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Abstract:

Sediments from an oxbow lake located in the Prosna River valley 

(Poland) were analysed to investigate the developmental history of the 

wetland ecosystem and any response to abrupt climatic changes. High 

resolution plant macrofossil analysis and radiocarbon dating were 

undertaken on two cores, with lower resolution geochemical analysis 

conducted on one of these cores. We provide evidence of a palaeolake 

with a Late Glacial origin (older than 12,500 years). Abundant fossil 

presence of macrophytes (e.g. multiple Potamogeton species) in the 

studied palaeomeander may indicate that the north-south orientation of 

the Prosna valley made it an important route for the spreading of aquatic 

plants during the Late Glacial. Chara sp., Batrachium sp. and 

Potamogeton spp. were the pioneer plants that colonized cold water with 

a high Ca2+ content. Early Holocene warming trigged a decrease in 

water level at oxbow lake and facilitated the expansion of thermophilous 

water plants e.g. Ceratophyllum demersum, Typha sp. and Lemna 

trisulca, which usually occur in shallow water. A decreasing water level 

resulted in the gradual isolation of the study site from the influence of 

groundwater, leading to acidification of the habitat and the development 

of a Sphagnum population, with S. contortum and S. teres as dominant 

species. The presence of S. contortum (the oldest occurrence in the 

European lowlands) and S. teres during the early Holocene may indicate 

that river valleys and the peatlands that developed in that region, acted 

as an important habitats (and possibly refugia) for some minerotrophic 

Sphagnum species.
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20 Abstract

21 Sediments from an oxbow lake located in the Prosna River valley (Poland) were analysed to 

22 investigate the developmental history of the wetland ecosystem and any response to abrupt 

23 climatic changes. High resolution plant macrofossil analysis and radiocarbon dating were 

24 undertaken on two cores, with lower resolution geochemical analysis conducted on one of 

25 these cores. We provide evidence of a palaeolake with a Late Glacial origin (older than 
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26 12,500 years). Abundant fossil presence of macrophytes (e.g. multiple Potamogeton species) 

27 in the studied palaeomeander may indicate that the north-south orientation of the Prosna 

28 valley made it an important route for the spreading of aquatic plants during the Late Glacial. 

29 Chara sp., Batrachium sp. and Potamogeton spp. were the pioneer plants that colonized cold 

30 water with a high Ca2+ content. Early Holocene warming trigged a decrease in water level at 

31 oxbow lake and facilitated the expansion of thermophilous water plants e.g. Ceratophyllum 

32 demersum, Typha sp. and Lemna trisulca, which usually occur in shallow water. A decreasing 

33 water level resulted in the gradual isolation of the study site from the influence of 

34 groundwater, leading to acidification of the habitat and the development of a Sphagnum 

35 population, with S. contortum and S. teres as dominant species. The presence of S. contortum 

36 (the oldest occurrence in the European lowlands) and S. teres during the early Holocene may 

37 indicate that river valleys and the peatlands that developed in that region, acted as an 

38 important habitats (and possibly refugia) for some minerotrophic Sphagnum species.

39

40

41 Keywords: plant succession, climate change, Prosna River, peatland, plant macrofossils

42

43 Introduction

44  Rapid climate warming during the transition from the last glacial period to the 

45 Holocene resulted in a shift in biogeographic zones and the creation of meridional migration 

46 gateways for plants. River valleys are important habitats for many wetland plant species and 

47 provide suitable pathways for their expansion (cf. Naiman and Décamps, 1997), particularly 

48 since the deglaciation of northern Europe (Szafer, 1946; Kolstrup, 2007; Kołaczek et al., 

49 2016). The Late Glacial and early Holocene (ca. 15,000-8500 years ago) was characterised by 

50 major climate fluctuations and a transition from a cold to warm climate (Rasmussen et al., 
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51 2014). This climatic warming influenced the fluvial processes occurring in European lowland 

52 river valleys (Starkel et al., 2006). Climate fluctuations in the Late Glacial have been directly 

53 linked to a changes in river bed morphology in Polish lowlands and changes in flora 

54 associated with the formation of meanders, oxbow lakes and peatlands (Starkel et al., 2006; 

55 1997; Pawłowski et al., 2016; Słowik et al., in review). Sediments deposited in river 

56 valleys produced a stratigraphic record and are surrounded by former oxbow lakes 

57 and peatlands. Detailed palaeoecological studies of the deposits accumulated in river 

58 valleys provide useful information about past environmental changes (Magyari et al., 

59 2010; Pawłowski et al., 2015, 2016a, b; Kołaczek et al., 2016; 2018). Moreover, 

60 reconstructing the response of riparian and wetland biota to previous rapid climate 

61 changes (e.g. Late Glacial and early Holocene transition) can inform the prediction of 

62 future vegetation shifts in response to changing temperature, precipitation and flood 

63 frequency (Garssen et al., 2014; Thodsen et al., 2016; Dwire et al., 2018). 

64 Previous studies of river valleys in the central part of the Polish lowlands have 

65 focused mainly on their evolution, palaeohydrology and the geochemical composition 

66 of organic deposits (Dąbrowski et al., 1963; Michno, 2004, 2005; Starkel et al., 2006; 

67 Słowik, 2011, 2013; Borówka et al., 2015; Kittel et al., 2016). Recent 

68 palaeoecological studies of Late Glacial and Holocene sediments using fossil biotic 
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69 data to investigate the influence of climate change (e.g. temperature) have been 

70 carried out in the Ner river (Kittel et al., 2016; Płóciennik et al., 2016), Grabia river 

71 (Pawłowski et al., 2015, 2016a,b) and Bug river (Kołaczek et al., 2018). However, 

72 detailed knowledge regarding local plant succession, especially macrophytes, and 

73 ecosystem adaptation to abrupt climate changes in river ecosystems is lacking.

74 The Prosna Valley has primarily been studied in terms of its geology and 

75 geomorphology (Dąbrowski et al., 1963; 1991; Dyjor, 1985; Młynarczyk and Rotnicki, 

76 1989), alongside archaeological research aimed at understanding the relationship 

77 between settlement distribution and landform development (Dąbrowski et al., 1963; 

78 Stupnicka et al., 2006). 

79 Here we present the first detailed plant macrofossil and geochemical records 

80 dated by radiocarbon analysis in the Prosna River valley. The Prosna valley is ideal 

81 for palaeoecological reconstructions because of unique and well-preserved 

82 palaeomeanders filled with organic sediment. The extent and scale of the resulting 

83 landforms appears to be linked with the establishment of fortified settlements e.g. near the 

84 village of Grodzisko (Kaczmarek and Szczurek, 2015). 
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85 Focussing on the long-term dynamics of oxbow ecosystem, we aim to: i) date the 

86 beginning of organic sediment deposition; ii) reconstruct the initial stage of 

87 development of local vegetation in the oxbow lake; iii) determine the impact of  

88 climatic changes on local plant succession; iv) detect the presence of possible refugia for 

89 some minerotrophic Sphagnum species; v) assess the variability of physicochemical 

90 parameters in the oxbow lake and investigate any potential relationship with plant 

91 succession.

92

93 Study site

94 The study site is located in Central Poland, near the village of Grodzisko, ~750 meters 

95 south-west of the current Prosna River (Fig. 1). In the Prosna River valley on the outskirts of 

96 the village, there are remains of a settlement called "Szwedzkie szańce". The fortified 

97 settlement is located in a marshy area of a former river valley, which enhances its natural 

98 defensive position (Śmigielski and Szczurek, 2013). Establishment of the settlement is 

99 associated with the defensive construction movement at the beginnings of the Iron Age in 

100 Wielkopolska (Kaczmarek and Szczurek, 2015). 

101 The first phase of development for the Prosna fossil valley took place towards the end 

102 of the Pliocene and has evolved during subsequent glacial and interglacial cycles through to 

103 the Pleistocene and Holocene, creating the present day sediment record (Piszczygłowa, 2014). 

104 The youngest sediments filling the valley are comprised of glacial clay, the sand-gravel series, 

105 and organic deposits including gyttja and peat (Młynarczyk and Rotnicki, 1989; 

106 Piszczygłowa, 2014). The climate is temperate and affected by both maritime and continental 
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107 influences. The average annual temperature is around 8.5 °C, with a small number of frost 

108 days across the year. The winter period is the most variable in terms of temperature, ranging 

109 between -8.8 °C and 2.2 °C. The growing season lasts 210 days. The Prosna valley, especially 

110 in the southern and eastern parts, has one of the lowest annual rainfalls in Poland at 500-550 

111 mm (Woś, 1999; Lorenc, 2005).

112  The natural vegetation of the Prosna valley has been strongly modified by humans, 

113 with the area of palaeomeander converted to an agricultural meadow. The main tree species in 

114 the valley are: Alnus glutinosa, Salix spp., while in the drier places Pinus sylvestris is the 

115 dominant species. Among vascular plants Carex spp., Juncus spp., and Ranuculus spp., are 

116 dominant species.

117

118 Materials and methods

119 Cores were taken using a Russian peat corer, 5 cm in diameter and 50 cm in length. The cores 

120 GRI (186 cm long) and GRII (240 cm) were placed in PVC tubes following extraction, 

121 individually wrapped and stored at 4 °C until subsampling. In the laboratory the sediment was 

122 unpacked, cleaned and sliced into 1-cm slices using a surgical scalpel. 

123 To determine the start of organic sediment accumulation in the study area, 

124 macrofossils of terrestrial plants from four samples were selected for AMS radiocarbon 

125 dating. Radiocarbon dating was carried out in the Poznan Radiocarbon Laboratory. The 

126 resulting conventional radiocarbon dates were calibrated using OxCal 4.1 software (Bronk-

127 Ramsey, 2009).

128 Plant macrofossils were analysed at 1 cm intervals contiguously in the two cores for 

129 the time period of interest (Late Glacial/Early Holocene). In the GRI Core, 100 samples were 

130 analysed for plant macrofossil remains from 85-186 cm and in the GRII 105 samples were 

131 analysed from interval 135-240 cm. The total volume of material analysed for plant 
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132 macrofossils per sample was ca. 8 cm3. The samples were rinsed under a warm-water spray 

133 over 0.20 mesh screens. The vascular plant composition was determined on the basis of 

134 carpological remains and vegetative fragments (leaves, rootlets, epidermis) using the available 

135 identification keys (Tobolski, 2000; Velichkevich and Zastawniak, 2006, 2008). Mosses were 

136 identified using the keys prepared by and Hölzer (2010). The reference collection of  plant 

137 macrofossils and recent plant material gathered by Mariusz Gałka was also used. The 

138 macrofossils were identified using a Nikon SMA 800 stereoscopic microscope under 10-200A 

139 and an Olympus CX 41 biological light microscope. Fossil fruits and seeds are expressed in 

140 absolute numbers, and the contribution of mosses (e.g., Sphagnum contortum) and vascular 

141 plants rootlets are expressed in percentage values of the total volume of a sieved sediment 

142 sample. A total of 205 samples were analysed. The names of the plant species were adopted 

143 following Mirek et al. (2002).

144 In order to determine the concentration of 59 chemical elements, a 5110 ICP-OES 

145 (Agilent, USA) inductively coupled plasma with optical emission spectrometry was used. For 

146 multi-elemental determination, the common conditions were as follows: radio frequency (RF) 

147 power, 1.2 kW, nebulizer gas flow, 0.7 L min-1, auxiliary gas flow, 1.0 L min-1, plasma gas 

148 flow, 12.0 L min-1, viewing height for radial plasma observation, 8 mm, detector CCD (charge 

149 coupled device) temperature, -40 °C, and signal acquisition time, 5 seconds for 3 replicates. 

150 The detection limits were 0.01 mg kg-1 dry weight for all elements (at 3-sigma criteria). The 

151 uncertainty for the total analytical procedure (including sample preparation) was 20%. The 

152 traceability was checked using reference materials: CRM S-1–loess soil; CRM NCSDC 

153 (73349)–bush branches and leaves; CRM 2709–soil; CRM 405-estuarine sediments; and 

154 CRM 667-estuarine sediments. The recovery (80-120%) was acceptable for most elements. 

155 For uncertified elements, recovery with the standard addition method was defined.
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156 Plant macrofossils and geochemical data are presented in diagrams and were plotted 

157 using the C2 software (Juggins, 2007). Stratigraphic clustering and ordination analysis was 

158 conducted in R version 3.4.3 (R Core Team, 2018). Stratigraphic zones in the plant 

159 macrofossil and geochemical records were defined using constrained incremental sum of 

160 squares cluster analysis (CONISS; Grimm, 1987) with the Gower dissimilarity index to allow 

161 for zero values in the packages vegan (Oksanen et al., 2019) and rioja (Juggins, 2018). We 

162 conducted ordination analysis to explore the relationship between corresponding geochemical 

163 and plant macrofossil data in the GRI record. Plant macrofossil species with <5 occurrences 

164 in the record were removed from ordination analysis to reduce clustering. As a result of the 

165 mixture of plant macrofossil relative abundance and count data we used the “capscale” 

166 function in vegan (Oksanen et al., 2019), a variant of constrained ordination of principle 

167 coordinates (CAP; Anderson and Willis, 2003), with Gower (1971) dissimilarity (see Birks, 

168 2014). Correlation analysis (Spearman’s Rank) was conducted on geochemical variables to 

169 identify redundant variables, these were then removed from the CAP analysis to improve 

170 clarity of the bi-plot.  

171 Due to a hiatus spanning the middle Holocene at the study site, we present only the 

172 lower part of the collected profiles. The lower profiles span the Younger Dryas and the early 

173 Holocene, while the upper profile representing the late Holocene has a broader archaeological 

174 context and will be presented in another paper.

175

176 Results

177

178

179 Lithostratigraphy and chronology
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180 The details of the sediment lithostratigraphy are presented in Table 1. At both sampling sites 

181 detrituous-calcareous gyttja accumulated on top of a silt and sand layer. Terrestrial plant 

182 macrofossil material for radiocarbon dating was selected from 1-cm core slices. Four samples 

183 were taken in total, with two from each core respectively (Table 2). Two of the samples (GRI, 

184 145.5 cm; GRII, 226.5 cm) were selected in order to date the beginning of organic sediments 

185 (gyttja) accumulation. However, due to lack of reliable plant macrofossils it was impossible to 

186 date the bottommost part of the sediments in both cores. Nevertheless, our interpretation is 

187 that organic sediments were deposited in final stage of Younger Dryas period and after 

188 several hundreds of years into the early Holocene peat started forming (GRI 144 cm; GRII 

189 172 cm) on top of the detrituous gyttja layer.

190

191 Plant macrofossils

192 Core GRI

193 Five zones in the local vegetation development we identified for plant macrofossils in GRI, 

194 confirmed by CONISS (Gower; Fig. 2). The zone GRI-pm-1 (186-165 cm) is characterised by 

195 a dominance of Chara sp. alongside Potamogeton perfoliatus, Potamogeton fresii, 

196 Potamogeton natans and Myriophyum sp.. GRI-pm-2 (165-147 cm) sees a decline in Chara 

197 sp. and is the last zone where Potamogeton spp. is present, while the macrophytes 

198 Sparganium minimum, Typha sp. appear. Pinus sylvestris macrofossils were also observed for 

199 the first time in GRI-pm-2. GRI-pm-3 (147-120 cm) is characterised by Cyperaceace, herbs, 

200 Carex spp., Menyanthes trifoliata and tree macrofossils. In GRI-pm-4 (120-97 cm) Sphagnum 

201 contortum dominates alongside periods of Meesia triquetra and Sphagnum teres. In the zone 

202 GRI-pm-5 (97-85 cm) mosses disappear, while numerous Menyanthes trifoliata seeds were 

203 present and Alisma plantago-aquatica appeared for the first time. 

204
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205 Core GRII

206 Six zones in the local vegetation development, confirmed by CONISS (Gower), were 

207 determined for the core GRII (Fig. 3). GRII-pm-1 (240-217 cm) is composed of Chara sp., 

208 Myriophyllum sp., P. natans and P. fresii. In GRII-pm-2 (217-202 cm) Chara sp. are still 

209 present, alongside Carex sp. and P. sylvestris. During GRII-pm-3 (202-187 cm) 

210 Ceratophyllum demersum, Nuphar sp. and Typha sp. appear with Carex sp. and the tree 

211 macrofossils (P. sylvestris and Betula sp.) are present throughout. In zone GRII-pm-4 (187-

212 171 cm) the presence of tree macrofossils continues, while Batrachium sp., Sparganium 

213 minimum, Lycopus europaeus, Ranunculus sceleratus and charcoal pieces are recorded for the 

214 first time. GRII-pm-5 (171-149 cm) is characterized by numerous Menyanthes trifoliata 

215 seeds, Calliergon cordifolium/giganteum leaves, herbs and the presence of Messia triquetra. 

216 In GRII-pm-6 (149-135 cm) Cyperaceae rootlets dominate the record, with limited P. 

217 sylvestris and Betula sp. remains. 

218

219 Geochemical analysis

220 Geochemical analysis was performed on the GRI core. Four stratigraphic zones 

221 were identified using CONISS (Gower; Fig. 4). A substantial concentration of Ca2+ 

222 characterises  zone GRI-ge-1 (186-174 cm). Zone GRI-ge-2 (174-143.5 cm) is characterized 

223 by a decrease in Ca and increase in the concentration of Al and correlating variables. In the 

224 zone GRI-ge-3 (143.5-100 cm) there is a large decrease in Al, Zn, K, Mg, Cr with a parallel 

225 increase in Si and correlating variables. During zone GRI-ge-4 (100-85 cm) an increase in Al, 

226 Zn, Cr, Fe, Cu and Pb took place.  

227

228
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229 Constrained ordination of principle coordinates (CAP)

230 Ordination analysis (CAP) of plant macrofossil and depth data explains a degree of variation 

231 on both axis 1 (CAP1; 10.7%) and axis 2 (CAP2; 4%) (Fig. 5). Correlation analysis 

232 (Spearman’s Rank) found that Al significantly correlated with Cr (p < 0.001), Cu (p < 0.001), 

233 Fe (p < 0.05), K (p < 0.001), Mg (p < 0.001), Mn (p < 0.001), Nd (p < 0.001), P (p <0.01) Pb 

234 (p < 0.001), Ti (p < 0.01)  and Zn (p < 0.001), while Si correlated with As (p <0.01) and Na (p 

235 < 0.01). Ca correlated with Mg (p <0.01), but to a lesser extent that Al and Mg (p < 0.001). 

236 Therefore, redundant correlating variables were removed and only Ca, Al and Si were 

237 retained as environmental variables in the CAP analysis. Higher Si concentrations show a 

238 clear association with Cyperaceae and a slight association with brown mosses and herbs and 

239 some sites in GRI-pm-3. Chara sp. and GRI-pm-1 are clearly associated with increased Ca 

240 concentrations. Al shows a very slight association with Sphagnum teres and GRI-pm-2.

241

242 Discussion

243 The first stage of oxbow lake development during cold climate conditions

244 The oxbow lake at our study site is a palaeomeander of the Prosna River and formed during 

245 the Late Glacial period. AMS dating indicates that the accumulation of the organic-rich 

246 deposits began sometime before 12,374-11,767 cal. yr BP, most likely during Younger Dryas, 

247 but potential earlier. Many palaeomeanders in this part of the Europe have a Late Glacial 

248 origin, associated with the transition of river valleys from braided channels to a main 

249 meandering channel (Kozarski and Rotnicki, 1977; Gonera and Kozarski, 1987; Młynarczyk 

250 and Rotnicki, 1989; Duda and Borówka 2007; Forysiak et al., 2010; Forysiak, 2012; Starkel et 

251 al., 2015; Pawłowski et al., 2015, 2016a; Płóciennik et al., 2016; Słowik et al., in review). 

252 Pawłowski et al. (2016a) suggests the summer temperature during Younger Dryas in 

253 central Poland oscillated ca. 14 °C, which would likely have facilitated the growth of some 
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254 macrophyte species in the palaeolake. Chara sp., Batrachium sp., and Potamogeton spp. were 

255 the pioneer plants colonizing the cold alkaline water, rich in Ca and Mg (Fig. 5 and 6), with 

256 the relationship between Chara sp. and increased Ca concentrations further supported by 

257 ordination analysis (Fig. 5).

258  The presence of these submerged plants during the Late Glacial in the first stage of 

259 macrophyte succession is in agreement with records from many other European lowland lakes 

260 (Amon et al., 2010; Mortensen et al., 2011; Fajer et al., 2012; Gałka and Sznel, 2013; 

261 Kołaczek et al., 2015). In particular, stoneworts oospores (e.g. Chara sp.) have been shown to 

262 be common in the first stage of macrophyte succession, emphasising their pioneering role in 

263 colonising new water basins, such as palaeolakes formed in river valleys (Pawłowski et al., 

264 2016; Płóciennik et al., 2016; Kołaczek et al., 2018). During the period, when oxbow lake 

265 existed at sampling site the Potamogeton species of P. fresii, P. praelongus and P. alpinus 

266 appeared (GRI-pm-2; GRII-pm-2), suggesting quite shallow and eutrophic water conditions 

267 (Zalewska-Gałosz, 2008). Only a single endocarp of P. praelongus was identified in the GRI 

268 core, supporting previous observations from other lakes located in European lowland and 

269 mountain sites that this species does not have competitive abilities to disperse compared to 

270 other Potamogeton species (Gałka et al., 2017 and references quoted there). The meridional 

271 orientation of the valley and relatively rich fossil presence of macrophytes in the palaeo-

272 record may indicate that the Prosna River was an important pathway for the spreading of 

273 aquatic plants during the Late Glacial.

274

275 Early Holocene plant succession during warm climate conditions

276 Early Holocene (ca. 11, 300 cal yr BP, Kołaczek et al., 2018) mean June temperatures ca. 

277 18°C likely led to expansion of thermophilous macrophytes such as Ceratophyllum demersum 

278 and Typha sp. at both sampling sites Fig. 2., (GRI-pm-2 and 3; GRI-pm-3). These plants 
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279 typically grow in shallow water (Podbielkowski and Tomaszewicz, 1996) and are often 

280 recorded in transitional zone between lakes and peatlands during the early Holocene (Hannon 

281 and Gaillard, 1997; Gałka and Sznel, 2013; Kołaczek et al., 2015, 2018). 

282 The warmer temperature appears to have had a positive effect on forest development 

283 and its density in areas surrounding rivers valleys. Both Pinus sylvestris and Betula pubescens 

284 macrofossils were observed in early Holocene sediments from both GRI and GRII. Those 

285 trees likely occupying mineral soils in the river valley and along river banks. However, 

286 typical riparian trees such Salix and Populus were not detected in studied cores. Nevertheless, 

287 river valleys were important routes for deciduous trees spreading in the European lowlands 

288 (Kolstrup, 2007; Kołaczek et al., 2018) and vegetation cover was an important factor in 

289 controlling river system evolution (Turner et al., 2013). Higher temperatures and potentially 

290 lower precipitation contributed to increased fire events during the early Holocene in river 

291 valleys and their surrounding areas. This is evidenced by the presence of early Holocene 

292 charcoal pieces in both our cores (Fig. 2 and 3) as well as in other sites located in river valleys 

293 across the Polish lowlands, e.g. Grabia (Pawłowski et al., 2016a,b), Ner (Kittel et al., 2016) 

294 and San (Kołaczek et al., 2018). 

295 At ca. 11,750-11,260 cal. yr BP in the GRI core (Fig. 2, GRI-ge-3) there is an  abrupt 

296 decrease in concentrations of Al, K, Mg, Ti, Fe and Cr and an increase in Si concentrations.  

297 This geochemical shift is associated with a disappearance of aquatic species and development 

298 typical peatland plants population with the appearance of Carex rostrata, Carex lasiocarpa, 

299 Menyantes trifoliata, brown mosses, Cyperaceae and herbs (Fig. 2., GRI-pm-3). Ordination 

300 analysis further supports the relationship between increased Si concentrations and brown 

301 mosses, Cyperaceae and herbs (Fig. 5 and 6). Such a visible change of geochemical 

302 composition might indicate isolation of the study site from the influence of the Prosna River, 
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303 as has been recorded in other early Holocene palaeomeanders located in central Poland 

304 (Pawłowski et al., 2016a,b; Płóciennik et al., 2016). 

305 A decrease in water level during the early Holocene has been documented in several 

306 central European lowland sites (cf. Gałka et al., 2015a and references quoted there). A 

307 decreased water table may explain the development of a Sphagnum population dominated by 

308 S. contortum in zone GRI-pm-4, preceded by a short phase of Meesia triquetra (cf. Gałka et 

309 al., 2015b; 2017) and followed by short stage of Sphagnum teres (Fig. 3; Fig.6). The presence 

310 of S. contorum in our early Holocene dated deposits from the Prosna River valley is the oldest 

311 such example in the European lowlands, with S. contortum being among the rarest of 

312 Sphagnum mosses encountered in the fossil state. To date, its fossil presence has only been 

313 confirmed at a few sites in the northern hemisphere (Gałka and Lamentowicz, 2014). S. 

314 contortum macrofossils were recorded e.g. in Late Glacial deposits at Scragh Bog, Central 

315 Ireland (O’Connell, 1980). In addition, the early Holocene presence of S. teres in GRI is 

316 important from a biogeographic perspective as one of the earliest fossil examples in Central 

317 Europe. Previously S. teres had only been recorded in Late Glacial peat layers from SE 

318 Germany (Hölzer and Hölzer, 1994), NE Poland (Gałka and Sznel, 2013) and in early 

319 Holocene (ca. 10,000 years ago) lake and peat deposits from the Eastern Carpathians, N 

320 Romania (Gałka et al., 2017). S. contortum and S. teres are minerotrophic species that often 

321 grow together and can be found in rich fen habitats with a pH ca. 6 (Hájková and Hájek, 

322 2004; Hölzer, 2010; Tahvanainen, 2013). Their macrofossils are usually found in the peat 

323 layer preceding the development of poor fen conditions (Gałka and Lamentowicz, 2014; 

324 Gałka et al., 2018). The presence of early Holocene Sphagnum in this river valley peatland 

325 suggests that river ecosystems have played an important role for the survival and spreading of 

326 some minerotrophic Sphagnum species, especially in areas with limited topographic 

327 depressions for peatlands to develop. The disappearance of mosses in the upper part of both 
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328 peat profiles (Fig. 2 and 3, GRI-pm-5; GRII-pm-6) may be linked to a changing interaction 

329 with the Prosna River. Increased heavy metal concentrations in sediments, especially Cu, Cr, 

330 Mn (Fig. 6), might indicate an increased influence of the Prosna River water and gradual 

331 flooding of this peatland. River waters are usually rich in Mn2+ ions or they transport this 

332 chemical element in a form of suspension colloid (Kabata-Pendias and Pendias, 1979). 

333 However, the increase in Mn could also have been caused by chemical weathering, as a result 

334 of preferential leaching of Mn from the soil under slightly acidic conditions. An increase of 

335 the water level at sampling sites is also supported by the low value of the Fe/Mn ratio (cf. 

336 Boyle 2001; Pawłowski et al., 2015b). A large increase in water level would have been 

337 required to cause the decline in minetrophic mosses such as Messia triquetra and Sphagnum 

338 species that are tolerant to wet and periodically submerged conditions (Montagnes, 1990; 

339 Hölzer, 2010). However, this decline in mosses could also have been caused by erosion 

340 during flood events, which is quite a common phenomenon in river valleys (Starkel, 2002).

341

342 Summary

343 We present detailed plant macrofossil data from two sediment sequences from a palaeolake in 

344 the Prosna River valley with supporting geochemical analysis and radiocarbon dating. We 

345 draw the following conclusions from our analysis:

346 1. The studied palaeomeander was formed in the Late Glacial (most likely in Younger Dryas). 

347 This is in agreement with records from other Polish lowland river valleys that document the 

348 development of oxbow lakes during this period.

349 2. Rich fossil presence of macrophytes in the studied palaeomeander, along with the 

350 meridional orientation of the valley may indicate that the Prosna valley was an important 

351 route for the spreading of aquatic plants in the Late Glacial and an important habitat for rare 

352 mosses such as Meesia triquetra.
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353 3. Early Holocene warming likely led to a decrease in water level, triggering the 

354 terrestrialization process of the oxbow lake – as has been observed across many Polish 

355 lowland sites.

356 4. Organic sediments deposited in river valleys are a valuable source of biogeographic 

357 knowledge regarding the past distribution of mosses. Sphagnum contortum and Sphagnum 

358 teres macrofossils were found in the early Holocene deposits of the Prosna River valley. 

359 These early Holocene Sphagnum findings suggest that river valleys - and the peatlands that 

360 developed there - were important habitats for the survival and spread of some minerotrophic 

361 Sphagnum species, potentially even functioning as refugia.

362
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578 Fig. 2. Plant macrofossil diagram: A) core GRI, Grodzisko. Taxa with (%) are given in 

579 estimated volume percentages, others are given in counted numbers (with X-axis scale labels; 

580 note scale differences).

581 Fig. 3. Plant macrofossil diagram: GRII, Grodzisko. Taxa with (%) are given in estimated 

582 volume percentages, others are given in counted numbers (with X-axis scale labels; note scale 

583 differences).

584 Fig. 4. Results of the geochemical analysis of core GRI (mg/kg-1).

585 Fig. 5. Constrained ordination of principle coordinates (CAP) species-depth bi-plot of plant 

586 macrofossils, depth and select geochemical variables. Stratigraphic zones are grouped for 
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588 Fig. 6. Comparison of selected plant taxa and geochemical results, core GRI. 
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Table 1. Lithostratigraphic description of the sediment sequence.

Sampling site/Core Description of sediments

GRI 186-178 cm silt with sand

178-149 cm detritus-calcareous gyttja

149-144 cm corase detritus gytjja

144-125 cm herbaceous peat

125-97 cm moos–herbaceous peat

97-85 cm strongly decomposed herbaceous peat

GRII 240-235 cm silt with sand

235-172 cm detritus-calcareous gyttja

172-150 cm brown moos–herbaceous peat

150-132 cm strongly decomposed herbaceous peat
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Table 1. Radiocarbon dates from Grodzisko, core GRI and GRII 

Depth (cm) Material Nr. Lab. AMS date
Age (cal. yr 

BP)

GRI 92,5

Menyanthes trifoliata  

seeds, Pinus sylvestris 

seed

Poz-94372 9��� � �� �� 10 560-10 269

GRI 145,5
Pinus sylvestris needles 

and periderm
Poz-94373 1���� � �� �� 11 750-11 263

GRII 154,5
Menyanthes trifoliata 

seeds
Poz-94853 9��� � �� �� 11 173-10 773

GRII 226,5 Charred wood Poz-94854 1���� � �� �� 12 374-11 767
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