping sub-surface geological and hydrological features in arid areas, 841 

offering a unique opportunity to reveal the hidden and still unknown history of deserts. 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 
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 853 

 854 

Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in southern Tunisia: palaeo-channels are 855 

hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar image, showing sub-surface features 856 

but blurred by the return from the superficial sand layer. Right: SETHI P-band radar image, clearly 857 

revealing sub-surface hydrological features. 858 

 859 

9.2 Terrain topography under dense vegetation 860 

As an integral part of its ability to make height-resolved measurements of the backscatter in forest 861 

canopies, the tomographic phase of the mission will gain access to the ground phase, and hence will 862 

be able to derive a true Digital Terrain Model (DTM) that is unaffected by forest cover (Mariotti 863 

d’Alessandro and Tebaldini, 2018) and expected to have a spatial resolution of ca. 100 m x 100 m. 864 

This contrasts with the Digital Elevation Models (DEMs) produced by radar sensors at higher 865 

frequencies, such as SRTM (Rodriguez et al., 2015) or Tandem-X (Wessel et al., 2018), in which 866 

attenuation and scattering by dense forest canopies cause biases. Since global tomographic 867 

acquisitions occupy the first phase of the mission, this improved DTM will be available early in the 868 

Interferometric Phase, and will be used to improve the products based on Pol-InSAR and PolSAR. 869 

9.3 Glacier and ice sheet velocities 870 

The velocity fields of glaciers and icesheets can be measured using two classes of SAR techniques: 871 

differential SAR Interferometry (DInSAR) (Massonnet et al., 1993) and offset tracking (Gray et al., 872 

1998; Michel & Rignot, 1999). These techniques measure the ice displacement between two 873 

observations and require features in the ice or coherence between the observations. BIOMASS has the 874 

potential to supplement ice velocity measurements from other SAR missions, since its left-looking 875 

geometry with an inclination angle larger than 90° means that the polar gap in Antarctica will be 876 

smaller than for most other SAR missions, which are right-looking. The polar gap will be larger in 877 

Greenland, but the Greenland ice sheet cannot be mapped due to SOTR restrictions. The primary 878 
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advantage of BIOMASS is the higher coherence and longer coherence time resulting from the lower 879 

frequency of BIOMASS compared to all other space-based SAR systems. Its longer wavelength with 880 

deeper penetration into the firn ensures less sensitivity to snowfall, surface melt and aeolian processes 881 

(Rignot, 2008). This is seen when comparing L-band and C-band results (Rignot, 2008; Boncori et al., 882 

2010), and explains the long coherence time observed in airborne P-band data acquired by the Danish 883 

Technical University POLARIS SAR in the percolation zone of the Greenland ice sheet (Dall et al. 884 

2013).  885 

The range and azimuth components of the ice velocity field will most likely be measured with 886 

differential SAR interferometry (DInSAR) and offset tracking, respectively. At lower latitudes two 887 

velocity components might instead be obtained by combining DInSAR from ascending and 888 

descending orbits, since the range resolution of BIOMASS is too coarse for offset tracking to provide 889 

the range component (Dall et al. 2013). Generally DInSAR ensures less noisy results, and phase 890 

unwrapping is facilitated by the fact that the fringe rate of BIOMASS DInSAR data will be 1/12 of 891 

that of Sentinel-1 data, assuming a 6-day baseline in both cases. The very low ice velocities in the 892 

interior of Antarctica call for a long temporal baseline, but a 70-day baseline has been successfully 893 

used at C-band (Kwok et al., 2000), and therefore sufficiently high P-band coherence is not unlikely 894 

with the 228-day baseline provided by the BIOMASS observation cycle. However, ionospheric 895 

scintillation is severe at high latitudes, and without accurate correction will corrupt the ice velocity 896 

maps, possibly prohibitively. Assessment of whether proposed correction techniques (Kim et al., 897 

2015; Li et al., 2015) are sufficiently accurate will only be possible when BIOMASS is in orbit. 898 

9.4 Ionospheric properties 899 

A major concern in initial studies for BIOMASS was the effect of the ionosphere on the radar signal, 900 

and a crucial factor in the selection of the mission was demonstration that these effects could be 901 

compensated or were negligible in the context of the mission primary objectives (Rogers et al., 2013; 902 

Rogers and Quegan, 2014). However, correction of ionospheric effects (particularly Faraday rotation, 903 

but also scintillation, as noted in Section 9.3) necessarily involves measuring them, which then 904 

provides information on the ionosphere. The dawn-dusk BIOMASS orbit will cover major features of 905 



41 
 

the ionosphere, including the fairly quiescent ionosphere at low and mid-latitudes, steep gradients 906 

around the dusk-side mid-latitude trough, and large irregularities in the auroral ovals and polar cap. 907 

Measurements of ionospheric Total Electron Content, derived from Faraday rotation (Wright et al., 908 

2003) and/or interferometric measurements (Tebaldini et al., 2018), should be possible along the orbit 909 

at spatial resolutions of around a km, giving an unprecedented capability to measure these spatial 910 

structures and their changes, since they will be viewed every two hours as the orbit repeats. 911 

 912 

10. The role of BIOMASS in an overall observing system 913 

BIOMASS will have unique capabilities to map biomass in dense forests, but will form only part of 914 

the overall system of sensors providing information on forest biomass and biomass change, and more 915 

generally on the global carbon cycle. In fact, the next few years will see an unprecedented 916 

combination of sensors either dedicated to or capable of measuring forest structure and biomass. 917 

Particularly important for their links to BIOMASS will be the Global Ecosystem Dynamics 918 

Investigation (GEDI) and NISAR missions. 919 

GEDI will be a near infrared (1064 nm wavelength) light detection and ranging (lidar) sensor onboard 920 

the International Space Station with a 2-year lifetime from deployment in late 2018. It is focusing on 921 

tropical and temperate forests to address three key issues: 1) quantifying the above-ground carbon 922 

balance of the land surface; 2) clarifying the role played by the land surface in mitigating atmospheric 923 

CO2 in the coming decades; 3) investigating how ecosystem structure affects habitat quality and 924 

biodiversity. GEDI will provide the first sampling of forest vertical structure across all forests 925 

between 51.5 S and 51.5 N, from which estimates of canopy height, ground elevation and vertical 926 

canopy profile measurements will be derived. Further processing of the ~0.0625 ha footprint 927 

measurements will then yield estimates of the mean and variance of AGB on a 1 km grid. 928 

NISAR (launch 2021) is a joint project between NASA and ISRO (the Indian Space Research 929 

Organization) to develop and launch the first dual-frequency SAR satellite, with NASA providing the 930 

L-band (24 cm wavelength) and ISRO the S-band (12 cm wavelength) sensors. It will measure AGB 931 

and its disturbance and regrowth globally in 1 ha grid-cells for areas where AGB does not exceed 100 932 
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t/ha, and aims to achieve an accuracy of 20 t/ha or better over at least 80% of these areas. Its focus is 933 

therefore on lower biomass forests, which constitute a significant portion of boreal and temperate 934 

forests and savanna woodlands. NISAR will give unprecedented L-band coverage in space and time, 935 

being able to provide HH and HV observations every 12 days in ascending and descending orbits and 936 

covering forests globally every 6 days. The mission is also designed to give global interferometric 937 

SAR measurements for surface deformation and cryosphere monitoring. 938 

These three missions have significant overlaps in science objectives and products, but focus on 939 

different observations, cover different regions, and retrieve different components of AGB at different 940 

spatial and temporal scales. Their complementary nature is brought out by Fig. 10, which shows the 941 

coverage of the three sensors on a map indicating approximate mean AGB. BIOMASS will focus on 942 

tropical and sub-tropical woodlands at 4 ha resolution (though will also cover the temperate and 943 

boreal forests of Asia and the southern hemisphere), NISAR will give global coverage at 1 ha 944 

resolution but with AGB estimates limited to areas where AGB < 100 t/ha, and GEDI will cover the 945 

full range of AGB, but with sample footprints limited to lie within 51.5 latitude. Hence without the 946 

data from all three missions, wall-to-wall estimation of global forest biomass will not be possible. 947 

There will, however, still be lack of temporal and/or spatial coverage in regions where BIOMASS 948 

cannot operate because of SOTR exclusions and where AGB exceeds the 100 t/ha threshold for 949 

NISARThere will, however, still be lack of temporal and/or spatial coverage in regions where 950 

BIOMASS cannot operate because of SOTR exclusions and where AGB exceeds the 100 t/ha 951 

threshold for NISAR. 952 

For lower values of AGB (less than about 50 t/ha) P-band measurements will be much more affected 953 

by soil conditions than L-band, and NISAR should provide more accurate AGB estimates.  The high 954 

temporal frequency of NISAR observations will also allow the effects of soil moisture changes and 955 

vegetation phenology to be mitigated. Currently the theoretical basis of the algorithms proposed for 956 

NISAR and BIOMASS are the same (Truong-Loi et al., 2015), which offers the possibility of a 957 

combined L- and P-band algorithm that optimises the capabilities of each.  In addition, GEDI forest 958 

height and biomass products will be available before the NISAR and BIOMASS missions, so can help 959 
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to initialize their algorithms and validate their products. GEDI estimates of the vertical structure of 960 

forests will also be of enormous value in interpreting the BIOMASS Pol-InSAR and tomographic 961 

measurements and in producing a consistent forest height and digital terrain model at fine spatial scale 962 

(around 1 ha).  Conversely, height or backscatter products from NISAR and BIOMASS missions can 963 

provide information on the spatial variability of forest structure and biomass; this may be used in 964 

future reprocessing to improve both the algorithms that form the GEDI gridded height and biomass 965 

products and the resolution of these products. 966 

Hence the three sensors will be highly complementary, and their combination will provide an 967 

unparalleled opportunity to estimate forest AGB, height and structure globally with unprecedented 968 

accuracy, spatial resolution and temporal and spatial coverage. 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forest structure and above-978 

ground biomass (AGB). The background shows the global coverage area of NISAR, which will be 979 

sensitive to AGB values < 100 t/ha (green and yellow). BIOMASS coverage includes the tropical belt, 980 

the temperate and boreal zones of Asia, and the southern hemisphere, while the GEDI Lidar will 981 

sample latitudes between  51.5. These two sensors will cover the full range of forest AGB 982 

providing measurements where AGB >100 t/ha (red), so inaccessible to NISAR. 983 
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Along with its role in quantifying the biomass and its change, it is important to realize that the 986 

BIOMASS instrument, particularly in its interferometric and tomographic modes, is capable of 987 

producing global measures of important forest properties that are simply unavailable for almost all of 988 

the Earth.  Some of these are practical measurements whose value has been known for years.  For 989 

example, in forestry the ability to predict yield or increase in biomass is increased greatly when one 990 

knows both mass and height, so much so that tree height has been used in yield-table-based forestry to 991 

quantify the so-called site-index, the quality of a site for forest enterprise. Hence the information from 992 

the BIOMASS satellite and the modern digital offspring of classic forestry yield tables could be used 993 

to make informed estimates of expected net production of forest biomass. In similar vein, Section 8 994 

notes how the combination of biomass with NPP allows the turnover time of carbon within forest 995 

vegetation to be estimated. Both examples illustrate that although forest biomass, height, structure and 996 

change are all individually important, their full significance for climate, carbon cycle, biodiversity, 997 

resource management, etc., is only fully realised when they are combined with each other and with 998 

other sources of information.  999 

This perception of biomass as a key variable within a wider information system is implicit in the 1000 

recognition of AGB as an ECV (GCOS, 2017). More explicit analysis of its function within a carbon 1001 

information and management system is provided by the Group on Earth Observations (GEO) (Ciais et 1002 

al., 2010) and the response to this report in the CEOS Strategy for Carbon Observations from Space 1003 

(CEOS, 2014). In particular, the CEOS report (Fig. 2.3 and Table 2.1 of the report) indicates where 1004 

biomass fits within the set of key GEO satellite requirement areas and core GEO observational 1005 

elements necessary to quantify the current state and dynamics of the terrestrial carbon cycle and its 1006 

components. Central to the GEO Carbon Strategy is the combination of data and carbon cycle models, 1007 

not least because models provide the only way in which the many available space-based and in situ 1008 

measurements can be integrated into a single consistent structure for performing carbon flux 1009 

calculations.  1010 

There are many possible forms for these models but data can interact with them in essentially four 1011 

ways: by providing estimates of current model state variables, estimates of model parameters, tracking 1012 
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of processes and testing of model predictions. In addition, data and models can be even more tightly 1013 

bound by combining them in a data assimilation structure where both are regarded as sources of 1014 

information whose relative contribution to carbon flux estimates is weighted by their uncertainty. 1015 

There are already significant developments in exploiting biomass data in these ways, for example 1016 

initializing the age structure of forests when estimating the European carbon balance (Bellassen et al., 1017 

2011), estimating carbon turnover time (Thurner et al., 2017), testing Dynamic Global Vegetation 1018 

Models (Cantú et al., 2018), and full-scale data assimilation (Bloom et al., 2016). Further progress in 1019 

this direction is to be expected as we move towards launch in 2022. 1020 

Conclusions 1021 

BIOMASS mission will be the first space-based P-band radar, and this completely new view from 1022 

space will yield both predictable and unforeseen opportunities to learn about the Earth and its 1023 

dynamics. Within the operational constraints imposed by the Space Object Tracking Radar system 1024 

(Section 2) the 5-year mission will provide global mapping of forest AGB, height and change at 200 1025 

m spatial resolution by combining three different radar techniques, each of them innovative. This is 1026 

the first space-based radar mission for which all observations will be fully polarimetric, which is 1027 

necessary both to recover biomass information and to correct ionospheric effects. Even more 1028 

innovative will be this first systematic use of Pol-InSAR to measure forest height globally, and the 1029 

first use of SAR tomography to identify the vertical structure of forests globally. In parallel with these 1030 

major technological developments, considerable progress is being made in developing new 1031 

understanding and quantitative methods that will allow these measurements to be exploited in carbon 1032 

cycle and climate models. This link between measurements and models forms an essential part of 1033 

meeting the primary objective of the BIOMASS mission, which is to determine the worldwide 1034 

distribution of forest AGB in order to reduce the major uncertainties in calculations of carbon stocks 1035 

and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use 1036 

Change, forest degradation and forest regrowth. Of major mutual advantage in meeting this objective 1037 

will be the information provided by other space missions flying within the next five years, for which 1038 

pride of place goes to GEDI and NISAR, but supplemented by optical and other radar missions. Of 1039 
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great importance is that the structures for making use of these new data in carbon cycle and climate 1040 

models are being developed and implemented. 1041 

The physical and technical capabilities embedded in the BIOMASS mission in order to measure 1042 

biomass can be turned to many other uses. At present, known applications include sub-surface 1043 

imaging in arid regions, estimating glacier and icesheet velocities, and production of a true DTM 1044 

without biases caused by forest cover. An originally unforeseen application arising from the need to 1045 

correct the radar signal for ionospheric effects is to exploit the high sensitivity of the P-band signal to 1046 

Total Electron Content to estimate ionospheric properties and changes along the satellite’s dawn-dusk 1047 

orbit. This is likely to be just one amongst many novel uses of the BIOMASS data, whose scope will 1048 

only become clear once BIOMASS is in orbit.  1049 

Acknowledgements 1050 

This work was in part supported by the UK National Environment Research Council National Centre 1051 

for Earth Observation (NCEO).  1052 

 1053 

References 1054 

 1055 

Antonarakis, A.S., Saatchi, S.S., Chazdon, R.L. & Moorcroft, P.R. (2011). Using Lidar and radar 1056 

measurements to constrain predictions of forest ecosystem structure and function. Ecological 1057 

Applications, 21(4), 1120–1137. 1058 

Askne, J. I. H., Soja, M. J., and Ulander, L. M. H. (2017). Biomass estimation in a boreal forest from 1059 

TanDEM-X data, lidar DTM, and the interferometric water cloud model, Remote Sensing of Env., 1060 

196, 265-278, doi:org/10.1016/j.rse.2017.05.010. 1061 

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., et al. 1062 

(2016). An integrated pan-tropical biomass map using multiple reference datasets, Glob. Change Biol. 1063 

22(4), 1406-1420, doi: 10.1111/gcb.13139. 1064 



47 
 

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun M., Sulla-Menashe, D., et al. (2012). 1065 

Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. 1066 

Nature Clim. Change, 2, 182-185, doi:110.1038/nclimate1354. 1067 

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R. A. (2017). 1068 

Tropical forests are a net carbon source based on aboveground measurements of gain and loss, 1069 

Science, 358(6360), 230-234, doi:10.1126/science.aam5962. 1070 

Bai, Y., Tebaldini, S., Ho Tong Minh, D., and Yang, W. (2018). An empirical study on the impact of 1071 

changing weather conditions on repeat-pass SAR tomography,” IEEE Jnl. Selected Topics in Applied 1072 

Earth Observations and Remote Sensing, 1–7. 1073 

Bellassen, V., Viovy, N., Luyssaert, S., Le Maire, G., Schelhaas, M.-J. and Ciais, P. (2011). 1074 

Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000, Global 1075 

Change Biology, 17, 3274–3292, doi: 10.1111/j.1365-2486.2011.02476.x. 1076 

Bloom AA, Exbrayat J-F, van der Velde I.R., Feng L, Williams, M. (2016). The decadal state of the 1077 

terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times, 1078 

PNAS, 113(5), 1285-1290, doi:pnas.1515160113. 1079 

Boncori, J.P.M., Dall, J., Ahlstrøm, A.P., Andersen, S.B. (2010). Validation and operational 1080 

measurements with SUSIE: a SAR ice motion processing chain developed within PROMICE 1081 

(Programme for Monitoring of Greenland Ice-Sheet), Proc. ESA Living Planet Symposium, Bergen. 1082 

Bouvet, A., Mermoz, S., Le Toan, T., Villard, L., Mathieu, R., Naidoo, L., and Asner, G. P. (2018). 1083 

An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from 1084 

ALOS PALSAR, Remote Sens. Env., 206, 156–173. 1085 

Brinck, K., Fischer, R., Groeneveld, J., Lehmann, S., De Paula, M.D., et al. (2017). High resolution 1086 

analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature 1087 

Communications, 8, 14855 1088 

Cairns, M.A., Brown, S., Helmer, E.H., & Baumgardner, G.A. (1997). Root biomass allocation in the 1089 

world’s upland forests. Oecologia, 111, 1–11. 1090 

https://doi.org/10.1073/pnas.1515160113


48 
 

Cantú, A. G., Friele, K., Reye, C. P.O., Ciais, P., Chang, J., Ito, A., et al. (2018). Evaluating changes 1091 

of biomass in global vegetation models: the role of turnover fluctuations and ENSO events, Environ. 1092 

Res. Lett., 13, 075002. 1093 

Carreiras, J. M. B., Quegan, S., Le Toan, T., Ho Tong Minh, D., Saatchi, S., Carvalhais, N., et al. 1094 

(2017). Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions, 1095 

Remote Sensing of Environment, 196, 154-162, doi.org/10.1016/j.rse.2017.05.003.  1096 

Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, et al. (2014). Global 1097 

covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213-217. 1098 

CEOS (2014). CEOS Strategy for Carbon Observations from Space; The Committee on Earth 1099 

Observation Satellites (CEOS) Response to the Group on Earth Observations (GEO) Carbon 1100 

Strategy. 1101 

Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using 1102 

TROLL, a spatially explicit forest model, Ecological Modelling, 124 (2–3), 233–254.  1103 

Chave, J., Rejou-Mechain, M. , Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., et al. 1104 

(2014). Improved allometric models to estimate the aboveground biomass of tropical trees, Global 1105 

Change Biology, 20, 3177–3190, doi: 10.1111/gcb.12629. 1106 

Ciais, P., Dolman, A. J., Dargaville, R., Barrie, L., Bombelli, A., Butler, J., et al. (2010). GEO Carbon 1107 

Strategy, GEO Secretariat Geneva/FAO, Rome, 48 pp. 1108 

Cloude, S. R., and Pottier, E. (1996). A review of target decomposition theorems in radar polarimetry, 1109 

IEEE Trans. Geosci. Remote Sens., 34(2), 498–518. 1110 

Cloude, S. R., and Papathanassiou, K. P. (1998). Polarimetric SAR interferometry, IEEE Trans. 1111 

Geosci. Remote Sensing, 36(5), 1551-1565. 1112 

Cloude S. R. and Papathanassiou, K. P. (2003), Three-stage inversion process for polarimetric SAR 1113 

interferometry, IEE Proc. Radar, Sonar and Navigation, 150(3), 125-134. 1114 



49 
 

Conradsen, K., Nielsen, A. A., Schou, J., and Skriver, H. (2003). A test statistic in the complex 1115 

Wishart distribution and its application to change detection in polarimetric SAR data, IEEE Trans. 1116 

Geosci. Remote Sensing, 41(1), 4-19. 1117 

Conradsen, K., Nielsen, A. A., and Skriver, H. (2016). Determining the points of change in time series 1118 

of polarimetric SAR data, IEEE Trans. Geosci. Remote Sensing, 54(5), 3007-3024. 1119 

Dall, J., Nielsen, U., Kusk, A., van de Wal, R.S.W. 2013. Ice flow mapping with P-band SAR, Proc. 1120 

Int Geosci. Remote Sensing Symp. (IGARSS 2013), Melbourne. 1121 

Dubois-Fernandez, P., Le Toan, T., Daniel, S., Oriot, H., Chave, J., Blanc, L., et al. (2012). The 1122 

TropiSAR airborne campaign in French Guiana: Objectives, description and observed temporal 1123 

behavior of the backscatter signal, IEEE Trans. Geosci. Remote Sensing, 50(8), 3228-3241. 1124 

Elachi, C., Roth, L. E., and Schaber, G. G. (1984). Spaceborne radar sub-surface imaging in hyperarid 1125 

regions, IEEE Trans. Geosci. Remote Sensing, vol. GE-22, pp. 383-388,. 1126 

European Space Agency (2008). BIOMASS: Candidate Earth Explorer Core Missions - Reports for 1127 

Assessment; ESA SP-1313-2, Mission Science Division, ESA-ESTEC, Noordwijk, the Netherlands, 1128 

ISSN 0379-6566, 122 pp. 1129 

European Space Agency (2012). Report for Mission Selection: Biomass. Science authors: Quegan, S., 1130 

Le Toan T., Chave, J., Dall, J., Perrera, A., Papathanassiou, et al., ESA SP 1324/1 (3 vol. series), 1131 

European Space Agency, Noordwijk, the Netherlands, pp. 193. 1132 

European Space Agency (2015). Biomass Mission Requirements Document, EOP-SM/1645. 1133 

Exbrayat, J.-F., Bloom, A. A., Falloon, P., Ito, A., Smallman, T. L., & Williams, M. (2018a). 1134 

Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity 1135 

reduces global and regional uncertainties. Earth System Dynamics, 9(1), 153–165, 1136 

https://doi.org/10.5194/esd-9-153-2018. 1137 

Exbrayat, J.Ǧ F., Luke Smallman, T., Anthony Bloom, A., Hutley, L. B., & Williams, M. 1138 

(2018b). Inverse determination of the influence of fire on vegetation carbon turnover in the 1139 

pantropics. Global Biogeochemical Cycles, 32, 1776–1789. https://doi.org/10.1029/2018GB005925. 1140 

https://doi.org/10.5194/esd-9-153-2018
https://doi.org/10.1029/2018GB005925


50 
 

 FAO. (2006). Global Forest Resources Assessment 2005. FAO Forestry Paper 147, United Nations 1141 

Food and Agriculture Organization, Rome, Italy. 1142 

FAO (2008). UN Collaborative Programme on Reducing Emissions From Deforestation And Forest 1143 

Degradation in Developing Countries (UN-REDD). FAO, UNDP, UNEP. 1144 

FAO (2009) Assessment of the status of the development of the standards for the Terrestrial Essential 1145 

Climate Variables, GTOS Secretariat, UN Food and Agriculture Organisation, Rome, Italy.  1146 

FAO. (2010). Global Forest Resources Assessment 2010, United Nations Food and Agriculture 1147 

Organization, Rome, Italy. ISBN 978-92-5-106654-6. 1148 

FAO (2016). Global Forest Resources Assessment 2015 Second Edition, Food and Agriculture 1149 

Organization of the United Nations, Rome, ISBN 978-92-5-109283-5. 1150 

FAO (2012). Global Ecological Zones for FAO Forest Reporting: 2010 Update. Forest Resources 1151 

Assessment Working Paper 179, Food and Agriculture Organisation of the United Nations, Rome, 1152 

Italy. 1153 

Fransson, J. E. S., Walter, F., and Ulander, L. M. H. (2000). Estimation of forest parameters using 1154 

CARABAS-II VHF SAR data, IEEE Trans. Geosci. Remote Sens., 38(2), 720–727.  1155 

Freeman, A., and Durden, S. (1998). A three-component scattering model for polarimetric SAR data, 1156 

IEEE Trans. Geosci. Remote Sens., 36(3), 963–973. 1157 

Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R. M., Betts, R., et al. (2014). Carbon residence 1158 

time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. 1159 

Proceedings of the National Academy of Sciences of the United States of America, 111, 3280 – 3285. 1160 

Garestier, F., Dubois-Fernandez, P. C., and Papathanassiou, K. P. (2008). Pine forest height inversion 1161 

using single-pass X-Band Pol-InSAR data, IEEE Trans. Geosci. Remote Sensing, 46(1), 59-68. 1162 

GCOS (2015). Status of the Global Observing System for Climate, GCOS-195, WMO, Geneva, 1163 

http://www.wmo.int/pages/prog/gcos/Publications/GCOS-195_en.pdf. 1164 

http://www.wmo.int/pages/prog/gcos/Publications/GCOS-195_en.pdf


51 
 

GCOS (2017). The Global ObservingSystem for Climate: implementation needs, GCOS-200, WMO, 1165 

Geneva. 1166 

Gray, A.L., Mattar, K.E., and Vachon, P.W. (1998). InSAR results from the RADARSAT Antarctic 1167 

mapping mission data: estimation of data using a simple registration procedure, Proc. Int Geosci. 1168 

Remote Sensing Symp. (IGARSS 1998), Seattle. 1169 

Hajnsek I., Scheiber, R., Ulander, L., Gustavsson, A., Sandberg, G., Tebaldini, S., et al. (2008). 1170 

BIOSAR 2007: Technical Assistance for the Development of Airborne SAR and Geophysical 1171 

Measurements during the BioSAR 2007 Experiment, Final Report, ESA contract No.: 1172 

20755/07/NL/CB. 1173 

Hajnsek, I., Scheiber, R., Keller, M., Horn, R., Lee, S., Ulander, L., et al. (2009). BIOSAR 2008: Final 1174 

Report, ESTEC Contract 22052/08/NL/CT-002, 302 pp. 1175 

Hajnsek, I., Kugler, F., Lee, S.K., and Papathanassiou, K.P. (2009). Tropical forest parameter 1176 

estimation by means of Pol-InSAR: The INDREX-II campaign, IEEE Trans. Geosci. Remote Sensing 1177 

47(2), 481-493. 1178 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. 1179 

(2013). High-resolution global maps of 21st-century forest cover change, Science, 15(342), Issue 1180 

6160, 850-853, doi: 10.1126/science.1244693. 1181 

Ho Tong Minh, D., Tebaldini, S., Rocca, F., Albinet, C., Borderies, P., Koleck, T., et al. (2012). 1182 

Tropiscat: multi-temporal multi-polarimetric tomographic imaging of tropical forest, Proc. 2012 IEEE 1183 

International Geosci. Remote Sensing Symp., Munich, 22-27 July 2012, 7051-7054. 1184 

Ho Tong Minh, D., Le Toan, T., Rocca, F., Tebaldini, S., d’Alessandro, M. M., and Villard, L. 1185 

(2014). Relating P-band Synthetic Aperture Radar tomography to tropical forest biomass, IEEE Trans 1186 

Geosci. Remote Sensing, 52(2), 967-979. 1187 

Ho Tong Minh, D., Le Toan, T., Rocca, F., Tebaldini, S., Villard, L., Réjou-Méchain, M., Phillips, 1188 

O.L., Feldpausch, T.R., Dubois-Fernandez, P., Scipal, K., Chave, J. (2016). SAR tomography for the 1189 



52 
 

retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana, 1190 

Remote Sensing of Environment, 175, 138-147. 1191 

IPCC (2007). IPCC Fourth Assessment Report: Climate Change 2007, The Physical Science Basis. 1192 

Cambridge University Press, Cambridge, UK. 1193 

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 1194 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T. F., D. 1195 

Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. 1196 

Midgley (eds.)). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1197 

1535 pp. 1198 

Kim, J.-S., Papathanassiou, K., Scheiber, R., and Quegan, S. (2015). Correction of ionospheric 1199 

scintillation induced distortions on polarimetric SAR data, IEEE Trans. Geosci. Remote Sensing, doi: 1200 

10.1109/TGRS.2015.2431856. 1201 

Koleck, T., Borderies, P., Rocca, F., Albinet, C., Ho Tong Minh,   D., Tebaldini, S., Hamadi, A.,et al. 1202 

(2012). TropiSCAT: A polarimetric and tomographic scatterometer experiment in French Guiana 1203 

forests, Proc. 2012 IEEE International Geosci. Remote Sensing Symp., Munich, 22-27 July 2012, 1204 

7597-7600, doi: 10.1109/IGARSS.2012.6351869 1205 

Kugler, F., Schulze, D., Hajnsek, I., Pretzsch, H., Papathanassiou, K. P. (2014). TanDEM-X Pol-1206 

InSAR performance for forest height estimation, IEEE Trans. Geosci. Remote Sensing, 52(10), 6404-1207 

6422. 1208 

Kugler, F., Lee, S-K., Papathanassiou, K. P. (2015). Forest height estimation by means of Pol-InSAR 1209 

data inversion: the role of the vertical wavenumber, IEEE Trans. Geosci. Remote Sensing, 53(10), 1210 

5294-5311 1211 

Kwok, R., Siegert, M.J., Carsey, F.D. (2000). Ice motion over Lake Vostok, Antarctica: constraints on 1212 

inferences regarding the accreted ice, Journal of Glaciology, 46(155), 689-694. 1213 

Labrière, N., Tao, S., Chave, J., Scipal, K., Le Toan, T., Abernethy, K., et al. (2018). In situ reference 1214 

datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass 1215 

https://doi.org/10.1109/IGARSS.2012.6351869


53 
 

missions, IEEE Jnl. Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 1216 

3617-3627, doi: 10.1109/JSTARS.2018.2851606. 1217 

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. (2018). 1218 

Global Carbon Budget 2017, Earth Syst. Sci. Data, 10, 405-448, doi: 10.5194/essdd-2017-123. 1219 

Le Toan T., Quegan, S., Davidson, M., Balzter, H., Paillou, P., Papathanassiou, K., et al. (2011). The 1220 

BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle, 1221 

Remote Sens. Env., 115, 2850–2860. 1222 

Ledo, A., Paul, K. I., Burslem, D. F., Ewel, J. J., Barton, C., Battaglia, M., et al. (2018). Tree size and 1223 

climatic water deficit control root to shoot ratio in individual trees globally, New Phytologist, 217(1), 1224 

8-11. 1225 

Lee, J.-S., Schuler, D., and Ainsworth, T. (2000). Polarimetric SAR data compensation for terrain 1226 

azimuth slope variation, IEEE Trans Geosci. Remote Sensing, 38(5), 2153–2163.  1227 

Lee, S.-K., Kugler, F., Papathanassiou, K. P., and Hajnsek, I. Quantification of temporal decorrelation 1228 

effects at L-band for polarimetric SAR interferometry applications (2013). IEEE Jnl. Selected Topics 1229 

in Applied Earth Observations and Remote Sensing, 6(3), 1351-1367. 1230 

Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C., Del Bom Espirito-Santo, F., et 1231 

al. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical 1232 

Research Letters 32, L22S02, doi:10.1029/2005GL023971. 1233 

Lefsky, M. A. (2010). A global forest canopy height map from the Moderate Resolution Imaging 1234 

Spectroradiometer and the Geoscience Laser Altimeter System, Geophysical Research Letters 37(15), 1235 

doi.org/10.1029/2010GL043622 1236 

Li, Z., Quegan, S., Chen, J., and Rogers, N. C. (2015). Performance analysis of Phase Gradient 1237 

Autofocus for compensating ionospheric scintillation in BIOMASS P-band SAR data, IEEE Trans. 1238 

Geosci. Remote Sensing Letts., 12(6), 1367-1371, doi: 10.1109/LGRS.2015.2402833. 1239 

Mariotti d'Alessandro, M., Tebaldini, S., Quegan, S., Soja, M. J., Ulander, L. M. H. (2018). 1240 

Interferometric ground notching, Proc. Int Geosci. Remote Sensing Symp. (IGARSS 2018), Valencia.  1241 

https://doi.org/10.1109/JSTARS.2018.2851606
https://doi.org/10.1029/2010GL043622


54 
 

Mariotti d'Alessandro, M. and Tebaldini, S. (2018). Retrieval of terrain topography in tropical forests 1242 

using P-band SAR tomography, Proc. Int Geosci. Remote Sensing Symp. (IGARSS 2018), Valencia.  1243 

Mariotti  d'Alessandro, M., Tebaldini, S., and Rocca, F. (2013). Phenomenology of ground scattering 1244 

in a tropical forest through polarimetric synthetic aperture radar tomography, IEEE Trans. Geosci. 1245 

Remote Sensing, 51(8), 4430-4437. 1246 

Meyer, V., Saatchi, S., Clark, D. B., Keller, M., Vincent, G., et al. (2018).Canopy area of large trees 1247 

explains aboveground biomass variations across neotropical forest landscapes, Biogeosciences, 15, 1248 

3377–3390. 1249 

Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T. (1993). The 1250 

displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142. 1251 

McCauley, J. F., Schaber, G. G., Breed, C. S., Grolier, M. J., Haynes, C. V., Issawi, B., et al. (1982). 1252 

Sub-surface valleys and geoarchaeology of the eastern Sahara revealed by Shuttle Radar, Science, 1253 

218, pp. 1004-1020,. 1254 

Michel, R. & Rignot, E. (1999). Flow of Glacier Moreno, Argentina, from repeat-pass Shuttle 1255 

Imaging Radar images: comparison of the phase correlation method with radar interferometry. 1256 

Journal of Glaciology, 45(149), 93–100. 1257 

Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., and Williams, M. 1258 

(2009). Using satellite radar backscatter to predict above-ground woody biomass: A consistent 1259 

relationship across four different African landscapes, Geophys. Res. Lett., 36, Article L23401, 1260 

doi:10.1029/2009GL040692. 1261 

Mitchard, E. T. A., Saatchi, S. S., Baccini, A., Asner, G. P., Goetz, S. J., Harris, N. L., et al., (2013). 1262 

Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. 1263 

Carbon Balance and Management, 8(10), doi:10.1186/1750-0680-8-10. 1264 

Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-Gonzalez, G., Monteagudo, A., 1265 

Baker, T. R., et al., (2014). Markedly divergent estimates of Amazon forest carbon density from 1266 

ground plots and satellites. Global Ecol. Biogeogr., 23(8), 836-955, doi: 10.1111/geb.12168. 1267 

https://doi.org/10.1029/2009GL040692


55 
 

Mokany, K., Raison, R.J., and Prokushkin, A.S. (2006). Critical analysis of root:shoot ratios in 1268 

terrestrial biomes. Global Change Biology, 12(1), 84-96. 1269 

Monteith, A. R., and Ulander, L. M. H. (2018). Temporal survey of P- and L-band polarimetric 1270 

backscatter in boreal forests, IEEE Jnl. Selected Topics in Applied Earth Observations and Remote 1271 

Sensing, 11(10), 3564 – 3577. 1272 

Paillou, P., Grandjean, G., Baghdadi, N., Heggy, E., August-Bernex, T., and Achache, J. (2003). Sub-1273 

surface imaging in central-southern Egypt using low frequency radar: Bir Safsaf revisited, IEEE 1274 

Trans. Geosci. Remote Sensing, 41(7), 1672-1684. 1275 

Paillou, P., Reynard, B., Malézieux, J.-M, Dejax, J., Heggy, E., Rochette, P., et al. (2006). An 1276 

extended field of crater-shaped structures in the Gilf Kebir region – Egypt: Observations and 1277 

hypotheses about their origin, Jnl. African Earth Sciences, 46, 281-299. 1278 

Paillou, P., Schuster, M., Tooth, S., Farr, T., Rosenqvist, A., Lopez, S., et al. (2009). Mapping of a 1279 

major paleodrainage system in Eastern Libya using orbital imaging Radar: The Kufrah River, Earth 1280 

and Planetary Science Letters, 277, 327-333, doi: 10.1016/j.epsl.2008.10.029. 1281 

Paillou, P., Lopez, S., Farr, T. and Rosenqvist, A. (2010). Mapping sub-surface geology in Sahara 1282 

using L-band SAR: first results from the ALOS/PALSAR imaging radar, IEEE Journal of Selected 1283 

Topics in Earth Observations and Remote Sensing, 3(4), 632-636. 1284 

Paillou, P., Ruault du Plessis, O., Coulombeix, C., Dubois-Fernandez, P., Bacha, S., Sayah, N., et al. 1285 

(2011). The TUNISAR experiment: flying an airborne P-band SAR over southern Tunisia to map sub-1286 

surface geology and soil salinity,” PIERS 2011, Marrakesh, Morocco. 1287 

Paillou, P., Tooth, S., and Lopez, S. (2012). The Kufrah paleodrainage system in Libya: a past 1288 

connection to the Mediterranean Sea?, C.R. Geoscience, 344, 406-414. 1289 

Paillou, P. (2017). Mapping palaeohydrography in deserts: contribution from space-borne imaging 1290 

radar, Water, 9(194). 1291 

Paillou, P. Dubois-Fernandez, P., Lopez, S., and Touzi, R. (2017). SAR polarimetric scattering 1292 

processes over desert areas: Ksar Ghilane, Tunisia, POLINSAR, Frascati, Italy.  1293 



56 
 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W. A., et al. (2011). A large and 1294 

persistent carbon sink in the world's forests. Science, 333, 988-993. 1295 

Papathanassiou, K. P., Cloude, S. R. (2001). Single-baseline polarimetric SAR interferometry. IEEE 1296 

Trans. Geosci. Remote Sensing, 39(11), 2352-2363.  1297 

Persson, H. J., Olsson, H., Soja, M, J., Ulander, L. M. H., and Fransson, J. E. S. (2017). Experiences 1298 

from large-scale forest mapping of Sweden using TanDEM-X data, Remote Sensing, 9 (12), 1299 

doi:10.3390/rs9121253. 1300 

Philip, M.S. (1994). Measuring Trees and Forests, Second Edition, CAB International, Oxon, UK. 1301 

Praks, J., Kugler, F., Papathanassiou, K. P., Hajnsek, I., Hallikainen, M. (2007). Tree height 1302 

estimation for boreal forest by means of L- and X-band Pol-InSAR and HUTSCAT scatterometer, 1303 

IEEE Trans. Geosci. Remote Sensing Letts., 37(3), 466–470. 1304 

Quegan, S., Lomas, M., Papathanassiou, K. P., Kim, J-S., Tebaldini, S., Giudici, D., et al. (2018). 1305 

Calibration challenges for the BIOMASS P-band SAR instrument, Proc. IEEE Int. Geosci. Remote 1306 

Sensing Symp. (IGARSS 2018), Valencia. 1307 

Rackham, O., & Moody, J. (1996). The making of the Cretan landscape. Manchester University Press.  1308 

Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., et al. (2005). An 1309 

assessment of the SRTM topographic products, Technical Report JPL D-31639, Jet Propulsion 1310 

Laboratory, Pasadena, California. 1311 

Radkau, J. (2012). Wood: a history (Vol. 17). Polity. 1312 

Rignot, E. (2008). Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR 1313 

data, Geophysical Research Letters 35, L12505, doi:10.1029/2008GL033365, 1–5. 1314 

Rogers, N. C., Quegan, S., Kim, J. S. and Papathanassiou, K. P. (2013). Impacts of ionospheric 1315 

scintillation on the BIOMASS P-band satellite SAR, IEEE Trans. Geosci. Remote Sensing, 52(1), doi: 1316 

10.1109/TGRS.2013.2255880.  1317 



57 
 

Rogers, N. C., and Quegan, S. (2014). The accuracy of Faraday rotation estimation in satellite 1318 

Synthetic Aperture Radar images, IEEE Trans. Geosci. Remote Sensing, 52(8), 4799 – 4807, doi: 1319 

10.1109/TGRS.2013.2284635 1320 

Rosenqvist, A., Shimada, M., Suzuki, S., Ohgushi, F., Tadono, T., Watanabe, M., et al. (2014). 1321 

Operational performance of the ALOS global systematic acquisition strategy and observation plans 1322 

for ALOS-2 PALSAR-2, Remote Sens. Env. 155, 3-12, doi.org/10.1016/j.rse.2014.04.011. 1323 

Ru, X., Liu, Z., Huang, Z., and Jiang, W. (2016). Normalized residual-based constant false-alarm rate 1324 

outlier detection. Pattern Recognition Letters, 69, 1-7. 1325 

Ryan C. M., Hill T. C., Woollen E., Ghee C., Mitchard E. T. A. , Cassells G, Grace J, Woodhouse IH, 1326 

Williams M. (2012). Quantifying small-scale deforestation and forest degradation in African 1327 

woodlands using radar imagery. Global Change Biology 18, 243-257. 1328 

Saatchi, S.,Marlier, M., Chazdon, R. L., Clark, D B., and Russell, A. (2011). Impact of spatial 1329 

variability of tropical forest structure on radar estimation of aboveground biomass, Remote Sensing of 1330 

Environment, 115(11), 2836-2849, doi.org/10.1016/j.rse.2010.07.015. 1331 

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., et al., (2011). 1332 

Benchmark map of forest carbon stocks in tropical regions across three continents, Proceedings of the 1333 

National Academy of Sciences, 108 (24), 9899–9904. 1334 

Sandberg, G., Ulander, L. M. H., Holmgren, J., Fransson, J. E. S., & Le Toan, T. (2011). L- and P-1335 

band backscatter intensity for biomass retrieval in hemiboreal forest, Remote Sensing of the 1336 

Environment 115, 2874-2886. 1337 

Sandberg, G., Ulander, L. M. H., Wallerman, J., and Fransson, J.E.S. (2014). Measurements of forest 1338 

biomass change using P-band SAR backscatter, IEEE Trans. Geosci. Remote Sensing, 52(10), 6047-1339 

6061.  1340 

Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I., et al. (2011). 1341 

Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR 1342 

ScanSAR backscatter measurements. Remote Sens. Environ., 115(2), 490-507.  1343 

http://dx.doi.org/10.1109/TGRS.2013.2284635
http://research.usc.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Saatchi%2C+S%22
http://research.usc.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Marlier%2C+M%22
http://research.usc.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Chazdon%2C+Robin+L%22
http://research.usc.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Clark%2C+D+B%22
http://research.usc.edu.au/vital/access/manager/Repository?exact=sm_creator%3A%22Russell%2C+A+E%22
https://doi.org/10.1016/j.rse.2010.07.015


58 
 

Santoro, M., Cartus, O., Fransson, J. E. S., Shvidenko, A. , McCallum, I., Hall, R. J., et al. (2013). 1344 

Estimates of forest growing stock volume for Sweden, Central Siberia and Québec using Envisat 1345 

Advanced Synthetic Aperture Radar backscatter data. Remote Sensing, 5(9), 4503-4532. 1346 

Scharf, L. L. (1991). Statistical signal processing: detection, estimation, and time series analysis. 1347 

Boston: Addison–Wesley. ISBN 0-201-19038-9.  1348 

Schimel, D., Pavlick, R., Fisher, J.B., Asner, G.P., Saatchi, S. S., Townsend, P., et al. (2015). 1349 

Observing terrestrial ecosystems and the carbon cycle from space, Global Change Biology, 21, 1762-1350 

1776. 1351 

Schmullius, C., Matejka, E., Pathe, C., Santoro, M., Cartus, O., Wiesmann, A., et al. (2017). DUE 1352 

GlobBiomass Final Report, ESA-ESRIN Contract No. 4000113100/14/I_NB. 1353 

Schlund, M., Scipal, K., and Quegan, S. (2018). Assessment of a power law relationship between P-1354 

band SAR backscatter and aboveground biomass and its implications for BIOMASS mission 1355 

performance, IEEE Jnl. Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1356 

3538-3547, doi: 10.1109/JSTARS.2018.2866868. 1357 

Skonieczny, C., Paillou, P., Bory, A., Bayon, G., Biscara, et al. (2015). African humid periods 1358 

triggered the reactivation of a large river system in Western Sahara, Nature Comm., Nov. 10th. 1359 

Smallman, T. L., Exbrayat, J.-F., Mencuccini, M., Bloom, A., and Williams, M. (2017). Assimilation 1360 

of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in 1361 

aggrading forests, J. Geophys. Res. Biogeosciences, 122, 528-545. 1362 

Smith-Jonforsen, G., Folkesson, K., Hallberg, B., and Ulander, L. M. H. (2007). Effects of forest 1363 

biomass and stand consolidation on P-band backscatter, IEEE Geosci. Remote Sensing Letts., 4(4), 1364 

669-673. 1365 

Soja, M. J., Sandberg, G., and Ulander, L. M. H. (2013). Regression-based retrieval of boreal forest 1366 

biomass in sloping terrain using P-band SAR, IEEE Trans. Geosci. Remote Sens., 51(5), 2646-2665. 1367 

https://en.wikipedia.org/wiki/Boston
https://en.wikipedia.org/wiki/Addison%E2%80%93Wesley
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-19038-9
https://doi.org/10.1109/JSTARS.2018.2866868


59 
 

Soja, M. J., Askne, J. I. H., and Ulander, L. M. H. (2017). Estimation of boreal forest properties from 1368 

TanDEM-X data using inversion of the interferometric water cloud model, IEEE Geosci. Remote 1369 

Sensing Letts., 14(7), 997-1001. 1370 

Soja, M. J., d’Alessandro, M. M., Quegan, S., Tebaldini, S., and Ulander, L. M. H. (2018). Model-1371 

based estimation of tropical forest biomass from notch-filtered P-band SAR backscatter, Proc. IEEE 1372 

Int. Geosci. Remote Sensing Symp. (IGARSS 2018), Valencia. 1373 

Tang, S. (2018). Quantifying Differences in Forest Structures with Quantitative Structure Models 1374 

from TLS Data, MSc Thesis, University College London. 1375 

Tebaldini, S., Mariotti d’Alessandro, M., Kim, J.-S., Papathanassiou, K. (2017). Ionosphere vertical 1376 

profiling from BIOMASS multisquint InSAR, Proc. IEEE Int. Geosci. Remote Sensing Symp. 1377 

(IGARSS 2017), Fort Worth (USA). 1378 

Tebaldini S. and Rocca, F. (2012). Multibaseline polarimetric SAR tomography of a boreal forest at 1379 

P- and L-bands, IEEE Trans. Geosci. Remote Sens., 50(1), 232-246. 1380 

Thomas, S. C., and Martin, A. R. (2012). Carbon content of tree tissues: a synthesis, Forests, 3, 332-1381 

352, doi:10.3390/f3020332. 1382 

Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., et al. (2014). 1383 

Carbon stock and density of northern boreal and temperate forests. Global Ecology and 1384 

Biogeography, 23(3), 297-310. 1385 

Thurner, M., Beer, C., Ciais, P., Friend, A.D., Ito, A., et al. (2017). Evaluation of climate-related 1386 

carbon turnover processes in global vegetation models for boreal and temperate forests, Global 1387 

Change Biology, 23, 3076–3091. 1388 

Treuhaft, R. N., Madsen, S. N., Moghaddam, M., and van Zyl, J. J. (1996). Vegetation characteristics 1389 

and underlying topography from interferometric data, Radio Sci., 31, 1449-1495. 1390 

Truong-Loi, M.-L., Saatchi, S., and Jaruwatanadilok, S. (2015). Soil moisture estimation under 1391 

tropical forests using UHF radar polarimetry, IEEE Trans. Geosci. Remote Sens., 53(4), 1718–1727. 1392 



60 
 

Ulander, L. M. H., Gustavsson, A., Flood, B., Murdin, D., Dubois-Fernandez, P., Dupuis, X., et al. 1393 

(2011a). BioSAR 2010: Technical Assistance for the Development of Airborne SAR and Geophysical 1394 

Measurements during the BioSAR 2010 Experiment, Final Report, ESA contract no. 1395 

4000102285/10/NL/JA/ef. 1396 

Ulander, L.M.H., Sandberg, G. & Soja, M.J. (2011b). Biomass retrieval algorithm based on P-band 1397 

BioSAR experiments of boreal forest, Proc. 2011 IEEE International Geosci. Remote Sensing Symp., 1398 

Vancouver, Canada, 4245-4248. 1399 

Ulander, L. M. H., Monteith, A. R., Soja, M. J., and Eriksson, L. E. B. (2018). Multiport vector 1400 

network analyzer radar for tomographic forest scattering measurements, IEEE Geosci. Remote 1401 

Sensing Letters, 15(12), 1897 – 1901. 1402 

UNFCCC (2016). Key decisions relevant for reducing emissions from deforestation and forest 1403 

degradation in developing countries (REDD+), Decision booklet REDD+, UNFCCC secretariat, 1404 

February 2016. 1405 

Villard, L., and Le Toan, T. (2015). Relating P-band SAR intensity to biomass for tropical dense 1406 

forests in hilly terrain: Ȗ0 or t0?, IEEE Jnl. Selected Topics in Applied Earth Observations and Remote 1407 

Sensing, 8(1), 214-223. 1408 

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J. (2014). The Inter-1409 

Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework, PNAS, 111(9), 3228-1410 

3232; https://doi.org/10.1073/pnas.1312330110. 1411 

Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., Roth, A. (2018). Accuracy 1412 

assessment of the global TanDEM-X Digital Elevation Model with GPS data, ISPRS Jnl. 1413 

Photogrammetry and Remote Sensing, 139, 171–182. 1414 

Williams, M, Hill, T.C., and Ryan C.M. (2013). Using biomass distributions to determine probability 1415 

and intensity of tropical forest disturbance, Plant Ecology and Diversity, 6, 87-99. 1416 

https://doi.org/10.1073/pnas.1312330110
https://www.geos.ed.ac.uk/homes/mwilliam/Williams2013PED.pdf
https://www.geos.ed.ac.uk/homes/mwilliam/Williams2013PED.pdf


61 
 

World Bank, Wood-Based Biomass Energy Development for Sub-Saharan Africa: Issues and 1417 

Approaches (2011). The International Bank for Reconstruction and Development, The World Bank 1418 

Group, Washington, D.C., U.S.A. 1419 

Wright, P., Quegan, S., Wheadon, N., and Hall, D. (2003). Faraday rotation effects on L-band 1420 

spaceborne SAR data, IEEE Trans. Geosci. Remote Sensing, 41(12), 2735-2744. 1421 

 1422 

Figure captions 1423 

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects 1424 

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas between 65o South and 85o 1425 

North are represented (figure reproduced courtesy of Joao Carreiras). 1426 

Fig. 2. P-band backscatter at HV polarisation (ߛு ) over tropical and boreal forests against the 1427 

biomass of in situ reference plots. Data from Paracou, French Guiana, were acquired by the SETHI 1428 

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the 1429 

AIRSAR system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by the E-SAR 1430 

system in 2007 (Sandberg et al., 2011).  1431 

Fig. 3. Estimated AGB using the approach described in the text against AGB estimated from in situ 1432 

and airborne laser scanning at the La Lopé site in Gabon during the AfriSAR campaign. The running 1433 

average given by the blue line indicates only a small positive bias across the whole range of AGB. 1434 

ROI denotes Region of Interest. 1435 

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measured by tomography 1436 

against in situ AGB in 1 ha plots at tropical forest sites investigated during the TropiSAR (Paracou 1437 

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns. 1438 

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquired over the Pongara 1439 

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017. 1440 

Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 2015 1441 

displayed in Pauli image format (red = HH + VV; blue = HH - VV; green = 2HV) and slant range 1442 
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geometry. (Bottom left) Detection of change at 99% significance level; changed pixels are marked as 1443 

black. (Bottom right) Image from 8 August 2014 with changed pixels marked as red. 1444 

Fig 7. Relative difference between modelled carbon turnover rates and turnover rates inferred from 1445 

observations. 1.0 means modelled rate is 100% higher (from Thurner et al., 2017). Red boxes labelled 1446 

b (boreal) and t (temperate) were analysed further in Thurner et al. (2017) to explain these 1447 

discrepancies (figure reproduced courtesy of Martin Thurner). 1448 

Fig. 8. The relative reduction in the size of the 95% confidence interval of estimated vegetation 1449 

carbon turnover times when using a prior value for biomass at each pixel compared to a run without a 1450 

biomass prior. Turnover times were estimated using the CARDAMOM system. The darker areas 1451 

show where reduction in relative uncertainty is largest. 1452 

Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in southern Tunisia: palaeo-channels are 1453 

hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar image, showing sub-surface features 1454 

but blurred by the return from the superficial sand layer. Right: SETHI P-band radar image, clearly 1455 

revealing sub-surface hydrological features. 1456 

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forest structure and above-1457 

ground biomass (AGB). The background shows the global coverage area of NISAR, which will be 1458 

sensitive to AGB values < 100 t/ha (green and yellow). BIOMASS coverage includes the tropical belt, 1459 

the temperate and boreal zones of Asia, and the southern hemisphere, while the GEDI Lidar will 1460 

sample latitudes between  51.5. These two sensors will cover the full range of forest AGB 1461 

providing measurements where AGB >100 t/ha (red), so inaccessible to NISAR. 1462 
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 BIOMASS will be the first spaceborne P-band mission 
 Global estimates of forest biomass and height, subject to US DoD restrictions 
 The first systematic use of Pol-InSAR to measure forest height from space 
 The first systematic use of spaceborne SAR tomography 
 Sub-surface imaging, icesheet motion estimation and a bias-free DTM 
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Abstract 39 

The primary objective of the European Space Agency’s 7th Earth Explorer mission, BIOMASS, is to 40 

determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the 41 

major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial 42 

biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest 43 

regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band 44 

synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and 45 

forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m 46 

resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). 47 

After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase 48 

during which there will be global coverage by SAR tomography. In the succeeding interferometric 49 

phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to 50 

the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering 51 

from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB 52 

can then be estimated from the remaining volume scattering using non-linear inversion of a 53 

backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated 54 

with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, 55 

double bounce scattering appears to carry important information about the AGB of boreal forests, so 56 

ground cancellation may not be appropriate and the best approach for such forests remains to be 57 

finalized. Several methods to exploit these new data in carbon cycle calculations have already been 58 

demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data 59 

from other missions that will measure forest biomass, structure, height and change, including the 60 

NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station 61 

after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch 62 

in 2022. More generally, space-based measurements of biomass are a core component of a carbon 63 

cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary 64 

objectives of the mission include imaging of sub-surface geological structures in arid environments, 65 

generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of 66 
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glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the 67 

data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along 68 

the dawn-dusk orbit of the mission.  69 

 70 

1. Introduction : The role of biomass in the global carbon cycle and climate 71 

For millennia, humanity has depended on woody biomass from forests as a source of materials and 72 

energy (Rackham and Moody, 1996; Radkau, 2012), and this dependence shows no sign of abating. 73 

For example, around a third of the world’s population relies on biomass for energy, and in sub-74 

Saharan Africa around 81% of the energy use by households is provided by burning woody biomass 75 

(World Bank, 2011). At the same time, forest, and its associated biomass, has often been treated as an 76 

impediment to development, and huge tracts have been cleared, and continue to be cleared, to make 77 

way for agriculture, pasture and agro-forestry (FAO, 2016). However, a significant shift in the 78 

relationship between mankind and biomass has occurred as climate change has become of pressing 79 

international concern and the role of forest biomass within this process has become clearer (IPCC, 80 

2007, 2013).  81 

Climate change is intimately connected with the global carbon balance and the fluxes of greenhouses 82 

gases, especially carbon dioxide (CO2), between the Earth’s surface and the atmosphere 83 

(Intergovernmental Panel on Climate Change (IPCC), 2007, 2013). In particular, an unequivocal 84 

indication of man’s effect on our planet is the accelerating growth of atmospheric CO2. The principal 85 

contribution (around 88%) to this growth is emissions from fossil fuel burning, with most of the 86 

remainder arising from Land Use Change in the tropics (Le Quéré, 2018). However, the increase in the 87 

concentration of atmospheric CO2 between 2007 and 2016 is only about half (44%) of the emissions. 88 

Because CO2 is chemically inert in the atmosphere, the “missing” half of the emissions must flow back 89 

into the Earth’s surface. Current estimates (Le Quéré et al., 2018) suggest that around 28% of the total 90 

emissions are taken up by the land and 22% by the oceans (leaving around 6% unaccounted for), but 91 

there are large uncertainties in these values, especially the land uptake, whose value has usually been 92 

estimated as a residual that ensures the total amount of carbon is conserved, as expressed in eq. (1): 93 
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 Uland = Eff + Elb – (ǻCatmos + Uocean) .      (1) 94 

Here Eff denotes fossil fuel emissions; Elb is net land biospheric emissions, comprising both Land Use 95 

Change and ecosystem dynamics, and including alterations to biomass stocks linked to process 96 

responses to climate change, nitrogen deposition and rising atmospheric CO2; ǻCatmos is the change in 97 

atmospheric CO2; and Uland and Uocean are net average uptake by the land and ocean respectively. In eq. 98 

(1) the quantities on the right-hand side are typically estimated on an annual basis or as a decadal 99 

average, using a mixture of measurements and models, to yield Uland. However, in Le Quéré et al. 100 

(2018) Uland is estimated independently using dynamic global vegetation models. Under both 101 

approaches Uland has the largest uncertainty of any term in eq. (1), estimated as 0.8 GtC/yr, which is 102 

26% of its estimated value of 3.0 GtC/yr (1 GtC = 109 t of C which is equivalent to 3.67x109 t of CO2). 103 

Moreover, the Land Use Change flux (which is the difference between emissions from forest loss and 104 

uptake of CO2 by forest regrowth) has an uncertainty of 0.7 GtC/yr, which is 54% of its estimated 105 

value of 1.3 GtC/yr. Since the fractional carbon content of dry biomass is around 50% (though with 106 

significant inter-species differences [Thomas and Martin, 2012]), biomass change is a fundamental 107 

component in these two land fluxes, controlling the emissions from forest disturbance and the uptake 108 

of carbon by forest growth (e.g. Pan et al. 2011). This is why above-ground biomass (AGB) is 109 

recognised as an Essential Climate Variable (ECV) within the Global Climate Observing System 110 

(2015, 2017). 111 

Climate change concerns have therefore made it imperative to obtain accurate estimates of biomass 112 

and its changes. Unfortunately, where this information is most needed – the tropics – is where almost 113 

no data have been gathered (Schimel et al., 2015). This is in contrast to forests in the temperate and 114 

southern parts of the boreal zones whose economic importance has driven the development of 115 

extensive national inventories (although there are vast areas of Alaska, Northern Canada, and East 116 

Eurasia that do not have forest inventories because of their low economic importance). The tropical 117 

forests cover an enormous area (~18 million km2) and offer huge logistical challenges for ground-118 

based biomass inventory. They are also crucial in political efforts to mitigate climate change. In 119 

particular, the United Nations Convention on Climate Change (UNFCCC) through its Reduction of 120 



6 
 

Emissions from Deforestation and Degradation (REDD+) initiative (UNFCCC, 2016) aims to use 121 

market and financial incentives to transfer funds from the developed world to the developing countries 122 

in the tropical belt to help them reduce emissions by preservation and management of their forests 123 

(UN-REDD Programme, 2008).  124 

Estimates of biomass losses have focused on deforestation, i.e. conversion of forest land to other land 125 

use, which results in complete removal of AGB. However, also significant, but missing from most 126 

current estimates, is forest degradation. This is the loss of part of biomass, for instance removal of 127 

large stems for timber or of understorey plants for replacement by cocoa, or through increased fire 128 

along forest edges.  129 

UN-REDD and related programmes have given significant impetus to the acquisition of more in situ 130 

data in developing countries and this adds to the information available in the periodic reports of the 131 

United Nations (UN) Food and Agriculture Organisation (FAO) (FAO 2006, 2010, 2016). However 132 

national data in many cases have large gaps, sampling biases, inconsistency of methods, lack spatially 133 

explicit information and contain unrepresentative samples, particularly in developing countries. As a 134 

result, major efforts have been made to formulate more consistent global approaches that combine 135 

forest inventory and satellite data to estimate AGB. Such endeavours have been greatly hampered by 136 

the fact that, up until the launch of the Global Ecosystem Dynamics Investigation (GEDI) instrument 137 

(see below), there has never been any spaceborne sensor designed to measure biomass, so space-based 138 

estimates of biomass have relied on opportunistic methods applied to non-optimal sensors, with the 139 

limitations this implies. 140 

In the tropics, the most significant developments have been based on forest height estimates derived 141 

from the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation 142 

Satellite (ICESat) before its failure in 2009 (Lefsky, 2005, 2010). Combining GLAS data with other 143 

EO and environmental datasets and in situ biomass measurements has led to the production of two 144 

pan-tropical biomass maps (Saatchi et al. 2010; Baccini et al. 2012) at grid scales of 1 km and 500 m 145 

respectively; differences between these maps and differences between the maps and in situ data are 146 



7 
 

discussed in Mitchard et al. (2013, 2014). Refinements of these maps have been produced by 147 

Avitabile et al. (2016) and Baccini et al. (2017) based on essentially the same satellite datasets. 148 

For boreal and temperate forests, methods have been developed to estimate Growing Stock Volume 149 

(GSV, defined as the volume of wood in all living trees in an area with diameter at breast height above 150 

a given threshold) from very long time series of C-band Envisat satellite radar data (Santoro et al. 151 

2011). Multiplying these GSV estimates by wood density allowed Thurner et al. (2014) to estimate the 152 

carbon stock of forests north of 30°N. Reliable GSV estimates using these methods are only possible 153 

at spatial resolutions much coarser than the underlying radar data: by averaging to 0.5°, the relative 154 

RMS difference between estimated GSV and reference data was consistently found to lie in the range 155 

20–30% (Santoro et al. 2013). Further refinements to the methodology and its combination with 156 

ALOS PALSAR-2 data are given in the Final Report of the ESA GlobBiomass project (Schmullius et 157 

al., 2017). 158 

L-band radar offers access to biomass values up to around 100 t/ha before losing sensitivity (e.g. 159 

Mitchard et al., 2009). Under the JAXA Kyoto and Carbon Initiative, the ALOS L-band PALSAR-1 160 

acquired a systematic five-year archive of forest data before its failure in April 2011 (Rosenqvist et 161 

al., 2014). PALSAR-2 launched in spring 2014 and has continued this systematic acquisition strategy, 162 

but current JAXA data policy makes scene data very expensive. Annual mosaics are freely available 163 

and have been used to map woodland savanna biomass at continental scale (Bouvet et al., 2018), but 164 

the mosaics combine data from different times and environmental conditions, so further processing 165 

may be needed to exploit them for biomass estimation (Schmullius et al., 2017). L-band data will also 166 

be acquired by the two Argentinian Microwave Observation Satellites (SAOCOM), the first of which 167 

was launched on October 8, 2018, with the second due in 2019. Their main objectives are 168 

measurements of soil moisture and monitoring of hazards, such as oil spills and floods, and their value 169 

for global forest observations is not yet clear.  170 

C-band (Sentinel-1, Radarsat) and X-band (Tandem-X) radar instruments are in orbit but at these 171 

frequencies most of the backscatter is from the leaves and small twigs, so they have limited value for 172 

biomass estimation except within the context of long time series at C-band (Santoro et al. 2011) and, 173 
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for TanDEM-X, when a ground Digital Terrain Model (DTM) is available and the height-to-biomass 174 

allometry is robust (Persson et al., 2017; Askne et al., 2017). 175 

An exciting new development is the deployment on the International Space Station of the NASA 176 

GEDI lidar instrument after its launch on December 5, 2018 (see Section 10). This mission aims to 177 

sample forest vertical structure across all forests between 51.5 S and 51.5 N, from which estimates 178 

of the mean and variance of AGB on a 1 km grid will be derived. In addition, ICESat-2 launched on 179 

September 15, 2018; although it is optimised for icesheet, cloud and aerosol applications, and uses a 180 

different technical approach from ICESat-1 based on photon counting, preliminary results suggest that 181 

it can provide information on both forest height and structure.  182 

It is against this scientific and observational background that BIOMASS was selected by the 183 

European Space Agency (ESA) in 2013 as its 7th Earth Explorer mission, and the satellite is now 184 

under production by a consortium led by Airbus UK for launch in 2022. The initial mission concept is 185 

described in Le Toan et al. (2011), but there have been major developments since that time in almost 186 

all aspects of the mission: the measurement and calibration concepts, the scientific context, the 187 

methods to recover biomass from the satellite data, the exploitation of biomass in carbon cycle and 188 

climate modelling, the availability of P-band airborne campaign data and high quality in situ data, and 189 

the overall capability to estimate biomass from space. It is therefore timely to provide a 190 

comprehensive description of the current mission concept, and this paper sets out to do so.  191 

After a review of the mission objectives (Section 2), the associated measurement techniques 192 

(polarimetry, polarimetric interferometry [Pol-InSAR] and SAR tomography [TomoSAR]) are 193 

described in Section 3.  Pol-InSAR and TomoSAR require the combination of multi-temporal stacks 194 

of data; this imposes very strong conditions on the BIOMASS orbit pattern, with significant 195 

consequences for the production of global biomass products (Section 4). The orbit pattern also 196 

imposes strong requirements on the ability of the AGB and height inversion techniques, discussed in 197 

Section 5, to adapt to changing environmental conditions. Section 6 deals with the use of BIOMASS 198 

data to estimate severe forest disturbance, while Section 7 describes the development of the reference 199 

datasets to be used for algorithm calibration and product validation. In Section 8 we discuss 200 
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developments in how BIOMASS data can be used to estimate key carbon cycle and climate variables. 201 

Section 9 addresses a range of secondary objectives. Section 10 provides a view on how BIOMASS 202 

complements other upcoming missions devoted to forest structure and biomass, in particular the 203 

GEDI lidar and the NASA-ISRO NISAR L- and S-band mission. Finally, Section 11 discusses how 204 

BIOMASS will contribute to an overall system for measuring biomass and its changes in the context 205 

of a global carbon cycle management scheme and presents our general conclusions. 206 

2. BIOMASS mission objectives and data properties 207 

The primary objective of the BIOMASS mission is to determine the worldwide distribution of forest 208 

above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon 209 

stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with 210 

Land Use Change, forest degradation and forest regrowth. In doing so, it will provide support for 211 

international agreements such as REDD+ and UN Sustainable Development Goals (#13: climate 212 

action; #15: life on land). In addition it has several secondary objectives, including mapping sub-213 

surface geology, measuring terrain topography under dense vegetation and estimating glacier and 214 

icesheet velocities (ESA, 2012). 215 

Although BIOMASS aims at full global coverage, it will at least cover forested areas between 75 N 216 

and 56 S, subject to US Department of Defense Space Object Tracking Radar (SOTR) restrictions. 217 

These restrictions do not currently allow BIOMASS to operate within line-of-sight of the SOTR 218 

radars and mainly exclude the North American continent and Europe (Fig. 1, reproduced from 219 

Carreiras et al., 2017). For secondary applications, if global coverage is not possible, data will be 220 

collected on a best effort basis after covering the primary objectives, with priorities defined as in ESA 221 

(2015).  222 
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 223 

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects 224 

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas between 65o South and 85o 225 

North are represented (figure reproduced courtesy of Joao Carreiras). 226 

 227 

The BIOMASS data product requirements to meet the primary mission objectives are (ESA, 2015): 228 

1. Above-ground forest biomass (AGB), defined as the dry weight of live organic matter above 229 

the soil, including stem, stump, branches, bark, seeds and foliage woody matter per unit area, 230 

expressed in t ha-1 (FAO, 2009). It does not include dead mass, litter and below-ground 231 

biomass. Biomass maps will be produced with a grid-size of 200m x 200m (4 ha). 232 

2. Forest height, defined as upper canopy height according to the H100 standard used in forestry 233 

expressed in m, mapped using the same 4 ha grid as for biomass. H100 is defined as the 234 

average height of the 100 tallest trees/ha (Philip, 1994). 235 

3. Severe disturbance, defined as an area where an intact patch of forest has been cleared, 236 

expressed as a binary classification of intact vs deforested or logged areas, with detection of 237 

forest loss being fixed at a given level of statistical significance. 238 

Further properties of these products are defined in Table 1. Note that:  239 
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 The biomass and height products will be produced on a 4 ha grid, while the disturbance 240 

product is at the full resolution of the instrument after averaging to 6 looks in azimuth, i.e., 241 

around 50 m x 50 m. This is because the large changes in backscatter associated with forest 242 

clearance mean that disturbance can be detected using less precise estimates of the 243 

polarimetric covariance and coherence matrices than are needed for biomass and height 244 

estimation.  245 

 If the true AGB exceeds 50 t ha–1 then the RMS error (RMSE) of its estimate is expected to 246 

depend on biomass and be less than AGB/5. For all values of AGB < 50 t ha–1 the RMSE is 247 

stipulated to be 10 t ha–1 or better, though it is likely that changes in ground conditions, such 248 

as soil moisture, may cause the RMSE to increase beyond this value. Similarly, the RMSE of 249 

estimates of forest height should be less than 30% of the true forest height for trees higher 250 

than 10 m. 251 

 Below-ground biomass cannot be measured by BIOMASS (or any other remote sensing 252 

instrument), but can be inferred from above-ground biomass using allometric relations 253 

combined with climate data (Cairn et al., 1997; Mokany et al., 2006; Thurner et al., 2014). In 254 

particular, Ledo et al. (2018) used an extensive tropical, temperate and boreal forest dataset to 255 

develop a regression, with just tree size and mean water deficit as predictor variables, which 256 

explains 62% of the variance in the root-to-shoot ratio. Therefore, throughout this paper, 257 

‘biomass’ denotes ‘above-ground biomass’. 258 

Table 1 Summary of primary BIOMASS Level 2 products. Achieving global coverage requires 425 259 

days during the initial Tomographic Phase and 228 days for each cycle of the subsequent 260 

Interferometric Phase. RMSE indicates Root Mean Square Error. “Global” is to be understood as 261 

subject to Space Object Tracking Radar restrictions (Carreiras et al., 2017). 262 

 263 

Level 2 

Product 
Definition  Information Requirements 

Forest Above-ground biomass expressed  200 m resolution 
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biomass in t ha–1.  RMSE of 20% or 10 t ha–1 for biomass < 

50 t ha–1 

 1 biomass map every observation cycle 

 global coverage of forested areas 

Forest height Upper canopy height defined 

according to the H100 standard  

 200 m resolution  

 accuracy required is biome-dependent, but 

RMSE should be better than 30% for trees 

higher than 10 m 

 1 height map every observation cycle 

 global coverage of forested areas 

Severe 

disturbance 

Map product showing areas of 

forest clearance 

 50 m resolution 

 detection at a specified level of significance 

 1 map every observation cycle 

 global coverage of forested areas 

 264 

3. The BIOMASS system and measurement techniques 265 

 266 

BIOMASS will be a fully polarimetric SAR mission operating at P-band (centre frequency 435 MHz) 267 

with 6 MHz bandwidth, as permitted by the International Telecommunications Union under a 268 

secondary allocation (the primary allocation is to the SOTR system). The choice of P-band is 269 

mandatory for measuring biomass with a single radar satellite (necessary for affordability within the 270 

ESA cost envelope) for three main reasons (ESA, 2008, 2012; Le Toan et al., 2011): 271 

1. P-band radiation can penetrate the canopy in all forest biomes and interacts preferentially with 272 

the large woody vegetation elements in which most of the biomass resides; 273 

2. Backscatter at P-band is more sensitive to biomass than at higher frequencies (X-, C-, S- and 274 

L-bands); lower frequencies (e.g. VHF) display even greater sensitivity (Fransson et al., 275 

2000) but present formidable challenges for spaceborne SAR because of ionospheric effects;  276 
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3. P-band displays high temporal coherence between passes separated by several weeks, even in 277 

dense forest (Ho Tong Minh et al., 2012), allowing the use of Pol-InSAR to estimate forest 278 

height and retrieval of forest vertical structure using tomography. 279 

Here (1) is the crucial physical condition: it underlies the sensitivity in point (2) and, through the 280 

relative positional stability of the large woody elements, combined with the greater phase tolerance at 281 

longer wavelengths, permits the long-term coherence needed for (3). 282 

The satellite will carry a 12 m diameter reflector antenna, yielding a single-look azimuth resolution of 283 

~7.9 m. A polarimetric covariance product will also be generated by averaging 6 looks in azimuth, 284 

giving pixels with azimuth resolution ~50 m. Because of the allotted 6 MHz bandwidth, the single-285 

look slant range resolution will be 25 m, equivalent to a ground range resolution of 59.2 m at an 286 

incidence angle of 25. Roll manoeuvres will allow the satellite to successively generate three sub-287 

swaths of width 54.32, 54.41 and 46.06 km, giving a range of incidence angles across the combined 288 

swath from 23 to 33.9. It will be in a sun-synchronous orbit with a near dawn-dusk (06:00 ± 15 min) 289 

equatorial crossing time; the Local Time of the Ascending Node (LTAN) will be on the dawn-side, 290 

the system will be left-looking and the orbit inclination will be 98, with the highest latitude in the 291 

northern hemisphere attained on the night-side. This orbit is chosen to avoid the severe scintillations 292 

that occur in the post-sunset equatorial ionosphere (Rogers et al., 2013). Observations will be made 293 

during both the ascending and descending passes. 294 

BIOMASS displays major advances compared to all previous SAR missions in its use of three 295 

complementary technologies to provide information on forest properties: polarimetry (PolSAR), Pol-296 

InSAR and TomoSAR. All acquisitions will be fully polarimetric, i.e. the amplitude and phase of the 297 

HH, VV, HV & VH channels will be measured (HV indicates horizontal polarization on transmit and 298 

vertical polarization on receive, with the other channels being similarly defined).  This is in itself an 299 

advance, but BIOMASS will also be the first mission to systematically employ the Pol-InSAR 300 

technique to measure forest height. Even more innovative is its tomographic capability, which will 301 

allow three-dimensional imaging of forests. 302 
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The Tomographic Phase will immediately follow the initial 3-month Commissioning Phase, and will 303 

provide tomographic mapping of all imaged forest areas. Global coverage requires 425 days (~14 304 

months) in order to provide 7 passes, each separated by 3 days, for each tomographic acquisition. The 305 

remainder of the 5-year mission will be taken up by the Interferometric Phase, during which 3 passes, 306 

each separated by 3 days, will be combined in 3-baseline Pol-InSAR. Each cycle of the 307 

Interferometric Phase will require 228 days (~7 months) to provide global coverage. Note that these 308 

techniques are nested: the data gathered for tomography will yield multiple Pol-InSAR and PolSAR 309 

measurements, and each Pol-InSAR image triplet also provides three PolSAR images.  310 

Associated with the highly innovative measurement concepts of the mission are completely new 311 

challenges in external calibration arising from the orbital pattern needed for the tomographic and Pol-312 

InSAR phases of the mission (Section 4), the strong effects of the ionosphere at P-band, and the lack 313 

of pre-existing P-band data except over very limited parts of the globe. Together these create 314 

problems that can only be solved by combining infrequent visits to instrumented calibration sites with 315 

systematic exploitation of the properties of distributed targets and targets of opportunity. An overall 316 

approach to addressing these problems, including ionospheric correction, radiometric and polarimetric 317 

calibration, and providing the required geolocation accuracy is described in Quegan et al. (2018). 318 

4. The BIOMASS orbit and its implications 319 

In the Tomographic Phase, BIOMASS needs to be placed in a very precise repeat orbit in which a 320 

given scene is imaged 7 times with 3-day spacing. These acquisitions will be from slightly different 321 

positions separated by 15% of the critical baseline (i.e. 0.823 km) at the equator, which is necessary to 322 

preserve coherence. In this orbit, it takes 18 days to acquire the 7 images needed for each of the 3 sub-323 

swaths, so that tomography over the full swath (comprising the 3 sub-swaths) occupies a period of 60 324 

days. Once this has been achieved, a drift manœuvre will raise the satellite in altitude and then return 325 

it to its nominal altitude of 671.9 km. This allows the Earth to rotate below the satellite, and the next 326 

tomographic acquisition period covers a new swath that is adjacent to the previous one. Repeating this 327 

sequence 6 + 1/3 times yields global coverage and takes 425 days (the extra third corresponds to 328 

coverage in swath 1). The orbit pattern for the Interferometric Phase uses essentially the same 329 
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concept, but because only 3 images are needed to form the Pol-InSAR product, imaging a full swath 330 

requires only 24 days, and global coverage takes 228 days. 331 

These properties of the BIOMASS orbit pattern, driven by the requirement for global coverage using 332 

coherent imaging techniques, have profound implications for biomass retrieval in time and space. 333 

Acquisitions in adjacent swaths are separated by 2 months in the Tomographic Phase and by a little 334 

less than a month in each cycle of the Interferometric Phase. Hence there are likely to be significant 335 

changes in environmental conditions between different swaths that make up the global coverage. In 336 

addition, because each cycle of the Interferometric Phase takes 7 months, the acquisitions become 337 

steadily more out of phase with annual geophysical cycles, such as the Amazonian and West African 338 

inundation cycles. This means that the BIOMASS inversion algorithms have to be sufficiently robust 339 

that they are negligibly affected by environmental changes. Incomplete compensation for such 340 

changes will manifest themselves as systematic differences between adjacent swaths or repeat swaths 341 

gathered in different cycles. As an example, boreal forests freeze during winter and their backscatter 342 

significantly decreases, so the winter season will most likely not be useful for biomass estimation. 343 

 344 

5. Forest AGB and height estimation techniques 345 

 346 

BIOMASS will exploit properties of all three SAR techniques, PolSAR, Pol-InSAR and TomoSAR, 347 

to estimate biomass, while both Pol-InSAR and TomoSAR will provide estimates of forest height. 348 

However, because BIOMASS will be the first spaceborne P-band SAR, the experimental data needed 349 

to support the development and testing of these techniques is based on limited airborne and ground-350 

based measurements. Six major ESA airborne campaigns were carried out (BioSAR-1, -2 and -3 in 351 

the boreal zone, and three in tropical ecosystems: TropiSAR in French Guiana, AfriSAR in Gabon 352 

and Indrex-2 in Indonesia) using the E-SAR and F-SAR (DLR, Germany) and SETHI (ONERA, 353 

France) P-band SARs (see Table 2, which includes the objectives of the campaigns and essential 354 

properties of the test-sites). These campaigns have provided the most accurate and complete set of P-355 

band SAR (PolSAR, Pol-InSAR and TomoSAR) and associated in situ data currently available over 356 
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boreal and tropical forests. In addition, long-term continuous P-band tower-based measurements were 357 

made in French Guiana (Tropiscat), Ghana (Afriscat) and Sweden (Borealscat) to investigate diurnal 358 

and seasonal variations in backscatter and temporal coherence. Earlier P-band datasets from the 359 

NASA AirSAR system were also helpful, especially tropical forest data from Costa Rica, to extend 360 

the range of tropical biomass values (Saatchi et al., 2011), and NASA was heavily involved in the 361 

AfriSAR campaign, providing lidar coverage of the AfriSAR test-sites (Labrière et al., 2018). No 362 

specific ESA campaigns were conducted in temperate forests, but substantial amounts of tomographic 363 

data are available for such forests from experimental campaigns carried out by DLR. 364 

Table 2 Campaign data used in developing and testing BIOMASS retrieval algorithms. 365 

 366 

Campaign Objectives Test sites Time Forest conditions 

TropiSAR, SETHI 

(Dubois-Fernandez et 

al., 2012) 

Biomass estimation 

in tropical forest; 

temporal stability of 

coherence  

Paracou & 

Nouragues, 

French Guiana 

Aug. 2009 Tropical rain 

forest, AGB 300-

500 t/ha, lowland 

and hilly terrain 

Indrex-2, E-SAR 

(Hajnsek et al., 

2009a) ; not 

tomographic 

Height retrieval in 

tropical forest ; 

measurement of 

repeat-pass temporal 

decorrelation 

Sungai-Wai & 

Mawas, Borneo, 

Indonesia 

Nov. 2004 Tropical rain 

forest. 

Sungai-Wai: 

lowland, AGB ≤ 

600 t/ha; Mawas: 

peat swamp, AGB 

≤ 200 t/ha 

Tropiscat: 

Ground-based high 

temporal resolution 

measurements 

(Koleck et al., 2012) 

Measurement of 

long-term temporal 

coherence and 

temporal variation of 

backscatter in 

Paracou, French 

Guiana 

Aug. 2011 

- Dec. 

2012 

Tropical rain 

forest, AGB ca. 

400 t/ha 
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tropical forest 

BioSAR-1, E-SAR 

(Hajnsek et al., 2008) 

Biomass estimation 

and measurement of 

multi-month 

temporal 

decorrelation 

Remningstorp, 

southern Sweden 

Mar. - 

May 2007 

Hemi-boreal 

forest, low 

topography, AGB 

≤ 300 t/ha 

BioSAR-2, E-SAR  

(Hajnsek et al., 

2009b) 

Topographic 

influence on biomass 

estimation  

Krycklan, 

northern Sweden 

Oct. 2008 Boreal forest, 

hilly, AGB ≤ 300 

t/ha 

BioSAR-3, E-SAR  

(Ulander et al., 2011a, 

b) 

Forest change and 

multi-year coherence 

relative to BioSAR-1 

Remningstorp, 

southern Sweden 

Sept. 2010 Hemi-boreal 

forest, low 

topography, AGB 

≤ 400 t/ha (more 

high biomass 

stands than in 

BIOSAR-1) 

AfriSAR, SETHI and 

F-SAR 

Biomass estimation 

in tropical forest; 

temporal stability of 

coherence 

Sites at Lopé, 

Mondah, 

Mabounie and 

Rabi, Gabon 

July 2015 

(SETHI) 

Feb. 2016 

(F-SAR) 

Tropical forest and 

savannah, AGB 

from 50 to 500 

t/ha 

Afriscat: Ground-

based high temporal 

resolution 

measurements 

Measurement of 

long-term temporal 

coherence and 

temporal variation of 

backscatter in 

tropical forest 

Ankasa, Ghana July 2015 

- July 

2016 

Tropical forest, 

low topography,  

AGB from 100 to 

300 t/ha 

Borealscat: Ground- Time series of Remningstorp, Dec. 2016, Hemi-boreal 
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based high temporal 

resolution 

measurements 

(Ulander et al., 2018; 

Monteith and Ulander, 

2018) 

backscatter, 

tomography, 

coherence and 

environmental 

parameters in boreal 

forest. 

southern Sweden ongoing forest, spruce-

dominated stand, 

low topography, 

AGB = 250 t/ha  

 367 

5.1 Estimating AGB 368 

Some key findings from these campaigns are illustrated in Fig. 2, where the P-band HV backscatter 369 

(given as 0 in dB) is plotted against the biomass of reference plots from a boreal site (Remningstorp, 370 

Sweden) and two tropical sites (Paracou, French Guiana and La Selva, Costa Rica). The data are not 371 

corrected for topographic or soil moisture effects, and the lines correspond to linear regression fits to 372 

the log-log form of the data. The sensitivity of backscatter to biomass is clear across the whole range 373 

of biomass covered, though with large dispersion in the boreal forest and the high biomass tropical 374 

forest in French Guiana. Also clear is that, for a given biomass, the HV backscatter is considerably 375 

larger in boreal than tropical forest. This corrects an error in Fig. 2 of Le Toan et al. (2011) where 376 

mean backscatter differences between the boreal and tropical data were ascribed to calibration errors 377 

and removed by shifting the data. The careful calibration of the datasets shown in Fig. 2 indicates that 378 

the difference is real and that different physical and biological factors (such as forest structure) are at 379 

play in the different forest types. 380 
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 381 

Fig. 2. P-band backscatter at HV polarisation (ߛு ) over tropical and boreal forests against the 382 

biomass of in situ reference plots. Data from Paracou, French Guiana, were acquired by the SETHI 383 

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the 384 

AIRSAR system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by the E-SAR 385 

system in 2007 (Sandberg et al., 2011).  386 

 387 

The regression lines indicate that in natural units the HV backscatter is approximately related to 388 

biomass, W, by a power law relationship, i.e. 389 

ுߛ  ൌ ܹܿ          (2) 390 

where c and p are parameters. Analysis in Schlund et al. (2018) indicates such relationships are found 391 

for the full set of available P-band SAR datasets that are supported by adequate in situ data except 392 

where there is strong topography. Although the model coefficients (and their coefficients of 393 

determination) vary across datasets, they are not significantly different when similar AGB ranges are 394 

considered.  395 

Despite this strong regularity in the relation between HV backscatter and biomass, exploiting it to 396 

estimate biomass faces a number of problems: 397 
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a. Dispersion in the data. For the boreal data in Fig. 2, major factors causing dispersion in the 398 

backscatter values are slope and soil moisture variations.  The Krycklan campaign over boreal 399 

forest in Sweden (Table 2) clearly shows that topography severely affects the power law 400 

relationship given by eq. (2) (Soja et al., 2013). This is particularly obvious in Krycklan because 401 

in this region most of the highest biomass stands are located in sloping areas. As demonstrated in 402 

Soja et al. (2013), however, adding terms involving the ߛுு Ȁߛ  ratio and slope to the regression 403 

significantly reduces the dispersion, at the expense of including two extra parameters. Note that 404 

the HH/VV ratio was included because of its lower sensitivity to soil moisture, and that the 405 

regression inferred from the Krycklan site in N. Sweden could be successfully transferred to 406 

Remningstorp 720 km away in S. Sweden. The associated relative RMSEs in AGB using the 407 

combined BioSAR-1 and -2 data were 27% (35 t/ha) or greater at Krycklan and 22% (40 t/ha) or 408 

greater at Remningstorp. However, more recent unpublished analysis including the BIOSAR-3 409 

data indicates that further coefficients are needed to achieve adequate accuracy. Another study for 410 

Remningstorp (Sandberg et al., 2014) found that AGB change could be estimated more accurately 411 

than AGB itself: analysis based on 2007 and 2010 data gave a RMSE of 20 t/ha in the estimated 412 

biomass change, i.e. roughly half the RMSEs of the individual AGB estimates. The algorithm 413 

used was based on finding areas of little or no change using the HH/VV ratio and applying 414 

polarization-dependent correction factors to reduce the effect of moisture variation. 415 

Unlike in Sweden, very little environmental change occurred during the TropiSAR campaign in 416 

French Guiana, and the major effect affecting the relation given by eq. (2) was topography, which 417 

greatly increased the dispersion. Methods to reduce this were based on rotating the spatial axes 418 

and normalization to account for the variation in the volume and double bounce backscatter with 419 

incidence angle (Villard and Le Toan, 2015). This allowed the sensitivity of the HV backscatter to 420 

biomass to be recovered, and AGB could then be estimated from the polarimetric data with 421 

relative RMSE < 20%. However, because the approach is based on regression and there was little 422 

temporal change in conditions during the campaign, it contains no provision for dealing with large 423 

seasonal variations in backscatter like those observed in the Tropiscat data (Bai et al., 2018) and 424 

expected in BIOMASS data.  425 
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b. Algorithm training . Regression methods need training data, but in many parts of the world, and 426 

especially in the tropics, there are very few high quality permanent in situ sampling plots, almost 427 

all funded under science grants. Significant efforts are being made by ESA, in collaboration with 428 

NASA, to work with and extend the existing in situ networks in order to establish a set of well-429 

documented reference sites that could be using for training and validation. Part of the challenge in 430 

doing so is to ensure that the set of reference sites is large enough and representative enough to 431 

capture the major variations in forest types and conditions.  432 

c. Physical explanation. Despite its remarkable generality, as demonstrated in Schlund et al. 433 

(2018), the physical basis of eq. (2) is not well-understood except in certain limiting cases (see 434 

below). Hence it is essentially empirical and at present we cannot in general attach meaningful 435 

physical properties to the fitting parameters or derive them from scattering models. In particular, 436 

it has no clear links to well-known decompositions of polarimetric backscatter into physical 437 

mechanisms (e.g. Freeman and Durden (1998); Cloude and Pottier (1996)). In addition, in boreal 438 

forests this relation depends on both total AGB and tree number density, so that unambiguous 439 

estimates of AGB require information on number density or use of height information combined 440 

with height- biomass allometric relations (Smith-Jonforsen et al., 2007) 441 

To get round these problems with the regression-based approaches, the current emphasis is on 442 

estimating biomass using a model-based approach that brings together three key factors: the 443 

capabilities of the BIOMASS system, the observed properties of the vertical distribution of forest 444 

biomass and our knowledge about the physics of radar-canopy interactions as embodied in scattering 445 

models.  446 

Its starting point is a simplified scattering model that describes the backscattering coefficient in each 447 

of the HH, HV and VV channels as an incoherent sum of volume, surface and double-bounce 448 

scattering (Truong-Loï et al., 2015). The model involves 6 real parameters per polarization, which are 449 

estimated using a combination of a scattering model and reference data. Biomass, soil roughness and 450 

soil moisture are then treated as variables to be estimated from the data. Initial analysis found that this 451 

model was too complex and the associated parameter estimation was too unstable for this to be a 452 
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viable approach for BIOMASS. However, a crucial technical development was to demonstrate that 453 

both tomographic and Pol-InSAR data can be used to cancel out the terms involving the ground 454 

(surface scatter and double bounce) and isolate the volume scattering term (Mariotti d’Alessandro et 455 

al., 2013; Mariotti d’Alessandro et al., 2018). In the Truong-Loï et al. (2015) formulation, this term 456 

can be written as 457 

௩ߪ  ൌ ܣܹఈ ߠ    ቆͳ െ    ൬െ ௐഁୡ୭ୱఏ ൰ቇ      (3) 458 

where ܣ ǡ ܤ  ǡ  is 459 ߠ  are coefficients for polarization configuration pq, W is AGB, andߚ   andߙ

the local incidence angle. The coefficients ߙ  and ߚ relate to forest structure, ܤ  Ͳ is an 460 

extinction coefficient and ܣ  Ͳ is a scaling factor.  461 

Assuming that ܣ ǡ ܤ  ǡ   are space-invariant at a certain scale, these parameters and 462ߚ   andߙ

AGB can be estimated simultaneously from the measured values of ߪ௩  in the three polarizations, pq 463 

= HH, HV and VV, using a non-linear optimization scheme (Soja et al., 2017, 2018). However, in 464 

model (3), the two biomass-dependent factors, ܣܹఈ   and ͳ െ    ൬െ ഁୡ୭ୱ ൰, both increase 465 

with increasing AGB for realistic parameters (ߙ  Ͳ and ߚ  Ͳሻ, so interactions between 466 ߙ ǡ   render the inversion difficult. This problem can be mitigated by using two special 467ߚ      ܤ 

cases of the model, both of which lead to a power law expression as in eq. (2). For the low-attenuation 468 

case, i.e., ܤ ఉ ا ͳ, eq. (3) can be simplified using a series expansion to: 469 ߪ௩ ൌ  Ԣܹ         (4) 470ܣ

where  ൌ ߙ  Ԣܣ   andߚ ൌ  ఉܤ ,., and in the high-attenuation case, i.eܤܣ ب ͳ, eq. (3) 471 

can be simplified to:  472 

௩ߪ ൌ Ԣܹܣ  473 (5)          ߠ   

where  ൌ Ԣܣ  andߙ ൌ  can then be estimated using the scheme 474  ᇱǡܹ  andܣ ,. In both casesܣ

proposed in Soja et al. (2017, 2018). 475 
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Note that there is still an inherent scaling ambiguity since the scheme cannot distinguish the unbiased 476 

estimate of AGB, ܹ , from any function of the form ܹܽ , where ܽ   and ܾ  are calibration constants. 477 

Hence reference data are needed, but these data do not need to cover a wide range of backscatter, 478 

slope and incidence angle conditions, as would be required if any of the models (3) - (5) were to be 479 

trained directly. One complication is that the temporal and spatial variations of ܽ  and ܾ  are are 480 

currently unknown and further work is needed to quantity them. Further refinements may also be 481 

needed to reduce residual effects from moisture variations by, for example, use of the VV/HH ratio in 482 

boreal forests as discussed above. 483 

The effectiveness of this approach is illustrated by Fig. 3, which plots values of AGB estimated with 484 

this scheme against AGB values estimated from in situ and airborne laser scanning data for a set of 485 

200 m x 200 m regions of interest (ROIs). The airborne P-band data used are from the AfriSAR 486 

campaign and were filtered to 6 MHz to match the BIOMASS bandwidth. The estimates are highly 487 

correlated with the reference data (r = 0.97), exhibit only a small amount of bias across the whole 488 

biomass range, and give a RMSE of 41 t/ha (16% of the average biomass). 489 

 490 

Fig. 3. Estimated AGB using the approach described in the text against AGB estimated from in situ 491 

and airborne laser scanning at the La Lopé site in Gabon during the AfriSAR campaign. The running 492 

average given by the blue line indicates only a small positive bias across the whole range of AGB. 493 

ROI denotes Region of Interest. 494 
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Further confirmation of the importance of isolating the volume backscatter by using the full power of 495 

tomography is from the TropiSAR tropical forest campaign, where the tomographic intensity (in dB) 496 

measured at 30 m above the ground (representing scattering from canopy elements between ca. 17.5 497 

m and 42.5 m, given the roughly 25 m vertical resolution of tomographic imaging) was found to be 498 

highly correlated with AGB (Ho Tong Minh et al., 2014, 2016). The observed sensitivity is about 50 499 

tons/ha per dB, and the correlation coefficient is about 0.84 at the scale of 1 ha. This striking result 500 

has been replicated in the forest sites investigated during the AfriSAR campaign (Fig. 4), and suggests 501 

that the backscatter from the forest layer centred 30 m above ground should be strongly correlated 502 

with total AGB in the case of dense tropical forests. 503 

Importantly, this finding is consistent with the TROLL ecological model (Chave, 1999), which 504 

predicts that for dense tropical forests the fraction of biomass contained between 20 m and 40 m 505 

accounts for about 35% to 40% of the total AGB, and that this relation is stable over a large range of 506 

AGB values (Ho Tong Minh et al., 2014). Another element in support of the ecological relevance of 507 

the 30 m layer is provided by two recent studies of tropical forests, which observed that: a) correlation 508 

between AGB and the area occupied at different heights by large trees (as derived from lidar) is 509 

maximal at a height of about 30 m (Meyer et al., 2017); b) about 35% of the total volume tends to be 510 

concentrated at approximately 24-40 m above the ground (Tang, 2018).  511 

However, tomographic data will only be available in the first phase of the mission. In addition, 512 

exploiting the relation between AGB and the 30 m tomographic layer requires knowledge of how the 513 

regression coefficients vary in time and space, hence substantial amounts of training data. In contrast, 514 

ground cancellation can be carried out with both tomographic and Pol-InSAR data (so throughout the 515 

mission). This allows the volume scattering term (eq. (3)) to be isolated and hence AGB to be 516 

estimated using the scheme described in Soja et al. (2018), which makes much less demand on the 517 

availability of reference data. 518 
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 519 

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measured by tomography 520 

against in situ AGB in 1 ha plots at tropical forest sites investigated during the TropiSAR (Paracou 521 

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns. 522 

 523 

The value of tomography for estimating AGB in boreal and temperate forests is less clear, since (a) 524 

these forests in general have smaller heights than in the tropics (so it is more problematical to isolate 525 

the signal from a canopy layer without corruption by a ground contribution, given the roughly 25 m 526 

vertical resolution of the tomographic product from BIOMASS), and (b) the double bounce 527 

mechanism appears to be important in recovering the AGB of boreal forests. Hence ground 528 

cancellation (which also cancels double bounce scattering, since this appears at ground level in the 529 

tomographic image) may noto help biomass estimation in such forests, and the preferred algorithm for 530 

BIOMASS in these cases is still not fixed.  Recent results indicate that ground cancellation improves 531 

results in Krycklan, but not in Remningstorp, most likely because it suppresses direct ground 532 

backscattering, which is unrelated to AGB but is of higher relative importance in Krycklan due to the 533 

pronounced topography. 534 

 535 

5.2 Estimating forest height 536 
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Forest height estimates will be available throughout the Tomographic and Interferometric Phases, in 537 

the latter case using polarimetric interferometric (Pol-InSAR) techniques (Cloude and Papathanassiou, 538 

1998, 2003; Papathanassiou and Cloude, 2001) applied to three polarimetric acquisitions performed in 539 

a 3-day repeat-pass interferometric mode. The use of Pol-InSAR to estimate forest height has been 540 

demonstrated at frequencies from X- to P-band for a variety of temperate, boreal and tropical sites, 541 

with widely different stand and terrain conditions (Praks et al., 2007; Kugler et al., 2014; Hajnsek et 542 

al., 2009; Garestier et al., 2008), and several dedicated studies have addressed its likely performance 543 

and limitations when applied to BIOMASS data.  544 

Estimation of forest height from Pol-InSAR requires a model that relates forest height to the Pol-545 

InSAR measurements (i.e. primarily to the interferometric coherence at different polarisations and for 546 

different spatial baselines) together with a methodology to invert the established model. Most of the 547 

established inversion algorithms use the two-layer Random Volume over Ground (RVoG) model to 548 

relate forest height to interferometric coherence (Treuhaft et al., 1996). This relies on two 549 

assumptions: 1) all polarizations “see” (up to a scalar scaling factor) the same vertical distribution of 550 

scatterers in the vegetation (volume) layer; 2) the ground layer is impenetrable, i.e. for all 551 

polarizations, the reflectivity of the ground scattering component is given by a Dirac delta function 552 

modulated by a polarimetrically dependent amplitude. The RVoG model has been extensively 553 

validated and its strong and weak points are well understood. Use of this model to obtain a forest 554 

height map is illustrated in Fig. 5 which is derived by inverting P-band Pol-InSAR data acquired 555 

during the AfriSAR campaign in February 2017 over the Pongara National Park, Gabon. This site is 556 

covered mainly by mangrove forests, which are among the tallest mangrove forests in the world, 557 

towering up to 60 m. 558 

 559 

 560 

 561 

 562 

 563 
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 564 

 565 

 566 

 567 

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquired over the Pongara 568 

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017. 569 

The main challenge for BIOMASS is therefore the development of an inversion formulation able to 570 

provide unique, unbiased and robust height estimates, and which accounts for: 1) the scattering 571 

characteristics at P-band, since the limited attenuation by the forest canopy means that a ground 572 

scattering component is present in all polarisations; 2) the constraints imposed by the BIOMASS 573 

configuration, both the 6 MHz bandwidth and the fact that some temporal decorrelation is inevitable 574 

in the repeat-pass mode (Lee et al., 2013; Kugler et al., 2015). To meet this challenge a flexible multi-575 

baseline inversion scheme has been developed that allows the inversion of the RVoG model by 576 

including: 1) a polarimetric three-dimensional ground scattering component; 2) a vertical distribution 577 

of volume scattering that can adapt to high (tropical) and low (boreal) attenuation scenarios; 3) a 578 

scalar temporal decorrelation that accounts for wind-induced temporal decorrelation of the vegetation 579 

layer. The inversion can then be performed using the three polarimetric acquisitions in the 580 

Interferometric Phase, allowing global forest height maps to be produced every 7 months.  581 

The main limitations in generating the forest height product arise not from the inversion methodology 582 

but from the 6 MHz bandwidth, which constrains the generation of large baselines as well as the 583 

spatial resolution of the data, and the low frequency, which reduces the sensitivity to forest height in 584 

certain sparse forest conditions. On the other hand, the low frequency will provide high temporal 585 

stability over the 3-day repeat period of the Interferometric Phase, which is necessary to establish 586 

uniqueness and optimum conditioning of the inversion problem.  587 

An alternative approach to estimating forest height is by tracing the upper envelope of the observed 588 

tomographic intensities, as reported in Tebaldini and Rocca (2012) and Ho Tong Minh et al. (2016) 589 

for boreal and tropical forests, respectively. This has the advantage of being less computationally 590 
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expensive than model-based inversion, and it can be applied in the absence of a specific model of the 591 

forest vertical structure. Importantly, it has been demonstrated using synthetic 6 MHz data simulating 592 

BIOMASS acquisitions over boreal forests (Tebaldini and Rocca, 2012). However, this approach will 593 

only be possible during the Tomographic Phase of the mission. 594 

 595 

6. Severe forest disturbance  596 

The BIOMASS disturbance product aims to detect high-intensity forest disturbance (effectively forest 597 

clearance) occurring between satellite revisit times. This is a natural extra use of the data gathered for 598 

biomass and height estimation, rather than a driver for the BIOMASS mission, and will contribute to 599 

the overall capability to measure forest loss from space using optical (e.g., Hansen et al., 2013) and 600 

radar sensors (e.g., the pair of Sentinel-1 C-band radar satellites). Changes in the polarimetric 601 

covariance matrix caused by deforestation are relatively large; for example, Fig. 1 indicates that ߛ௩  602 

changes by 5 dB as biomass decreases from 500 t ha-1 to nearly zero, while a change in AGB from 603 

100 to 200 t ha-1 causes ߛ௩  to change by only ~1 dB. Hence change detection is less affected by the 604 

statistical variability inherent in the radar signal, allowing the disturbance product to be produced at a 605 

spatial resolution of ~50 m, instead of 200 m, as for the biomass and height products.  606 

The method proposed for detecting disturbance is firmly rooted in the statistical properties of the 6-607 

look polarimetric covariance data and uses a likelihood ratio (Conradsen et al., 2016) to test, at a 608 

given level of statistical significance, whether change has occurred relative to previous acquisitions in 609 

each new polarimetric acquisition over forest. Note that this approach does not specify the detection 610 

probability, which would require an explicit form of the multi-variate probability distribution function 611 

associated with disturbed forest. This would be very difficult to characterise in any general sense 612 

because change may affect the covariance matrix in many different ways. Instead it provides a 613 

quantitative way to determine how sure we are that change has occurred; in this respect it is closely 614 

related to the Constant False Alarm Rate approach to target detection (e.g. Scharf, 1991). 615 

A current unknown in this approach is to what extent changes in the covariance matrix of undisturbed 616 

forest caused by environmental effects, such as changing soil moisture due to rainfall events, will 617 
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increase the false detection rate. A further issue is that detections are only sought in forest pixels, so 618 

an accurate initial forest map is required, preferably estimated from the radar data themselves but 619 

possibly from some other source; this will be progressively updated after each new acquisition.  620 

Some insight into the performance of this approach can be gained using multi-temporal polarimetric 621 

data from PALSAR-2. Fig. 6 shows at the top Pauli format slant range representations of a pair of 622 

images gathered on 8 August 2014 and 8 August 2015 (so in this case the time series has length 2), 623 

below left the detection of change at 99% significance and below right the pixels at which change 624 

occurred marked in red on the image from 2014 (with no forest mask applied). It can be seen that the 625 

areas where change was detected occur in the non-forest regions, while detections in the forest regions 626 

occur as isolated pixels consistent with the 1% false alarm rate implied by the level of significance of 627 

the test.  628 

 629 
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Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 2015 630 

displayed in Pauli image format (red = HH + VV; blue = HH - VV; green = 2HV) and slant range 631 

geometry. (Bottom left) Detection of change at 99% significance level; changed pixels are marked as 632 

black. (Bottom right) Image from 8 August 2014 with changed pixels marked as red. 633 

7. In situ and lidar reference biomass data 634 

Although the model-based inversion proposed for estimating biomass (Section 5.1) minimises the 635 

need for in situ reference data, such data are critical for algorithm development and testing, 636 

investigation of regression-based approaches, and product calibration and validation. The BIOMASS 637 

mission faces three major challenges in providing these supporting data: (i) the key region where 638 

reference data are needed is the tropics, but high quality biomass data are available at only a very 639 

limited number of tropical sites; (ii) biomass will be estimated at a scale of 4 ha (200 m by 200 m 640 

pixels) but most plot data are available at scales of 1 ha or less and the geographical locations of the 641 

plots is often not known to high accuracy; (iii) because of SOTR restrictions (Section 2), reference 642 

sites in the temperate and boreal zones will need to be outside N America and Europe.  643 

ESA are addressing challenge (i) and (ii) by working with existing networks to develop suitable 644 

extensive in situ reference data before launch through the Forest Observation System (http://forest-645 

observation-system.net/). A further encouraging development is the ESA-NASA initiative to 646 

collaborate in developing the in situ data requirements for GEDI, BIOMASS and NISAR. Co-647 

operation along these lines is already in evidence from joint contributions to the AfriSAR campaign 648 

by ESA and NASA. As regards (iii), for the temperate zone, southern hemisphere sites, e.g. in 649 

Tasmania, would be suitable, while Siberia is the most desirable region for the boreal zone. However, 650 

concrete plans to gather in situ data in these regions are not currently in place. 651 

An important complement to in situ data that helps to address challenge (ii) is airborne lidar data. This 652 

can provide a forest height map and information on canopy structure which, when combined with 653 

field data, allows biomass to be estimated. Lidar data offer many advantages, including: 654 

 A scanning lidar provides a relatively fine scale and accurate map of biomass, which can be 655 

aggregated to the 4 ha resolution cell of BIOMASS (this will allow the effects of variability in 656 

http://forest-observation-system.net/
http://forest-observation-system.net/
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biomass at sub-resolution size to be assessed). Precision at this scale is typically below 10% 657 

and the vast majority of relevant studies indicate that the associated pan-tropical allometry 658 

(Chave et al. 2014) has negligible bias. 659 

 Lidar mapping can cover landscapes with a wide range of biomass levels and different forest 660 

conditions (degraded, regrowth, selectively logged, etc.). 661 

 Forest height with fine resolution (around 1 m) can be estimated at the same time as biomass. 662 

Hence the validation strategy for BIOMASS will involve a combination of in situ reference forest 663 

plots and lidar-derived biomass/height maps. 664 

8. Exploiting BIOMASS data in carbon cycle and climate analysis 665 

Although the primary objectives of BIOMASS are to reduce the major uncertainties in carbon fluxes 666 

linked to Land Use Change, forest degradation and regrowth and to provide support for international 667 

agreements (UNFCCC & REDD+), its products will also play a key role in advancing fundamental 668 

knowledge of forest ecology and biogeochemistry. For example, BIOMASS data will help in 669 

constraining critical carbon cycle parameters, initialising and testing the land component of carbon 670 

cycle and Earth System models (ESMs), and quantifying the forest disturbance regime. 671 

Differences between ESM forecasts of the carbon cycle are currently significant, and lead to major 672 

uncertainties in predictions (Exbrayat et al., 2018). These differences have been linked to variations in 673 

the internal processing of carbon, particularly in the large pools in biomass and soil organic matter 674 

(Friend et al. 2014). Linking biomass mapping to estimates of net primary production (NPP) provides 675 

a constraint on the turnover rate of the biomass pool, a critical model diagnostic (Carvalhais et al., 676 

2014; Thurner et al., 2014). A recent study (Thurner et al., 2017) found observed boreal and temperate 677 

forest carbon turnover rates up to 80% greater than estimates from global vegetation models involved 678 

in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014). The 679 

relative difference between modelled and observed values is shown in Fig. 7, where the red boxes 680 

indicate regions analysed in Thurner et al. (2017) in order to explain these discrepancies. In the boreal 681 

zone (boxes b1 - 4) they were mainly attributed to the neglect of the effects of frost damage on 682 
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mortality in the models, while most of the models did not reproduce observation-based relationships 683 

between mortality and drought in temperate forest transects (boxes t1 - 3).  684 

 685 

 686 

Fig 7. Relative difference between modelled carbon turnover rates and turnover rates inferred from 687 

observations. 1.0 means modelled rate is 100% higher (from Thurner et al., 2017). Red boxes labelled 688 

b (boreal) and t (temperate) were analysed further in Thurner et al. (2017) to explain these 689 

discrepancies (figure reproduced courtesy of Martin Thurner). 690 

The more accurate estimates from BIOMASS, particularly over the tropical belt, will greatly improve 691 

estimation of turnover across the tropics (Bloom et al., 2016). This information will support improved 692 

parameterisation of carbon cycling for ESMs, allowing identification of regional variations in carbon 693 

turnover currently missing from tropical plant functional types (Exbrayat et al., 2018a). A sensitivity 694 

analysis performed using the CARDAMOM system (Bloom et al., 2016; Exbrayat et al. 2018b) 695 

indicates an average reduction of 49.5 ± 29.2% (mean ± 2 std) in the 95% confidence interval of the 696 

estimated vegetation carbon turnover time when the recent pan-tropical biomass map due to Avitabile 697 

et al. (2016) is assimilated. The analysis shows how this error reduction has clear spatial variability 698 

with latitude and between continents (Fig. 8).  699 

Another component of uncertainty in ESMs is in their initialisation of biomass stocks, arising from 700 

the paucity of data in the tropics, Land Use Change and internal model steady states. Data from 701 

BIOMASS will provide the modelling community with a compelling resource with which to 702 

understand both steady state and transient forest carbon dynamics. Observations of the disturbance 703 

regime will constrain modelling of both natural processes of disturbance and mortality and the role of 704 
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humans (Williams et al., 2013). The potential for BIOMASS to monitor degradation (partial loss of 705 

biomass) will be critical for modelling the subtle and slow processes of carbon loss associated with 706 

forest edges, fires and human communities (Ryan et al, 2012; Brinck et al., 2017).  707 

 708 

Fig. 8. The relative reduction in the size of the 95% confidence interval of estimated vegetation 709 

carbon turnover times when using a prior value for biomass at each pixel compared to a run without a 710 

biomass prior. Turnover times were estimated using the CARDAMOM system. The darker areas 711 

show where reduction in relative uncertainty is largest. 712 

Repeated measurements of biomass will allow significant improvements in global monitoring of 713 

forest dynamics, and analysis of associated carbon cycling at fine spatial scales. Current biomass 714 

maps (e.g., Saatchi et al., 2011) provide maps of stocks at a fixed time (or combine observations from 715 

several times). While such data help to constrain the steady state biomass, relevant at regional scales 716 

(~1º), they give little information on the dynamics of forests at finer (ha to km2) scales over time. 717 

BIOMASS will allow detailed, localised, and temporally resolved analyses of forest dynamics to be 718 

constrained. The value of such detailed information has been illustrated in a site level analysis for an 719 

aggrading forest in North Carolina (Smallman et al., 2017). Using in situ carbon stock information as 720 

a baseline, the analysis showed that a model analysis constrained purely by assimilation of 9 721 

sequential annual biomass estimates (corresponding to the BIOMASS scenario, with 1 estimate in the 722 

Tomographic Phase and 8 in the Interferometric Phase) together with time series of Leaf Area Index 723 

(LAI, e.g. from an operational satellite like Sentinel-2) led to significantly smaller bias and narrower 724 

confidence intervals in biomass increment estimates than when LAI and just one biomass estimate, or 725 
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only management information, were assimilated. Bias in estimated carbon use efficiency (the ratio of 726 

NPP to gross primary production) was also significantly reduced by repeated biomass observations. 727 

This indicates the potential of BIOMASS to improve significantly our knowledge of the internal 728 

processing of carbon in forests.  729 

9. Secondary objectives 730 

BIOMASS will be the first P-band SAR in space and thus will offer previously unavailable 731 

opportunities for measuring properties of the Earth. As a result, mission planning includes provision 732 

for several secondary objectives, including mapping sub-surface geology, measuring terrain 733 

topography under dense vegetation, estimating glacier and ice sheet velocities and investigating 734 

properties of the ionosphere.  735 

9.1 Sub-surface geology 736 

In very dry environments, long wavelength SAR is able to probe the sub-surface down to several 737 

metres, as was demonstrated at L-band (1.25 GHz) during the first Shuttle Imaging Radar SIR-A 738 

mission (Elachi et al., 1984), which revealed buried and previously unknown palaeo-drainage 739 

channels in southern Egypt (McCauley et al., 1982; Paillou et al., 2003). More complete L-band 740 

coverage of the eastern Sahara acquired by the JAXA JERS-1 satellite was used to produce the first 741 

regional-scale radar mosaic covering Egypt, northern Sudan, eastern Libya and northern Chad, from 742 

which numerous unknown crater structures were identified (Paillou et al., 2006). In 2006, JAXA 743 

launched the Advanced Land Observing Satellite (ALOS-1), carrying a fully polarimetric L-band SAR, 744 

PALSAR, which offered higher resolution and much better signal to noise ratio than JERS-1. This 745 

provided an unprecedented opportunity to study the palaeo-environment and palaeo-climate of 746 

terrestrial deserts (Paillou et al., 2010), and led to the discovery of two major palaeo-rivers in North 747 

Africa: the Kufrah river, a 900 km long palaeo-drainage system, which in the past connected 748 

southeastern Libya to the Gulf of Sirt (Paillou et al., 2009; Paillou et al., 2012), and the Tamanrasett 749 

River in Mauritania, which connected a vast ancient river system in the western Sahara to a large 750 

submarine channel system, the Cap Timiris Canyon (Skonieczny et al., 2015). Besides its value in 751 

studying the past climates of desert regions, the sub-surface imaging capability of L-band SAR also 752 
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helps to build more complete and accurate geological maps in support of future water prospecting in 753 

arid and semi-arid regions (Paillou, 2017). 754 

 755 

Deeper probing of the sub-surface requires longer radar wavelengths: while L-band can penetrate 1-2 756 

m into dry sand, a P-band system should be able to probe down to more than 5 m. In June 2010, the 757 

first ever airborne P-band SAR campaign over the Sahara was conducted at a desert site in southern 758 

Tunisia using the SETHI system developed by ONERA (Paillou et al., 2011). Figure 9 shows a 759 

comparison between an ALOS-2 L-band scene and a P-band scene acquired by SETHI over the Ksar 760 

Ghilane oasis, an arid area at the border between past alluvial plains and present day sand dunes.. The 761 

P-band data better reveal the sub-surface features under the superficial sand layer because of the higher 762 

penetration depth and lower sensitivity to the covering sand surface. A two-layer scattering model for 763 

the surface and sub-surface geometry is able to reproduce both the L- and P-band measured backscatter 764 

levels, and indicates that the backscatter from the sub-surface layer is about 30 times weaker than from 765 

the surface at L-band, while at P-band the sub-surface contribution is about 30 times stronger than that 766 

from the surface. As a result, the total backscatter is comparable at P- and L-band, as the data show, but 767 

the P-band return is dominated by the sub-surface layer (Paillou et al., 2017). Hence BIOMASS should 768 

be a very effective tool for mapping sub-surface geological and hydrological features in arid areas, 769 

offering a unique opportunity to reveal the hidden and still unknown history of deserts. 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 
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 780 

 781 

 782 

Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in southern Tunisia: palaeo-channels are 783 

hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar image, showing sub-surface features 784 

but blurred by the return from the superficial sand layer. Right: SETHI P-band radar image, clearly 785 

revealing sub-surface hydrological features. 786 

 787 

9.2 Terrain topography under dense vegetation 788 

As an integral part of its ability to make height-resolved measurements of the backscatter in forest 789 

canopies, the tomographic phase of the mission will gain access to the ground phase, and hence will 790 

be able to derive a true Digital Terrain Model (DTM) that is unaffected by forest cover (Mariotti 791 

d’Alessandro and Tebaldini, 2018) and expected to have a spatial resolution of ca. 100 m x 100 m. 792 

This contrasts with the Digital Elevation Models (DEMs) produced by radar sensors at higher 793 

frequencies, such as SRTM (Rodriguez et al., 2015) or Tandem-X (Wessel et al., 2018), in which 794 

attenuation and scattering by dense forest canopies cause biases. Since global tomographic 795 

acquisitions occupy the first phase of the mission, this improved DTM will be available early in the 796 

Interferometric Phase, and will be used to improve the products based on Pol-InSAR and PolSAR. 797 

9.3 Glacier and ice sheet velocities 798 

The velocity fields of glaciers and icesheets can be measured using two classes of SAR techniques: 799 

differential SAR Interferometry (DInSAR) (Massonnet et al., 1993) and offset tracking (Gray et al., 800 

1998; Michel & Rignot, 1999). These techniques measure the ice displacement between two 801 

observations and require features in the ice or coherence between the observations. BIOMASS has the 802 

potential to supplement ice velocity measurements from other SAR missions, since its left-looking 803 

geometry with an inclination angle larger than 90° means that the polar gap in Antarctica will be 804 

smaller than for most other SAR missions, which are right-looking. The polar gap will be larger in 805 

Greenland, but the Greenland ice sheet cannot be mapped due to SOTR restrictions. The primary 806 
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advantage of BIOMASS is the higher coherence and longer coherence time resulting from the lower 807 

frequency of BIOMASS compared to all other space-based SAR systems. Its longer wavelength with 808 

deeper penetration into the firn ensures less sensitivity to snowfall, surface melt and aeolian processes 809 

(Rignot, 2008). This is seen when comparing L-band and C-band results (Rignot, 2008; Boncori et al., 810 

2010), and explains the long coherence time observed in airborne P-band data acquired by the Danish 811 

Technical University POLARIS SAR in the percolation zone of the Greenland ice sheet (Dall et al. 812 

2013).  813 

The range and azimuth components of the ice velocity field will most likely be measured with 814 

differential SAR interferometry (DInSAR) and offset tracking, respectively. At lower latitudes two 815 

velocity components might instead be obtained by combining DInSAR from ascending and 816 

descending orbits, since the range resolution of BIOMASS is too coarse for offset tracking to provide 817 

the range component (Dall et al. 2013). Generally DInSAR ensures less noisy results, and phase 818 

unwrapping is facilitated by the fact that the fringe rate of BIOMASS DInSAR data will be 1/12 of 819 

that of Sentinel-1 data, assuming a 6-day baseline in both cases. The very low ice velocities in the 820 

interior of Antarctica call for a long temporal baseline, but a 70-day baseline has been successfully 821 

used at C-band (Kwok et al., 2000), and therefore sufficiently high P-band coherence is not unlikely 822 

with the 228-day baseline provided by the BIOMASS observation cycle. However, ionospheric 823 

scintillation is severe at high latitudes, and without accurate correction will corrupt the ice velocity 824 

maps, possibly prohibitively. Assessment of whether proposed correction techniques (Kim et al., 825 

2015; Li et al., 2015) are sufficiently accurate will only be possible when BIOMASS is in orbit. 826 

9.4 Ionospheric properties 827 

A major concern in initial studies for BIOMASS was the effect of the ionosphere on the radar signal, 828 

and a crucial factor in the selection of the mission was demonstration that these effects could be 829 

compensated or were negligible in the context of the mission primary objectives (Rogers et al., 2013; 830 

Rogers and Quegan, 2014). However, correction of ionospheric effects (particularly Faraday rotation, 831 

but also scintillation, as noted in Section 9.3) necessarily involves measuring them, which then 832 

provides information on the ionosphere. The dawn-dusk BIOMASS orbit will cover major features of 833 
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the ionosphere, including the fairly quiescent ionosphere at low and mid-latitudes, steep gradients 834 

around the dusk-side mid-latitude trough, and large irregularities in the auroral ovals and polar cap. 835 

Measurements of ionospheric Total Electron Content, derived from Faraday rotation (Wright et al., 836 

2003) and/or interferometric measurements (Tebaldini et al., 2018), should be possible along the orbit 837 

at spatial resolutions of around a km, giving an unprecedented capability to measure these spatial 838 

structures and their changes, since they will be viewed every two hours as the orbit repeats. 839 

 840 

10. The role of BIOMASS in an overall observing system 841 

BIOMASS will have unique capabilities to map biomass in dense forests, but will form only part of 842 

the overall system of sensors providing information on forest biomass and biomass change, and more 843 

generally on the global carbon cycle. In fact, the next few years will see an unprecedented 844 

combination of sensors either dedicated to or capable of measuring forest structure and biomass. 845 

Particularly important for their links to BIOMASS will be the Global Ecosystem Dynamics 846 

Investigation (GEDI) and NISAR missions. 847 

GEDI will be a near infrared (1064 nm wavelength) light detection and ranging (lidar) sensor onboard 848 

the International Space Station with a 2-year lifetime from deployment in late 2018. It is focusing on 849 

tropical and temperate forests to address three key issues: 1) quantifying the above-ground carbon 850 

balance of the land surface; 2) clarifying the role played by the land surface in mitigating atmospheric 851 

CO2 in the coming decades; 3) investigating how ecosystem structure affects habitat quality and 852 

biodiversity. GEDI will provide the first sampling of forest vertical structure across all forests 853 

between 51.5 S and 51.5 N, from which estimates of canopy height, ground elevation and vertical 854 

canopy profile measurements will be derived. Further processing of the ~0.0625 ha footprint 855 

measurements will then yield estimates of the mean and variance of AGB on a 1 km grid. 856 

NISAR (launch 2021) is a joint project between NASA and ISRO (the Indian Space Research 857 

Organization) to develop and launch the first dual-frequency SAR satellite, with NASA providing the 858 

L-band (24 cm wavelength) and ISRO the S-band (12 cm wavelength) sensors. It will measure AGB 859 

and its disturbance and regrowth globally in 1 ha grid-cells for areas where AGB does not exceed 100 860 
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t/ha, and aims to achieve an accuracy of 20 t/ha or better over at least 80% of these areas. Its focus is 861 

therefore on lower biomass forests, which constitute a significant portion of boreal and temperate 862 

forests and savanna woodlands. NISAR will give unprecedented L-band coverage in space and time, 863 

being able to provide HH and HV observations every 12 days in ascending and descending orbits and 864 

covering forests globally every 6 days. The mission is also designed to give global interferometric 865 

SAR measurements for surface deformation and cryosphere monitoring. 866 

These three missions have significant overlaps in science objectives and products, but focus on 867 

different observations, cover different regions, and retrieve different components of AGB at different 868 

spatial and temporal scales. Their complementary nature is brought out by Fig. 10, which shows the 869 

coverage of the three sensors on a map indicating approximate mean AGB. BIOMASS will focus on 870 

tropical and sub-tropical woodlands at 4 ha resolution (though will also cover the temperate and 871 

boreal forests of Asia and the southern hemisphere), NISAR will give global coverage at 1 ha 872 

resolution but with AGB estimates limited to areas where AGB < 100 t/ha, and GEDI will cover the 873 

full range of AGB, but with sample footprints limited to lie within 51.5 latitude. Hence without the 874 

data from all three missions, wall-to-wall estimation of global forest biomass will not be possible. 875 

There will, however, still be lack of temporal and/or spatial coverage in regions where BIOMASS 876 

cannot operate because of SOTR exclusions and where AGB exceeds the 100 t/ha threshold for 877 

NISAR. 878 

For lower values of AGB (less than about 50 t/ha) P-band measurements will be much more affected 879 

by soil conditions than L-band, and NISAR should provide more accurate AGB estimates.  The high 880 

temporal frequency of NISAR observations will also allow the effects of soil moisture changes and 881 

vegetation phenology to be mitigated. Currently the theoretical basis of the algorithms proposed for 882 

NISAR and BIOMASS are the same (Truong-Loi et al., 2015), which offers the possibility of a 883 

combined L- and P-band algorithm that optimises the capabilities of each.  In addition, GEDI forest 884 

height and biomass products will be available before the NISAR and BIOMASS missions, so can help 885 

to initialize their algorithms and validate their products. GEDI estimates of the vertical structure of 886 

forests will also be of enormous value in interpreting the BIOMASS Pol-InSAR and tomographic 887 
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measurements and in producing a consistent forest height and digital terrain model at fine spatial scale 888 

(around 1 ha).  Conversely, height or backscatter products from NISAR and BIOMASS missions can 889 

provide information on the spatial variability of forest structure and biomass; this may be used in 890 

future reprocessing to improve both the algorithms that form the GEDI gridded height and biomass 891 

products and the resolution of these products. 892 

Hence the three sensors will be highly complementary, and their combination will provide an 893 

unparalleled opportunity to estimate forest AGB, height and structure globally with unprecedented 894 

accuracy, spatial resolution and temporal and spatial coverage. 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forest structure and above-ground 904 

biomass (AGB). The background shows the global coverage area of NISAR, which will be sensitive to AGB 905 

values < 100 t/ha (green and yellow). BIOMASS coverage includes the tropical belt, the temperate and boreal 906 

zones of Asia, and the southern hemisphere, while the GEDI Lidar will sample latitudes between  51.5. These 907 

two sensors will cover the full range of forest AGB providing measurements where AGB >100 t/ha (red), so 908 

inaccessible to NISAR. 909 

 910 

Discussion 911 

Along with its role in quantifying the biomass and its change, it is important to realize that the 912 

BIOMASS instrument, particularly in its interferometric and tomographic modes, is capable of 913 

producing global measures of important forest properties that are simply unavailable for almost all of 914 
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the Earth.  Some of these are practical measurements whose value has been known for years.  For 915 

example, in forestry the ability to predict yield or increase in biomass is increased greatly when one 916 

knows both mass and height, so much so that tree height has been used in yield-table-based forestry to 917 

quantify the so-called site-index, the quality of a site for forest enterprise. Hence the information from 918 

the BIOMASS satellite and the modern digital offspring of classic forestry yield tables could be used 919 

to make informed estimates of expected net production of forest biomass. In similar vein, Section 8 920 

notes how the combination of biomass with NPP allows the turnover time of carbon within forest 921 

vegetation to be estimated. Both examples illustrate that although forest biomass, height, structure and 922 

change are all individually important, their full significance for climate, carbon cycle, biodiversity, 923 

resource management, etc., is only fully realised when they are combined with each other and with 924 

other sources of information.  925 

This perception of biomass as a key variable within a wider information system is implicit in the 926 

recognition of AGB as an ECV (GCOS, 2017). More explicit analysis of its function within a carbon 927 

information and management system is provided by the Group on Earth Observations (GEO) (Ciais et 928 

al., 2010) and the response to this report in the CEOS Strategy for Carbon Observations from Space 929 

(CEOS, 2014). In particular, the CEOS report (Fig. 2.3 and Table 2.1 of the report) indicates where 930 

biomass fits within the set of key GEO satellite requirement areas and core GEO observational 931 

elements necessary to quantify the current state and dynamics of the terrestrial carbon cycle and its 932 

components. Central to the GEO Carbon Strategy is the combination of data and carbon cycle models, 933 

not least because models provide the only way in which the many available space-based and in situ 934 

measurements can be integrated into a single consistent structure for performing carbon flux 935 

calculations.  936 

There are many possible forms for these models but data can interact with them in essentially four 937 

ways: by providing estimates of current model state variables, estimates of model parameters, tracking 938 

of processes and testing of model predictions. In addition, data and models can be even more tightly 939 

bound by combining them in a data assimilation structure where both are regarded as sources of 940 

information whose relative contribution to carbon flux estimates is weighted by their uncertainty. 941 
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There are already significant developments in exploiting biomass data in these ways, for example 942 

initializing the age structure of forests when estimating the European carbon balance (Bellassen et al., 943 

2011), estimating carbon turnover time (Thurner et al., 2017), testing Dynamic Global Vegetation 944 

Models (Cantú et al., 2018), and full-scale data assimilation (Bloom et al., 2016). Further progress in 945 

this direction is to be expected as we move towards launch in 2022. 946 

Conclusions 947 

BIOMASS mission will be the first space-based P-band radar, and this completely new view from 948 

space will yield both predictable and unforeseen opportunities to learn about the Earth and its 949 

dynamics. Within the operational constraints imposed by the Space Object Tracking Radar system 950 

(Section 2) the 5-year mission will provide global mapping of forest AGB, height and change at 200 951 

m spatial resolution by combining three different radar techniques, each of them innovative. This is 952 

the first space-based radar mission for which all observations will be fully polarimetric, which is 953 

necessary both to recover biomass information and to correct ionospheric effects. Even more 954 

innovative will be this first systematic use of Pol-InSAR to measure forest height globally, and the 955 

first use of SAR tomography to identify the vertical structure of forests globally. In parallel with these 956 

major technological developments, considerable progress is being made in developing new 957 

understanding and quantitative methods that will allow these measurements to be exploited in carbon 958 

cycle and climate models. This link between measurements and models forms an essential part of 959 

meeting the primary objective of the BIOMASS mission, which is to determine the worldwide 960 

distribution of forest AGB in order to reduce the major uncertainties in calculations of carbon stocks 961 

and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use 962 

Change, forest degradation and forest regrowth. Of major mutual advantage in meeting this objective 963 

will be the information provided by other space missions flying within the next five years, for which 964 

pride of place goes to GEDI and NISAR, but supplemented by optical and other radar missions. Of 965 

great importance is that the structures for making use of these new data in carbon cycle and climate 966 

models are being developed and implemented. 967 
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The physical and technical capabilities embedded in the BIOMASS mission in order to measure 968 

biomass can be turned to many other uses. At present, known applications include sub-surface 969 

imaging in arid regions, estimating glacier and icesheet velocities, and production of a true DTM 970 

without biases caused by forest cover. An originally unforeseen application arising from the need to 971 

correct the radar signal for ionospheric effects is to exploit the high sensitivity of the P-band signal to 972 

Total Electron Content to estimate ionospheric properties and changes along the satellite’s dawn-dusk 973 

orbit. This is likely to be just one amongst many novel uses of the BIOMASS data, whose scope will 974 

only become clear once BIOMASS is in orbit.  975 
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 1348 

Figure captions 1349 

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects 1350 

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas between 65o South and 85o 1351 

North are represented (figure reproduced courtesy of Joao Carreiras). 1352 

Fig. 2. P-band backscatter at HV polarisation (ߛு ) over tropical and boreal forests against the 1353 

biomass of in situ reference plots. Data from Paracou, French Guiana, were acquired by the SETHI 1354 

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the 1355 

AIRSAR system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by the E-SAR 1356 

system in 2007 (Sandberg et al., 2011).  1357 

Fig. 3. Estimated AGB using the approach described in the text against AGB estimated from in situ 1358 

and airborne laser scanning at the La Lopé site in Gabon during the AfriSAR campaign. The running 1359 

average given by the blue line indicates only a small positive bias across the whole range of AGB. 1360 

ROI denotes Region of Interest. 1361 

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measured by tomography 1362 

against in situ AGB in 1 ha plots at tropical forest sites investigated during the TropiSAR (Paracou 1363 

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns. 1364 

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquired over the Pongara 1365 

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017. 1366 

Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 2015 1367 

displayed in Pauli image format (red = HH + VV; blue = HH - VV; green = 2HV) and slant range 1368 
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geometry. (Bottom left) Detection of change at 99% significance level; changed pixels are marked as 1369 

black. (Bottom right) Image from 8 August 2014 with changed pixels marked as red. 1370 

Fig 7. Relative difference between modelled carbon turnover rates and turnover rates inferred from 1371 

observations. 1.0 means modelled rate is 100% higher (from Thurner et al., 2017). Red boxes labelled 1372 

b (boreal) and t (temperate) were analysed further in Thurner et al. (2017) to explain these 1373 

discrepancies (figure reproduced courtesy of Martin Thurner). 1374 

Fig. 8. The relative reduction in the size of the 95% confidence interval of estimated vegetation 1375 

carbon turnover times when using a prior value for biomass at each pixel compared to a run without a 1376 

biomass prior. Turnover times were estimated using the CARDAMOM system. The darker areas 1377 

show where reduction in relative uncertainty is largest. 1378 

Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in southern Tunisia: palaeo-channels are 1379 

hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar image, showing sub-surface features 1380 

but blurred by the return from the superficial sand layer. Right: SETHI P-band radar image, clearly 1381 

revealing sub-surface hydrological features. 1382 

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forest structure and above-1383 

ground biomass (AGB). The background shows the global coverage area of NISAR, which will be 1384 

sensitive to AGB values < 100 t/ha (green and yellow). BIOMASS coverage includes the tropical belt, 1385 

the temperate and boreal zones of Asia, and the southern hemisphere, while the GEDI Lidar will 1386 

sample latitudes between  51.5. These two sensors will cover the full range of forest AGB 1387 

providing measurements where AGB >100 t/ha (red), so inaccessible to NISAR. 1388 
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