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Abstract

Background: For medical tests that have a central role in@ingdecision-making, current
guidelines advocate outcome-based analytical performance speaifecGiven that
empirical (clinical-trial style) analyses are often iagrcal or unfeasible in this contextgt
ability to set such specifications is expected to rely dimect studies to calculate the impact
of test measurement uncertainty on downstream clinicatab@eal and economigutcomes
Currently however, a lack of awareness and guidance congeawailable alternative
indirect methods is limiting the production of outcome-dasgecifications. Our aim
therefore was to review available indirect methods and prreseanalytical framework to

inform future outcome-based performance goals

Content: A methodology review consisting of database searchesxadsive citation
tracking was conducted to identify studies using indirechaut to incorporate or evaluate
the impact of test measurement uncertainty on dowmstoedicomes (including clinical
accuracy, clinical utility and/or costgighty-twostudies were identifiednost of which
evaluated the impact of imprecision and/or bias on clisiceuracy. A common analytical
framework underpinning the various methods was identifiedsistimg of three key steps:
(1) calculatiorof “true” test values; (2) calculation of measured test values (incorporating
uncertainty); and (3) calculation of the impact of tepancies between (1) and (2) on
specified outcomes. A summary of the methods adoptedvedped, and key considerations

discussed.

Conclusions. Various approaches are available for conducting indirecsstssats to
inform outcome-based performance specifications. Thig/gitavides an overview of

methods and key considerations to inform future studies aedro#sin this area.
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I ntroduction

Although systematic and random variation around measureddass (henceforth,
measurement uncertaintgniow routinely documented within the clinical laboratoryg th
potential impact of this uncertainty on downstream cliniocpérational and economic
outcomes is rarely quantified. Meanwhile, evaluatiorhefimpact of measurement
uncertainty on clinical outcomes has become a regurecommendatiom protocols for
determining analytical performance specifications. lir tfeeently updated guidance, for
example, he European Federation of Clinical Chemistry and Laboratesticine (EFLM)
stipulate that, for medical testlsat “have a central role in the decision-making of a specific
disease or clinical situation and where cut-off/decisiontsi are establish&dspecifications
should be based on the effect of analytical performandée clinical outcome [termed
“Model 1], as opposed to basing specifications on biological vanigtiodel 2] or state

of the art measurement&odel 3] (1).

Two typesof studies are suggested to inform specifications under Modigldirect outcome
studies (i.e. analyses based solely on empirical dataasu@mdomised controlled trials
evaluating the impact of varying analytical procedures dcomues); or (ii) indirect outcome
studies (i.e. analyses using non-empirical approaches, sdelciagon analytic modellingo
determine the impact of varying procedures on outcomes)i{@p () is often unfeasible or
impractical due to ethical, financial and time constraastociated with robust end-end
test-outcome studiethe indirect methods of (ii) are expected to play the dantirole in

this context (3).

Despite general agreement that outcome-based speciigatiovide the best mechanism to
ensure tests best serve patienteeds, studies in this area remain uncommon. A primary

reason often cited for this concerns the inherenicdiffes in conducting direct outcomes
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studies (1, 3).tlis likely, however, that a lack of awareness and specifdagee concerning
alternative indirect methods that may be employed sal®y limiting factor. The aim of
this study therefore was to review methodological approadetin previous indirect
assessments and outline an analytical framework to infoumefoiutcome-based

performance specifications.

M ethods

A literature search was conducted in November 2017 acrosddtalvases (Ovid
Medline(R), Embase, Web of Science (core collectang) Biosis Citation Indg»and
covering a 10 year publication period (2008 to November 201# search was
subsequently updated in 2019 (covering the period 2008 to March 2019karbke strategy
(provided in theSupplemental Appendix) combined key terms relating to (a) tests, (b)
measurement uncertainty, and (c) simulation/ methogolegm those studies identified via
the database seasshsubsequent citation trackifimcluding extensive backwards and
forwards tracking) was conducted to identify additional studiddished on any date (i.e.

including studies published before 2008)

Studies were included if they met the inclusion criter@shin Table 1. Studies were
required to include an assessment of downstream outconhedimige clinical accuracy (the
ability of a test to distinguish between patients with antiaut a specified condition, or
identify a change in condition), clinical utility (the abilitf @ test to impact on healthcare
management decisions or patient health outcomes) arabeftectiveness (the ability of a
test to produce an efficient impact on health outcomeslation to cost). Note that studies
using indirect methods at any stage of the analysis were eligitlecfosion; this means, for

example, that several method-comparison studies &emeslly empirical study design) were
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nevertheless included in cases where an indirect meth®gdwbgequently used to assess the

impact of identified measurement discrepancies on outcomes

<<Table 1>>

All screening (including initial title/abstract screening, fullttecreening, and citation
tracking) wasconducted by the primary reviewer (AS). A data extradoom was developed
(including items on key study, test, and method detailspadoted on the first 10% of
included studies. Subsequent full data extraction of inclutlelies was conducted by the
primary reviewer and double checked by one of four secondagwers (BS, MM, CH and
PH). Reqular meetings with all authors were conducted to review theing study findings

and resolve (via group consensus) any inclusion and/or Batramcertainties.
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Results

Study characteristics

A total of 82 studies were identified (déigure 1). Regarding data extraction checking, 35
papers (43%) were checked by BS; 16 (20%) by CH; 16 (20%) by MM; ari8%9 py PH

Agreement between reviewers across extraction items 98%.

Study characteristics are summarized able 2, and details of measurement uncertainty
components and test outcomes evaluated are providabia 3. Most studies focused on
evaluating tests or devices used for the purposes of mawjtaliagnosis and/or screening
across four key disease areas: diabetes or glycentiot@ardiovascular diseases, cancer
andmeabolic or endocrine disordergnprecision was most commonly addressed, followed

by bias and total error, and studies primarily evaluateccaligiccuracy outcomes.

<<Figure 1>>

<<Table2>>

<<Table3>>

Aim of analyses

Most studies were conducted with the objective of eitliedetermining/ informing

analytical performance specificatio@s22); (i) exploring the impact of uncertainty allowed
by current performance specifications (23-34); or (iii) evahgatihe potential impact of
measurement uncertainty on outcomes (without explidiéfjning specifications) (35-78A
final group ofstudies consisted of “incidental” analyses, in which the impact of measurement
uncertainty on outcomes was incorporated within the amsabygiwas not part of the primary

study aim (79-85).
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M ethodology Framework

Based on the included studies, a common analytical frankewwlerpinning the various
approaches to evaluating the impact of measurement untgxtai outcomes was identified
This framework consists of three key steps:cdgulationof “true” test values; (2)
calculation of measured test values (i.e. incorporatiagsarement uncertainty); and (3)
calculation of the impact of discrepancies betweenr{d)(d) on the outcome(s) under
considerationAn outline of the various methods adopted within this fram&wsprovided
below and summarized Figure 2. A summary table detailing the methods used in each

individual study is provided iBupplemental Table 1.

1. Step one: calculation of “true” test values

Calculationof “true” test values was based either on empirical data values (5, 7, 9-11, 18, 21,
26, 30-32, 34-37, 39-42, 45, 49-53, 56-58, 60, 61, 64, 66-69, 71, 74, 77, 3Bd8H)
simulated value§-6, 8, 12-17, 19, 20, 22-25, 27-29, 33, 36, 38, 43, 44, 46-48, 54, 55, 59,

62, 63, 65, 70, 72-76, 79-84)

Studies using empirical data here included: (i) method casgreand external quality
assessment (EQA) studies, which utilized indirect methodstarmine the impact of
discrepancies between empirieafierence (i.e. “true”) test measurements vs. index (i.e.
uncertain) test measurements on specified outcomesugingthe “error grid” approach
outlined in Step 3) (35, 37, 41, 42, 51, 53, 56-58, 60, 64, 66-6957X8); and (ii) studies
which derived uncertain measurements frame” empirical data values using various (non-
empirical) approaches outlined in Step 2 (5, 7, 9-11, 18&130-32, 34, 36, 39, 40, 45, 48-

50, 52, 61, 77, 85)

Studies using simulation methods here used a range of appsedble simplest of which

was to assume a fixed sdtindividual “true” values specified across the measurement range

9
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Evaluating the impact of measurement uncertainty

and simulate uncertainty around these values (see St&p,2)q, 27, 33, 36, 38, 79, 83, 84)
Whilst this approach does not require any simulafé@rhe “true” measurements per se, the
values here are nevertheless generated rather thgrealrworld data directhAn

extension of this approach is to assume a uniform distribution toluetoe“true’

frequency distribution(s}hat is, assume a constant probability of occurrenceafcir test
value along a specified measurement range, and draw frodigtribution within the
simulation (14, 17, 19, 44, 55). Alternatively, the expected likelthof test values was often
modelled using Gaussian (i.e. normal) or log-Gaussian frequéstcpations, specified
using published or empirical data on the expected mean aladc@of test valuegl-6, 8,
13-15, 20, 46, 47, 59, 63, 65). Other infrequently adopted panara¢itens inclueéd mixed
Gaussian distributions (54, 62)ultivariate Gaussian distributions (where correlations
between tests are known (43)) and the exponential distnb{@2). Non-parametric
simulation approaches were also used, based on samplingeplélcement from an
empirical dataset (18, 30). Finally, several studies usedlation techniques (22, 23, 70, 74,
75), or utilized findings from previously published simulaticudgts (24, 25, 73, 76), but did

not clearly report details regarding the calculatibrtrue” baseline values.

An important issue with respect to the estimation of “true” test values concerns how well the
underlying data may be considered a reliable proxy for thie. truhandful of studies
attempedto directly address ihissue by “stripping” known measurement uncertainty from
baseling‘true” test values via statistical adjustment: imprecision, for exampbs be
removed from the variance term of a specified Gauss@tlaussian distribution usiray
reverse form ofhe “sum of squares rule”; whilst bias can be removed from the mean téfm
10, 13, 15, 31)n general, however, the likelihood that the adopteat” test values would

in fact be representative of the truth was eitheligitly assumed or not discussed.

10
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2. Step two: calculation of measured test values (incorporating measurement

uncertainty)

Approaches to the calculation of measured test values pirealatty fell into four broad
categories: (1) empirical assessment (35, 37, 41, 42, 51, 53, 56-54, 66-69, 71, 74, 78)
(2) graphical assessment (5, 7, 9-11, 8%) computer simulatio(d-6, 8, 12, 14-25, 27-31,
34, 38, 39, 44, 46, 49, 50, 52, 54, 55, 59, 61-63, 65, 70, 72-77, /88BYression analysis

(26, 32, 43, 47)

Studies using empirical assessment here included methgohason studies (35, 37, 41, 42,
53, 56-58, 60, 64, 66-69, 71, 75, 78) and an EQA studywbith based “true” test values

on the specified reference test and measured values onléxetest measurements.

An alternative method, first appearing in 19B0hased on applying hypothetical
measurement uncertainky “true” values via graphical manipulation (5, 7, 9-11, 3Bhis
approach cents on plotting the cumulative percentage frequencitot” values on the
probit scale (x-axis) as a function ‘afue” values on the logarithmic scale (y-axis); assuming
that the log-transformed data are Gaussian, then ipinteedal case (where healthy and
diseased populations are modeled separately), cumuthérwealthy (diseased) population
from high (low) values results in two straight lindspéng in opposite directions for each
population(i.e. forming an ‘X’ on the plot). The addition of negative (positive) bias is then
explored by shifting the straight lines to the left (right)tbe x-axis; whilst the addition of
imprecisionis explored by rotating each line aroundithreean vale (i.e. broadening the
95% confidence interval of the values on the probit sc&@®en a specified cut-off
threshold, the proportion of false positives and nggatat a particular level of bias and
imprecision can be read off directly from this plot, ingerving the point at which

healthy/diseased populations cross the threshold line.

11
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217 Inresponse to modern computational capabilities, the gr@phethod has been superseded
218 by computer simulation approaches which can accommodateaomplex specifications of
219 the measurand distribution and measurement uncertaimeymbost flexible and widely

220 adopted approach in the identified studies was based ativigesimulation, with uncertainty
221 added ono “true” test values according to a specified error modalfunction relating

222  measured test values to baseline “true” values plus specified components of measurement
223 uncertainty (14, 17-19, 28-30, 34, 54, 62, 79, 82-8Ajs method is largely attributed to the
224 seminal 2001 paper by Boyd and Bruns (@4he first study of this kind to clearly specify
225 the error model as a mathematical function (as opmptsearlier(4-6) and later (21-25, 44,
226 49,52,70, 72, 73,76, 77, 80, 81, 85) studies limited to textualipgsns or indirect

227 referencing). An example of a typical error modelssollows:

228 Teamesaured = Teatrue + [Teatrue* N(O,l) * CV] + BIaS (1)

229 where Testuelis the“true” measurement value; Tesdsur¢ IS the observed test value
230 measured with imprecision (coefficient of variati@M%]) and absolute bias (Bias); and
231 N(0,1) is a normal distribution (mean = 0, standard devig&®] = 1) applied with the

232 CV% value in order to produce a spread of Gaussian-distributeitsrasound Teste.

233 The error model iterative simulation approach works dsvist (i) a random draw is taken
234  from the distribution of “true” values to generate a value for Tesd (i) components of

235 measurement uncertainty are applied to tesiccording to the error model formula to
236 simulate a value for Tesfasuredthis may require random number dsawfor examplen

237 equation (1) a random draw from N(0,1) is required for théicgtpn of imprecision); (iii)
238 points (i) and (ii) are repeated (e.g. 10,000 times to stmdd,000 Teste and TeSteasured
239 valueg for agiven level of measurement uncertainty (e.g. CV% = 5% aasl 85%) and

240 (iv) points (i) to (iii) are repeated for varying levelsrméasurement uncertainty (e.g. CV%

12
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Evaluating the impact of measurement uncertainty

ranging from 0-20% and Bias ranging from +/-10% in 1% inenets). This iterative process

can be efficiently implemented using standard statis@fware, such as Excel or R

Rather than iteratively adding on uncertainty via errodehgimulation, an alternative
approach is to incorporate uncertainty directly withipacgied probability distribution (e.qg.
incorporating bias within the mean term, and imprecisidhiwthe variance term of a
Gaussian or log-Gaussian distribution). This distributian be applied iteratively around
individual “true” values (12, 16, 18, 27, 30, 38, 46, 59, 61), or at a population level, by
adjusting a specified “true” population distribution to include additional uncertainty (8, 15,

31, 63, 65)

The remaining studies used regression analysis (26, 327} 3ther one-off methods (12,
13, 33, 40, 45, 48), or reported insufficient details regardinglation techniques to
determine the exact method employed (74, 75). Within theifal regression analyses,
bias or total error was applied as a multiplicative factdra®eline measurements within a
specified regression modelith the resulting impact on the regression output (&ejihood
ratio) exploredDetails of studies using other one-off/ indeterminate metbadde found in

Supplemental Table 1.

3. Step three: calculation of the impact on test outcomes

The final step is to assess the impact of deviations between “true” and measured values on the

outcome(s) of interest.

Most studies focused on evaluating clinical accufdeis, 15, 16, 20, 26-29, 31-33, 38, 39,
43, 45-52, 55, 59, 61-63, 65, 79-85). In this case the calaulatgenerally straightforward:
the rate of change mis-categorizations (e.g. false positive/negative diagspis

determined according to the change in the proportion of meghsatues pushed above or

13
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below the given test cut-off threshold(s) used to defisease status or inform treatment
decisions, compared to thrue’ value classifications. This was the typical approachrtake

studies using the graphical and simulation approaches outlirgidpr2, for example

Several studies evaluated the impact of measurementaintgon treatment management
decisions (14, 18, 21, 30, 35, 37, 41, 42, 51, 53, 56-58, 60, 64, 66-69, 71, 74, N®SI &)
these were method-comparison studies which determined plaetiof measurement
deviations on treatment decisions using error grid analySis3(, 41, 42, 53, 56-58, 60, 64,
66-69, 71, 74, 78). Two studies similarly employed the errorgmmoach, but used
simulated (rather than empirical) reference and indskmeasurements (74, 75). First
developed in the 1980s, the original error grid aimed to eteatha potential impact of
measurement discrepancies between self-monitoring bloodsglulvices and laboratory
reference measurements in terms of insulin dosing g36jsUsing a scatter plot of
reference vs. index test measuremgthis plot was divided into fiverror grid “zones”
according to assumed severityasfociated dosing errors (from zone A = clinically wate
results; to zone E = erroneous results leading to dangkibue to detect and treat). More
recenty studies have attempted to build on this approach, for@edny expanding on the
small sample of experts used to define the initial errar (§7, 74, 75), accounting for
temporal aspects of measurement (41), or applying the sathedwology to alternative

clinical settings (64)

Others have attempted to incorporate the impact of measunt uncertainty on patient health
outcomes (17, 19, 22, 23, 44, 54, 70,. Al) of these studies related to evaluations of
monitoring devices for glycemic controh which health outcomes such as hypoglycemia
and hyperglycemia were determined using decision analytic moaedsl around sequential
glucose measurements (incorporating measurement uncgktairthe error model

simulation approach, for examplé&ombined with data on insulin dose administrations

14
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(resulting from measured values), and additional factarls as patient insulin sensitivity and
gluconeogenesis, these models were us@ddb patients’ response to administered doses

andresulting health outcomes.

Nine final studies included an assessment of costsstiedfectiveness (7, 8, 11, 24, 25, 40,
73, 76, 77)Four were based on a simple assignment of expectedodastsdiagnoses to
rates of false positive/negative results (7, 8, 11¢xpected costs of adverse events applied
to simulated health outcomes data (77). One study incladeate comprehensive costing
analysis, in which the potential financial implicationscafibration bias in serum calcium
testing was explored (40). The remaining four studiestiited the previous work of Breton
and Kovatchev (2010)n which the impact of reduced glucose meter imprecision o
glycemic events was simulated using a published simulalxfopn (23) Two studies
constructed simple cost-consequence decision moaeigicing the Breton and Kovatchev
(2010) findings with data on patient population numbers, glkicoeter costs, and the rate of
myocardial infarctions resulting from glycemic outcomesgtimate annual cost savings
associated with improved meter precision (73, T@)o more recent studies conducted full
cost-effectiveness analyses, using cohort Markovdiiate-transition) models to link the data
on improved glycemic control and reduced glycemic eveasratith data on diabetes
complication rates, patient health-related quality efdihd health service costs (24,.25)
Using these models the authors were able to estimatectieeniantal cost per additional

guality adjusted life year (QALYassociated with reduced device error

<<Figure 2>>

15
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Discussion

Review findings

Based on our methodology review findings, a three-stelgtarad framework underpinning
the various approachés determining the impact of measurement uncertainty ccomés
was identified (se€igure 2). Key points for consideration within this framework are

discussed below

With regards to Step 1 (calculatiofi“true” test values), the primary advantage of using
either empirical data or informed parametric distribogies that, by accounting for the
expected frequency of values, population-level conclusiarth (@s analytical performance
specifications) may be derived. In contrast, the prirdaayback of the fixed-values
approach, and by extension the uniform distribution appr¢esguming this is not a realistic
parameterization), is that population-level conclusiarot be derived. Nevertheless, such
approacksmay be useful for exploring the impact of measuremaoértainty in specific
scenarios- for example, to explore the impact of uncertaintyest values close to the test

cut-off threshold.

A question that must be considered when using either exalpin parametric distributions, is
how well the underlying data may be considered to representuth. f values used to

inform the “true” distributions are themselves subject to measurement uncertainty (even if
this uncertainty is expected to be small), then all syuesst analyses may be affected by this
confounding factor and care should be taken when assertiolybsiaximum bounds for
imprecision and bias. A handful of studies did attempt toesddmhis issue using statistical
adjustment methods however this approach depends on heliiger information on the
expected measurement uncertainty contained in thif@aStrue” measurement values and

can only be used when modelling test values as parametribwtisins (7-10, 13, 15, 31)

16
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335 A second consideration in the adoption of parametriciloistons concerns the

336 appropriateness of the assumed parametric form. Whitt@rity of studies provided some
337 form of justification for the parametric choice (euging the KolmogorovSmirnov test for
338 normality), acommon implicit assumption was that data would be likelet@&aussian or

339 log-Gaussian distributed. The validity of this assumpisonot always clear, however

340 Within Step 2 (calculation of measured test values) compuedaion methods offer the
341 most flexible approach for exploring alternative speatfons and levels of measurement
342 uncertainty. In the context of setting performance gaéalglies based on method-comparison
343 analyses are of limited use given the fact that alteenégvels of measurement uncertainty
344 cannot be efficiently explored, and analyses using the gra@phethod suffer from the issue
345 that non-Gaussian parameterisations or non-constaringam specifications of bias or
346 imprecision cannot be accommodated. The error model agpi®particularly useful in this
347 respect. While the example formula provided in Equatiosgérifies one CV% element
348 representing total imprecision, additional elements of éwigion (e.g. pre-analytical

349 analytical and biological) may be separately specifdigrnative characterisations of

350 imprecision may also be defined: for example, using (edfSD, (ii) different SD/CV

351 values for different sections of the measurement raomydj) imprecision defined as a

352 linear/ non-linear function of Task. Similarly bias may also be characterised in altevaati

353 ways

354 With regards to Step 3 (calculation of the impact on outcqradajther advantage of the
355 simulation approach is that, by sampling over a rangeasfdnd imprecision values, the
356 joint impact of these components on outcomes candaglglexplored. In particular, several
357 studies used contour plots to present their findings (14-19, 21, 30, 34n@Xnraple,

358 provided inFigure 3, represents a hypothetical case in which bias and immredisive been

359 applied (according to equation (1)) to normally distributedthgdN(30,5)] and diseased
17
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[N(60,10)] populations. The plotted lines indicate at whidoes of imprecision and bias a
given value of clinical sensitivity/specificity is maamed. For example in this casg, a
imprecision=0, increasing positive bias decreases clineaiicity and increases clinical
sensitivity, whilst negative bias has the oppositecéfigased on this plot, we expand on the
typical contour plot to show how maximum allowable boundsmiprecision and bias can be
identified according to specified minimum requirements lmical accuracySuppose, for
example, that we require sensitivity to remain above 90¥spacificity to remain above
80% in order to maintain expected health utility gains. rEiggon of acceptable analytical
bias and imprecision values for this specification afictil accuracy is illustrated by the
shaded region of the contour plefrom this we can see that, if bias is zero we candtder
up to 20% imprecision, whilst if imprecision is zero we carrédée-8 to +6 units of absolute
bias. Plots such as this one offer an effective metlniglolighting acceptable bounds for

measurement Uncertainty.

<<Figure 3>>

Whilst most studies focused on the intermediate outcdroknical accuracy, ideally
technologies should be evaluaiederms of their influence ofend-point” outcomes i.e.

health outcomes (clinical utility), operational and/osteeffectiveness outcome3everal of

the identified studies utilized analytic decision modelirdhtgques to determine the impact
of measurement uncertainty on health outcomes: whitetak related to the context of
glycemic control devices, decision models can feasiblydeel to explore any clinical
pathway of interest, subject to data availahiMyithin the field of health technology
assessment, for example, decision models are rbugngployed to evaluate the expected
clinical utility and cost-effectiveness of novel testg linking data on disease prevalence and
test clinical accuracy (e.g. the proportion of coreawt incorrect diagnoses), with

downstream data on the expected change in patient manatg@ateéent compliance to
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treatment and treatment effectiveness (often reféaredthe “linked-evidence approach”)
(86-88) Although this approach is more resource- and data-interssidecare must be taken
to ensure that the model structure appropriately reflectagegcts of the clinical pathway, it
nevertheless has the advantage of explicitly capturingrtpact of additional parameters
(e.g. treatment effectiveness) on end-point outcombik may not always produce
expected or intuitive results) and uncertainty arouscettact values of these parameters can
be quantitatively characterised in the model framework {8®)identified two recent studies
which utilized health-economic models to estimate the-effsttiveness of improved
analytical performance (24, 29)hese studies explored a limited set of fixed imprecision
levels relating to pre-existing performance specificatiduture studies could extend this
methodology to explore a broader range of measuremeettaimty values (e.g. biynking
error-model simulations with the downstream health-eotda modelling) and derive de
novo performance specification based on maintaining amaghg cost-utility and cost-

effectiveness outcomes

Strengths and limitations:

In light of the sustaied international focus on outcome-based analytical pexdoice
specifications, it is expected that the indirect approachbtmed in this study will become
increasingly importantThe analytical framework presented in this study providesfaluse
starting point to inform future studies in this area, by tyeautlining available methods in
sufficient detail to enable practical implementatiamd &ighlighting possible advantages and
limitations to consider under each approach. Whereas previglisshave provided
commentaries and general reviews of various approacisettiag analytical performance
specifications (3, 90, 91), this is the first methodologyene to focus specifically on indirect

methods for setting outcome-based performance speifisat
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As a methodology review, the aim of this study was not stesyatically identify all
evidence, but rather to ensure that key examples of reélenethods were identifiedVhile

we attempted to make the database search as sensitivesiatepadsie to the vast volume of
literature in this area we necessarily had to focus thelsstmategy by: (i) concentrating on
terms related tan-vitro biomarkers, (ii) including a filter for simulaticand methodology
terms, and (iii) restricting the initial database seg@etiod to 10 years. Extensive citation
tracking was additionally conducted, extending into precegi¥ags, in order to ensure that
seminal papers informing modern practices would be identifieddiition to current statef-
the-art methodology. Although we believe that this tw@eststrategy will have captured key
methodologies, not all relevant material relating tthemethod will have been identified and
we cannot therefore draw definitive conclusions regardiadréguency that each method
has been used. Nevertheless, we believe our findingdprvaluable overview of indirect

study methods and an informative starting point for fustueies in this area.

20



423

424

425

426

427

428

429

430

431

432

433

Evaluating the impact of measurement uncertainty

Acknowledgements

The authors would like to thank the following individuals foeit feedback on the project
plan and/or manuscript: Christopher Hyde (Exeter, UK), @plger Bojke (Leeds, UK),
Rebecca Kift (Leeds, UK), Joy Allen (Newcastle, UK), eks (Birmingham, UK), James

Turvill (York, UK), Natalie King (Leeds, UK) and the anonymaesiewers.

Funding

Alison Smith is supported by the NIHR Doctoral Research wshap programme (DRF-
2016-09-084). Dr Bethany Shinkins and Dr Mike Messenger are also seghpgrthe NIHR
Leeds In Vitro Diagnostics Co-operative. The views exprease those of the author(s) and

not necessarily those of the NHS, the NIHR or the DepattofeHealth.

21



434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

Evaluating the impact of measurement uncertainty

Refer ences

1. Ceriotti F, Fernandez-Calle P, Klee GG, Nordin G, Sandhe®gr&ichert T, et al. Criteria
for assigning laboratory measurands to models for analyie&rmance
specifications defined in the 1st EFLM Strategic Confere@tia Chem Lab Med
2017;55:189-94.

2. Sandberg S, Fraser CG, Horvath AR, Jansen R, Jor@ssirhuis W, et al. Defining
analytical performance specifications: consensus séatiefrom the 1st Strategic
Conference of the European Federation of Clinical Cheyrastd Laboratory
Medicine. Clin Chem Lab Med 2015;53:833-5.

3. Horvath AR, Bossuyt PM, Sandberg S, St John A, igbaa PJ, Verhagen-Kamerbeek
WD, et al. Setting analytical performance specificatiomsed on outcome studies
it possible? Clin Chem Lab Med 2015;53:841-8.

4. Groth T, Hakman M, Hallgren R, Roxin L-E, Venge P. 4.5. Dusgg, Size estimation and
prediction of acute myocardial infarction from S-mydgioobservations. A system
analysis to assess the influence of various sourcesiabilty. Scand J Clin Lab
Invest 1980;40:Suppl:S111-24.

5. Harder M, Petersen PH, Groth T, Gerhardt W. 4.3. Influenaeaiftical quality on the
diagnostic power of a single S-CK B test in patient$ witspected acute myocardial
infarction. Scand J Clin Lab Invest 1980;40:Suppl:S95-100.

6. Jacobson G, Groth T, Verdier C-HD. 4.1. Pancreaticnsglese in serum as a diagnostic
test in different clinical situations. A simulatiotudy. Scand J Clin Lab Invest
1980;40:Suppl:S77-84.

7. Petersen P, Rosleff F, Rasmussen J, Hobolth N. 4dieSton the required analytical
guality of TSH measurements in screening for congenital hypmthym. Scand J
Clin Lab Invest 1980;40:Suppl:S85-93.

8. Groth T, Ljunghall S, De Verdier C-H. Optimal screeningpiatients with
hyperparathyroidism with use of serum calcium observatidriecision-theoretical
analysis. Scand J Clin Lab Invest 1983;43:699-707.

9. Ngrregaard-Hansen K, Petersen PH, Hangaard J, SimonRasriiissen O, Horder M.
Early observations of S-myoglobin in the diagnosia@afte myocardial infarction.
The influence of discrimination limit, analytical qualipatient's sex and prevalence
of disease. Scand J Clin Lab Invest 1986;46:561-9.

10. Wiggers P, Dalhgj J, Petersen PH, Blaabjerg O, Harderrger8ng for
haemochromatosis: Influence of analytical imprecisioagstic limit and
prevalence on test validity. Scand J Clin Lab Invest 1991;51:143-8.

11. Arends J, Petersen PH, Ngrgaard-Pedersen B. 6.1. 2a3dPseneening for neural tube
defects, quality specification for maternal serum algtugfrotein analysis. Ups J Med
Sci 1993;98:339-47.

12. Kjeldsen J, Lassen JF, Petersen PH, Brandslund dggial variation of International
Normalized Ratio for prothrombin times, and consequences iitonmg oral
anticoagulant therapy: computer simulation of serisdsueements with goal-setting
for analytical quality. Clin Chem 1997;43:2175-82.

13. von Eyben FE, Petersen PH, Blaabjerg O, Madsen Elyti@a quality specifications
for serum lactate dehydrogenase isoenzyme 1 based omldjjoads. Clin Chem Lab
Med 1999;37:553-61.

14. Boyd JC, Bruns DE. Quality specifications for glucoseemetassessment by simulation
modeling of errors in insulin dose. Clin Chem 2001;47:209-14.

22



481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Evaluating the impact of measurement uncertainty

Petersen PH, Brandslund I, Jgrgensen L, Stahl M, OkvAIiiF, Borch-Johnsen K.
Evaluation of systematic and random factors in measumsnoé fasting plasma
glucose as the basis for analytical quality specificatiarthe diagnosis of diabetes. 3.
Impact of the new WHO and ADA recommendations on diagrafsiliabetes
mellitus. Scand J Clin Lab Invest 2001;61:191-204.

Petersen PH, Jagrgensen LG, Brandslund I, De Fine Oliwhriatahl M. Consequences
of bias and imprecision in measurements of glucose and HioAllte diagnosis and
prognosis of diabetes mellitus. Scand J Clin Lab Invest 200%6ptS51-60.

Boyd JC, Bruns DE. Monte carlo simulation in estabiglainalytical quality
requirements for clinical laboratory tests meeting ciihheeds. Methods Enzymol
2009;467:411-33.

Karon BS, Boyd JC, Klee GG. Glucose meter performatitegia for tight glycemic
control estimated by simulation modeling. Clin Chem 2010;56:1091-7.

Boyd JC, Bruns DE. Effects of measurement frequencyalgtacal quality required for
glucose measurements in intensive care units: assessyesitmulation models. Clin
Chem 2014;60:644-50.

Petersen PH, Klee GG. Influence of analytical bias apcerision on the number of
false positive results using guideline-driven medical deeismits. Clin Chim Acta
2014:430:1-8.

Van Herpe T, De Moor B, Van den Berghe G, Mesotten D. Modelie{fect of glucose
sensor errors on insulin dosage and glucose bolus comput&a@i-Insulin. Clin
Chem 2014;60:1510-8.

Wilinska ME, Hovorka R. Glucose control in the intensaeeainit by use of continuous
glucose monitoring: what level of measurement errocaegjptable? Clin Chem
2014;60:1500-9.

Breton MD, Kovatchev BP. Impact of blood glucose selfitooing errors on glucose
variability, risk for hypoglycemia, and average glucosdrodin type 1 diabetes: an
in silico study. J Diabetes Sci Technol 2010;4:562-70.

McQueen RB, Breton MD, Craig J, Holmes H, Whittington MR,NDA, Campbell JD.
Economic value of improved accuracy for self-monitorifgplood glucose devices
for type 1 and type 2 diabetes in England. J Diabete$eatinol 2018;12:992-1001.

McQueen RB, Breton MD, Ott M, Koa H, Beamer B, Campli2lIEconomic value of
improved accuracy for self-monitoring of blood glucose devizes/pe 1 diabetes in
Canada. J Diabetes Sci Technol 2016;10:366-77.

Turner MJ, Baker AB, Kam PC. Effects of systematiors in blood pressure
measurements on the diagnosis of hypertension. Blo@d Rtenit 2004;9:249-53.
Jorgensen LG, Petersen PH, Brandslund I. The impaatiability in the risk of disease
exemplified by diagnosing diabetes mellitus based on ADBRWHO criteria as gold
standard. International Journal of Risk Assessment amadéament 2005;5:358-73.

Turner MJ, Irwig L, Bune AJ, Kam PC, Baker AB. Lacksphygmomanometer
calibration causes over- and under-detection of hypertersioomputer simulation
study. J Hypertens 2006;24:1931-8.

Turner MJ, van Schalkwyk JM, Irwig L. Lax sphygmomantemstandard causes
overdetection and underdetection of hypertension: a comgatelation study.
Blood Press Monit 2008;13:91-9.

Karon BS, Boyd JC, Klee GG. Empiric validation of siatioin models for estimating
glucose meter performance criteria for moderate lenfedgycemic control. Diabetes
Technol Ther 2013;15:996-1003.

23



529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Evaluating the impact of measurement uncertainty

Kuster N, Cristol JP, Cavalier E, Bargnoux AS, Halilhj Broissart M, et al. Enzymatic
creatinine assays allow estimation of glomerular firatate in stages 1 and 2
chronic kidney disease using CKD-EPI equation. Clin Chim 206tk4,428:89-95.

Asberg A, Odseeter IH, Carlsen SM, Mikkelsen G. UsingilkkeiHood ratio to evaluate
allowable total erreran example with glycated hemoglobin (HbAlc). Clin Cheah
Med 2015;53:1459-64.

Kroll MH, Garber CC, Bi C, Suffin SC. Assessing the iotjgd analytical error on
perceived disease severity. Arch Pathol Lab Med 2015;139:1295-301.

Lyon ME, Sinha R, Lyon OA, Lyon AW. Application osanulation model to estimate
treatment error and clinical risk derived from poarfteare International Normalized
Ratio device analytic performance. J Appl Lab Med 2017;2:25-32.

Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pdhl Bvaluating clinical
accuracy of systems for self-monitoring of blood gluc@sabetes care 1987;10:622-
8.

Petersen PH, de Verdier C-H, Groth T, Fraser CG, BlaaDjdrprder M. The influence
of analytical bias on diagnostic misclassificationtn Chim Acta 1997;260:189-206.

Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensugrid to evaluate the
clinical significance of inaccuracies in the measurdroéblood glucose. Diabetes
care 2000;23:1143-8.

Sdlétormos G, Hyltoft Petersen P, Dombernowsky RyrBssion criteria for cancer
antigen 15.3 and carcinoembryonic antigen in metasta#sbicancer compared by
computer simulation of marker data. Clin Chem 2000;46:939-49.

Rouse A, Marshall T. The extent and implicationspifygmomanometer calibration
error in primary care. J Hum Hypertens 2001;15:587.

Gallaher MP, Mobley LR, Klee GG, Schryver P. The impécalibration error in
medical decision making. Washington: National Institutetah&ards and
Technology 2004.

Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke B\aluating the accuracy of
continuous glucose-monitoring sensors: continuous gludeose grid analysis
illustrated by TheraSense Freestyle Navigator data. Diabates2004;27:1922-8.

Baum JM, Monhaut NM, Parker DR, Price CP. Improving thatgulself-monitoring
blood glucose measurement: a study in reducing calibratiorseD@betes Technol
Ther 2006;8:347-57.

Nix B, Wright D, Baker A. The impact of bias in MoMlwes on patient risk and
screening performance for Down syndrome. Prenat Diagn 2007;27:840-5.

Raine Ill C, Pardo S, Parkes J. Predicted blood glfomseinsulin administration based
on values from miscoded glucose meters. J Diabetese8hin®l 2008;2:557-62.

Elloumi F, Hu Z, Li Y, Parker JS, Gulley ML, Amos KD, €ster MA. Systematic bias
in genomic classification due to contaminating non-netipléissue in breast tumor
samples. BMC Med Genomics 2011;4:54.

Schlauch RS, Carney E. Are false-positive ratesrigad an overestimation of noise-
induced hearing loss? J Speech Lang Hear Res 2011;54:679-92.

Wright D, Abele H, Baker A, Kagan KO. Impact of biasénum free beta-human
chorionic gonadotropin and pregnancy-associated plasma pfoteinitiples of the
median levels on first-trimester screening for tris@tyUltrasound Obstet Gynecol
2011;38:309-13.

Drion I, Cobbaert C, Groenier KH, Weykamp C, Bilo HJt28ks JF, Kleefstra N.
Clinical evaluation of analytical variations in serureatinine measurements: why
laboratories should abandon Jaffe techniques. BMC nephra@t;13:133.

24



578
579
580
581
582
583
584
585
586
587
588
589
590
501
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Evaluating the impact of measurement uncertainty

Jin Y, Bies R, Gastonguay MR, Stockbridge N, Gobburu J, MadaRushi
Misclassification and discordance of measured blood preedsum patient's true
blood pressure in current clinical practice: a clinical simulation case study. J
Pharmacokinet Pharmacodyn 2012;39:283-94.

Sarno MJ, Davis CS. Robustness of ProsVue linear slopeoignostic identification of
patients at reduced risk for prostate cancer recurremcetasion studies on effects of
analytical imprecision and sampling time variation. Clindiiem 2012;45:1479-84.

Langlois MR, Descamps OS, van der Laarse A, WeykarBa@n H, Pulkki K, et al.
Clinical impact of direct HDLc and LDLc method bias in kBypiglyceridemia. A
simulation study of the EAS-EFLM Collaborative Paij&roup. Atherosclerosis
2014;233:83-90.

Thomas F, Signal M, Harris DL, Weston PJ, HardingSHaw GM, et al. Continuous
glucose monitoring in newborn infants: how do errors irbcalion measurements
affect detected hypoglycemia? J Diabetes Sci Technol 2014:8®43

De Block CE, Gios J, Verheyen N, Manuel-y-Keenoy Bji&s P, Jorens PG, et al.
Randomized evaluation of glycemic control in the mddidansive care unit using
real-time continuous glucose monitoring (REGIMEN Trialjaliztes Technol Ther
2015;17:889-98.

Krinsley JS, Bruns DE, Boyd JC. The impact of measunefrequency on the domains
of glycemic control in the critically ill-a monte carsimulation. J Diabetes Sci
Technol 2015;9:237-45.

Bietenbeck A. Combining medical measurements from digersees: experiences from
clinical chemistry. Stud Health Technol Inform 2016;228:58-62.

Shinotsuka CR, Brasseur A, Fagnoul D, So T, VincéntRreiser J-C. Manual versus
Automated moNitoring Accuracy of GlucosE Il (MANAGE Il)riCCare
2016;20:380.

Sutheran HL, Reynolds T. Technical and clinical acguoathree blood glucose meters:
clinical impact assessment using error grid analysis andirirdiding scales. J Clin
Pathol 2016;69:899-905.

Baumstark A, Jendrike N, Pleus S, Haug C, Freckmann Qudiad of accuracy of six
blood glucose monitoring systems and modeling of possibly relaatin dosing
errors. Diabetes Technol Ther 2017;19:580-8.

Bhatt 1S, Guthrie On. Analysis of audiometric notch asise-induced hearing loss
phenotype in US youth: data from the National Health And Narriixamination
Survey, 20052010. Int J Audiol 2017;56:392-9.

Bochicchio GV, Nasraway S, Moore L, Furnary A, Nohra @&Hgchio K. Results of a
multicenter prospective pivotal trial of the first irdicontinuous glucose monitor in
critically ill patients. J Trauma Acute Care Surg 2017;82:1049-54.

Chai JH, Ma S, Heng D, Yoong J, Lim WY, Toh SA, Loh [ffpact of analytical and
biological variations on classification of diabetesgdiasting plasma glucose, oral
glucose tolerance test and HbAlc. Sci Rep 2017;7:7.

Lyon AW, Kavsak PA, Lyon OA, Worster A, Lyon ME. Silation models of
misclassification error for single thresholds of higimsstivity cardiac troponin | due
to assay bias and imprecision. Clin Chem 2017;63:585-92.

Chung RK, Wood AM, Sweeting MJ. Biases incurred fromanahom repeat testing of
haemoglobin levels in blood donors: selective testingitarichplications. Biom J
2019;61:454-66.

Saugel B, Grothe O, Nicklas JY. Error grid analysis farattpressure method
comparison studies. Anesth Analg 2018;126:1177-85.

25



627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

Evaluating the impact of measurement uncertainty

65. Rodrigues Filho BA, Farias RF, dos Anjos W. Evaluatiegrtipact of measurement
uncertainty in blood pressure measurement on hypertetisignosis. Blood Press
Monit 2018;23:141-7.

66. Piona C, Dovc K, Mutlu GY, Grad K, Gregorc P, Battelino T, Bratina N. Non-adjunctive
flash glucose matoring system use during summer-camp in children with type 1
diabetes: the free-summer study. Pediatr Diabetes 2018;19:1285-93.

67. Hansen EA, Klee P, Dirlewanger M, Bouthors T, Elowe-Gruau E, Stoppa-Vaucher S, et
al. Accuracy, satisfaction and usability of a flash ghg&cmonitoring system among
children and adolescents with type 1 diabetes attending meaucamp. Pediatr
Diabetes 2018;19:1276-84.

68. Freckmann G, Link M, Pleus S, Westhoff A, Kamecke U, Haudeasurement
performance of two continuous tissue glucose monitorisgesys intended for
replacement of blood glucose monitoring. Diabetes Techimed 2018;20:541-9.

69. Hughes J, Welsh JB, Bhavaraju NC, Vanslyke SJ, Balo Aillhy, accuracy, and risk
assessment of a novel subcutaneous glucose sensoreBidbehnol Ther
2017;19:S21-4.

70. Breton MD, Hinzmann R, Campos-Nanez E, Riddle S, ScHaeriv Schmelzeisen-
Redeker G. Analysis of the accuracy and performance afitnoous glucose
monitoring sensor prototype: an in-silico study using the UVA/PADQyf% 1
diabetes simulator. J Diabetes Sci Technol 2017;11:545-52.

71. Aberer F, Hajnsek M, Rumpler M, Zenz S, Baumann PBgyEd H, et al. Evaluation of
subcutaneous glucose monitoring systems under routine envirtatroemditions in
patients with type 1 diabetes. Diabetes, Obesity and Metab2017;19:1051-5.

72. Kovatchev BP, Patek SD, Ortiz EA, Breton MD. Assgssensor accuracy for non-
adjunct use of continuous glucose monitoring. Diabetebria Ther 2015;17:177-
86.

73. Schnell O, Erbach M. Impact of a reduced error rang&8iin insulin-treated
patients in Germany. J Diabetes Sci Technol 2014;8:479-82.

74. Kovatchev BP, Wakeman CA, Breton MD, Kost GJ, Louie R&h NK, Klonoff DC.
Computing the surveillance error grid analysis: procedure andpmesa. J Diabetes
Sci Technol 2014,8:673-84.

75. Klonoff DC, Lias C, Vigersky R, Clarke W, Parkes Jacl& DB, et al. The surveillance
error grid. J Diabetes Sci Technol 2014;8:658-72.

76. Schnell O, Erbach M, Wintergerst E. Higher accurdsgl-monitoring of blood glucose
in insulin-treated patients in Germany: clinical and ecoical aspects. J Diabetes Sci
Technol 2013;7:904-12.

77. Budiman ES, Samant N, Resch A. Clinical implicationsesachomic impact of accuracy
differences among commercially available blood glucose mami systems. J
Diabetes Sci Technol 2013;7:365-80.

78. McGarraugh GV, Clarke WL, Kovatchev BP. Comparisormefdinical information
provided by the FreeStyle Navigator continuous interstitialagaanonitor versus
traditional blood glucose readings. Diabetes Technol Ther 2DB®B5-71.

79. Petersen PH, Soletormos G, Pedersen MF, Lund F. ktiaipn of increments in serial
tumour biomarker concentrations depends on the distaribe bhseline
concentration from the cut-off. Clin Chem Lab Med 2011;49:B03-

80. Hu Y, Ahmed HU, Carter T, Arumainayagam N, Lecornet Ez&BWw, et al. A biopsy
simulation study to assess the accuracy of severartetal ultrasonography
(TRUS)-biopsy strategies compared with template prostgb@ing biopsies in
patients who have undergone radical prostatectomy. BJ2Ok;110:812-20.

26



676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

708

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Evaluating the impact of measurement uncertainty

Lecornet E, Ahmed HU, Hu Y, Moore CM, Nevoux P, Barratt @).efhe accuracy of
different biopsy strategies for the detection of clifycahportant prostate cancer: a
computer simulation. J Urol 2012;188:974-80.

McCloskey LJ, Bordash FR, Ubben KJ, Landmark JD, StigkleDecreasing the cutoff
for Elevated Blood Lead (EBL) can decrease the screennsitiséy for EBL. Am J
Clin Pathol 2013;139:360-7.

Lund F, Petersen PH, Pedersen MF, Abu Hassan SO, SastGrnCriteria to interpret
cancer biomarker increments crossing the recommended cut+offared in a
simulation model focusing on false positive signals andturdetection time. Clin
Chim Acta 2014;431:192-7.

Abu Hassan SO, Petersen PH, Lund F, Nielsen DL, TuxerSkil&tormos G.
Monitoring performance of progression assessment cri@rieahcer antigen 125
among patients with ovarian cancer compared by compueiaion. Biomark Med
2015;9:911-22.

Lin J, Fernandez H, Shashaty MG, Negoianu D, TestarBéMs JS, et al. False-
positive rate of AKI using consensus creatinine-based crielimJ Am Soc Nephrol
2015;10:1723-31.

Merlin T, Lehman S, HillerEl Ryan P. The “linked evidence approach” to assess
medical tests: a critical analysis. Int J Technol Asdé¢ealth Care 2013;29:343-50.

Schaafsma JD, van der Graaf Y, Rinkel GJ, Buskens Esideainalysis to complete
diagnostic research by closing the gap between test tdastics and cost-
effectiveness. J Clin Epidemiol 2009;62:1248-52.

Trikalinos TA, Siebert U, Lau J. Decision-analytic modgto evaluate benefits and
harms of medical tests: uses and limitations. Med Declsng&009;29:E22-E9.

Bilcke J, Beutels P, Brisson M, Jit M. Accountingrfzethodological, structural, and
parameter uncertainty in decision-analytic models: aipeaguide. Med Decis
Making 2011;31:675-92.

Klee GG. Establishment of outcome-related analytiop®ence goals. Clin Chem
2010;56:714-22.

Panteghini M, Ceriotti F, Jones G, Oosterhuis W, Plddagiandberg S. Strategies to
define performance specifications in laboratory medicingeads on from the Milan
Strategic Conference. Clin Chem Lab Med 2017;55:1849-56.

27



Evaluating the impact of measurement uncertainty

709 Tables

710 Tablel. Reviewinclusion criteria

Population Any human population with any indication

In-vitro test (excluding imaging) or any kind of medical
I ntervention device used for the purpose of screening, diagnosis,
prognosis, monitoring or predicting treatment response

Compar ator Any

(a) Clinical accuracy e.g.
- Diagnostic sensitivity and/or specificity
- Positive/negative predictive values
- ROC curve/ AUC analysis
- Relative risks
- Likelihood ratios

Outcomes (b) Clinical utility

- Impact on treatment management
decisions

- Impact on patient health outcomes

(c) Costs
(d) Cost-effectiveness

Analysis includes indirect methods (i.e. excluding purel
empirical analyses) to incorporate or assess the inopac
one or more components of measurement uncertainty
(below) on one or more outcomes (above):

- Bias (e.g. calibration or method bias)

- Imprecision (e.g. repeatability, within-
laboratory or between-laboratory
imprecision)

- Pre-analytical or analytical effects

- Summary metrics (e.g. total error [TE] or
uncertainty of measurementy{)

Study type Full paper relating to an original study
L anguage Full text in English

Year of Database search: January 260@arch 2019
publication Citation tracking: any data

ROC = Receiver operator characteristic; AUC = Area utitecurve
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712 Table 2. Study characteristics

N %
Y ear of publication
tl:;il(zlggi I((l)(rj1eer)1t|f|ed via citatior o5 30%
2008- 2009 3 4%
2010- 2011 7 9%
2012-2013 9 11%
2014- 2015 18 22%
2016- 2017 13 16%
2018-2019 7 9%
Clinical area?
Diabetes & glycemic control 43 52%
Cardiovascular diseases 17 21%
Cancer 10 12%
(l;/ilgé?gglri;: & endocrine 8 10%
Kidney disorders 3 1%
Prenatal screening 3 4%
Noise induced hearing loss 2 2%
Role of test?
Monitoring 44 54%
Diagnosis 24 29%
Screening 11 13%
Prognosis 7 9%
2Several studies included a test or tests used itipiautlinical areas or roles (hence
total percentages under these categories sum td)100
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714  Table 3. Components of measurement uncertainty included and test outcomes assessed

N %

Component(s) of measurement uncertainty included?®

Imprecision:
Analytical 31 38%
e oo ™| 8| aom
Non-specific 11 13%
Total 50 61%
Bias:
Analytical 18 22%
Calibration bias 9 11%
Non-specific 9 11%
Pre-aljalytical / comt_)ined pre- 5 2%
analytical and analytical
Between-method bias 1 1%
Total 39 48%
Total error:
Method-comparison study 18 22%
EQA study 2 2%
Other 6 7%
Total 26 32%
Biological variation included?
Yes - included as a separate eleme 13 16%
Yes - combined with imprecision 5 6%
Total 18 22%
Primary test outcome assessed?®
Clinical accuracy 45 55%
Clinical utility:
Impact on treatment management 23 28%
Impact on health outcomes 13 16%
Costs 7 9%
Cost-effectiveness 2 2%

8geveral studies included multiple components of measuremesittaimtyor
assessed multiple test outcomes (hence total percentatgrstiese categories
sum to >100%).
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Figure captions

Figure 1. PRISMA flow diagram of included studies

Figure 2. Summary box outlining the three-step analytieatework, primary methods
identified for each step in the framework, and key questior consideration in future

analyses

Figure 3. Example contour plot based on simulations usmgrior model approach (adding
increasing magnitudes of bias and imprecision onto assttmed measurand values). The
contour lines indicate what level of clinical accuraepchieved across the range of bias and
imprecision inputs explored: varying sensitivity levels &snation of bias and imprecision
are represented by the solid contour lines, whilst varying sgigcievels are represented by
the dashed contour line¥he grey region represents an “acceptability region” for bias and

imprecision, which maintains sensitivity90% and specificity> 80%.
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