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Abstract. A low computational cost method is developed, based on eigenfunction expansion, to study the vibration 
of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple mov-
ing loads. The dynamic effects of the suspension system are taken into account by using flexible connections be-
tween the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic 
response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to conven-
tional rigid moving mass models. It is shown that the proposed method can considerably improve the computational 
efficiency of the existing methods by eliminating a large number of time-varying components in the coupled Ordi-
nary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by perform-
ing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using dif-
ferent design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving 
force and moving mass models may lead to substantially underestimated DAF predictions, and hence unsafe design 
solutions. This highlights the significance of taking into account the stiffness of the suspension system for practical 
applications. 
 
Keywords:  vibration analysis; moving mass; maximum dynamic response; multiple vehicular load; 
sprung mass 
 
 
1. Introduction 
 

Calculating the dynamic characteristics of solids and structures subjected to moving loads has 
been a significant engineering problem to gain insights into the dynamic response of railways, 
bridge type structures, pavements and mechanical devices. Fryba (2013) conducted a comprehen-
sive study on the dynamic behaviour of structures subjected to moving force and provided corre-
sponding mathematical formulations. In another study, Ouyang (2011) inspected different aspects 
of moving load problem in a review article and classified the problem into several distinct catego-
ries. 

The dynamic behaviour of beams subjected to moving loads has been studied by several re-
searchers employing different moving force and mass models. Michaltsos and Kounadis (2001) 
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showed that the inertial loads caused by the vertical motion of the moving mass can affect the dy-
namic characteristics of the beam. The findings of their research indicated that by increasing the 
mass of the moving load, the increase in the beam response due to this additional inertial load be-
comes more considerable. Tahmasebi Yamchelou and Nouri (2016) investigated the dynamic be-
haviour of beam-type bridges under a varying speed moving mass using two distinct approaches. 
Their findings indicate that an accelerating moving mass causes smaller response amplitude in 
forced vibration phase in comparison with a decelerating motion. This trend is quite reverse in free 
vibration phase and an accelerating moving mass creates larger responses after exiting the beam 
compared to a decelerating one. By substituting the moving mass with a moving force and a con-
centrated mass fixed at the mid-span of the beam, Jiang (2011) proposed a simplified method to 
calculate the dynamic response of a simply-supported beam under a moving mass. More recently, 
Eftekhari (2016) used a modified differential quadrature procedure to simulate the dynamic re-
sponse of Euler–Bernoulli and Timoshenko beams traversed by a point moving load. 

The dynamic response of an infinite beam resting on a Winkler foundation subjected to a single 
moving load was studied by Raftoyiannis et al (2012). It was shown that, compared to the conven-
tional free single-span beams, the possible speeds of moving loads that can be reached in the 
beams resting on elastic foundations are very high even for cohesionless soils. Celebi (2006) car-
ried out a comprehensive numerical investigation to study the dynamic response of train-tracks 
and sub-soil profiles due to the surface vibrations under moving loads. The numerical results were 
used to assess the influence of different design parameters on the amplitude reduction factor due to 
the presence of an open trench. In another relevant research, vibration of a bi-directional function-
ally graded Timoshenko beam under a moving load was assessed by Şimşek (2015) considering 
different boundary conditions. Similarly, Roshandel et al (2015) presented benchmark solutions for 
the dynamic response of a Timoshenko beam with varying thickness under a moving mass using 
modal expansion method.  

A plate traversed by moving loads can reasonably represent a slab-type bridge subjected to 
moving vehicles. Gbadeyan and Dada (2011) investigated the dynamic response of an elastic plate 
under different types of moving masses. The cases they considered consisted of concentrate, line-
arly distributed, and uniformly distributed moving masses. Tahmasebi Yamchelou et al (2017) 
studied dynamic response of a plate under a single moving mass and concluded that maximum 
response amplitudes do not necessary take place at the center point of the plate. Their findings re-
vealed that as the length to width ratio of the plate increases, the absolute maximum response con-
verges to that obtained at the center point. Shadnam et al (2001) calculated the dynamic response 
of a simply-supported thin rectangular plate carrying a moving mass using the eigenfunction ex-
pansion method. The same problem was studied by Nikkhoo and Rofooei (2012) presenting a 
comprehensive parametric study to explore the effect of plate’s aspect ratio, moving load magni-
tude and speed as well as the load’s trajectory on the dynamic response of the structure. In another 
relevant study, an analytical solution was proposed by Ghazvini et al (2016) for vibration analyses 
of a thin plate with non-uniform thickness subjected to a moving mass using orthogonal polynomi-
als. Hassanabadi et al (2016) utilized a semi-analytical method to capture the dynamic response of 
a rectangular plate under a series of moving masses and proposed an approximate method to de-
termine the resonance velocities based on the fundamental frequency of the system. Using Ga-
lerkin’s method, Mamandi et al (2015) developed a computational model to evaluate the dynamic 
behaviour of a geometrically nonlinear rectangular plate subjected to a moving mass. In two rele-
vant studies, Malekzadeh and Monajjemzadeh (2015) investigated the nonlinear response of func-
tionally graded plates under moving loads, while Şimşek et el (2015) used the modified couple 
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stress theory to study the vibration of a microplate under the action of a moving load. 
Developing simple and accurate moving oscillator models has been of great interest to engi-

neering practitioners concerning with the effects of vehicle flexibility on the dynamic response of 
bridges. Pesterev et al (2003) proposed an analytical solution to the asymptotic states of the mov-
ing oscillator/beam interaction considering soft and rigid springs for the general case of non-zero 
beam initial conditions. They concluded that in case of high spring stiffness, the moving oscillator 
problem is not equivalent to the moving mass problem. The results of their study also highlighted 
that while these two problems can be equivalent in terms of the beam deflection, they are not 
equivalent in terms of stress distributions. 

The dynamic behaviour of a truss structure excited by two moving mass oscillators was inves-
tigated by Baeza and Ouyang (2009) by utilizing Timoshenko beam theory in a finite element (FE) 
program. They concluded that the dynamic response of the system and the maximum contact force 
can be considerably higher than the static response at high speeds. In another relevant study, Lee 
and Chung (2014) simulated the dynamic interaction of a tensioned beam with a moving oscillator. 
They considered four different dynamic models and reported that in general the discrepancy be-
tween the contact forces and the deflections predicted by the models increase by decreasing the 
beam tension force and the moving velocity. Lu and Liu (2013) proposed a method for identifica-
tion of physical parameters of a coupled bridge-vehicle system under moving oscillator. However, 
it was found that their method is insensitive to artificial measurement noises. Ghafoori et al (2011) 
proposed a semi-analytical method using an adaptive FE model to predict the dynamic response of 
a simply supported rectangular plate under a moving sprung mass having arbitrary trajectory. Their 
work has been followed by Hassanabadi et al (2014) accounting for various plate boundary condi-
tions. However, in their work only a single moving oscillator was considered. 

A finite element method with Newmark’s time integration procedure was used by Mohebpour 
et al (2011) to calculate the dynamic response of a shear deformable laminated composite plate 
traversed by a moving oscillator. Similarly, Thai-Hoang et al (2011) proposed an alternative alpha 
finite element method with discrete shear gap technique to analyse laminated composite plates. 
Using a different approach, Chang (2014) performed a stochastic dynamic FE analysis of a bridge-
vehicle system subjected to random material properties and loadings. The bridge was modelled as 
a laminated composite beam with Gaussian random elastic modulus and mass density distribution 
subjected to random moving forces. 

As discussed above, most of the previous research studies have investigated the dynamic be-
haviour of beam-type bridges under consecutive loads by using either a simplified model of the 
moving force simulation neglecting the load-bridge interaction, or a moving mass simulation 
which is an asymptotic state of the moving oscillator for an infinitely large spring constant. On the 
other hand, the superposition principle for multiple moving loads used in many of these methods is 
not valid if the vehicle-bridge interaction is considered (Klasztorny and Langer 1990; Pesterev, 
Yang et al. 2001; Nikkhoo, Hassanabadi et al. 2014; Khoraskani, Mofid et al. 2016). Therefore, to 
obtain the dynamic response of such systems, coupled equations of motions (representing multiple 
moving inertial objects traversing a continuum) should be solved simultaneously, which will in-
crease the complexity of the mathematical model. 

To address the above mentioned issues, this study aims to develop a more computationally effi-
cient method for vibration analysis of rectangular plates by taking into account the effects of sus-
pension system flexibility on the dynamic amplification factor. The dynamic response of a Kirch-
hoff plate under simultaneous action of multiple moving sprung masses is examined and compared 
to the response under a stream of moving forces and masses. Subsequently, an efficient analytical-
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numerical solution based on modal expansion method is developed, which can considerably re-
duce the 

 
Fig. 1 A rectangular plate subjected to moving sprung masses 

 
 

computational costs compared to the conventional modal expansion technique. The results are then 
used to investigate the effects of the key parameters of the moving oscillator, such as stiffness and 
the amount of inertial force, on the maximum dynamic amplification factor of the plate through 
several numerical examples. 

 
 
2. Mathematical framework 
 

2.1 Governing equations and solution 
 

To develop vibration constitutive model of a typical slab-type bridge under train loads, a rec-
tangular plate hinged at the two parallel edges and free at the other two longitudinal sides (SFSF 
boundary condition) is considered as shown in Fig. 1. The plate is subjected to a series of travers-
ing sprung masses to simulate the travelling vehicle. Unlike the moving mass and moving force 
approaches, the general solution of this model is obtained by taking into account the suspension 
system of the travelling vehicle. The vibration of the slab is then assessed under a series of equi-
distant moving loads at the middle line of the plate (parallel to x axis), which can represent a mov-
ing train crossing the bridge. For simplicity, similar speed and mechanical characteristics are as-
sumed for the traveling oscillators in this study. 

 By assuming a Kirchhoff plate theory for an isotropic, linear media with infinitesimal strains, 
the following equations can be easily obtained to determine the plate vibration under multiple pul-
sating loads (Hassanabadi, Attari et al. 2015):         

           
2 N

4
2

1

, ,
, , , m m m

m

w x y t
D w x y t B x y P x X t y Y t

t 


       


          (1)               

 , [ ( ) ( )][ ( ) ( )]mB x y H x H x a H y H y b                           (2) 
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2

2

d
( ( ) ( ( ), ( ), )) 0

dm m m m m mM v t w X t Y t t P M g
t

                         (3) 

0( ( ) )m m m mP k v t v                                   (4) 
Eq. (1) denotes the general form of the governing equation, for a thin plate influenced by arbi-

trary multiple dynamic loads. Eq. (2) describes a window function, which allows the load to excite 
the beam as long as it is located on the beam span and nullifies its effect otherwise. A moving os-
cillator subsystem, itself, adds an extra constraint equation as given in Eq. (3). Finally, Eq. (4) is 
used to couple the vibration of the oscillator (Eq. (3)) and the plate dynamics (Eq. (1)). It should 
be noted that the coupled behaviour can be also obtained based on Eq. (3): 

2

2

d
[ ( ( ) ( ( ), ( ), ))]

dm m m m mP M g v t w X t Y t t
t

                            (5) 

While Eqs. (4) and (5) both lead to the same final results, it will be discussed in following sec-
tions that the selection between these two equations can greatly affect the computational efficiency. 
An analytical-numerical solution of the previously mentioned constitutive equations could be easi-
ly obtained using modal superposition method, which is also known as eigenfunction expansion 
method. In this method, the response of the system is expressed in the modal coordinates. Howev-
er, to solve the Partial Differential Equation (PDE) in Eq. (1), it should be assured that the shape 
functions satisfy the following requirement: 

4 2( , ) ( , )j j jD x y x y                                   (6) 
Since Eq. (6) is a self-adjoint operator, the plate natural shape functions can be expressed by 

the following expansion series: 

1

( , , ) ( ) ( , )
n

j j
j

w x y t t x y


                                 (7) 

The orthogonality of the shape functions can be easily proved by using the principle of the vir-
tual work. Therefore, the following equation is valid for the normalized mode shapes: 

Plate

( , ) (x,y)dAi j ij
A

x y                                  (8) 

Replacing the series expansion of the plate dynamic deformation in Eq. (7) into Eq. (1) leads to: 
2 N

4
2

1 1

d
( ( ) ( , ) ( , ) ( )) ( , ) ( ( )) ( ( ))

d

n

j j j j m m m
j m

t D x y x y t B x y P x X t y Y t
t 

               (9) 

 

   To reduce the above problem to time domain alone, both sides of Eq. (9) should be multiplied 
by ( , )i x y . The resulting equation is then integrated on the whole spatial domain ( PlateA ) as fol-
lows: 

2
2

2
1

d
( ( ) ( )) ( , ) ( , )

d

n

j j j ij m m m i m m
m

t t B X Y P X Y
t 

                       (10) 

The constraint equations of the oscillator can be also expressed in terms of the modal shape 
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functions: 
2 2

2 2
1

d d
[ ( ) ( , ) ( ( ) ( , ))] 0 
d d
1, 2, , N

n

m m m m j j m m m m
i

M v t B X Y t X Y P M g
t t

m


     






             (11) 

In this study, the following notations are used for the total derivative with respect to time in Eq. 
(11): 

2 2
1 2 3

2 2

d d d
( ( ) ( , )) ( ) ( ) ( ) ( ) ( ) ( )

d d d
m m m

j j m m j j j j j it X Y t t t t t t
t t t

                       (12) 

 
where 

1 ( ) ( ( ), ( ))m
j j m mt X t Y t                                    (13) 

       2 ( , ) ( , )d d
( ) 2[( ) ( ) ]

d d m

m

j jm m m
j x X

y Y

x y x yX Y
t

x t y t 


 
  

 
                      (14) 

and 
2 2 2

3 2 2
2 2

2 2

2 2

( , ) ( , ) ( , )d d d d
( ) [( )( ) ( )( ) 2( )( )( )

d d d d
( , ) ( , )d d

( )( ) ( )( )]
d d m

m

j j jm m m m m
j

j jm m
x X
y Y

x y x y x yX Y X Y
t

x t y t x y t t
x y x yX Y
x t y t 



     
   

   

 
 

 

        (15) 

 
Subsequently, Eqs. (10) and (11) can be represented in an equivalent matrix form as shown below: 

2

2

d d
( ) ( ) ( ) ( ) ( ) ( )

d d
t t t t t t

t t
  M T C T K T F                          (16) 

where 

 
( ) 1

( )
( )

( ) n N

t
t

t
 


 
 
 

Ĳ
T

V
                                      (17) 

11 12

21 22 ( ) ( )

( )
( )

n N n N

t
t

  


 
 
 

M M
M

M M
                               (18) 

11 12

21 22 ( ) ( )

( )
( )

( )
n N n N

t
t

t
  


 
 
 

C C
C

C C
                               (19) 

11 12

21 22 ( ) ( )

( )
( )

( )
n N n N

t
t

t
  


 
 
 

K K
K

K K
                               (20) 

                
 

 
1

N 1 ( ) 1

0
n

m n N
M g



  




 
 
 

F                                      (21) 

  1
( ) ( )i n
t t


 Ĳ                                           (22) 

and 
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 N 1
( ) ( )it v t


V                                              (23) 

The components of the time-varying matrices in Eqs. (18)-(21) can be presented in the following 
forms 

11 ij n n
   M                                              (24) 

 12 N
0

n
M                                                (25) 

1
21 N

( ) ( , ) ( )i
i i j n

t B X Y M t


   M                                    (26) 

22 ij N N
M


   M                                            (27) 

 11 0
n n

C                                                  (28) 

 12 N
( ) 0

n
t


C                                                (29) 

2
21 N

( ) ( , ) ( )i
i i j n

t MB X Y t


   C                                     (30) 

 22 N N
0


C                                                 (31) 

2
11 i ij n n
    K                                                (32) 

12 ( ) ( , ) ( , )j j i j j n N
t kB X Y X Y


    K                                  (33) 

3
21( ) ( , ) ( )i

i i j N n
t MB X Y t


   K                                     (34) 

22 ij N N
k


   K                                               (35) 

 1 1
0

n
F                                                 (36) 

 2 1i N
M g


 F                                              (37) 

The analytical eigensolutions of a thin rectangular plate is discussed in detail by Leissa (1973). For a 
single-span plate, as illustrated in Fig. 1, the two constraints defining the simply supported edges at 

0x   and x a can be expressed as: 

2 2

2 2

( , ) 0

( , ) ( , )
0

x y

x y x y
y x

 

   
  

 

                                    (38) 

Similarly, the constraints for the two free edges can be presented by the following equations: 
2 2

2 2

3 3

3 2

( , ) ( , )
0

( , ) ( , )
(2 ) 0

x y x y
y x

x y x y
y y x

   
  

 

   
   

  

                                 (39) 

   Since the shape functions of a plate with simple boundary conditions (i.e. Eq. (38)) are sinusoidal, a 
Fourier Sine transform in x direction is used for direct separation of variables. Subsequently, the following 
equations are obtained by considering the free vibration equation of the plate given in Eq. (6): 
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If 2 2   : 

2 2 2 2

2 2 2 2

( , ) [ sin cos

sinh cosh ]sin

x y A y B y

C y D y x

      

        
                         (40) 

If 2 2   : 
2 2 2 2

2 2 2 2

( , ) [ sinh cosh

sinh cosh ]sin

x y A y B y

C y D y x

        

        
                        (41) 

where 
4 2  , , 1, 2,  D m a m        and A, B, C and D are integration constant parameters. Finally, 

by replacing Eqs. (40) and (41) in the boundary conditions of the free edges (Eq. (39)), the following 
equation is derived: 
 
If 2 2   : 

2 4 4 2 2
1 2 1 2

2 2 2 4 2 2 2 4
1 2 1 2

2 ( (1 ) ) (cos cosh 1)

[ ( (1 )) ( (1 )) ]sin sinh 0

m

m m

         

               
                (42) 

If 2 2   : 
2 4 4 2 2

1 2 1 2

2 2 2 4 2 2 2 4
1 2 1 2

2 ( (1 ) ) (cos cosh 1)

[ ( (1 )) ( (1 )) ]sinh sinh 0

m

m m

         

               
               (43) 

              
where 

2 2 2 2 2
1 2

2 2 2 2
1 2

,  ,

 ,  

b b
a D m m

a a
b b

m m
a a

             

         

 

 
2.2 A discussion on the moving force and moving mass methods 

 
In common practice, moving vehicular loads are usually represented by a moving mass or a moving 

force to simplify the complex vibration analyses and reduce the associated computational costs. The mov-
ing mass consists of a solid mass (usually a lumped mass) interacting with the base structure to account 
for the inertia of the traversing load. On the other hand, in the moving force approach an equivalent load 
(equal to the weight of the moving object) in utilized to simplify the dynamic effects of the vehicular 
loads. By using the moving load approach, Eq. (10) can be re-written as follows: 

2 N
2

2
1

d
( ( ) ( )) ( , ) ( , )

dj j j ij m m m j m m
m

t t B X Y M g X Y
t 

                            (44) 

The main advantage of this approach is that the dynamic response of the system can be easily obtained 
based on the following closed-form solution of Eq. (44): 
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  0 0

N

1

0 0

1
sin( ) cos( )

( , )
( )

W(Sin( ), Cos( ))

[Cos( ) Sin( ) ( ( ), ( ))d Sin( ) Cos( ) ( ( ), ( ))d ]

( ) ( ) ( )

hj j j j j
j

m m m
pj

m j j

t t

j j j m m j j j m m

j hj pj

t t t

M gB X Y
t

t t

t X Y t X Y

t t t



      


 
 

               

    



 



       (45) 

in which 
 Sin( ) Cos( )

W(Sin( ), Cos( ))
Cos( ) - Sin( )

j j
j j j

j j j j

t t
t t

t t
 

    
   

                   (46) 

where 0Ĳ j and 0Ĳ j can be obtained based on the initial conditions. 
The static deformation of the plate under a force, p, applied at the coordinates of ( , )x y , can be then 

calculated by removing the terms with time derivatives in Eq. (44), arriving at: 

2

1
( , )j j

j

T p X Y 


                                      (47) 

The moving mass solution can be also obtained by replacing 
2

2

d
[ ( ( ), ( ))]

dm m m mP M g w X t Y t
t

                                (48) 

in Eq. (10), leading to the following the matrix equation: 
2

2

d d
( ) ( ) ( ) ( ) ( ) ( ) ( )

d d
t t t t t t t

t t
  m Ĳ c Ĳ k Ĳ f                          (49) 

where 
N

1

1

( ) ( , ) ( , ) ( )m
ij m m i m m jn n n n

m

t B X Y X Y t
 



         m                    (50) 

N
2

1

( ) ( , ) ( , ) ( )m
m m i m m j n n

m

t B X Y X Y t




    c                         (51) 

N
2 3

1

( ) ( , ) ( , ) ( )m
i ij m m i m m jn n n n

m

t B X Y X Y t
 



           k                   (52) 

  
N

1
1

( ) ( , ) ( , )m m m i m m n
m

t B X Y M g X Y




  f                         (53) 
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Fig. 2 The resonance velocity for different values of inertia (N=10) 

 
 
3. Parametric study 
 

3.1 Case study parameters 
 
In this section, the efficiency of the proposed method in predicting the dynamic response of a rectan-

gular plate subjected to a series of moving sprung masses (see Fig. 1) is demonstrated compared to the 
conventional rigid moving mass models. In the numerical examples, the followings design values are 
considered for the rectangular plate: 

9

7m, 3b, 0.3

0.9a,  1.33516 10 N.m

b a Ȟ

L D

  

  
 

For better comparison, the following normalized parameters are used to discuss the results (see Table 
of Notations): 

1
1 1 1

stat 2
1

stat

2
Ȗ ,  ,  

( , ) (0.5 ,0.5 )

(0.5 ,0.5 , ) /

DAF max( (0.5 ,0.5 , ) )

,

n

j j
j j

N stat

k MM L
T v'

ab T

Mg
w X Y a b

W w a b t w

w a b t w




    
  


  







  

   
 



11 

 

 
Fig.3 The resonance velocity for different number of loads; Ȗ 0.2  

 
  

 In the above equations, Ȗ and ȍ represent the mass ratio and the natural frequency ratio of the 
moving mass system, respectively. v' is a reference speed defined as the distance between consecu-
tive loads divided by the fundamental period of the beam ( 1/L T ). 

The maximum dynamic response of the base structure under moving loads can be sought 
through obtaining the Dynamic Amplification Factor (DAF) spectra versus the velocity of the 
moving load. The peak values of DAF spectra take place at the resonant states of the structure, at 
which the velocity of the moving load is called resonant velocity (Khoraskani, Mofid et al. 2016). 

The DAF spectra of the case study example under the selected moving loads (N=10) is illus-
trated in Fig. 2 using the moving force model by considering the first 20 mode shapes. In this fig-
ure, u is the absolute speed of the moving loads. It can be seen that the moving force model results 
in resonant velocity values of / ' 1 / , 1, 2,3,...u v i i  , which can be also rearranged as 1iTL u  . 
The latter equation indicates that resonance will occur when the repetition time of the successive 
loads is an integer coefficient of the fundamental period of the beam. This can be reasonably justi-
fied as the first natural mode is expected to have the most significant effect in the total response of 
the structure. Besides, a repetitive loading scheme with the period of 1, 1, 2,...iT i  can excite the 
first natural mode of the plate at the resonant state. In this case, the plate would vibrate with the 
maximum amplitude. It can be noted from Fig. 2 that the peak values corresponding to decrease as 
i increases. 

The DAF spectra corresponding to the moving mass models with different mass ratios ( Ȗ  
ranging from 0.02 to 0.16) are also compared in Fig. 2. It is shown that by increasing the mass ra-
tio (or inertia of the loads), the resonance velocity decreases. This conclusion can be explained 
with regard to the influence of the added masses (due to the moving loads) to the plate. The mov-
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ing masses-plate system exhibits a higher fundamental period, since the mass of the system is in-
creased for a fixed flexural rigidity. This implies that if the vehicle-bridge interaction is taken into 
account, which is a more realistic representation of the moving loads, the resonant speeds shift 
towards smaller values in comparison with those observed under the action of a series of moving 
forces (vehicle-bridge interaction being ignored). Moreover, it is shown in Fig. 2 that the maxi-
mum DAF of the system decreases as the mass of the moving objects increases. Therefore, the 
moving force model results in conservative (upper bound) values in this case. 

Fig. 3 investigates the influence of the load number (N) on the resonance velocity using moving 
force and moving mass methods. It is clear from the figure that increasing the number of loads at 
the resonant state mainly amplifies the vibration, while it does not considerably affect the value of 
the resonance velocity. However, by increasing the number of loads, N , the results tend to the 
steady state loading condition. 

 
3.2 Contribution of the suspension system 
 
Moving force/mass could be intuitively regarded as the asymptotic states of a moving oscillator 

problem. The dynamic behaviour of a moving oscillator with an extremely flexible suspension sys-
tem is similar to that of a moving force, and a rigid suspension system results in a dynamic behav-
iour identical to that observed under a moving mass. However, it has been highlighted that the 
moving mass can be different from rigid moving oscillator model in terms of the contact force and 
stresses (Pesterev, Bergman et al. 2003). To give a clear visual sense of the moving oscillator tran-
sition between the asymptotic states, the time history results of the plate normalized deflection 
versus the oscillator frequency is depicted in Fig. 4. It is shown that the trend of the dynamic re-
sponse of the system with springs of infinitesimal stiffness is towards the moving force model. 
However, the response of the structure under the sequential moving oscillators having springs with 
infinite stiffness corresponds to the moving mass model. 
 

 
Fig.4 Time history of plate normalized deflection versus the oscillator frequency; N 4 , Ȗ 0.25 , 'u v  



13 

 

 
Fig.5 The resonance velocity for different oscillator frequency values; Ȗ 0.25 , N 30  

 
 
To assess the influence of the stuffiness of the moving sprung masses on the dynamic response 

of the system, Fig. 5 shows the effects of using different frequency ratios on the resonance velocity 
of the system. The results in general indicate that at the intermediate values of moving oscillator 
eigenfrequencies, the dynamics of the structure would be substantially altered. This can signifi-
cantly underline the contribution of the suspension systems. 

The spectral curves in Figs. 4 and 5 also denote that the dynamic response of the plate tends to 
a moving mass and a moving force system for larger and smaller spring stiffness values, respec-
tively. Moreover, it can be seen that the envelope of the maximum DAF is notably underestimated 
when moving force/mass is used within a wide range of relative frequency components of the 
moving sprung masses. 

 
 

4. Merits of the proposed methodology 
 
In this section, the reliability and computational efficiency of the method presented in this pa-

per is demonstrated using benchmark examples. Fig. 6 compares the Dynamic Amplification Fac-
tor (DAF) versus dimensionless speed for 30 equidistant moving masses traversing a plate calcu-
lated using the proposed method with the results of an improved semi analytical technique pre-
sented by Hassanabadi et al (2016). It can be seen that there is an excellent agreement between the 
dynamic amplification spectra using these two different methods. 
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Fig.6 Dynamic Amplification Factor (DAF) versus dimensionless speed for 30 equidistant moving mass-

es traversing a plate calculated based on the proposed method and the results presented by Hassanabadi et al 
(2016) 

 
The calculation of the time varying coefficients of the coupled ODEs set in moving mass and 

moving oscillator solutions is a major factor which governs the total computational 
time(Hassanabadi, Attari et al. 2015). To assess the computational efficiency of the proposed 
method, the required computational time of the introduced solution for the moving mass problem 
in the time domain is compared with the conventional modal expansion technique (Nikkhoo, 
Hassanabadi et al. 2014) as a function of the number of involved mode shapes. As discussed be-
fore, the time-varying matrices of the conventional moving mass solution in Eq. (49) are time de-
pendent, and therefore, can significantly increase the required computational time. While in the 
presented formulation of the moving oscillator problem the dimensions of the state-space matrices 
are larger than the moving mass relations, the time varying components in the coefficient matrixes 
are largely eliminated. This can considerably improve the computational efficiency of the proposed 
method. Table 1 compares the total runtime of the moving oscillator problem solved with the pro-
posed method and the conventional modal expansion technique (Nikkhoo, Hassanabadi et al. 2014) 
using N 5 , 0.9L a , 'u v . The results are normalized by the runtime of the proposed meth-
od with 5 modes. It is shown that the proposed method can reduce the required computational time 
by up to 20 times. Also it can be seen that the efficiency of the method increases almost linearly by 
increasing the number of modes considered in the analyses. 
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Table 1 Runtime comparison: N 5 , 0.9L a , 'u v . The values are normalized by the runtime of the 
proposed method with 5 modes 

 

Method Number of 
modes 

    

 5 10 15 20 25 

Modal expansion technique (Nikkhoo, 
Hassanabadi et al. 2014) 

4.7 16.1 37.89 65.62 100.05 

The proposed method 1 2.22 2.98 3.71 4.95 

 
 

 
5. Summary and conclusions  
  

In this study, a semi-analytical method based on eigenfunction expansion was developed to 
tackle the vibration of a thin rectangular plate under a series of moving sprung masses. An efficient 
analytical-numerical solution based on modal expansion method was introduced, which could con-
siderably reduce the computational costs (by up to 20 times) of the conventional methods by elim-
inating a large number of time-varying components in the coupled Ordinary Differential Equations 
(ODEs) matrixes. The efficiency of the proposed method was especially evident when higher 
number of modes were considered in the analyses. A comprehensive parametric study was then 
performed to investigate the effects of the key design parameters of the moving oscillator on the 
Dynamic Amplification Factor (DAF) of the system. It was shown that in general the moving force 
and moving mass models can represent the asymptotic states of the moving oscillator. However, 
for the frequency ratios in the range of 0.3 1.3   , the results were very sensitive to the varia-
tion of the moving oscillator’s frequency components. Moreover, it was shown that the moving 
force and moving mass models can substantially underestimate the maximum DAF of the structure 
by disregarding the flexibility of the moving sprung masses, which highlights the importance of 
using non-rigid connections for accurate estimation of the plate maximum dynamic response. 
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Appendix 
 

Notation 
 
w Plate deflection  
t Time 
D Plate flexural rigidity 
H Heaviside step function 
N Number of moving loads 
ȝ  Plate mass per unit of area 
Ȗ  Inertia 
į  Dirac delta 

,a b  Plate dimensions 
g  Gravitational acceleration 
Ȟ  Poisson’s ratio 
ȍ  Frequency ratio 
L  Distance between successive moving loads 
u  Absolute speed of the moving loads 

( )M t  Time-dependent mass matrix 
( )C t  Time-dependent damping matrix 
( )K t  Time-dependent stiffness matrix 
( )T t  Modal coordinate matrix 

v  Reference speed 
,m mX Y  Trajectory of the moving load 

Ȟm  Oscillator degree of freedom 

0Ȟ m  Initial sag of the spring 

mK  Oscillator spring stiffness 

ĭ j  Plate natural shape function 

Ȧ j  Plate natural frequency 

įij  Kronecker delta 

Ĳ j  Modal amplitude 

1T  Fundamental period of vertical vibration of the plate 

mB  Window function 

mM  The mass of the each moving load 
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statw  Static deflection at the centre point of the plate 

NW  Normalized deflection at the centre point of the plate 

mP  Contact force 

 


