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Abstract 43 

Background:  For medical tests that have a central role in clinical decision-making, current 44 

guidelines advocate outcome-based analytical performance specifications. Given that 45 

empirical (clinical-trial style) analyses are often impractical or unfeasible in this context, the 46 

ability to set such specifications is expected to rely on indirect studies to calculate the impact 47 

of test measurement uncertainty on downstream clinical, operational and economic outcomes. 48 

Currently however, a lack of awareness and guidance concerning available alternative 49 

indirect methods is limiting the production of outcome-based specifications. Our aim 50 

therefore was to review available indirect methods and present an analytical framework to 51 

inform future outcome-based performance goals.  52 

Content:  A methodology review consisting of database searches and extensive citation 53 

tracking was conducted to identify studies using indirect methods to incorporate or evaluate 54 

the impact of test measurement uncertainty on downstream outcomes (including clinical 55 

accuracy, clinical utility and/or costs). Eighty-two studies were identified, most of which 56 

evaluated the impact of imprecision and/or bias on clinical accuracy. A common analytical 57 

framework underpinning the various methods was identified, consisting of three key steps: 58 

(1) calculation of “true” test values; (2) calculation of measured test values (incorporating 59 

uncertainty); and (3) calculation of the impact of discrepancies between (1) and (2) on 60 

specified outcomes. A summary of the methods adopted is provided, and key considerations 61 

discussed.  62 

Conclusions:  Various approaches are available for conducting indirect assessments to 63 

inform outcome-based performance specifications. This study provides an overview of 64 

methods and key considerations to inform future studies and research in this area.  65 
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Introduction 66 

Although systematic and random variation around measured test values (henceforth, 67 

measurement uncertainty) is now routinely documented within the clinical laboratory, the 68 

potential impact of this uncertainty on downstream clinical, operational and economic 69 

outcomes is rarely quantified. Meanwhile, evaluation of the impact of measurement 70 

uncertainty on clinical outcomes has become a recurring recommendation in protocols for 71 

determining analytical performance specifications. In their recently updated guidance, for 72 

example, the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) 73 

stipulate that, for medical tests that “have a central role in the decision-making of a specific 74 

disease or clinical situation and where cut-off/decision limits are established”, specifications 75 

should be based on the effect of analytical performance on the clinical outcome [termed 76 

“Model 1”], as opposed to basing specifications on biological variation [“Model 2”] or state 77 

of the art measurements [“Model 3”] (1).   78 

Two types of studies are suggested to inform specifications under Model 1: (i) direct outcome 79 

studies (i.e. analyses based solely on empirical data, such as randomised controlled trials 80 

evaluating the impact of varying analytical procedures on outcomes); or (ii) indirect outcome 81 

studies (i.e. analyses using non-empirical approaches, such as decision analytic modelling, to 82 

determine the impact of varying procedures on outcomes) (2). Since (i) is often unfeasible or 83 

impractical due to ethical, financial and time constraints associated with robust end-to-end 84 

test-outcome studies, the indirect methods of (ii) are expected to play the dominant role in 85 

this context (3). 86 

Despite general agreement that outcome-based specifications provide the best mechanism to 87 

ensure tests best serve patients’ needs, studies in this area remain uncommon. A primary 88 

reason often cited for this concerns the inherent difficulties in conducting direct outcomes 89 
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studies (1, 3). It is likely, however, that a lack of awareness and specific guidance concerning 90 

alternative indirect methods that may be employed is also a key limiting factor. The aim of 91 

this study therefore was to review methodological approaches used in previous indirect 92 

assessments and outline an analytical framework to inform future outcome-based 93 

performance specifications.  94 

Methods 95 

A literature search was conducted in November 2017 across four databases (Ovid 96 

Medline(R), Embase, Web of Science (core collection) and Biosis Citation Index) and 97 

covering a 10 year publication period (2008 to November 2017). The search was 98 

subsequently updated in 2019 (covering the period 2008 to March 2019). The search strategy 99 

(provided in the Supplemental Appendix) combined key terms relating to (a) tests, (b) 100 

measurement uncertainty, and (c) simulation/ methodology. From those studies identified via 101 

the database searches, subsequent citation tracking (including extensive backwards and 102 

forwards tracking) was conducted to identify additional studies published on any date (i.e. 103 

including studies published before 2008).  104 

Studies were included if they met the inclusion criteria shown in Table 1. Studies were 105 

required to include an assessment of downstream outcomes including: clinical accuracy (the 106 

ability of a test to distinguish between patients with and without a specified condition, or 107 

identify a change in condition), clinical utility (the ability of a test to impact on healthcare 108 

management decisions or patient health outcomes) and/or cost-effectiveness (the ability of a 109 

test to produce an efficient impact on health outcomes in relation to cost). Note that studies 110 

using indirect methods at any stage of the analysis were eligible for inclusion; this means, for 111 

example, that several method-comparison studies (an essentially empirical study design) were 112 



 Evaluating the impact of measurement uncertainty 
 

7 
 

nevertheless included in cases where an indirect method was subsequently used to assess the 113 

impact of identified measurement discrepancies on outcomes.   114 

<<Table 1>> 115 

All screening (including initial title/abstract screening, full text screening, and citation 116 

tracking) was conducted by the primary reviewer (AS). A data extraction form was developed 117 

(including items on key study, test, and method details) and piloted on the first 10% of 118 

included studies. Subsequent full data extraction of included studies was conducted by the 119 

primary reviewer and double checked by one of four secondary reviewers (BS, MM, CH and 120 

PH). Regular meetings with all authors were conducted to review the ongoing study findings 121 

and resolve (via group consensus) any inclusion and/or extraction uncertainties.  122 
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Results 123 

Study characteristics 124 

A total of 82 studies were identified (see Figure 1). Regarding data extraction checking, 35 125 

papers (43%) were checked by BS; 16 (20%) by CH; 16 (20%) by MM; and 15 (18%) by PH. 126 

Agreement between reviewers across extraction items was >99%.  127 

Study characteristics are summarized in Table 2, and details of measurement uncertainty 128 

components and test outcomes evaluated are provided in Table 3. Most studies focused on 129 

evaluating tests or devices used for the purposes of monitoring, diagnosis and/or screening 130 

across four key disease areas: diabetes or glycemic control, cardiovascular diseases, cancer 131 

and metabolic or endocrine disorders. Imprecision was most commonly addressed, followed 132 

by bias and total error, and studies primarily evaluated clinical accuracy outcomes.  133 

<<Figure 1>> 134 

<<Table 2>> 135 

<<Table 3>> 136 

Aim of analyses 137 

Most studies were conducted with the objective of either: (i) determining/ informing 138 

analytical performance specifications (4-22); (ii) exploring the impact of uncertainty allowed 139 

by current performance specifications (23-34); or (iii) evaluating the potential impact of 140 

measurement uncertainty on outcomes (without explicitly defining specifications) (35-78). A 141 

final group of studies consisted of “incidental” analyses, in which the impact of measurement 142 

uncertainty on outcomes was incorporated within the analysis but was not part of the primary 143 

study aim (79-85). 144 
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Methodology Framework 145 

Based on the included studies, a common analytical framework underpinning the various 146 

approaches to evaluating the impact of measurement uncertainty on outcomes was identified. 147 

This framework consists of three key steps: (1) calculation of “true” test values; (2) 148 

calculation of measured test values (i.e. incorporating measurement uncertainty); and (3) 149 

calculation of the impact of discrepancies between (1) and (2) on the outcome(s) under 150 

consideration. An outline of the various methods adopted within this framework is provided 151 

below and summarized in Figure 2. A summary table detailing the methods used in each 152 

individual study is provided in Supplemental Table 1.  153 

1. Step one: calculation of “true” test values 154 

Calculation of “true” test values was based either on empirical data values (5, 7, 9-11, 18, 21, 155 

26, 30-32, 34-37, 39-42, 45, 49-53, 56-58, 60, 61, 64, 66-69, 71, 74, 77, 78, 85) and/or 156 

simulated values (4-6, 8, 12-17, 19, 20, 22-25, 27-29, 33, 36, 38, 43, 44, 46-48, 54, 55, 59, 157 

62, 63, 65, 70, 72-76, 79-84).  158 

Studies using empirical data here included: (i) method comparison and external quality 159 

assessment (EQA) studies, which utilized indirect methods to determine the impact of 160 

discrepancies between empirical reference (i.e. “true”) test measurements vs. index (i.e. 161 

uncertain) test measurements on specified outcomes (e.g. using the “error grid” approach 162 

outlined in Step 3) (35, 37, 41, 42, 51, 53, 56-58, 60, 64, 66-69, 71, 75, 78); and (ii) studies 163 

which derived uncertain measurements from “true” empirical data values using various (non-164 

empirical) approaches outlined in Step 2 (5, 7, 9-11, 18, 21, 26, 30-32, 34, 36, 39, 40, 45, 48-165 

50, 52, 61, 77, 85).  166 

Studies using simulation methods here used a range of approaches – the simplest of which 167 

was to assume a fixed set of individual “true” values specified across the measurement range 168 
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and simulate uncertainty around these values (see Step 2) (12, 16, 27, 33, 36, 38, 79, 83, 84). 169 

Whilst this approach does not require any simulation for the “true” measurements per se, the 170 

values here are nevertheless generated rather than using real-world data directly. An 171 

extension of this approach is to assume a uniform distribution to describe the “true” 172 

frequency distribution(s): that is, assume a constant probability of occurrence for each test 173 

value along a specified measurement range, and draw from this distribution within the 174 

simulation (14, 17, 19, 44, 55). Alternatively, the expected likelihood of test values was often 175 

modelled using Gaussian (i.e. normal) or log-Gaussian frequency distributions, specified 176 

using published or empirical data on the expected mean and variance of test values (4-6, 8, 177 

13-15, 20, 46, 47, 59, 63, 65). Other infrequently adopted parameterizations included mixed 178 

Gaussian distributions (54, 62), multivariate Gaussian distributions (where correlations 179 

between tests are known (43)) and the exponential distribution (82). Non-parametric 180 

simulation approaches were also used, based on sampling with replacement from an 181 

empirical dataset (18, 30). Finally, several studies used simulation techniques (22, 23, 70, 74, 182 

75), or utilized findings from previously published simulation studies (24, 25, 73, 76), but did 183 

not clearly report details regarding the calculation of “true” baseline values.   184 

An important issue with respect to the estimation of “true” test values concerns how well the 185 

underlying data may be considered a reliable proxy for the truth. A handful of studies 186 

attempted to directly address this issue, by “stripping” known measurement uncertainty from 187 

baseline “true” test values via statistical adjustment: imprecision, for example, can be 188 

removed from the variance term of a specified Gaussian/log-Gaussian distribution using a 189 

reverse form of the “sum of squares rule”; whilst bias can be removed from the mean term (7-190 

10, 13, 15, 31). In general, however, the likelihood that the adopted “true” test values would 191 

in fact be representative of the truth was either implicitly assumed or not discussed.  192 
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2. Step two: calculation of measured test values (incorporating measurement 193 

uncertainty) 194 

Approaches to the calculation of measured test values predominantly fell into four broad 195 

categories: (1) empirical assessment (35, 37, 41, 42, 51, 53, 56-58, 60, 64, 66-69, 71, 74, 78), 196 

(2) graphical assessment (5, 7, 9-11, 36), (3) computer simulation (4-6, 8, 12, 14-25, 27-31, 197 

34, 38, 39, 44, 46, 49, 50, 52, 54, 55, 59, 61-63, 65, 70, 72-77, 79-85), or regression analysis 198 

(26, 32, 43, 47).   199 

Studies using empirical assessment here included method-comparison studies (35, 37, 41, 42, 200 

53, 56-58, 60, 64, 66-69, 71, 75, 78) and an EQA study (51) which based “true” test values 201 

on the specified reference test and measured values on the index test measurements.   202 

An alternative method, first appearing in 1980, is based on applying hypothetical 203 

measurement uncertainty to “true” values via graphical manipulation (5, 7, 9-11, 36). This 204 

approach centers on plotting the cumulative percentage frequency of “true” values on the 205 

probit scale (x-axis) as a function of “true” values on the logarithmic scale (y-axis); assuming 206 

that the log-transformed data are Gaussian, then in the bimodal case (where healthy and 207 

diseased populations are modeled separately), cumulating the healthy (diseased) population 208 

from high (low) values results in two straight lines sloping in opposite directions for each 209 

population (i.e. forming an ‘X’ on the plot).  The addition of negative (positive) bias is then 210 

explored by shifting the straight lines to the left (right) on the x-axis; whilst the addition of 211 

imprecision is explored by rotating each line around their mean value (i.e. broadening the 212 

95% confidence interval of the values on the probit scale). Given a specified cut-off 213 

threshold, the proportion of false positives and negatives at a particular level of bias and 214 

imprecision can be read off directly from this plot, by observing the point at which 215 

healthy/diseased populations cross the threshold line.   216 
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In response to modern computational capabilities, the graphical method has been superseded 217 

by computer simulation approaches which can accommodate more complex specifications of 218 

the measurand distribution and measurement uncertainty. The most flexible and widely 219 

adopted approach in the identified studies was based on iterative simulation, with uncertainty 220 

added on to “true” test values according to a specified error model – a function relating 221 

measured test values to baseline “true” values plus specified components of measurement 222 

uncertainty (14, 17-19, 28-30, 34, 54, 62, 79, 82-84). This method is largely attributed to the 223 

seminal 2001 paper by Boyd and Bruns (14) – the first study of this kind to clearly specify 224 

the error model as a mathematical function (as opposed to earlier (4-6) and later (21-25, 44, 225 

49, 52, 70, 72, 73, 76, 77, 80, 81, 85) studies limited to textual descriptions or indirect 226 

referencing). An example of a typical error model is as follows:  227 

Testmesaured   =   Testtrue  +  [ Testtrue * N(0,1) * CV ]  +  Bias            (1) 228 

where Testtrue is the “true” measurement value; Testmeasured is the observed test value 229 

measured with imprecision (coefficient of variation [CV%]) and absolute bias (Bias); and 230 

N(0,1) is a normal distribution (mean = 0, standard deviation [SD] = 1) applied with the 231 

CV% value in order to produce a spread of Gaussian-distributed results around Testtrue.  232 

The error model iterative simulation approach works as follows: (i) a random draw is taken 233 

from the distribution of “true” values to generate a value for Testtrue; (ii) components of 234 

measurement uncertainty are applied to Testtrue according to the error model formula to 235 

simulate a value for Testmeasured (this may require random number draws – for example in 236 

equation (1) a random draw from N(0,1) is required for the application of imprecision); (iii) 237 

points (i) and (ii) are repeated (e.g. 10,000 times to simulate 10,000 Testtrue and Testmeasured 238 

values) for a given level of measurement uncertainty (e.g. CV% = 5% and Bias = 5%); and 239 

(iv) points (i) to (iii) are repeated for varying levels of measurement uncertainty (e.g. CV% 240 
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ranging from 0-20% and Bias ranging from +/-10% in 1% increments). This iterative process 241 

can be efficiently implemented using standard statistical software, such as Excel or R.  242 

Rather than iteratively adding on uncertainty via error model simulation, an alternative 243 

approach is to incorporate uncertainty directly within a specified probability distribution (e.g. 244 

incorporating bias within the mean term, and imprecision within the variance term of a 245 

Gaussian or log-Gaussian distribution). This distribution can be applied iteratively around 246 

individual “true” values (12, 16, 18, 27, 30, 38, 46, 59, 61), or at a population level, by 247 

adjusting a specified “true” population distribution to include additional uncertainty (8, 15, 248 

31, 63, 65).  249 

The remaining studies used regression analysis (26, 32, 43, 47), other one-off methods (12, 250 

13, 33, 40, 45, 48), or reported insufficient details regarding simulation techniques to 251 

determine the exact method employed (74, 75). Within the identified regression analyses, 252 

bias or total error was applied as a multiplicative factor to baseline measurements within a 253 

specified regression model, with the resulting impact on the regression output (e.g. likelihood 254 

ratio) explored. Details of studies using other one-off/ indeterminate methods can be found in 255 

Supplemental Table 1.    256 

3. Step three: calculation of the impact on test outcomes  257 

The final step is to assess the impact of deviations between “true” and measured values on the 258 

outcome(s) of interest.  259 

Most studies focused on evaluating clinical accuracy (4-13, 15, 16, 20, 26-29, 31-33, 38, 39, 260 

43, 45-52, 55, 59, 61-63, 65, 79-85). In this case the calculation is generally straightforward: 261 

the rate of change in mis-categorizations (e.g. false positive/negative diagnoses) is 262 

determined according to the change in the proportion of measured values pushed above or 263 
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below the given test cut-off threshold(s) used to define disease status or inform treatment 264 

decisions, compared to the “true” value classifications. This was the typical approach taken in 265 

studies using the graphical and simulation approaches outlined in Step 2, for example.  266 

Several studies evaluated the impact of measurement uncertainty on treatment management 267 

decisions (14, 18, 21, 30, 35, 37, 41, 42, 51, 53, 56-58, 60, 64, 66-69, 71, 74, 75, 78). Most of 268 

these were method-comparison studies which determined the impact of measurement 269 

deviations on treatment decisions using error grid analysis (35, 37, 41, 42, 53, 56-58, 60, 64, 270 

66-69, 71, 74, 78). Two studies similarly employed the error grid approach, but used 271 

simulated (rather than empirical) reference and index test measurements (74, 75). First 272 

developed in the 1980s, the original error grid aimed to evaluate the potential impact of 273 

measurement discrepancies between self-monitoring blood glucose devices and laboratory 274 

reference measurements in terms of insulin dosing errors (35). Using a scatter plot of 275 

reference vs. index test measurements, the plot was divided into five error grid “zones” 276 

according to assumed severity of associated dosing errors (from zone A = clinically accurate 277 

results; to zone E = erroneous results leading to dangerous failure to detect and treat). More 278 

recently studies have attempted to build on this approach, for example by expanding on the 279 

small sample of experts used to define the initial error grid (37, 74, 75), accounting for 280 

temporal aspects of measurement (41), or applying the same methodology to alternative 281 

clinical settings (64).  282 

Others have attempted to incorporate the impact of measurement uncertainty on patient health 283 

outcomes (17, 19, 22, 23, 44, 54, 70, 72). All of these studies related to evaluations of 284 

monitoring devices for glycemic control, in which health outcomes such as hypoglycemia 285 

and hyperglycemia were determined using decision analytic models based around sequential 286 

glucose measurements (incorporating measurement uncertainty via the error model 287 

simulation approach, for example). Combined with data on insulin dose administrations 288 
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(resulting from measured values), and additional factors such as patient insulin sensitivity and 289 

gluconeogenesis, these models were used to track patients’ response to administered doses 290 

and resulting health outcomes.  291 

Nine final studies included an assessment of costs or cost-effectiveness (7, 8, 11, 24, 25, 40, 292 

73, 76, 77). Four were based on a simple assignment of expected costs of misdiagnoses to 293 

rates of false positive/negative results (7, 8, 11), or expected costs of adverse events applied 294 

to simulated health outcomes data (77). One study included a more comprehensive costing 295 

analysis, in which the potential financial implications of calibration bias in serum calcium 296 

testing was explored (40). The remaining four studies all utilized the previous work of Breton 297 

and Kovatchev (2010), in which the impact of reduced glucose meter imprecision on 298 

glycemic events was simulated using a published simulation platform (23). Two studies 299 

constructed simple cost-consequence decision models, combining the Breton and Kovatchev 300 

(2010) findings with data on patient population numbers, glucose meter costs, and the rate of 301 

myocardial infarctions resulting from glycemic outcomes, to estimate annual cost savings 302 

associated with improved meter precision (73, 76). Two more recent studies conducted full 303 

cost-effectiveness analyses, using cohort Markov (i.e. state-transition) models to link the data 304 

on improved glycemic control and reduced glycemic event rates, with data on diabetes 305 

complication rates, patient health-related quality of life and health service costs (24, 25). 306 

Using these models the authors were able to estimate the incremental cost per additional 307 

quality adjusted life year (QALY) associated with reduced device error.   308 

<<Figure 2>> 309 

  310 
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Discussion 311 

Review findings 312 

Based on our methodology review findings, a three-step analytical framework underpinning 313 

the various approaches to determining the impact of measurement uncertainty on outcomes 314 

was identified (see Figure 2). Key points for consideration within this framework are 315 

discussed below.  316 

With regards to Step 1 (calculation of “true” test values), the primary advantage of using 317 

either empirical data or informed parametric distributions is that, by accounting for the 318 

expected frequency of values, population-level conclusions (such as analytical performance 319 

specifications) may be derived. In contrast, the primary drawback of the fixed-values 320 

approach, and by extension the uniform distribution approach (assuming this is not a realistic 321 

parameterization), is that population-level conclusions cannot be derived. Nevertheless, such 322 

approaches may be useful for exploring the impact of measurement uncertainty in specific 323 

scenarios – for example, to explore the impact of uncertainty on test values close to the test 324 

cut-off threshold.   325 

A question that must be considered when using either empirical or parametric distributions, is 326 

how well the underlying data may be considered to represent the truth. If values used to 327 

inform the “true” distributions are themselves subject to measurement uncertainty (even if 328 

this uncertainty is expected to be small), then all subsequent analyses may be affected by this 329 

confounding factor and care should be taken when asserting absolute maximum bounds for 330 

imprecision and bias. A handful of studies did attempt to address this issue using statistical 331 

adjustment methods however this approach depends on having reliable information on the 332 

expected measurement uncertainty contained in the baseline “true” measurement values and 333 

can only be used when modelling test values as parametric distributions (7-10, 13, 15, 31).  334 
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A second consideration in the adoption of parametric distributions concerns the 335 

appropriateness of the assumed parametric form. Whilst a minority of studies provided some 336 

form of justification for the parametric choice (e.g. using the Kolmogorov–Smirnov test for 337 

normality), a common implicit assumption was that data would be likely to be Gaussian or 338 

log-Gaussian distributed. The validity of this assumption is not always clear, however.  339 

Within Step 2 (calculation of measured test values) computer simulation methods offer the 340 

most flexible approach for exploring alternative specifications and levels of measurement 341 

uncertainty. In the context of setting performance goals, studies based on method-comparison 342 

analyses are of limited use given the fact that alternative levels of measurement uncertainty 343 

cannot be efficiently explored, and analyses using the graphical method suffer from the issue 344 

that non-Gaussian parameterisations or non-constant/ non-linear specifications of bias or 345 

imprecision cannot be accommodated. The error model approach is particularly useful in this 346 

respect. While the example formula provided in Equation (1) specifies one CV% element 347 

representing total imprecision, additional elements of imprecision (e.g. pre-analytical, 348 

analytical and biological) may be separately specified. Alternative characterisations of 349 

imprecision may also be defined: for example, using (i) a fixed SD, (ii) different SD/CV 350 

values for different sections of the measurement range, or (iii) imprecision defined as a 351 

linear/ non-linear function of Testtrue. Similarly bias may also be characterised in alternative 352 

ways.   353 

With regards to Step 3 (calculation of the impact on outcomes), a further advantage of the 354 

simulation approach is that, by sampling over a range of bias and imprecision values, the 355 

joint impact of these components on outcomes can be clearly explored. In particular, several 356 

studies used contour plots to present their findings (14-19, 21, 30, 34, 62): an example, 357 

provided in Figure 3, represents a hypothetical case in which bias and imprecision have been 358 

applied (according to equation (1)) to normally distributed healthy [N(30,5)] and diseased 359 
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[N(60,10)] populations. The plotted lines indicate at which values of imprecision and bias a 360 

given value of clinical sensitivity/specificity is maintained. For example in this case, at 361 

imprecision=0, increasing positive bias decreases clinical specificity and increases clinical 362 

sensitivity, whilst negative bias has the opposite effect. Based on this plot, we expand on the 363 

typical contour plot to show how maximum allowable bounds for imprecision and bias can be 364 

identified according to specified minimum requirements for clinical accuracy. Suppose, for 365 

example, that we require sensitivity to remain above 90% and specificity to remain above 366 

80% in order to maintain expected health utility gains. The region of acceptable analytical 367 

bias and imprecision values for this specification of clinical accuracy is illustrated by the 368 

shaded region of the contour plot – from this we can see that, if bias is zero we can tolerate 369 

up to 20% imprecision, whilst if imprecision is zero we can tolerate -8 to +6 units of absolute 370 

bias. Plots such as this one offer an effective means of highlighting acceptable bounds for 371 

measurement uncertainty.  372 

<<Figure 3>> 373 

Whilst most studies focused on the intermediate outcome of clinical accuracy, ideally 374 

technologies should be evaluated in terms of their influence on “end-point” outcomes i.e. 375 

health outcomes (clinical utility), operational and/or cost-effectiveness outcomes. Several of 376 

the identified studies utilized analytic decision modeling techniques to determine the impact 377 

of measurement uncertainty on health outcomes: while these all related to the context of 378 

glycemic control devices, decision models can feasibly be used to explore any clinical 379 

pathway of interest, subject to data availability. Within the field of health technology 380 

assessment, for example, decision models are routinely employed to evaluate the expected 381 

clinical utility and cost-effectiveness of novel tests, by linking data on disease prevalence and 382 

test clinical accuracy (e.g. the proportion of correct and incorrect diagnoses), with 383 

downstream data on the expected change in patient management, patient compliance to 384 
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treatment and treatment effectiveness (often referred to as the “linked-evidence approach”) 385 

(86-88). Although this approach is more resource- and data-intensive, and care must be taken 386 

to ensure that the model structure appropriately reflects key aspects of the clinical pathway, it 387 

nevertheless has the advantage of explicitly capturing the impact of additional parameters 388 

(e.g. treatment effectiveness) on end-point outcomes (which may not always produce 389 

expected or intuitive results) and uncertainty around the exact values of these parameters can 390 

be quantitatively characterised in the model framework (89). We identified two recent studies 391 

which utilized health-economic models to estimate the cost-effectiveness of improved 392 

analytical performance (24, 25). These studies explored a limited set of fixed imprecision 393 

levels relating to pre-existing performance specifications: future studies could extend this 394 

methodology to explore a broader range of measurement uncertainty values (e.g. by linking 395 

error-model simulations with the downstream health-economic modelling) and derive de 396 

novo performance specification based on maintaining or optimizing cost-utility and cost-397 

effectiveness outcomes.   398 

Strengths and limitations:  399 

In light of the sustained international focus on outcome-based analytical performance 400 

specifications, it is expected that the indirect approaches outlined in this study will become 401 

increasingly important. The analytical framework presented in this study provides a useful 402 

starting point to inform future studies in this area, by clearly outlining available methods in 403 

sufficient detail to enable practical implementation, and highlighting possible advantages and 404 

limitations to consider under each approach. Whereas previous studies have provided 405 

commentaries and general reviews of various approaches to setting analytical performance 406 

specifications (3, 90, 91), this is the first methodology review to focus specifically on indirect 407 

methods for setting outcome-based performance specifications.  408 



 Evaluating the impact of measurement uncertainty 
 

20 
 

As a methodology review, the aim of this study was not to systematically identify all 409 

evidence, but rather to ensure that key examples of relevant methods were identified. While 410 

we attempted to make the database search as sensitive as possible, due to the vast volume of 411 

literature in this area we necessarily had to focus the search strategy by: (i) concentrating on 412 

terms related to in-vitro biomarkers, (ii) including a filter for simulation and methodology 413 

terms, and (iii) restricting the initial database search period to 10 years. Extensive citation 414 

tracking was additionally conducted, extending into preceding years, in order to ensure that 415 

seminal papers informing modern practices would be identified in addition to current state-of-416 

the-art methodology. Although we believe that this two-stage strategy will have captured key 417 

methodologies, not all relevant material relating to each method will have been identified and 418 

we cannot therefore draw definitive conclusions regarding the frequency that each method 419 

has been used. Nevertheless, we believe our findings provide a valuable overview of indirect 420 

study methods and an informative starting point for future studies in this area.  421 

422 
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Tables 709 

Table 1. Review inclusion criteria 710 

Population Any human population with any indication 

Intervention 
In-vitro test (excluding imaging) or any kind of medical 
device used for the purpose of screening, diagnosis, 
prognosis, monitoring or predicting treatment response 

Comparator Any 

Outcomes 

(a) Clinical accuracy e.g.  
- Diagnostic sensitivity and/or specificity 
- Positive/negative predictive values 
- ROC curve/ AUC analysis 
- Relative risks 
- Likelihood ratios 

(b) Clinical utility 
- Impact on treatment management 

decisions 
- Impact on patient health outcomes 

(c) Costs 

(d) Cost-effectiveness 

Method 

Analysis includes indirect methods (i.e. excluding purely 
empirical analyses) to incorporate or assess the impact of 
one or more components of measurement uncertainty 
(below) on one or more outcomes (above):  

- Bias (e.g. calibration or method bias) 
- Imprecision (e.g. repeatability, within-

laboratory or between-laboratory 
imprecision)   

- Pre-analytical or analytical effects 
- Summary metrics (e.g. total error [TE] or 

uncertainty of measurement [UM]) 

Study type Full paper relating to an original study 

Language Full text in English 

Year of 
publication 

Database search: January 2008 – March 2019 
Citation tracking: any data  

ROC = Receiver operator characteristic; AUC = Area under the curve  
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Table 2. Study characteristics 712 

 N % 

Year of publication 

Pre-2008 (identified via citation 
tracking alone) 

25 30% 

2008 – 2009  3 4% 

 2010 – 2011 7 9% 

2012 – 2013 9 11% 

2014 – 2015  18 22% 

2016 – 2017  13 16% 

2018-2019 7 9% 

Clinical areaa 

Diabetes & glycemic control 43 52% 

Cardiovascular diseases  17 21% 

Cancer 10 12% 
Metabolic & endocrine 
disorders 

8 10% 

Kidney disorders 3 4% 

Prenatal screening 3 4% 

Noise induced hearing loss 2 2% 

Role of testa 

Monitoring 44 54% 

Diagnosis 24 29% 

Screening 11 13% 

Prognosis 7 9% 
aSeveral studies included a test or tests used in multiple clinical areas or roles (hence 
total percentages under these categories sum to >100%).  
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Table 3. Components of measurement uncertainty included and test outcomes assessed  714 

 N % 

Component(s) of measurement uncertainty includeda 

Imprecision:   

Analytical 31 38% 
Pre-analytical / combined pre-
analytical and analytical 

8 10% 

Non-specific 11 13% 

Total 50 61% 

Bias:   

Analytical 18 22% 

Calibration bias 9 11% 

Non-specific 9 11% 
Pre-analytical / combined pre-
analytical and analytical 

2 2% 

Between-method bias 1 1% 

Total 39 48% 

Total error:   

Method-comparison study 18 22% 

EQA study 2 2% 

Other 6 7% 

Total 26 32% 

Biological variation included? 

Yes - included as a separate element 13 16% 

Yes - combined with imprecision 5 6% 

Total 18 22% 

Primary test outcome assesseda   

Clinical accuracy 45 55% 

Clinical utility:   

Impact on treatment management 23 28% 

Impact on health outcomes 13 16% 

Costs 7 9% 

Cost-effectiveness 2 2% 
a several studies included multiple components of measurement uncertainty or 
assessed multiple test outcomes (hence total percentages under these categories 
sum to >100%). 
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Figure captions 716 

Figure 1. PRISMA flow diagram of included studies 717 

Figure 2. Summary box outlining the three-step analytical framework, primary methods 718 

identified for each step in the framework, and key questions for consideration in future 719 

analyses 720 

Figure 3. Example contour plot based on simulations using the error model approach (adding 721 

increasing magnitudes of bias and imprecision onto assumed “true” measurand values). The 722 

contour lines indicate what level of clinical accuracy is achieved across the range of bias and 723 

imprecision inputs explored: varying sensitivity levels as a function of bias and imprecision 724 

are represented by the solid contour lines, whilst varying specificity levels are represented by 725 

the dashed contour lines.  The grey region represents an “acceptability region” for bias and 726 

imprecision, which maintains sensitivity ≥ 90% and specificity ≥ 80%.  727 


