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Abstract

A pore-network model (PNM) was developed to simulate non-Darcy flow through porous
media. This paper investigates the impact of micro-scale heterogeneity of porous media on the
inertial flow using pore-network modelling based on micro X-ray Computed Tomography
(XCT) data. Laboratory experiments were carried out on a packed glass spheres sample at flow
rates from 0.001 to 0.1 I/s. A pore-network was extracted from the 3D XCT scanned volume
of the 50 mm diameter sample to verify the reliability of the model. The validated model was
used to evaluate the role of micro-heterogeneity in natural rocks samples. The model was also
used to investigate the effect of pore heterogeneity on the onset of the non-Darcy flow regime,
and to estimate values of the Darcy permeability, Forchheimer coefficient and apparent
permeability of the porous media. The numerical results show that the Reynold’s number at
which nonlinear flow occurs, is up to several orders of magnitude smaller for the heterogeneous
porous domain in comparison with that for the homogeneous porous media. For the Estaillades
carbonate rock sample, which has a high degree of heterogeneity, the resulting pressure
distribution showed that the sample is composed of different zones, poorly connected to each
other. The pressure values within each zone are nearly equal and this creates a number of
stagnant zones within the sample and reduces the effective area for fluid flow. Consequently,
the velocity distribution within the sample ranges from low, in stagnant zones, to high, at the

connection between zones, where the inertial effects can be observed at a low pressure gradient.



33
34

35

36
37
38
39
40

41

42

43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60

Keywords: Non-Darcy Flow; Pore-network modelling; Forchheimer equation;

heterogeneous porous media.

1. Introduction

Many engineering transport phenomena are controlled by flow through porous media. To
reliably predict the flow, it is important to understand pore-scale factors and determine the
boundaries between different flow regimes. Neglecting the non-linear inertial effects according
to Stokes law, flow through porous media is usually modelled using Darcy’s law (Equation 1)

(Darcy, 1856).

AP u
e 1

Darcy’s law is a linear relationship between the pressure drop (AP) between two points

separated by distance (L) and the superficial or Darcy velocity (v = %), where ¢ is the

volumetric fluid discharge, 4 is the whole cross-sectional area perpendicular to the flow
direction, u is the fluid dynamic viscosity and K}, is the Darcy permeability. However, for
higher velocities, i.e. when the pressure drop due to inertial effects is > 1% of the total pressure
loss (Section 2.2.2), Equation 1 is no longer valid, and the inertial terms cannot be neglected.
Hence, the relationship between the pressure gradient and the superficial velocity becomes

non-linear.

In porous media, inertial effects can be expressed in the form of drag forces, and as was shown
by experiments, the pressure drop in such case is proportional to the summation of two terms;
one term includes the fluid velocity and represents the force exerted to overcome fluid
viscosity, whilst the other term includes the squared value of fluid velocity and represents the
force exerted to overcome fluid-medium interactions. The second term represents the inertial
effects which is a function of pore geometry, permeability and Reynold’s number (Vafai &
Tien, 1981; Zeng & Grigg, 2006). Flow through the hyporheic zone, near groundwater wells,
or within hydraulic fractures in underground reservoirs are examples of flow in real
environment that show non-Darcy behaviour. For the non-Darcy flow regime, normally the
Forchheimer’s equation is applied (Forchheimer, 1901). Forchheimer’s equation (Equation 2)
is an extension to Darcy’s law and was developed by adding a quadratic velocity term to

account for the non-linear inertial effects:

AP u

— T T vt @)
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where K5 is the Forchheimer permeability, that is very close to, but not the same as, Darcy
permeability (Kp), and p is the fluid density. f is the non-Darcy coefficient, also known as
Forchheimer coefficient, which is a medium dependent value similar to permeability. The non-
Darcy coefficient accounts for the inertial effects due to convergence, divergence and tortuosity
in the flow path geometry (Thauvin & Mohanty, 1998; Balhoff & Wheeler, 2009). Normally,
the f coefficient and the onset of non-Darcy flow regime are determined experimentally,
whereas some authors developed empirical relationships that predict f as a function of the
medium permeability, porosity and tortuosity (e.g. Thauvin and Mohanty (1998) and Liu et al.
(1995)).

To determine f§ and Ky from Forchheimer’s equation, a linearized form of Equation 2 can be

. . AP 1 . o
used to determine the relation between o Tk where K, is the apparent permeability,
app

against %. This should result in a straight line with slope £ and intercept 1/K (Equation 3).

AP 1 1
Luv  Kgpp Kr

pv
+B m 3)
All experimental work has limitations, either due to difficulties or uncertainties in measuring
some quantities, mainly rooted from the complexity of the process. In such cases,
computational methods provide an alternative tool to gain insight into the processes. The
computational methods used for studying flow in porous media can be divided into
conventional continuum-scale numerical models and pore-scale models. Pore-scale models
have advantages over the continuum-scale numerical models as they provide details of the
physical process occurring at pore-scale, and their consequence at macroscale (Joekar-Niasar
& Hassanizadeh, 2012). Moreover, the medium parameters estimated from pore-scale studies

can be used to parameterize macro-scale equations (e.g. El-Zehairy et al., 2018).

To simulate single phase, incompressible, non-Darcy flow in a fully-saturated porous medium
at the macro-scale, typically the Navier-Stokes equations are used, simplified, averaged over
the simulation domains (fluid and solid phases), and then solved numerically. For example,
Zimmerman et al. (2004) and Zhang and Xing (2012) solved Navier-Stokes equations for
nonlinear flow using a finite-element mesh; Aly and Asai (2015) simulated non-Darcy flow
through porous media by the incompressible smooth particle hydrodynamics method and
Belhaj et al. (2003) used the Forchheimer equation to derive a finite difference model for Darcy
and non-Darcy flow in porous media. Many Computational Fluid Dynamics (CFD) software

packages such as ANSYS CFX, Fluent, and OpenFOAM solve these equations. However, there
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are other models that can be used to simulate non-Darcy flow such as the Barree and Conway
model, the hydraulic radius model, A. V. Shenoy’s Model, and the Fractal Model. Further
details about these models can be found in the review by Wu et al. (2016).

1.1. Pore-scale modelling:

Pore-scale models can be subdivided into six different groups: Lattice-Boltzmann (LB) models
(e.g., Kuwata and Suga, 2015), smoothed particle hydrodynamics (SPH) approach (e.g.,
Bandara et al. 2013), level-set models (e.g., Akhlaghi Amiri and Hamouda, 2013), percolation
models (e.g., Wilkinson, 1984), pore-network models (e.g., Bijeljic et al., 2004; Joekar-Niasar
et al. 2009) (Joekar-Niasar & Hassanizadeh, 2012) and direct numerical simulation (DNS)
(e.g., Raeini et al., 2012; Bijeljic et al., 2013b; Aziz et al., 2018). Percolation models cannot
reveal any transient processes information and all other methods are computationally more
expensive compared to pore-network models (Celia et al., 1995; Wang et al., 1999; Bijeljic et
al., 2004; Bijeljic & Blunt, 2007; Joekar-Niasar & Hassanizadeh, 2012; Blunt et al., 2013;
Oostrom et al., 2016). The SPH approach is a particle-based method, which although it has the
advantage of not being constrained by lattice points (e.g. similar to Lattice Boltzmann), it is
computationally more expensive (Tartakovsky et al., 2015). Dealing with a wide range of
contact angles in the level set method is challenging and significant efforts are spent on that.
DNS has been used mainly to simulate creeping flow through porous media, however, it could
also be used to simulate other flow regimes (e.g. Muljadi et al., 2015). Using DNS, the Navier-
Stokes equations are solved numerically on a mesh based on the voxelised X-ray Computed
Tomography (XCT) data of the medium. Using large mesh elements or large time steps will
lead to some errors at the small scales which will be transferred to the large scale and corrupt
the solution (Poinsot et al., 1995; Moin & Mahesh, 1998; Alfonsi, 2011; Mousavi Nezhad &
Javadi, 2011; Mousavi Nezhad et al., 2011).

In pore network modelling (PNM), the large pores constrained between the grains are referred
to as pore bodies (PB). The pore bodies are connected to each other by narrow paths which are
referred to as pore throats (PTh). Generally, the pore bodies are represented using spheres and
the pore throats are represented by cylinders or conical shapes. However, there are some studies
that considered other shapes for pore bodies and pore throats to enhance the accuracy of model
predictions (e.g. Joekar-Niasar et al., 2010). Connectivity is defined by the coordination
number which is the number of pore throats connected to a pore body. The PNM approach can

provide a simplified structure of complex porous media and allow the investigation of pore-
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scale processes. It can also provide details of flow velocities and pressure fields for complex
heterogeneous pore spaces. Such information is essential to understand the flow behaviour and

for studying solute transport in heterogenous porous media.

Although many researchers have used pore-network modelling to investigate flow through
porous media, few have studied the flow within the laminar non-Darcy regime. The first study
was conducted by Thauvin and Mohanty (1998) and was limited to 3D regular lattice pore-
networks. To simulate the converging-diverging flow behaviour, Thauvin and Mohanty (1998)
used modified forms of two equations originally proposed by Bird et al. (1960) for modelling
pressure loss due to sudden expansion (diverging) and contraction (converging). Wang et al.
(1999) extended Thauvin and Mohanty’s work for modelling non-Darcy flow through
anisotropic pore-networks, which was also limited to regular structured pore-networks. Later,
Lao et al. (2004) performed a study of non-Darcy flow using the Forchheimer equation
implemented in a two-dimensional random irregular pore-network with the maximum
coordination number of three. In another study, Lemley et al. (2007) used the Forchheimer
equation to simulate flow in a random unstructured three-dimensional (3D) pore-network, with
the upper limit of the coordination number in their network also three. The most recent study
for non-Darcy flow through 3D irregular unstructured pore-networks using the Forchheimer
equation is the work of Balhoff and Wheeler (2009). They argued that the equations presented
by Bird et al. (1960), are valid only for turbulent flow, despite the fact that these equations can
be derived from Bernoulli, continuity and momentum equations, so they are valid for all flow
conditions including laminar flow. Balhoff and Wheeler (2009) approximated the geometry of
pore throats by axisymmetric sinusoidal ducts and calculated the pressure loss through these
throats by solving the Navier-Stokes equations using a finite element method (FEM). After
doing the FEM simulations for pore throats with different dimensions, they provided a
relatively complex approximated equation that describes the pressure loss due to expansion
and contraction through each pore throat. Their equation depends on the flow rate and the pore
throat and the pore body geometries. However, their equation was developed for axisymmetric
ducts, and they defined the geometries of these ducts by a sinusoidal equation that implies the
pore bodies at the two ends of a pore throat to have an equal size, which is not likely to happen
in real porous media. None of these mentioned previous studies investigated the effect of pore
body and pore throat shape factors (G) on the flow simulation, which is considered of high
importance for natural porous media containing pores with irregular shapes. It is also necessary

for simulating two or multi-phase flow within the non-Darcy flow regime.
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In porous media, heterogeneity can be expressed as the variation in shapes, sizes and
interconnectivity of the pores. Sahimi (2011) divided the heterogeneity of natural media into
four main categories; microscopic heterogeneities, macroscopic heterogeneities, field-scale
heterogeneities and gigascopic heterogeneities. Large-scale reservoirs can only be fully
determined if their measurable properties and features are detected at these different length
scales. With the help of modern imaging techniques, the internal morphologies of highly
complex material can be visualized and quantified in 3D. These geometric properties can be
detected at the resolution of few microns, with a field of view of a few millimetres (Knackstedt

et al., 2001).

In this paper, a 3D pore-network model was developed to simulate non-Darcy laminar flow
through porous media to address the impact of pore heterogeneity on the inertial flow and
hydraulic properties of the porous media. The model has been verified against experimental
data from packed glass spheres and some numerical results achieved through direct numerical
simulations. This work particularly focuses on the simulation of flow through natural porous
media using micro XCT 3D images. The effect of pore-scale flow processes (e.g. expansion
and contraction of flow) on macro-scale inertial flow behaviour has been investigated. It is
important to determine the velocity threshold above which the Darcy’s law is not valid and a
non-Darcy model should be applied. Therefore, the model is applied to four porous media with
different structures and degrees of heterogeneity. The onset of a non-Darcy flow regime for

each sample has been determined, discussed and compared to previous research.

2. Methodology
2.1. Pore-network extraction

The reliability of predictions from pore-network modelling depends on firstly how accurately
the approximated pore-network represents the porous medium; and secondly, on the accuracy
of equations and the numerical schemes used for simulating the physical or chemical process

in the porous medium (Balhoff & Wheeler, 2009).

Pore-networks can be generated in three ways. The first approach is to extract the pore-network
directly from 3D images obtained using imaging technologies, such as XCT imaging, focused
ion beams, scanning electron microscopy and nuclear magnetic resonance (Xiong et al., 2016).
The second approach generates a representative pore-network using (geo)statistical
information such as pore body and pore throat size distributions, throat length distribution,

coordination number distribution and spatial correlation length (Al-Raoush et al., 2003; Gao et
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al., 2012; Babaei & Joekar-Niasar, 2016). The third approach, the grain-based model, generates
a pore-network based on the solid phase properties such as grain diameters and grain positions
(Bryant & Blunt, 1992). This approach was further extended to generate pore-networks from
grains affected by swelling, compaction or sedimentation (e.g. Bryant et al., 1993).

In this study, for verification purposes, the first method is used to extract the pore-networks
from four XCT 3D images: one packed glass spheres with average diameter (davg) = 1.84 mm,
which is the same sample used in the experimental work, and the three other samples of
beadpack, Bentheimer sandstone, and Estaillades carbonate published in Muljadi et al. (2015)
using the pore-network extraction code developed by Raeini et al. (2017). The pore-network
extraction code can generate pore bodies and pore throats with triangular, square or circular
cross-sections. The shape of the pore cross-sections is selected based on the level of irregularity

over the wall of the narrow pores, which is quantified with shape factor, G. The shape factor is

a

a dimensionless parameter, defined as G = 07 where a is the average cross-sectional area of

the pore throat or the pore body and p is the average perimeter (Mason & Morrow, 1991;
Valvatne & Blunt, 2004). The value of the shape factor decreases when the shape of the surface

of the pore space wall becomes irregular. According to geometrical definitions of 2D
geometries, the value of shape factor ranges from zero, for a slit shape triangle, to 3—\/5 for

equilateral triangle, whilst for squares and circles, the shape factor has values of % and ﬁ,

respectively (Oren et al., 1998; Valvatne & Blunt, 2004). The shape factor definition for more
complex geometries such as hyperbolic polygonal cross-sections can be found in Joekar-Niasar

et al. (2010).

2.2. Mathematical modelling

2.2.1. Darcy flow modelling

Por? body Pore throat Pore bpdy
+ i-j ]

| Liijtor |

Fig. 1 Schematic of a pore throat (i-j) and two pore bodies (7 and j).
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In Darcy flow, the inertial effects are neglected and the flow rate (q;—;) between two pore
bodies i and j is given analytically by Hagen—Poiseuille equation (Hagen, 1839; Poiseuille,

1841)

Gi-jtot
Giej = Kijror APLj = T—=—APL, )
i—j,tot

Where K;_j 101 = “z:::: » Ji-jtot 18 the fluid conductance, L;_; o s the length between the

two pore body centres and AP ; represents the viscous pressure drop between the two pore
bodies i and j. The conductance between the two pore bodies i and j is defined as harmonic
mean of the conductances through the pore throat and the connected pore bodies (Oren et al.,

1998; Valvatne & Blunt, 2004), given by

Li—j,tot _ ﬁ + Li—j _l_ﬁ
Ji-jtot Yi YGi-j Ij

(%)
where i-j indicates the connecting throat, L. is the pore throat length excluding the lengths of
the two connected pore bodies i and j, L; and L; are the pore body lengths from the pore throat

interface to the pore centre (Fig. 1). For laminar flow in a circular tube the conductance gpore s

given analytically by the Hagen—Poiseuille equation (Hagen, 1839; Poiseuille, 1841)

a’G 1a%G
T _-z7 (6)

Ipore = 7 2 1

For equilateral triangular and square cross-sections, analytical expression can also be
developed (Patzek & Silin, 2001; Valvatne & Blunt, 2004) with & equal to 3/5 and 0.5623
respectively. It has been also found that the conductance of irregular triangles can be
approximated by equation (6), using the same constant (k = 3/5) as for an equilateral triangle

(Oren et al., 1998; Valvatne & Blunt, 2004). The pore cross-sectional area (a) can be related

2
to the shape factor as a = 4:_6’ where r is the radius of the inscribed circle inside the pore (Oren

et al., 1998).

For each pore body i, considering incompressible steady flow, the mass conservation can be

expressed as

Z qi-j =0 (7)

where N; is the coordination number of pore body i.
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For the whole pore-network, Equation 4 is applied for each pore throat and Equation 7 is
invoked at each pore body. In all simulations, no-flow boundary condition is applied for all
pore-network boundaries except the inlet and outlet boundaries where constant pressure values
are applied. This process results in a system of N linear equations, where N is the total number
of pore bodies in the pore-network. Solving this system of equations using the method
described in Babaei and Joekar-Niasar (2016), the pressure value at each node can be obtained
and by applying Equation (4), the discharge through each pore throat can be estimated. Finally,
the overall permeability (Kp) of the pore-network can be obtained by applying Darcy’s law

(Equation 1) for the whole pore-network.

In all simulations, the same fluid parameters used by Muljadi et al. (2015) are applied, water is
considered as the working fluid with dynamic viscosity 4 = 0.001 kg/ms and density p = 1000
kg/m?. The overall volumetric fluid discharge ¢ is obtained by summing all pore throat
discharges either at the inlet or the outlet of the pore-network, while the flow superficial
velocity (v) is estimated as v = Ai. However, for highly heterogeneous media such as
Estaillades carbonate, the pore’s cross-sectional area may differ significantly from one location
to another, so using the whole cross-sectional area will cause uncertainties in ¢ and Kp values.
For that reason, for Estaillades carbonate, the average pore velocity is estimated, then the

superficial velocity (v) is derived as the average pore velocity times the medium porosity (¢).

2.2.2. Non-Darcy flow modelling

Following Muljadi et al. (2015) and Comiti et al. (2000), the onset of non-Darcy flow is
assumed to be the point at which the pressure drop due to the linear term becomes less than
99% of the total pressure drop. Using /K, to replace the characteristic length (Lcharc) in the

conventional Reynold’s number (Re, ), so

LC arc
ReL — vah (8)
Re, = 220K ©)

where / K} is the Brinkman screening length (Durlofsky & Brady, 1987), i.e. the characteristic
length is replaced by the square root of Darcy permeability to give the permeability based
Reynold’s number (Rey).

For relatively high flow velocities, the inertial effects cannot be neglected as in the Darcy

creeping flow regime. To consider the inertial effects due to expansion, when flow moves from
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a pore throat to a connected pore body, and contraction, when flow moves from a pore body to
a connected pore throat, the pressure loss due to these two processes should be considered in
the calculation of total pressure drop through any pore throat. In the developed model, the
pressure losses due to the inertial effects, expansion and contraction, are expressed using

equations 10 and 11 (Kays, 1950; Abdelall et al., 2005; Guo et al., 2010; Momen et al., 2016).

2 N2 .. 2
APTP =K, T = [(b> (2kd; — ) + a;_; — 2 kd;_; (u)] ] (10)

2 a; aj 2
where APie_’j.p is the pressure loss due to expansion, K, is the expansion coefficient, a;_; and a;
are the cross-sectional areas of the pore throat and the connected pore body j, and v;_; is the
average fluid velocity through pore throat that connects the two pore bodies i and j. kd and a
are the dimensionless momentum and kinetic-energy coefficients which depend on the velocity
profile in each pore. For laminar flow, when the velocity is low and its profile is parabolic, kd
is equal to 1.33, 1.39 and 1.43 for circular, square and equilateral triangular cross-sections
respectively, while o is equal to 2 for circular cross-sections. For turbulent flow, when the

velocity is high and its profile is almost uniform, kd and a are equal to ~1.0 (Kays, 1950).

2 2
a;_; a;_;
2 1-|aj-;j < . _]) -2 kdi_j+1—( - 'J) Ccc?-2cc 2
PYi_j 4 4 PVi_j

2 cc? 2

AP = K, (11)

ai_j
4

1-—

Cc=1-

(12)

al-_]-
2.08(1- P +0.5371

where APL-C_O]m is the pressure loss due to contraction, K is the contraction coefficient, a; is the

cross-sectional area of the connected pore body i, Cc is the dimensionless jet contraction-area

ratio (Vena-contraction) which can be estimated using Equation 12 (Geiger, 1964).

It has been found that using kd and o equal to 1.0 provides better representation of the non-
Darcy flow which is characterised by higher velocities compared to the Darcy flow. This also
agrees with the experimental findings of Abdelall et al. (2005) and Guo et al. (2010) performed
on small channels. They showed that when using &d = 1.33 or o = 2.0 in equations 10 and 11,
this result in overestimation of K and K. in most of the cases they tested. Moreover, when flow
passes through a sudden expansion or contraction, this creates eddies and turbulence that make
a flat velocity profile a better approximation for the flow. Using kd and « equal to 1.0, equations
10 and 11 can be simplified and this results in the well-known Borda-Carnot equations (Crane,

1942; Bird et al., 1961).

10
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The total pressure loss for any pore throat in the network can be given according to Equation

13 as follows:

APt = APY 4 APSRP 4 ppeont — [Lizitor] o g PIE g PO

T e 5T oo TI T Re el T Re zaz (13)
which can be written as
A, qiz_j +B,qi-j+C, =0.0 (14)

where

4, = [K, +Kc]#,Bo = [ﬂ], Co = _Apit—ojF

i—-j Ji-jtot

To apply the continuity equation at each node, Equation 13 is rewritten in the form of a simple

—Bo+ /BOZ—4AOCO
——— For the

quadratic equation (Equation 14), its positive root is equal to q;_; = ™
whole pore-network, Equation 13 is applied for each pore throat and Equation 7 is invoked at
each pore body. This process results in a system of N non-linear equations, where N is the total
number of pore bodies in the pore-network. A FORTRAN code was developed with the use of
HSL NS23 routine (HSL, 2013) to solve the resulting system of equations. The initial guess of
the pressure values at each node is provided from the Darcy flow case, then the HSL NS23
routine iterates until the final solution is achieved within an acceptable predefined error
criterion (until the sum of squares of residuals is less than 10-'°). By solving this nonlinear
system of equations, the pressure value at each node can be obtained and the discharge through

each pore throat is estimated by applying Equation 13. Finally, the non-Darcy coefficient ()

and Forchheimer permeability (Kz) can be obtained by fitting a linear relationship to the
1

obtained results when is plotted against % (see Equation 3).

app
2.3. XCT-scanning and experimental work

To validate the proposed model, a porous medium sample (referred to as “packed spheres™)
composed of uniform spherical glass beads, with an average diameter (davg) of 1.84 + 0.14 mm
was packed in a Perspex circular pipe of 300 mm length and 50 mm internal diameter. The
porous sample was placed in a recirculating pipe system with a sump of approximately 2.5 m?.
Water was used as a working fluid at different discharges ranging from 0.001 to 0.1 I/s. For
each run, the discharge was measured manually. The head loss measurements were performed
using two manometer tubes located 50 mm distance after the sample inlet and before the sample

outlet to eliminate the effect of boundaries on the flow, i.e. the head loss was measured through

11
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a distance of 200 mm in the porous medium. To ensure the accuracy of manometric
measurements at low pressure gradients, an SPI digital depth gauge with accuracy + 0.01 mm
was used to measure the manometric heads inside fixed, 25 mm wide manometric tubes.
Moreover, before taking any measurements, water was allowed to run through the recirculating

system for a period sufficient to remove any air from the system.

The middle part of the packed spheres sample used in the experimental work, which has the
dimensions of 50 mm x 50 mm x 177 mm, was scanned to determine the representative
elementary volume (REV) and to extract the equivalent pore-network. An REV can be defined
as a representative portion or subvolume of the medium, when selecting such volume at
different location in the sample, the resulting parameters (¢, Kp or ) of the subvolumes should
not vary significantly (Bear, 1972). To find an REV of the sample, a conventional approach
was followed, a code was written to generate random coordinates of cubic subvolumes with
different cube lengths (5, 10, 15, 20, 25, 30, 35 and 50 mm), and 10 different crops at random
locations have been tested for each cube size. For each single crop, a pore-network was
extracted, and the proposed pore-network model was used to estimate the porosity (¢), Darcy-

permeability (Kp) and non-Darcy coefficient (f), as in Section 3.3.

Four XCT scans were performed to examine the packed spheres sample utilising Nikon XT H
225/320 LC. The XCT settings were chosen to achieve optimum penetration and minimise
noise based on the grey values of the radiographs. A physical radiation filter of Tin (Sn) was
used to reduce beam hardening and cupping errors. The resolution of the scans was achieved
based on the diameter of the specimen. The scans were combined to provide the full volume of

the medium.

3. Results and discussion
3.1. Determining the representative elementary volume (REYV)

Fig. 2 shows the effect of cube lengths on determining the porous medium properties. It can be
produced by applying the proposed model to the pore-networks extracted from all subvolume
crops of the packed spheres CT-image. In Fig. 2, it is observed that a suitable REV might be a
cube with length of 30 mm, which is a common value of the plateaus in figures 2a, 2b and 2¢
associated with minimum fluctuation, i.e. minimum standard deviation. However, this is not
the case for the relatively small sample of 50 mm diameter used in the laboratory, considering
its large average bead diameter of 1.84 mm. For this specific case, using REV length less than

50 mm will result in eliminating the effect of the containing pipe wall or boundaries. Due to
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the small size of the sample, the boundaries of the containing pipe have an effect on the
estimated medium parameter as shown in Fig. 2. For that reason, an REV cube length of 50
mm was selected to consider the effect of external pipe on the medium structure and on the

flow behaviour through the medium.
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Fig. 2 Variation of a) porosity, b) Darcy-permeability and c) non-Darcy coefficient for different
cubic subvolumes (10 crops for each REV length). The error bars represent the standard
deviation of the estimated parameter for each REV length.
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3.2. Extracted pore-networks from CT-images

Properties of the CT-images used to extract each of the four pore-networks shown in Fig. 3 are

provided in Table 1.

300 x 300 x 300 voxels 500 x 500 x 500 voxels 500 x 500 x 500 voxels 758 x 758 x 758 voxels
. e

l | <
@) 0.6 mm
e

<— 0.25mm ——

<—15mMm ——>

Fig. 3 The pore spaces of (a) beadpack, (b) Bentheimer, (c) Estaillades and (d) packed
spheres (davg = 1.84 mm), and the equivalent pore-networks (e), (f), (g) and (h) respectively.
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Table 1*: The properties and characteristics length of the samples.

K, x 10712
(m’)
. . oy obtained b
Sample Resolution | Porosity, Characteristic Total voxels | Pore voxels | Muljadi e};
(pm) ¢ length, Letare (pum) al. (2015) or
in the
experiments.
Beadpack | 2.0 0.359 100 300x300x300 | 9,700,082 | 5.57
Bentheimer | 3.0035 0.211 139.9 500x500x500 | 26,413,875 | 3.50
Estaillades | 3.3113 0.108 | 253.2 500x500x500 | 13,522,500 | 0.17
Packed
spheres 65.99 0.364 1,837 758x758x758 | 124,612,700 | 2250
(due =1.84
mm)

*For the first three samples, the characteristic length (Lcharc) values are obtained from Muljadi et al. (2015); for
the unconsolidated beadpack they chose Lchare = 100 pm, while for consolidate porous media (Bentheimer and
Estaillades) they followed the methodology in Mostaghimi et al. (2012) to determine Lcharc as a function of the
specific surface area of the pore-grain interface (the surface area divided by the whole volume including pores
and grains). For the packed spheres (dave = 1.84 mm) sample, the characteristic length (Lcharc) is the beads average

diameter (davg).

The 300x300x300 voxels beadpack image (Fig. 3a) represents a random packing of spheres of
uniform size. The image was created by Prodanovi¢ and Bryant (2006) to represent the
experimental measurements of the sphere centres obtained by Finney (1970). The only
available CT-image of Bentheimer sandstone sample used by Muljadi et al. (2015) is a
1000x1000x1000 voxels image. Unfortunately, the 500x500x500 voxels cropped image used
in their work is not available. Few trials were performed to crop that large image into a
500x500x500 voxels image at arbitrary locations, but this resulted in properties different to
those reported by Muljadi et al. (2015). To cope with that, the first 500 voxels in X, Y, and Z
directions of the large image (1000x1000x1000 voxels) were arbitrary cropped, then the pore-
network was extracted from that cropped image. This process will result in some uncertainties
with respect to the Bentheimer sandstone sample. The extracted pore-network properties of the
beadpack, Bentheimer sandstone, Estaillades carbonate and REV of the packed spheres (davg =
1.84 mm) samples are shown in Table 2 and Fig. 3e-h. The histograms of inscribed pore body
and pore throat radii distributions for the four samples are shown in Fig.4.

Investigations on pore-scale flow behaviour and the morphological characteristics of

Bentheimer sandstone and Estaillades carbonate, have revealed that Estaillades is more
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heterogeneous than Bentheimer (Bijeljic et al., 2013a; Bijeljic et al., 2013b; Guadagnini et al.,

2014; Muljadi et al., 2015). This was also confirmed by plotting the semi-variograms of pore

body radii and coordination numbers of each sample (Figure S1 and S2 in supplementary

materials).

Table 2: The properties of the extracted pore-networks.

Sample Beadpack | Bentheimer Estaillades | Packed
(500%x500x500 spheres (davg
voxels) = 1.84 mm)
Number of PBs 347 1033 954 10315
Number of PThs 1424 2418 1649 53960
Average coordination number 7.9 4.5 3.4 10.4
Maximum coordination number 21 23 19 30
Maximum inscribed PB radius (mm) | 0.0344 0.0862 0.0692 0.7673
Average inscribed PB radius (mm) 0.0178 0.0231 0.0196 0.4103
Minimum inscribed PB radius (mm) 0.0051 0.0058 0.0064 0.1408
Maximum inscribed PTh radius (mm) | 0.0287 0.0571 0.0575 0.6958
Average inscribed PTh radius (mm) 0.0089 0.0122 0.0116 0.1952
Minimum inscribed PTh radius (mm) | 0.0009 0.0015 0.0016 0.0320
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Fig. 4 Histograms of inscribed pore body and pore throat radii for the four samples; a)

beadpack, b) Bentheimer, c) Estaillades and d) packed spheres.
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3.3. Darcy permeability (Kp) and the non-Darcy coefficient (5)

The Darcy permeability (Kp) values obtained from PNM, by applying Darcy’s law while
neglecting the inertial effects, are in a good match (varying less than 15.2%) with the
corresponding values in Muljadi et al. (2015) or obtained from experiments, as presented in
Table 3. Relatively large discrepancies (14% and 15.2%) are observed for Bentheimer and the
packed spheres (dave=1.84 mm) because the large Bentheimer image was cropped in an
arbitrary location and because the packed spheres sample was scanned prior to experiments, so
during experiments the position of some particles might have changed slightly under the effect
of flow at large velocities. Also, the pore-network extraction code defines the parameters of
pore-network elements using single phase direct numerical simulation on the CT-image, these
details can be found in Raeini et al. (2017) and Raeini et al. (2018). That is why the PNM
simulations can accurately reproduce the results predicted with direct simulation (by Muljadi

et al., 2015) and differ from the results achieved by experiments.

Fig. 5 shows a Forchheimer plot which is a plot of the inverse of apparent permeability (K ! )
app

versus (%) The slope of each graph represents the non-Darcy coefficient (£) and it is equal to

1.49x10°, 4.67x109, 2.82x10% and 5.232x103 (1/m) for Beadpack, Bentheimer, Estaillades and
packed spheres, respectively. The corresponding f values obtained from Muljadi et al. (2015)
and in the Laboratory are 2.57x103, 2.07x10°, 6.15x108 and 10.87x103 (1/m), see Table 3. It
is noticeable that £ values from PNM are in good match (within the same order of magnitude
and with maximum variation of 54%) with the values obtained by Muljadi et al. (2015) except
Bentheimer which has larger discrepancy (126%) because the cropped image used differs from
the image used by Muljadi et al. (2015). These discrepancies related to § values might be
because of the simplifications of pore shapes during the pore-network extraction. The shift in
the horizontal part of each curve when comparing PNM results to these by Muljadi et al. (2015),
or from experiments, are due to the difference in Kp obtained from different methodologies,
whilst the trend of each curve depends mainly on the pressure losses obtained at different

velocities.
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Fig. 5 Forchheimer plot for a) Beadpack, b) Bentheimer c) Estaillades and d) experimental

work vs. PNM. The vertical dashed lines represent the onset of non-Darcy flow.

Table 3: The permeability (Kp) and Forchheimer coefficient (f) for the four samples compared

to those obtained by Muljadi et al. (2015) and by experiments.

Kp X px10° £x10° (m'
K % 10_12 (m_l)a 1) by
D 2
Image total | 10712 (m) by | Kp PAM Muljadi et B
Sample 2 Muljadi et | difference difference
voxels (m?), 0 al. (2015) | .,
PNM al. (2015) | [%] or from %%,
or from Lab
Lab. )
Beadpack 300x300x300 | 5.43 5.57 2.5 1.49 2.57 42
Bentheimer | 500x500x500 | 3.01 3.50 14.0 46.7 20.7 126
Estaillades | 500x500x500 | 0.19 0.170 11.8 2820 6150 54
Packed 758x758x758 | 2593 | 2250 15.2 0.0523 |0.1087 |52
spheres

3.4. Onset of non-Darcy flow

Fig. 6 shows the pressure gradient versus superficial velocity at different Reynold’s numbers,

the figure indicates also the onset of non-Darcy flow. The figure shows a good match with the

previous results obtained by Muljadi et al. (2015) for Beadpack, Bentheimer and Estaillades

whilst there are larger discrepancies between PNM and laboratory results. A main cause of

19



435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

these larger discrepancies between PNM and laboratory is that the pores of the packed spheres
sample used in the experiments are significantly larger than the other three samples. When a
fluid enters a pore, its velocity profile is more likely to be uniform. The fluid then travels a
specific distance, known as the entrance length (Ln), until its velocity profile becomes fully
developed, i.e. parabolic velocity profile in case of pores with circular cross-section. In the
entrance length, the friction between the pore walls and the fluid is higher compared to fully
developed flow, and the Hagen—Poiseuille equation is not valid. For laminar flow, Ln is a
function of Reynold’s number and the pore diameter. It can be estimated as Ly, = 0.05 Re D,y
(Cengel & Cimbala, 2006), where Re is the pore Reynold’s number and Dpore is the pore
diameter which is considered as the characteristic length of the pore. For small pores, Re is low
and Ln is small and can be neglected compared to the total pore length. For that reason, the flow
in the majority of pores in the packed spheres sample is a developing flow, i.e. the pore
diameters are large and their lengths are not sufficiently long for a fully developed flow to be
achieved. This causes an underestimation of the friction factor of each pore in the sample if
Hagen—Poiseuille equation is used. This explains why the pressure losses obtained by PNM are
less than those obtained in the lab (Fig. 6d).

By estimating the average values of the entrance region (Ln) for all pore throats in the four
samples within the applied ranges of pressure gradients, it was found that Ln increases when
the applied pressure gradient increases. At the maximum applied pressure gradients, the
average values for Ln as a percentage of the average pore throats length were equal to 29%,
11% and 3% for the Beadpack, Bentheimer, and Estaillades, respectively. For the packed
spheres sample, at the maximum applied pressure gradients, the average value of L, as a
percentage of the average pore throats length, reached 374%, which means that the pore lengths
are very short and even shorter than Ln. This demonstrates that the PNM approach has
limitations and the proposed set of equations cannot be applied for coarse media with large
pores.

Another possible reason for the discrepancy between the predicted results and those achieved
in the laboratory or through direct numerical simulations presented by Muljadi et al., (2015) is
the simplification that was implemented by PNM to describe the geometry of the samples.
Also, the mesh size used by Muljadi et al., (2015) may have effects on the accuracy of their
results.

According to the Forchheimer equation, the fluid velocity at any pressure gradient is a function

of two parameters (Kb and ) which are dependent on the geometry of the porous samples. The
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468  superficial velocities calculated using the PNM at the onset of non-Darcy flow are 0.018, 0.001,
469  0.0001 and 0.0005 m/s for Beadpack, Bentheimer, Estaillades and packed spheres (davg= 1.84
470 mm) sample respectively, while the corresponding values presented in Muljadi et al. (2015)
471  and measured in the lab are 0.0279, 0.0014, 0.000227, and 0.004 m/s, see Table 4. It is
472  noticeable that the onset of non-Darcy flow by PNM is in a good match with that obtained by
473  Muljadi et al. (2015), but one order of magnitude lower than the values obtained from
474  experimental measurements which is attributed to the large pore sizes for packed spheres
475  sample and the large entrance length of its pores are explained earlier. In general, it is noticeable
476  that the onset of non-Darcy flow occurs earlier, at lower velocities, when the medium has
477  higher degree of heterogeneity. This is due to a reduction in the effective area for fluid flow in

478  heterogeneous media, as shown in Section 3.5.
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480 Fig. 6 The pressure gradient versus superficial velocity for both linear Darcy flow and
481  nonlinear Forchheimer flow compared to the results by Muljadi et al. (2015) and laboratory
482  measurements; a) is Beadpack, b) is Bentheimer, c) is Estaillades and d) is the packed spheres
483  sample. The error bars show the difference between the pressure gradient (at specific velocity
484  values) for the Forchheimer flow case and the corresponding values obtained either by Muljadi

485  etal. (2015) or via experimental measurements.

486  Considering the dimensionless apparent permeability (K*) as
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K+ = Zeee (15)

Kp
and following the same definition for the onset of non-Darcy flow in Section 2.2.2., from
equations 1 and 3, the onset of non-Darcy flow can be determined when K* is equal to 0.99 in
Figs. 7 and 8. The predicted superficial velocities and Reynold’s number values for the onset
of non-Darcy flow and the corresponding values obtained either in Muljadi et al. (2015) work

or in the laboratory are shown in Table 4.

In Fig. 7 and Fig. 8, the dimensionless apparent permeability (K*) is plotted against Rex and
Rer while using the same characteristic lengths (Lcharc) used in Muljadi et al. (2015). PNM
curves in Fig. 7 and Fig. 8 have similar trends to those in Muljadi et al. (2015) and in the
laboratory, but a better match is obtained, especially for Estaillades, in Fig. 7 when Rex is used
instead of ReL. According to equations 3, 8, 9 and 15 this mismatch is attributed either to the
change in superficial velocities or pressure losses in both studies. Therefore, these
discrepancies are attributed to the difference between PNM Darcy flow and Forchheimer flow
curves in Fig. 6 compared to the difference between the two curves in Muljadi et al. (2015) or
in the experimental results. Fig. 7 and Fig. 8 also confirm that the onset of non-Darcy flow
occurs earlier, at low Reynold’s number, in highly heterogenous media as in the case of
Estaillades carbonate. After determining the non-Darcy coefficients (f) for each sample (as

shown in Section 3.3), and when the dimensionless apparent permeability (K*) is plotted versus
Forchheimer number (Fo = KDi—m/) in Fig. 9, the curves of all the samples coincide. This

unique relationship can be derived mathematically from the Forchheimer Equation (Ruth &
Ma, 1992; Ruth & Ma, 1993). In petrophysics, the relationship shown in Fig. 9 can be used to
predict the apparent permeability for media with known Kp and S, without the need to perform
laboratory experiments at different flow rates. Kp and f can be determined using literature data
or empirical relationships such as those proposed by Kozeny (1927), Carman (1937), Ergun
(1952), and Janicek and Katz (1955). In Fig. 9, the onset of non-Darcy flow occurs when K* =
0.99, and this corresponds to F, = 0.01 for all PNM simulations and F, = 0.1 for experimental
results. These Fo values are in agreement with the range (0.01-0.1) proposed by Andrade et al.
(1999).

It is importance to take into consideration the non-Darcy coefficient (f) when determining the
onset on non-Darcy flow for different media. For that reason, in Fig. 10, the pressure gradient
is plotted versus Forchheimer number, as this is a better comparison tool for follow up studies.

The resulting plots are straight lines as expected according to Forchheimer equation (Equation
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2). The onset of non-Darcy flow shown in the figure is determined using the superficial velocity

at K*=0.99.
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Fig. 7 The dimensionless permeability K* versus Rex (Equation 9), compared to the results

from Muljadi et al. (2015) and experiments.

K*[-]

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

1E-6

-

beadpack by Muljadi et al., 2015
-=+=-beadpack (PNM)

Bentheimer by Muljadi et al., 2015
--%=--Bentheimer (PNM)

Estaillades by Muljadi et al., 2015
--e--Estaillades (PNM)

®m  Lab. results for packed spheres T
PNM for packed spheres .
o
1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2
Re, [-]

Fig. 8 The dimensionless permeability K* versus ReL (Equation 8), compared to the results

from Muljadi et al. (2015) and experiments.

23



529
530

531

532
533

534

535

1.05

1.00 S e i — O ——He—— it e i

0.95
_0.90 +--Beadpack (PNM)
E -=%=-Bentheimer (PNM
< 0.85 (FRM)

--e--Estaillades (PNM)

050 ®m  Lab. results for packed spheres

0.75 ——— PNM for packed spheres

0.70

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0

Fo (-)

Fig. 9 The dimensionless permeability K* versus Fo, compared to the results from

experiments.
a) 28 b) 12
€24 =
> e
=3 < 8
- 2
€ 16 <
o Z 6
© [}
£12 5
00 ©
g 8 5 4
£ 4 g°

0 o)

166 1E-5  1E-4  1E-3  1E2  1E-1  1E+0 1E-6  1E-5  1E-4  1E-3  1E-2  1E-1  1E40

Fo [ 0.014

c)12
€10
=
< 8
2
£ 6
kS
T 4
oo
L2
=
2
g0
® 1E7 1E6 1E5 1E4 1E3 1E2 1E1 1E+0 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

F,[] 0.006 0.01 f,[] 0.1

—#—Lab. results —s—Forchheimer flow PNM

Fig. 10 The pressure gradient versus Forchheimer number (F,); a) Beadpack, b) Bentheimer c)

Estaillades and d) glass-bead packing experiments vs. pore-network modelling results.

24



536

537

538

539
540
541
542
543
544
545
546
547
548
549

Table 4: Reynold’s number and superficial velocity values for the onset of non-Darcy flow.

Sample Onset of non-Darcy Onset of non-Darcy flow Difference [%],

flow (pore-network obtained by Muljadi et al.

modelling) (2015) or in the
experiments.
v Rex | ReL |v(mm/s)| Rex Rer Y Rex | Rer
(mm/s) (mm/s)
Beadpack 17.83 | 4.15 | 1.78 27.9 6.64 < | 2.79 36 38 | 36
x 107 102

Bentheimer 0.99 1.72 | 0.14 1.4 2.64 x | 0.196 29 3 129

X 1073
1073
Estaillades 0.11 479 | 0.028 0.227 9.4 x | 0.023 52 5 22
X 107
1073
Packed 0.51 2.60 | 0.94 4.09 1.94 x | 7.54 88 87 | 88
spheres x 10 10!
(duve=1.84 2

mm)

3.5. Effect of heterogeneity on Pressure distribution

One of the advantages of the pore-network modelling approach is that it provides a detailed
overview of the pressure field at the pore-scale as presented in Fig. 11. Fig. 11 shows the
pressure value at each pore body versus distance (X) along the flow direction when applying
10000 Pascal pressure drop. The 3D pressure distribution at each pore body is shown at the top
right corner for each sub-figure. The dotted black curve represents the average pressure value
at any cross-section perpendicular on the flow direction. Inspection of Fig. 11 shows that for
the media with low degree of heterogeneity, i.e. beadpack, Bentheimer and packed spheres,
there is a regular change of pressure over distance. At any vertical cross-section perpendicular
to the flow direction, the maximum pressure variation between pores remains within 25% of
the overall pressure drop in the case of beadpack, 10% in the packed spheres and 45% in the

Bentheimer. Nevertheless, for highly heterogeneous media, Estaillades, the pressure variation
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550 between pores at one cross-section may extend up to 98% of the overall pressure drop. This is
551  mainly caused by the medium heterogeneity that creates some stagnant zones with low pressure
552  values next to the zones with high pressure. The pressure distribution in Fig. 11c shows that
553  the sample is composed of several zones, poorly connected to each other. Therefore, the
554  pressure values within each zone are nearly equal and are significantly different from the
555  pressure values of other zones. Consequently, the velocity distribution within the sample ranges
556  from low in stagnant zones to high at the connection between zones where the inertial effects

557  can be observed even at low pressure gradients.
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559  Fig. 11 Pressure values at each pore body vs. distance (X) along the flow direction when
560 applying 10000 Pascal pressure drop; a) Beadpack, b) Bentheimer, c) Estaillades and d) Packed
561  spheres. The 3D pressure distribution at each pore body is shown at the top right corner of each
562  sub-figure. The dotted black curve represents the average pressure value at any cross-section
563  perpendicular on the flow direction. The flow direction is from left to right.

564  3.6. Friction factor

565  Similar to Hagen—Poiseuille equation (Hagen, 1839; Poiseuille, 1841) for laminar flow through
566  pipes, Moody chart (Moody, 1944) is the most widely used chart for designing flow through

567  pipes in all flow regimes. It is used to estimate the dimensionless friction factor (f) of a pipe at
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specific Reynold’s number, and from this friction factor, the pressure needed to pass the flow
at specific rate through the pipe can be determined. Thinking of porous media as a group of
connected pipes, (Carman, 1937) developed a similar chart that relates the dimensionless
friction factor to Reynold’s number for porous media in all possible flow regimes (Holdich,
2002). This friction factor can be used to evaluate the medium resistance to flow, or in other
words, it can be used to estimate the pressure needed to pass flow at a specific rate through the
porous medium within any flow regime (Hlushkou & Tallarek, 2006).

The friction factor (f) in porous media can be determined by neglecting the small difference

AP
LBpv2

between Kp and Kr, then Equation 2 can be rewritten as f = Fl + 1, where f = and F, =

KDTBPU (Macdonald et al., 1979; Macedo et al., 2001; Pamuk & Ozdemir, 2012). Fig. 12 shows

that the friction between the medium particles and the fluid decreases with increasing the
Forchheimer number, i.e. when the fluid velocity increases. Friction factor and Forchheimer
number predictions for all samples are in excellent agreement with each other and in agreement
with the experimentally measured values. This agreement is because all the parameters (f, Kb
and p) used to develop the figure are predicted from Forchheimer equation. However, this is
not the case when the friction factor is plotted versus Reynold’s number (not presented), and
this shows that Forchheimer number is a better dimensionless parameter that can be used to
describe flow through porous media. The resulting friction factor versus Forchheimer number
curve is a unique relationship that agrees very well to the results presented by Geertsma (1974)
and can be used for all samples regardless of its degree of heterogeneity.
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Fig. 12 The medium friction factor (f) versus Forchheimer number (Fo).
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3.7. Tortuosity

Wang et al. (1999) defined tortuosity in isotropic media as

T =

(16)

{"'lh)

where L is the average streamwise flow path or the actual distance including any encountered
curves between two points and L, is the straight distance between these two points. Other
authors define tortuosity as the square of this ratio (Dullien, 1992). Thauvin and Mohanty
(1998) and Wang et al. (1999) investigated the effect of tortuosity on the non-Darcy coefficient
and concluded that its effect is negligible. As it is difficult to obtain tortuosity either
experimentally or numerically, Muljadi et al. (2015) used the method proposed by Duda et al.
(2011) and Koponen et al. (1996) to obtain tortuosity from the fluid velocity field without the
need to determine flow paths as follows:

v = el > (17)
where (|Vipters|) 1S the average magnitude of interstitial velocity over the entire volume and

(vy) is the volumetric average of its component along the macroscopic flow direction.

In the proposed PN model, the discharge through each pore throat can be easily determined
after solving the pressure value at each node, then the velocity of flow in each pore throat can
be determined by dividing the discharge value in each pore throat by the cross-sectional area
of that throat. The velocity through the connected pore bodies can be determined by dividing
the pore throat discharge by the cross-sectional area of the pore body as well. Then the overall

average fluid velocity (v;_; +o¢) through the pore throat and the two connected pore bodies can

be estimated as the length harmonic average of the velocities (Equation 18, Fig. 1).

Li_; L; Li_; L;

L],tot:_l+ l]+_] (18)
Vicjtor Vi Vi-j
where vi;is the velocity of flow through the pore throat that connects the two pore bodies i

and j, viand v; are the fluid velocity through the pore bodies i and ;.
Finally, the volumetric average interstitial velocity {|Vinsers|) can be obtained as

S(vizjtot aij)
Xai-j

(19)

<|Uinters |> =

Similarly, v, for each pore throat can be estimated as the X-component, along the macroscopic

flow direction, corresponding to each v;_;.o.. Then, (v,) can be obtained by replacing
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Vi_jtot By Ux in Equation 19. Fig. 13 shows that tortuosity increases slightly with increasing
the Reynold’s number, this is due to the increase in velocities and the possible occurrence of
some eddies. All samples in Fig. 13 have a trend similar to that obtained by Muljadi et al.
(2015) and Chukwudozie et al. (2012) and are in agreement (varying with in less than 8%) with
the values obtained by Muljadi et al. (2015). It is noticeable that in Fig. 13c, the increasing
trend of 7 is delayed compared to Muljadi et al. (2015), this is attributed to some discrepancies
in predicting the flow velocities and pressures loss (as in Fig. 6¢) for Estaillades. Due to the
heterogeneity of Estaillades, its tortuosity is larger than other samples. This is due to the poor
connectivity between different zones in the sample, as in Section 3.5., so each fluid particle

may need to travel a longer path.
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Fig. 13 Tortuosity versus ReL for; a) Beadpack, b) is Bentheimer, c) Estaillades and d) Packed

sphere samples.
4. Conclusion

In this work, Darcy permeability, apparent permeability, non-Darcy coefficient and tortuosity
were estimated for four porous samples (beadpack, Bentheimer sandstone, Estaillades
carbonate and packed spheres) with different degrees of heterogeneity using pore-network
modelling and applying the Forchheimer equation. The proposed model overcomes most of the
limitations in previous studies that used pore-network modelling to simulate non-Darcy flow;

limited coordination number, 2D simulations only, inaccuracy of some equations, limitation
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regarding the use of regular structured networks only and lack of calibration. In addition, the

onset of non-Darcy flow was fully investigated in detail for all samples.

Based on findings of this research, it is concluded that Forchheimer number (F5), instead of the
permeability-based Reynold’s number (Rex) or standard Reynold’s number (ReL), can be used
as a criterion to determine the onset of non-Darcy flow. This is because Forchheimer number
accounts for Darcy permeability, the Forchheimer coefficient and the medium degree of
heterogeneity. The onset of non-Darcy flow, determined at K*=0.99 and using Rex, is highly
dependent on the degree of heterogeneity. For Bentheimer sandstone the onset of non-Darcy
flow is one order of magnitude smaller than in the case of beadpack, and for Estaillades the
onset of non-Darcy flow is three orders of magnitudes smaller than in the case of beadpack.
Nevertheless, the Forchheimer number values for the onset of non-Darcy flow for the four

samples ranged from 0.01 to 0.1 and this is in agreement with Andrade et al. (1999).

The Darcy Permeabilities (Kp) and Forchheimer coefficients (f) for all samples are in a good
agreement (varying within 15.2% and 54% respectively) with the values obtained either in the
laboratory or by Muljadi et al. (2015) for the same samples, except in the case of Bentheimer,

its S value varied 126%.

The medium friction factor is a good feature that can be used to calculate the pressure gradient
at different velocities for different flow regimes, regardless the heterogeneity of the medium,
if the Darcy permeability and Forchheimer coefficient are known. It was found that the medium
friction coefficient decreases when the fluid velocity increases. Following the Forchheimer
equation, the medium friction factor versus Forchheimer number curve is identical for all media
regardless of their degree of heterogeneity. Tortuosity was found to increase slightly with

increasing the flow velocity, in all samples.

For highly heterogeneous media, i.e. Estaillades, the pressure variation between pores at one
cross-section (perpendicular to the flow direction) may extend up to 98% of the overall pressure
drop. This is mainly caused by the medium heterogeneity that creates some stagnant zones with

low pressure values next to other zones with high pressure values.

The pore-network modelling approach has been shown to be computationally more efficient in
comparison with direct flow simulations and could dramatically reduce the running time from
few hours (3 hours and 37 minutes for the Estaillades model in Muljadi et al. (2015) work)
using 16 parallel computer nodes to less than one minute using a standard PC, but it is still

relatively memory demanding when a large number of pore bodies is used, especially for non-
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linear flow simulations. For instance, a pore-network with 120,000 pore bodies requires 185
GB Ram. Nevertheless, in terms of pore geometries, direct numerical simulation is believed to
be more accurate than pore-network modelling which simplifies the irregular pore shapes into

pores with simple geometries for which the analytical flow equations can be applied.
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