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Mutation and recombination are key evolutionary processes governing phenotypic variation and 36 

reproductive isolation. We here demonstrate that biodiversity within all globally known strains 37 

of Schizosaccharomyces pombe arose through admixture between two divergent ancestral 38 

lineages. Initial hybridization was inferred to have occurred ~20-60 sexual outcrossing 39 

generations ago consistent with recent, human-induced migration at the onset of intensified 40 

transcontinental trade. Species-wide heritable phenotypic variation was explained near-41 

exclusively by strain-specific arrangements of alternating ancestry components with evidence for 42 

transgressive segregation. Reproductive compatibility between strains was likewise predicted by 43 

the degree of shared ancestry. To assess the genetic determinants of ancestry block distribution 44 

across the genome, we characterized the type, frequency and position of structural genomic 45 

variation (SV) using nanopore and single-molecule real time sequencing. Despite being 46 

associated with double-strand break initiation points, over 800 segregating structural variants 47 

exerted overall little influence on the introgression landscape or on reproductive compatibility 48 

between strains. In contrast, we found strongly increased statistical linkage between ancestral 49 

populations consistent with negative epistatic selection shaping genomic ancestry combinations 50 

during the course of hybridization. This study provides a detailed, experimentally tractable 51 

example that genomes of natural populations are mosaics reflecting different evolutionary 52 

histories. Exploiting genome-wide heterogeneity in the history of ancestral recombination and 53 

lineage-specific mutations sheds new light on the population history of S. pombe and highlights 54 

the importance of hybridization as a creative force in generating biodiversity. 55 

 56 

 57 

Introduction 58 

Mutation is the ultimate source of biodiversity. In sexually reproducing organisms it is assisted by 59 

recombination shuffling mutations of independent genomic backgrounds into millions of novel 60 

combinations. This widens the phenotypic space upon which selection can act and thereby accelerates 61 

evolutionary change (Muller, 1932; Fisher, 1999; McDonald et al., 2016). This effect is enhanced for 62 

heterospecific recombination between genomes of divergent populations (Abbott et al., 2013). Novel 63 

combinations of independently accumulated mutations can significantly increase the overall genetic 64 

and phenotypic variation, even beyond the phenotypic space of parental lineages (transgressive 65 

segregation (Lamichhaney et al., 2017; Nolte and Sheets, 2005)). Yet, if mutations of the parental 66 

genomes are not compatible to produce viable and fertile offspring, hybridization is a dead end. 67 

Phenotypic variation then remains within the confines of genetic variation of each reproductively 68 

isolated, parental lineage. 69 

 70 

It is increasingly recognised that hybridization is commonplace in nature, and constitutes an important 71 

driver of diversification (Abbott et al., 2013; Mallet, 2005). Ancestry components of hybrid genomes 72 
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can range from clear dominance of alleles from the more abundant species (Dowling et al., 1989; 73 

Taylor and Hebert, 1993), over a range of admixture proportions (Lamichhaney et al., 2017; 74 

Runemark et al., 2018) to the transfer of single adaptive loci (The Heliconius Genome Consortium et 75 

al., 2012). The final genomic composition is determined by a complex interplay of demographic 76 

processes, heterogeneity in recombination (e.g. induced by genomic rearrangements) (Wellenreuther 77 

and Bernatchez, 2018) and selection (Sankararaman et al., 2014; Schumer et al., 2016). Progress in 78 

sequencing technology, now allows characterisation of patterns of admixture and the illumination of 79 

underlying processes (Payseur and Rieseberg, 2016). Yet, research has largely focused on animals 80 

(Turner and Harr, 2014; Vijay et al., 2016; Meier et al., 2017; Jay et al., 2018) and plants (Twyford et 81 

al., 2015) and relatively little attention has been paid to natural populations of sexually reproducing 82 

micro-organisms (Leducq et al., 2016; Stukenbrock, 2016; Peter et al., 2018; Steenkamp et al., 2018).  83 

 84 

The fission yeast Schizosaccharomyes pombe is an archiascomycete haploid unicellular fungus with a 85 

facultative sexual mode of reproduction. Despite of its outstanding importance as a model system in 86 

cellular biology (Hoffman et al., 2015) and the existence of global sample collections, essentially all 87 

research has been limited to a single isogenic strain isolated by Leupold in 1949 (Leupold 972; JB22 88 

in this study). Very little is known about the ecology, origin, and evolutionary history of the species 89 

(Jeffares, 2018). Global population structure has been described as shallow with no apparent 90 

geographic stratification (Jeffares et al., 2015). Genetic diversity (π = 3·10−3 substitutions/site) appears 91 

to be strongly influenced by genome-wide purifying selection with the possible exception of region-92 

specific balancing selection (Fawcett et al., 2014; Jeffares et al., 2015). Despite the overall low genetic 93 

diversity, S. pombe shows abundant additive genetic variation in a variety of phenotypic traits 94 

including growth, stress responses, cell morphology, and cellular biochemistry (Jeffares et al., 2015). 95 

The apparent worldwide lack of genetic structure in this species appears inconsistent with the large 96 

phenotypic variation between strains and with evidence for post-zygotic reproductive isolation 97 

between inter-strain crosses, ranging from 1% to 90 % of spore viability (Kondrat’eva and Naumov, 98 

2001; Teresa Avelar et al., 2013; Zanders et al., 2014; Jeffares et al., 2015; Naumov et al., 2015; 99 

Marsellach, 2017).  100 

 101 

In this study, we integrate whole-genome sequencing data from three different technologies - 102 

sequencing-by-synthesis (Illumina technology data accessed from (Jeffares et al., 2015)), single-103 

molecule real-time sequencing (Pacific BioSciences technology, this study) and nanopore sequencing 104 

(Oxford Nanopore technology, this study) - sourced from a mostly human-associated, global sample 105 

collection to elucidate the evolutionary history of the S. pombe complex. Using population genetic 106 

analyses based on single nucleotide polymorphism (SNP) we show that global genetic variation and 107 

heritable phenotype variation of S. pombe results from recent hybridization of two ancient lineages. 25 108 

de novo assemblies from 17 divergent strains further allowed us to quantify segregating structural 109 
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variation including insertions, deletions, inversion and translocations. In light of these findings, we 110 

retrace the global population history of the species, and discuss the relative importance of genome-111 

wide ancestry and structural mutations in explaining phenotypic variation and reproductive isolation. 112 

 113 

Results 114 

 115 

Global genetic variation in S. pombe is characterized by ancient admixture 116 

Genetic variation of the global S. pombe collection comprises 172,935 SNPs segregating in 161 strains. 117 

Considering SNPs independently, individuals can be sub-structured into 57 clades that differ by more 118 

than 1900 variants, but are near-clonal within clades (Jeffares et al., 2015). To examine population 119 

ancestry further, we divided the genome into 1925 overlapping windows containing 200 SNPs each 120 

and selected one representative from each clade (57 samples in total). Principle component analysis 121 

conducted on each orthologous window showed a highly consistent pattern along the genome (Figure 122 

1a, Supplementary Figure 1): i) the major axis of variation (PC1) split all samples into two clear 123 

discrete groups explaining 60% ± 13% of genetic variance (Figure 1b). ii) All samples fell into either 124 

extreme of the normalized distribution of PC1 scores (𝑃𝑃𝑃𝑃1 ∈   [0; 0.25] ∪  [0.75; 1]) 125 

(Supplementary Figures 2 & 3) with the only exception of strains with inferred changes in ploidy 126 

level (Methods, Supplementary Figure 4). iii) PC2 explained 13% ± 6% of variation and 127 

consistently attributed higher variation to one of the two groups. This strong signal of genomic 128 

windows separating into two discrete groups suggested that the genomic diversity in this collection 129 

was derived from two distinct ancestral populations. However, iv) group membership of strains 130 

changes among windows moving along the genome, reflecting recombination between these two well 131 

defined groups. Forwards population simulations followed by principle component analysis with SNP 132 

windows showed that this signal was unlikely to be an artefact (see Methods). This last point 133 

highlights the importance of considering haplotype structure and explains the lack of observed 134 

population structure when disregarding non-independence of SNPs (Jeffares et al., 2015). 135 

 136 

The strong signal from the PCA systematically differentiating groups along the genome was likewise 137 

reflected in population genetic summary statistics including Watterson’s theta (θ), pairwise nucleotide 138 

diversity (π), and Tajima’s D (Figure 1d and 2). Significant differences in these statistics (Kendall’s τ 139 

p-value ≤ 2.2·10−16) were also present in mitochondrial genetic variation (Figure 1a) and allowed 140 

polarising the two groups across windows into a 'low-diversity' group (red) and a 'high-diversity group 141 

(blue) (Figure 1a, Supplementary Figure 5). Genetic divergence between groups (Dxy) was 15 and 3 142 

times higher than mean genetic diversity (π) within each group, respectively, and thus supports a 143 

period of independent evolution. Painting genomic windows by group membership revealed blocks of 144 

ancestry distributed in sample specific patterns along the genome (Figure 1c, Supplementary Figure 145 

6). The sample corresponding to the reference genome isolated originally from Europe (Leupold’s 146 
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972; JB22) consisted almost exclusively of 'red' ancestry (>96% red), whereas other samples were 147 

characterized near-exclusively by 'blue' ancestry (>96% blue). The sample considered to be a different 148 

species from Asia, S. kambucha (JB1180 (Singh and Klar, 2002)) had a large proportion of 'blue' 149 

windows (>70% blue). Hereafter, we refer to the 'red' and 'blue' clade as Sp and Sk, for S. pombe and S. 150 

kambucha respectively.  151 

 152 

Next, we explored different historical processes that may underlie the deep divergence between these 153 

clades and their distribution along the genome. Using individual based forward simulations we 154 

contrasted a historical scenario of divergence in allopatry followed by extensive, recent hybridization 155 

with a scenario of low, but constant levels of gene flow during divergence. The empirical level of 156 

divergence between ancestral groups in combination with the observed distribution of recombinant 157 

block size along the genome could not be recovered under a demographic model of divergence with 158 

constant gene flow. The simulations much rather provide support for a scenario of divergence in 159 

isolation followed by a recent pulse of gene flow recovering both ancestral divergence and the 160 

observed introgression landscape (see Material and Methods, Supplementary Figures 7 and 8). 161 

 162 

The distribution of ancestry components was highly heterogeneous across the chromosome (Figure 163 

2a). Most strains showed an excess of Sp ancestry in parts of chromosome I, whereas several regions 164 

of chromosome III had an excess of Sk ancestry. Grouping samples by the pattern of genomic ancestry 165 

across the genome revealed eight discrete consistent clusters (Figure 1c). Consistent with independent 166 

and/or recent segregation of ancestral groups, cluster membership for several samples differed 167 

between chromosomes (Figure 1c) and genome components (Supplementary Figures 9 & 10). This 168 

is also reflected by low support in the relationship between the eight clusters. Failing to incorporate 169 

this genome-wide variation of admixture proportions can mimic signatures of selection. For example, 170 

equal ancestry contributions for a certain genomic region will yield high positive values of both 171 

Tajima's D (Supplementary Figure 11) and π and may be mistaken as evidence for balancing 172 

selection. Strong skew in ancestry proportions reduces both statistics to values of the prevailing 173 

ancestry and may appear as evidence for selective sweeps (Figure 2b). Taking ancestry into account, 174 

however, there was no clear signature of selection in either Sp or Sk genetic variation that could 175 

account for heterogeneity in the genetic composition of hybrids (Supplementary Figure 11). 176 

Signatures of selection identified previously (cf. Fawcett et al., 2014) are likely artefacts due to 177 

skewed ancestry proportions rather than events of positive or balancing selection in the ancestral 178 

populations. 179 

 180 

Overall, our results provide strong evidence for the presence of at least two divergent ancestral 181 

populations: one genetically diverse group (Sk clade) and a less diverse group (Sp clade). We found a 182 

large range of ancestral admixture proportions between these two clades broadly clustering samples 183 
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into 8 weakly supported groups. These resemble clusters of strains previously identified by Structure 184 

and fineStructure without explicit modelling of ancestral admixture (Jeffares et al., 2015). Neglecting 185 

ancestry, Jeffares et al. (2015) argued that the shallow population structure likely results from 186 

extensive gene flow between clusters. Yet, considering the genome-wide distribution of discrete Sk 187 

and Sp ancestry, and lack of geographical structure, suggests that the 8 clusters are derived from one or 188 

a few centres of ancient admixture (hybridization) without having to invoke subsequent or recent gene 189 

flow between them.  190 

 191 

Age of ancestral lineages and timing of hybridization 192 

To shed further light on the population history, we estimated the age of the parental lineages and the 193 

timing of initial hybridization. Calibrating mitochondrial divergence by known collection dates over 194 

the last 100 years, Jeffares et al. (2015) estimated that the time to the most recent common ancestor for 195 

all samples was around 2,300 years ago. Current overrepresentation of near-pure Sp and Sk in Europe 196 

or Africa / Asia, respectively, is consistent with an independent history of the parental lineages on 197 

different continents for the most part of the last millennia (Supplementary Figure 10). Yet, the 198 

variety of admixed genomes bears testimony to the fact that isolation has been disrupted by 199 

heterospecific gene flow. Using a theoretical model assuming secondary contact with subsequent 200 

hybridization (Janzen et al., 2018) as supported by the data,  we estimated that hybridization occurred 201 

within the last around 20 to 60 sexual outcrossing generations depending on window size (Figure 3, 202 

Supplementary Figures 12 & 13). Considering intermittent generations of asexual reproduction, high 203 

rates of haploid selfing and dormancy of spores (Farlow et al., 2015; Jeffares, 2018) it is difficult to 204 

obtain a reliable estimate of time in years. Yet, the range of estimates of hybridization timing is 205 

consistent with hybridization induced by the onset of regular trans-continental human trade between 206 

Europe with Africa and Asia (~14th century) and with the Americas (~16th century), with fission 207 

yeast as a human commensal (Jeffares, 2018). This fits with the observation that all current samples 208 

from the Americas were hybrids, while samples with the purest ancestry stem from Europe, Africa and 209 

Asia. Moreover, negative genome-wide Tajima's D estimates for both ancestral clades (mean ± SD for 210 

Sp: -0.8 ± 0.9 and Sk: -0.7 ± 0.6) signal a period of recent expansion. 211 

 212 

Heritable phenotypic variation and reproductive isolation are governed by ancestry components 213 

Hybridization can lead to rapid evolution due to selection acting on the genetic and phenotypic 214 

variation emerging after admixture (Muller, 1932; Fisher, 1999; McDonald et al., 2016). We assessed 215 

the consequences of hybridization on phenotypic variation making use of a large data set including 216 

228 quantitative traits collected from the strains under consideration here (Jeffares et al., 2015). 217 

Contrary to genetic clustering of hybrid genomes (Figure 1c), samples with similar ancestry 218 

proportions did not group in phenotypic space described by the first two PC-dimensions capturing 219 

31% of the total variance across traits (Figure 4a). Moreover, phenotypic variation of hybrids 220 
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exceeded variation of pure strains (>0.9 ancestry for Sp or Sk). This was supported by trait specific 221 

analyses. We divided samples into three discrete groups: pure Sp, pure Sk and hybrids with a large 222 

range of Sp admixture proportions (0.1-0.9). 63 traits showed significant difference among groups 223 

(Figure 4b, Supplementary Figure 14). In the vast majority of cases (50 traits), hybrid phenotypes 224 

were indistinguishable from one of the parents, but differed from the other, suggesting dominance of 225 

one ancestral background, consistent with some ecological separation of the backgrounds. In seven 226 

traits, hybrid phenotypes were intermediate differing from both parents, consistent with an additive or 227 

polygenic contribution of both ancestral backgrounds. For six traits, hybrids exceeded phenotypic 228 

values of both parents providing evidence for transgressive segregation. In all cases, the number of 229 

significantly differentiated traits was found to be higher than under the null model (mean number of 230 

significant traits after 10000 permutations: dominant Sk 4 +/- 2, dominant Sk 4 +/- 2, transgressive 0 231 

+/- 0.3, intermediate 0 +/- 0.1;  Supplementary Figure 15). Jeffares et al. (2017) showed that for each 232 

trait the total proportion of phenotypic variance explained by the additive genetic variance component 233 

(used as an estimated of the narrow-sense heritability) ranged from 0 to around 90%. We found that 234 

across all 228 traits, considering Sp and Sk ancestry components across the 1,925 genomic windows 235 

explained an equivalent amount of phenotypic variance as all 172,935 SNPs segregating across all 236 

samples, being both highly correlated (Figure 4c, 4d; r = 0.82, p-value ≤ 2.2·10−16). Combinations of 237 

ancestral genetic variation appear to be the main determinants of heritable phenotypic variation with 238 

only little contribution from single-nucleotide mutations arising after admixture. In turn, this supports 239 

that the formation of hybrids is recent (see above), and few (adaptive) mutations have occurred after it.  240 

 241 

Ancestry also explained most of the variation in postzygotic reproductive isolation between strains. 242 

Previous work revealed a negative correlation between spore viability and genome-wide SNP 243 

divergence between strains (Jeffares et al., 2015). The degree of similarity in genome-wide ancestry 244 

had the same effect: the more dissimilar two strains were in their ancestry, the lower the viability of 245 

the resulting spores (Figure 4e; Kendall correlation coefficients, τ= -0.30, T= 259, p-value = 246 

6.66·10−3). This finding is consistent with reproductive isolation being governed by many, genome-247 

wide incompatibilities between the Sp and Sk clade. Yet, in a number of cases spore survival was 248 

strongly reduced in strain combinations with near-identical ancestry. In these cases, reproductive 249 

isolation may be caused by few large effect mutations, including structural genomic changes that arose 250 

after hybridization.   251 

 252 

Structural mutations do not determine the genome-wide distribution of ancestry blocks  253 

Structural genomic changes (structural variants or SVs hereafter) are candidates for large-effect 254 

mutations governing phenotypic variation (Küpper et al., 2016; Jeffares et al., 2017), reproductive 255 

isolation (Hoffmann and Rieseberg, 2008; Teresa Avelar et al., 2013) and heterospecific 256 

recombination (Ortiz-Barrientos et al., 2016). They may thus importantly contribute to shaping 257 
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heterogeneity in the distribution of ancestry blocks observed along the genome (Jay et al., 2018; 258 

Poelstra et al., 2014) (Figure 2b). However, inference of SVs in natural strains of fission yeast has 259 

been primary based on short-read sequencing (Jeffares et al., 2017). SV calls from short-read 260 

sequencing data are known to differ strongly by bioinformatic pipeline, are prone to false positive 261 

inference and are limited in their ability to infer long-range SVs, in particular in repetitive regions of 262 

the genome (Jeffares et al., 2017).  263 

 264 

To obtain a reliable and comprehensive account of SVs segregating across strains and test for a 265 

possible association of SVs with the skewed ancestry in the genome, we generated chromosome-level 266 

de novo genome assemblies for 17 of the most divergent samples using single-molecule real time 267 

sequencing (mean sequence coverage 105x; Supplementary Table 7). For the purpose of 268 

methodological comparison, we also generated de novo assemblies for a subset of 8 strains (including 269 

the reference Leupold’s 972) based on nanopore sequencing (mean sequence coverage: 140x). SVs 270 

were called using a mixed approach combining alignment of de novo genomes and mapping of 271 

individual reads to the reference genome (Wood et al., 2002). Both approaches and technologies 272 

yielded highly comparable results (Methods, Supplementary Figure 16-19 and Supplementary 273 

Table 8).  274 

 275 

After quality filtering, we retained a total of 832 variant calls including 563 insertions or deletions 276 

(indels), 118 inversions, 110 translocations and 41 duplications. The 17 strains we examined with long 277 

reads could be classified into six main karyotype arrangements (Figure 5a). The previously reported 278 

list of SVs of the same strains using short reads consisted of only 52 SVs (Jeffares et al., 2017) of 279 

which only 8 were found to overlap with the 832 calls from long-read data. The vast majority of SVs 280 

were smaller than 10 kb (Figure 5b). The size distribution was dominated by elements of 6 kb and 0.5 281 

kb in length corresponding to known transposable elements (TEs) and their flanking long terminal 282 

regions (LTRs), respectively (Kelly and Levin, 2005). Only a small number of SVs corresponded to 283 

large-scale rearrangements (50 kb - 2.2 Mb) including translocations between chromosomes (Figure 284 

5a). A subset of these have been characterized previously as large-effect modifiers of recombination 285 

promoting reproductive isolation (Brown et al., 2011; Teresa Avelar et al., 2013; Jeffares et al., 2017). 286 

 287 

Contrary to previous SV classification based on short reads (Jeffares et al., 2017), SV density was not 288 

consistently increased in repetitive sequences such as centromeric and telomeric regions illustrating 289 

the difficulty of short-read data in resolving SVs in repetitive regions (Figure 5c). Instead, we found 290 

that  the frequency of SVs was significantly elevated in close proximity to developmentally 291 

programmed DNA double-strand breaks (DSB) associated with recombination initiation (Fowler et al., 292 

2014). The proportion of SVs observed within [0, 0.5) kb and [0.5, 1) kb of DSB was increased by 293 

46% (p-value<1·10-4) and 67% (p-value<1·10-4) relative to random expectations. On the contrary, 294 
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regions more distant than 10 kb from DSB were relatively depleted of SVs (Supplementary Figure 295 

20).  296 

 297 

Next, we imputed the ancestry of SV alleles from SNPs surrounding SV break points. We calculated 298 

allele frequencies for SVs in both ancestral clades and constructed a folded two-dimensional site 299 

frequency spectrum (Figure 5d). The majority of variants (66 %) segregated at frequencies below 0.3 300 

in both ancestral genetic backgrounds. Very few SVs were differentiated between ancestral 301 

populations (3 % of variants with frequency higher than 0.9 in one population and below 0.1 in the 302 

other). This pattern contrasted with the reference spectrum derived from SNPs where the proportion of 303 

low frequency variants was similar at 60 %, but genetic differentiation between populations was 304 

substantially higher (21 % of SNP variants with frequency higher than 0.9 in one population and 305 

below 0.1 in the other). The difference was most pronounced for large SVs (larger than 10 kb) and 306 

TEs, for which we estimated allele frequencies for all 57 strains by means of PCR and short-read data, 307 

respectively. For TE’s, 98 % of the total 1048 LTR variants segregated at frequencies below 0.3 in 308 

both ancestral populations without a single variant differentiating ancestral populations (Figure 5d). 309 

Large SVs likewise segregated at low frequencies, being present at most in two strains out of 57. This 310 

included the translocation reported for S. kambucha between chromosome II and III  (Zanders et al., 311 

2014), which we found to be specific for that strain. Only the large inversion on chromosome I 312 

segregated at higher frequency being present in five strains out of 57, of which three were of pure Sp 313 

ancestry including the reference strain (Supplementary Table 10). Additionally, SVs segregating at 314 

high frequency (> 0.7) did not cluster in genomic regions with steep transitions in ancestry between Sp 315 

and Sk ancestry (large changes in ancestral frequency in Figure 2a. p-value > 0.1; Supplementary 316 

Figure 21).  317 

 318 

In summary, long-read sequencing provided a detailed account of species-wide diversity in structural 319 

genetic variation including over 800 high-quality variants ranging from small indels to large-scale 320 

inter-chromosomal rearrangements. SV calls showed substantial overlap among technologies (Pacific 321 

Biosciences, Nanopore) and approaches (de novo assembly vs. mapping), but less than 1 % of this 322 

variation was inferred from short-read data. This finding admonishes to caution when interpreting SV 323 

calls from short read data which are moreover sensitive to genotyping methods. In contrast to genome-324 

wide SNPs, SVs segregated near-exclusively at low frequencies and were rarely differentiated by 325 

ancestral origin. This is consistent with strong diversity-reducing purifying selection relative to SNPs. 326 

The fact that SVs, including large-scale rearrangements with known effects on recombination and 327 

reproductive isolation (Brown et al., 2011; Teresa Avelar et al., 2013; Zanders et al., 2014), were often 328 

unique to single strains precludes a role of SVs in shaping patterns of ancestral heterospecific 329 

recombination. Moreover, while being concentrated in proximity to double-strand breaks, possibly due 330 

to improper repair upon recombination (Currall et al., 2013), SVs were not significantly associated 331 
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with steep transitions in ancestry blocks. Summarizing the evidence, SVs appear to have had limited 332 

influence in shaping genome-wide patterns of ancestral admixture. While they may reduce fitness of 333 

hybrids between specific strains, SV cannot explain the prevalence of reproductive isolation as a 334 

function on ancestral similarity (Figure 4e).  335 

 336 

Negative epistasis and the distribution of ancestral blocks  337 

Alternatively, heterogeneity in the distribution and frequency of ancestry along the genome may result 338 

from negative epistatic interactions of incompatible genetic backgrounds (Schumer et al., 2016). An 339 

excess of homospecific combinations of physically distant loci can serve as an indication of epistatic 340 

selection against genetic incompatibilities which can be segregating at appreciable frequencies even 341 

within species (Corbett-Detig et al., 2013). We tested this hypothesis by measuring ancestry 342 

disequilibrium (AD) between all possible pairs of genomic windows within a chromosome. 343 

Specifically, we quantified linkage disequilibrium (LD) between windows dominated by alleles from 344 

the same ancestral group (> 0.7) Sp-Sp or Sk-Sk (reflecting positive AD) and contrasted it to the degree 345 

of linkage disequilibrium arising between heterospecific allele combinations Sp-Sk (negative AD) 346 

(Supplementary Figure 22).  LD differed significantly between these two cases (Figure 6). While 347 

negative AD decreased rapidly with genetic distance (R2 < 0.2 after 66, 19 and 21 kb respectively for 348 

each chromosome) positive LD was higher in magnitude and extended over larger distances (R2 < 0.2 349 

after 1.02, 0.54, and 0.18 Mb respectively for each chromosome in Sk-Sk comparisons and 1.59, 1.12, 350 

and 0.32 Mb for Sp-Sp comparisons). This relationship remained significant after controlling for the 351 

potential effect of secondary population structure which can likewise increase apparent AD mimicking 352 

signatures of selection on epistatic genetic variation. Choosing only a single representative from each 353 

of the hybrid clusters (Figure 1c) LD remained larger for comparisons of genomic regions with the 354 

same ancestry. These results are overall consistent with a contribution of epistatic selection during the 355 

course of hybridization in shaping the ancestry composition of admixed genomes. 356 

 357 

Discussion  358 

This study adds to the increasing evidence that hybridization plays an important role as a rapid, 359 

'creative' evolutionary force in natural populations (Seehausen, 2004; Mallet, 2007; Soltis and Soltis, 360 

2009; Abbott et al., 2013; Schumer et al., 2014; Abbott et al., 2016; Pennisi, 2016; Nieto Feliner et al., 361 

2017). Recent heterospecific recombination between two ancestral S. pombe populations shuffled 362 

genetic variation of genomes that diverged since classical antiquity about 2,300 years ago. With the 363 

necessary caution the timing of hybridization can be inferred to coincide with the onset of intensified 364 

trans-continental human trade, suggesting an anthropogenic contribution. Several samples showed 365 

similar distribution of ancestral blocks along the genome suggesting comparable evolutionary histories, 366 

and allowing the identification of 8 discrete clusters. These clusters, in general showed weak 367 

geographical grouping, initially interpreted as evidence for reduced population structure with large 368 
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recent world-wide gene flow (Jeffares et al., 2015). In contrast, the world-wide distribution of the two 369 

ancestral linages suggests rapid and recent global dispersion after hybridization followed by local 370 

differentiation. This study thus highlights the importance of taking genomic non-independence into 371 

account. Allowing for the fact that genomes are mosaics reflecting different evolutionary histories can 372 

fundamentally alter inference on a species' evolutionary history.  373 

 374 

Moreover, conceptualizing genetic variation as a function of ancestry blocks alternating along the 375 

genome changes the view on adaptation. Admixture is significantly faster than evolutionary change 376 

solely driven by mutation. Accordingly, phenotypic variation was near-exclusively explained by 377 

ancestry components with only little contribution from novel mutations. Importantly, admixture not 378 

only filled the phenotypic space between parental lineages, but also promoted transgressive 379 

segregation in several hybrids. This range of phenotypic outcomes opens the opportunity for hybrids 380 

to enter novel ecological niches (Nolte and Sheets, 2005; Pfennig et al., 2016) and track rapid 381 

environmental changes (Eroukhmanoff et al., 2013).  382 

 383 

Structural mutations have been described as prime candidates for rapid large-effect changes with 384 

implications on phenotypic variation, recombination and reproductive isolation (Faria and Navarro, 385 

2010; Ortiz-Barrientos et al., 2016; Wellenreuther and Bernatchez, 2018). This study contributes to 386 

this debate providing a detailed account of over 800 high-quality structural variants identified across 387 

17 chromosome level de novo genomes sampled from the most divergent strains within the species. 388 

On the whole, SVs had little effect in our analysis. SVs segregated at low frequencies in both ancestral 389 

populations and, contrary to what has been suggested for specific genomic regions in other systems 390 

(Jay et al., 2018), they did not account for genome-wide heterogeneity in introgression among strains. 391 

Moreover, reproductive isolation was overall best predicted by the degree of shared ancestry with little 392 

contribution from SVs. Few crosses, however, showed strong reproductive isolation despite a high 393 

degree of shared ancestry (outliers in lower left corner of Figure 4e). In these cases, combining SVs 394 

from different strains into hybrid genomic backgrounds may have a significant impact. This is 395 

consistent with the observation that large, artificially generated rearrangements affect fitness (Teresa 396 

Avelar et al., 2013; Nieuwenhuis et al., 2018) and may promote reproductive isolation between 397 

specific S. pombe strains (Teresa Avelar et al., 2013; Zanders et al., 2014). Thus, reproductive 398 

isolation may arise by a combination of factors: negative epistasis between many loci with small to 399 

moderate effect differing in ancestry, and for specific strain combinations, single major effect 400 

(structural) mutations such as selfish elements or meiotic drivers (Zanders et al., 2014; Hu et al., 2017; 401 

Nuckolls et al., 2017). Functional work is needed to isolate these genetic elements.  402 

 403 

 404 

 405 
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Material and Methods 406 

 407 

Strains 408 

This study is based on a global collection of S. pombe consisting of 161 world-wide distributed strains 409 

(see Supplementary Table 1) described in Jeffares et al. (2015). 410 

 411 

Inferring ancestry components  412 

To characterize genetic variation across all strains, we made use of publically available data in variant 413 

call format (VCF) derived for all strains from Illumina sequencing with an average coverage of around 414 

80x (Jeffares et al., 2015). The VCF file consists of 172,935 SNPs obtained after read mapping to the 415 

S. pombe 972 h− reference genome (ASM294v264) (Wood et al., 2003) and quality filtering (see 416 

Supplementary Table 1 for additional information). We used a custom script in R 3.4.3  (Team, 417 

2014) with the packages gdsfmt 1.14.1 and SNPRelate 1.12.2 (Zheng et al., 2017, 2012), to divide the 418 

VCF file into genomic windows of 200 SNPs with overlap of 100 SNPs. This resulted in 1925 419 

genomic windows of 1 - 89 kb in length (mean 13 kb). For each window, we performed principal 420 

component analyses (PCA) using SNPRelate 1.12.2 (Zheng et al., 2017, 2012) (example in Figure 1a 421 

and Supplementary Figure 1). The proportion of variance explained by the major axis of variation 422 

(PC1) was consistently high and allowed separating strains into two genetic groups/clusters, Sp and Sk 423 

(see main text, Figure 1b). Using individual based forward simulations with SLiM 3.2.1 (Haller and 424 

Messer, 2019) we found that this pattern cannot be obtained in the absence of population structure 425 

even for smaller window sizes including 5, 10, 20, 50 or 100 SNPs (Supplementary Figures 23).  426 

 427 

We calculated population genetic parameters within clusters including pairwise nucleotide diversity 428 

(π) (Nei and Li, 1979), Watterson theta (θw) (Watterson, 1975), and Tajima’s D (Tajima, 1989), as 429 

well as the average number of pairwise differences between clusters (Dxy) (Nei and Li, 1979) using 430 

custom scripts. Statistical significance of the difference in nucleotide diversity (π) between ancestral 431 

clades was inferred using Kendall’s τ as test statistic. Since values of adjacent windows are 432 

statistically non-independent due to linkage, we randomly subsampled 200 windows along the genome 433 

with replacement. This was repeated a total of 10 times for each test statistic, and we report the 434 

maximum p-value. Given the consistent difference between clusters (Figure 1 and Supplementary 435 

Figure 2, 3 and 5), normalised PC score could be used to attribute either Sp (low-diversity) or Sk 436 

(high-diversity) ancestry to each window (summary statistics for each window are given in 437 

Supplementary Table 2). This was performed both for the subset of 57 samples (Figure 1c) and for 438 

all 161 samples (Supplementary Figure 6). Using different window sizes (150, 100 and 50 SNPs 439 

with overlap of 75, 50 and 25 respectively) yielded qualitatively the same results. Intermediate values 440 

in PC1 (between 0.25 and 0.75) were only observed in few, sequential windows where samples 441 
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transitioned between clusters (Supplementary Figure 3). The only exception was sample JB1207, 442 

which we found to be diploid (for details see below). 443 

 444 

Population structure after hybridization 445 

To characterise the genome-wide distribution of ancestry components along the genome, we ran a 446 

hierarchical cluster analysis on the matrix containing ancestry information (Sp or Sk) for each window 447 

(columns) and strain (rows) using the R package Pvclust 2.0.0 (Suzuki and Shimodaira, 2006). Pvclust 448 

includes a multiscale bootstrap resampling approach to calculate approximately unbiased probability 449 

values (p-values) for each cluster. We specified 1000 bootstraps using the Ward method and a 450 

Euclidian-based dissimilarity matrix. The analysis was run both for the whole genome (Figure 1c) and 451 

by chromosome (Figure 1c, Supplementary Figure 9). 452 

 453 

Phylogenetic analysis of the mitochondrial genome 454 

From the VCF file, we extracted mitochondrial variants for all 161 samples (Jeffares et al., 2015) and 455 

generated an alignment in .fasta format by substituting SNPs into the reference S. pombe 972 h− 456 

reference genome (ASM294v264) using the package vcf2fasta 457 

(https://github.com/JoseBlanca/vcf2fasta/, version Nov. 2015). We excluded variants in mitochondrial 458 

regions with SVs inferred from long reads. A maximum likelihood tree was calculated using RaxML 459 

(version 8.2.10-gcc-mpi) (Stamatakis, 2014) with default parameters, GTRGAMMAI approximation, 460 

final optimization with GTR + GAMMA + I and 1000 bootstraps. The final tree was visualised using 461 

FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) (Supplementary Figure 10).  462 

 463 

Time of hybridization 464 

Previous work (Jeffares et al., 2015) has shown that the time to the most recent common ancestor for 465 

161 samples dates back to around 2300 years ago. This defines the maximum boundary for the time of 466 

hybridization. We used the theoretical model by Janzen et al., (2018) to infer the age of the initial 467 

hybridization event. The model predicts the number of ancestry blocks and junctions present in a 468 

hybrid individual as a function of time and effective population size (Ne). First, we obtained an 469 

estimate of Ne using the multiple sequential Markovian coalescent (MSMC). We constructed artificial 470 

diploid genomes from strains with consistent clustering by ancestry (Figure 1c) and estimated change 471 

in Ne as function across time using MSMC 2-2.0.0 (Schiffels and Durbin, 2014). In total we took four 472 

samples per group and produced diploid genomes in all possible six pairs for each group, except for 473 

one cluster that had only two samples (JB1205 and JB1206). Bootstraps were produced for each 474 

analysis, subsampling 25 genomic fragments per chromosome of 200 kb each. Resulting effective 475 

population size and time was scaled using reported mutation rate of 2⋅10-10 mutations site-1 generation-1 476 

(Farlow et al., 2015). Although it is difficult to be certain of the number of independent hybridization 477 

events, it is interesting to see that some clusters show similar demographic histories (Supplementary 478 
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Figure 24). Regardless of the demographic history in each cluster, long-term Ne as estimated by the 479 

harmonic mean ranged between 1⋅105 and 1⋅109. Ne of the near-pure ancestral Sp and Sk cluster was 480 

7⋅105 and 9⋅106, respectively. These estimates of Ne are consistent with previous reports of 1⋅107  481 

(Farlow et al., 2015).  482 

 483 

We then used a customised R script with the ancestral component matrix to estimate the number of 484 

ancestry blocks (Sp or Sk clade) (Supplementary Figure 12). We used the R script from Janzen et al., 485 

(2018), and ran the model in each sample and chromosome using: Ne = 1⋅106, r = number of genomic 486 

windows per chromosome, h0 = 0.298 (mean heterogenicity (h0) was estimated from the ancestral 487 

haplotype matrix) and c = 7.1, 5.6, and 4.1 respectively for chromosome I, II and III (values taken 488 

from Munz et al. (1989)) (Supplementary Figure 13). Given the large Ne, no changes in mean 489 

heterogenicity is expected over time after hybridization due to drift (the proportion of ancestral 490 

haplotypes Sp and Sk in hybrids, estimated as 2pq, where p and q are the proportion of each ancestral 491 

clade in hybrids). Accordingly, results did not change within the range of the large Ne values. For this 492 

analysis, samples with proportion of admixture lower than 0.1 were excluded. The analysis was 493 

repeated with different windows sizes (200, 100 and 50 SNPs per window).  494 

 495 

Demographic validation 496 

To differentiate between possible historical scenarios underlying the observed pattern of ancestral 497 

divergence and introgression we performed individual based forward simulations using SLiM 3.2.1 498 

(Haller and Messer, 2019).  These simulations were not intended to trace the “real” demographic 499 

history including estimates of split time, changes in effective population size, population structure 500 

after hybridization, or migration rates between subpopulations. Much rather, we contrasted two 501 

extremes of a continuum of possible scenarios: i) a scenario of ancestral divergence in isolation 502 

followed by a short, recent period of gene flow and ii) a scenario of divergence with continuous gene 503 

flow throughout the course of evolution. We asked the questions which of the simulated scenarios may 504 

better recover the empirically observed deep divergence of ancestry components and their distribution 505 

in blocks along the genome. We parametrized the simulations with estimates from the literature 506 

including 1⋅106 for Ne, a mutation rate of 2⋅10-10 site-1 generation-1 (Farlow et al., 2015), an average 507 

recombination rate of 1⋅106 site-1 generation-1 (Munz et al., 1989), and a cloning rate of 0.95 508 

generation-1 (equivalent to around 1 sexual cycle every 20 asexual generations). In order to reduce the 509 

computational effort, all parameters were scaled relative to a Ne of 1000 as suggested in the SLiM 510 

manual. Simulations were divided in two parts: 1) simulations of single 15 kb genomic windows 511 

corresponding to ~200 SNPs per window in the empirical data; 2) whole chromosome simulations 512 

with a fragment of 3 Mb corresponding to the size of S. pombe chromosome III. In both cases, we 513 

simulated divergence of two populations that were connected by different levels of symmetrical gene 514 

flow ranging from migration rates of 0 (complete isolation) to 1⋅10-4 (equivalent to 100 migrants per 515 
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generation in a population of 1⋅106). To mimic the empirical difference in genetic diversity between 516 

populations, effective population sizes of the populations were set to 7⋅105 and 3⋅105, respectively. For 517 

the first part (single windows), a total of 100 replicate simulations were run for 30⋅Ne generations. 518 

Every 2 Ne generations 50 individuals were randomly sampled in total from both populations. At each 519 

time point, samples were processed in the same way as the empirical data per window estimating the 520 

percentage of variance explained by PC1 and Dxy between subgroups as inferred by normalized PC1 521 

scores (Supplementary Figure 7). For the second part (whole chromosome), a total of 100 replicate 522 

simulations were run for 15⋅Ne generations after which a total of 50 genomes were randomly sampled 523 

from both populations. Simulated data were divided into genomic windows of 200 SNPs and 524 

processed in the same way as the empirical data (Supplementary Figure 8) for which the mean 525 

proportion of variance explained by PC1 was 64% and mean divergence between subpopulations (Dxy) 526 

was 0.0058. These values were only obtained in the simulations of a single genomic window under 527 

migration rates below 2⋅10-5 (equivalent to 20 migrants per generation in a population of 1⋅106 528 

individuals). However, this migration rate was not enough to produce recombinant blocks in whole 529 

chromosome simulations. Blocks were only observed when migration rate exceeded 1⋅10-4 (100 530 

migrants per generation). Yet, with this level of gene flow the proportion of variance explained by 531 

PC1 (around 25% in all simulations) and Dxy (below 0.0025 in all simulations) were significantly 532 

lower.  533 

 534 

Phenotypic variation and reproductive isolation 535 

We sourced phenotypic data of 229 phenotypic measurements in the 161 strains including amino acid 536 

quantification on liquid chromatography (aaconc), growth and stress on solid media (smgrowth), cell 537 

growth parameters and kinetics in liquid media (lmgrowth) and cell morphology (shape1 and shape2) 538 

from Jeffares et al. (2015). Data on reproductive isolation measured as the percentage of viable spores 539 

in pairs of crosses were compiled from Jeffares et al. (2015) and Marsellach (2017). A summary of all 540 

phenotypic measurements and reproductive data is provided in Supplementary Table 4 and 5, 541 

respectively.  542 

 543 

First, we normalized each phenotypic trait y using rank-based transformation with the relationship 544 

normal.y = qnorm( rank ( y ) / ( 1 + length( y ) ) ). We then conducted PCA on normalized values of 545 

all phentoypic traits using the R package missMDA 1.12 (Josse and Husson, 2016). We estimated the 546 

number of dimensions for the principal component analysis by cross-validation, testing up to 30 PC 547 

components and imputing missing values. In addition to PCA decomposing variance across all traits, 548 

we examined the effect of admixture on each trait separately. Samples were divided into three discrete 549 

categories of admixture: two groups including samples with low admixture proportions (proportion of 550 

Sp or Sk clades higher than 0.9), and one for hybrid samples (proportion of Sp or Sk clades between 551 

0.1 to 0.9). Significant differences in phenotypic distributions between groups were tested using Tukey 552 
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Honest Significant Differences as implemented in Stats 3.4.2 (Team, 2014). Supplementary Figure 553 

14 shows the distribution of phenotypic values by admixture category for each trait. The number of 554 

traits with significant differences among groups was contrasted to values obtained by randomising 555 

admixture categories without replacement (permutations of the Sp, Sk, or hybrid category). Observed 556 

values were contrasted with distribution of the expected number of significant traits after running 557 

10000 independent permutations (Supplementary Figure 15).  558 

 559 

Heritability 560 

Heritability was estimated for all normalized traits using LDAK 5.94 (Speed et al., 2012), calculating 561 

independent kinship matrices derived from: 1) all SNPs and 2) ancestral haplotypes. Both SNPs and 562 

haplotype data were binary encoded (0 or 1). Jeffares et al. (2015) showed that heritability estimates 563 

between normalised and raw values are highly correlated (r = 0.69, p-value ≤ 2.2·10−16). Heritability 564 

estimated with SNP values were strongly correlated with those from ancestral haplotypes (r = 0.82, p-565 

value ≤ 2.2·10−16). Heritability estimates and standard deviation for each trait for both SNPs and 566 

ancestral haplotypes are detailed in Supplementary Table 6.  567 

 568 

Identification of ploidy changes 569 

S. pombe is generally considered haploid under natural conditions. Yet, for two samples ancestry 570 

components did not separate on the principle component axis 1 (see above) for much of the genome. 571 

Instead, these samples were intermediate in PC1 score. A possible explanation is diploidisation of the 572 

two ancestral genomes. To establish the potential ploidy of samples, we called variants for all 161 573 

samples using the Illumina data from Jeffares et al (2015) . Cleaned reads were mapped with BWA 574 

(version 0.7.17-r1188) in default settings and variants were called using samtools and bcftools (version 575 

1.8). After filtering reads with a QUAL score > 25, the number of heterozygous sites per base per 576 

20kb window were calculated. Additionally the nuclear content (C) as measured by Jeffares et al. 577 

(2015) (Supplementary Table S4 in Jeffares et al (2015)) were used to verify increased ploidy. Two 578 

samples showed high heterozygosity along the genome (JB1169 and JB1207) of which JB1207 for 579 

which data were available also showed a high C-value, suggesting that these samples are diploid 580 

(Supplementary Figures 4 & 25). In JB1207, heterozygosity varies along the genome, with regions 581 

of high and low diversity. Sample JB1110 showed genomic content similar to JB1207, but did not 582 

show heterozygosity levels above that of haploid strains, suggesting the increase in genome content 583 

occurred by autoploidization.  584 

 585 

High-weight genomic DNA extraction and whole genome sequencing 586 

To obtain high weight gDNA for long-read sequencing, we grew strains from single colonies and 587 

cultured them in 200 mL liquid EMM at 32 °C shaking at 150 r.p.m. overnight. Standard media and 588 

growth conditions were used throughout this work (Hagan et al., 2016) with minor modifications: We 589 
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used standard liquid Edinburgh Minimal Medium (EMM; Per liter: Potassium Hydrogen Phthalate 590 

3.0 g, Na HPO4⋅2H2O 2.76 g, NH4Cl 5.0 g, D-glucose 20 g, MgCl2⋅6H2O 1.05 g, CaCl2⋅2H2O 591 

14.7 mg, KCl 1 g, Na2SO4 40 mg, Vitamin Stock ×1000 1.0 ml, Mineral Stock ×10,000 0.1 ml, 592 

supplemented with 100 mg l−1 adenine and 225 mg l−1 leucine) for the asexual growth. DNA extraction 593 

was performed with Genomic Tip 500/G or 100/G kits (Qiagen) following the manufacturer’s 594 

instruction, but using Lallzyme MMX for lysis (Flor-Parra et al 2014, doi:10.1002/yea.2994). For each 595 

sample, 20 kb libraries were produced that were sequenced on one SMRT cell per library using the 596 

Pacific Biosciences RSII Technology Platform (PacBio®, CA). For a subset of eight samples, 597 

additional sequencing was performed using Oxford Nanopore (MinION). Sequencing was performed 598 

at SciLifeLab, Uppsala, Gene centre LMU, Munich and the Genomics & Bioinformatics Laboratory, 599 

University of York. We obtained on average 80x (SMRT) and 140x (nanopore) coverage for the 600 

nuclear genome for each sample (summary in Supplementary Table 7).  601 

 602 

Additionally, 2.5 µg of the same DNA was delivered to the SNP&SEQ Technology Platform at the 603 

Uppsala Biomedical Centre (BMC), for Illumina sequencing. Libraries were prepared using the 604 

TruSeq PCRfree DNA library preparation kit (Illumina Inc.). Sequencing was performed on all 605 

samples pooled into a single lane, with cluster generation and 150 cycles paired-end sequencing on the 606 

HiSeqX system with v2.5 sequencing chemistry (Illumina Inc.). These data were used for draft 607 

genome polishing (see below). 608 

 609 

De novo assembly of single-molecule read data 610 

De novo genomes were assembled with Canu 1.5 (Koren et al., 2017) using default parameters. 611 

BridgeMapper from the SMRT 2.3.0 package was used to polish and subsequently assess the quality of 612 

genome assembly. Draft genomes were additionally polishing using short Illumina reads, running four 613 

rounds of read mapping to the draft genome with BWA 0.7.15 and polishing with Pilon 1.22 (Walker 614 

et al., 2014). Summary statistics of the final assembled genomes are found in Supplementary Table 7. 615 

De novo genomes were aligned to the reference genome using MUMmer 3.23 (Kurtz et al., 2004). 616 

Contigs were classified by reference chromosome to which they showed the highest degree of 617 

complementary. We used customised python scripts to identify and trim mitochondrial genomes.  618 

 619 

Structural variant detection 620 

Structural variants (SVs) were identified by a combination of a de novo and mapping approach. De 621 

novo genomes were aligned to the reference genome using MUMmer, and SVs were called using the 622 

function show-diff and the package SVMU 0.2beta (Khost et al., 2017). Then, raw long reads were 623 

mapped to the reference genome with NGMLR and genotypes were called using the package Sniffles 624 

(Sedlazeck et al., 2018). We implemented a new function within Sniffles “forced genotypes”, which 625 

calls SVs by validating the mapping calls from an existing list of breaking points or SVs. This reports 626 
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the read support per variant even down to a single read. We forced genotypes using the list of de novo 627 

breaking points to generate a multi-sample VCF file. SVs were merged using the package SURVIVOR 628 

(Jeffares et al., 2017) option merge with a threshold of 1kbp and requiring the same type. In total, it 629 

resulted in a list of 1498 SVs with 892 in common between the mapping and de-novo approaches 630 

(Supplementary Figure 16).  631 

 632 

Within the 892 common variants we compared the accuracy of genotyping between sample by 633 

comparing genotypes obtained from de novo genomes and by mapping reads to reference genome. 634 

Additionally, we compared genotypes in samples sequenced with both PacBio and MinIon. In total we 635 

sequenced 8 samples with both technologies. We found high consistency for variants called with both 636 

sequencing technologies and observed that allele frequencies were highly correlated (r = 0.98, p-value 637 

≤ 2.2 × 10−16) (Supplementary Figures 16 - 19).  638 

Only common SVs between the mapping and de-novo approach were considered, and variants with 639 

consistency below 50% were removed. We manually checked large SVs (larger than 10kb) by 640 

comparing the list of SVs with the alignment of the de novo genomes to the reference genome from 641 

MUMmer. This resulted in a final data set with 832 SVs (Supplementary Table 8).  642 

 643 

Distribution of SVs around developmentally programmed DNA double-strand breaks (DSB) 644 

We tested the association between DSB and SVs by comparing the physical genomic coordinates of 645 

the final list of SVs with DSB locations accessed from Fowler et al.,  (2014).  Maintaining the same 646 

number of SVs per chromosome, we used a customized R script to randomise SV coordinates and 647 

measure the distances to the closest DSB. We counted the number of SVs present within different 648 

intervals of physical genetic distance ([0,500), [500, 1000), [1000, 2000), [2000, 4000), [4000, 10000), 649 

[10000, 20000), [20000, 30000) bp). Empirically observed values were contrasted with randomized 650 

distribution after running 10000 independent permutations. P-values of differences between 651 

randomization and observed values were obtained from the fraction of expected values higher than the 652 

observed value from the original data (Supplementary Figures 20). 653 

 654 

PCR validation of large SVs 655 

To test the frequency of large inversions and rearrangements observed from long read data, we 656 

performed PCR verification over the breakpoints in the 57 non-clone samples. PCR was performed for 657 

both sides of the breakpoints, with a combination of one primer ‘outside’ of the inversion and both 658 

primers ‘inside’ the inversion (Supplementary Figure 26). PCR were performed on DNA using 659 

standard Taq polymerase, with annealing temperature at 59°C. The primers used, the coordinates in 660 

the reference and the expected amplicon length are given in Supplementary Table 9.  661 

 662 
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Distribution of structural variants in ancestral population – Two dimensional folded site 663 

frequency spectrum  664 

We used the location of break points of SVs to identify whether a variant was located in the Sp or Sk 665 

genetic background in each sample. Ancestral haplotypes are difficult to infer in telomeric and 666 

centromeric regions given the low confidence in SNP calling in those regions, resulting in low 667 

percentage of variance explained by PC1. Thus SVs with break points in those regions were excluded 668 

from this analysis (19 SVs). SVs were grouped by ancestral group and allele frequencies were 669 

calculated for each ancestral population. We used these frequencies to build a two dimensional folded 670 

site frequency spectrum (2dSFS). In order to compare this 2dSFS, we repeated the analysis using SNP 671 

data from all 57 samples. Considering that the majority of identified SVs with long reads were 672 

transposable elements, we also made use of LRT insertion-deletion polymorphism (indels) inferred 673 

from short reads. For this additional data we produced a similar folded 2d SFS. LTR indel data were 674 

taken from Jeffares et al., (2015) and are listed in  Supplementary Table 11.  675 

 676 

Decay in linkage disequilibrium (LD) 677 

To contrast LD between alleles from alternative ancestral groups, we calculated LD between all 678 

described genomic windows within chromosomes (Supplementary Figure 22). For this analysis only 679 

hybrid samples were considered (strains with admixture proportion higher than 0.1). For each pair of 680 

windows, we polarized windows by ancestry (at a threshold of > 0.7) and calculated standardized LD 681 

as the squared Pearson's correlation coefficient (R2) (Hill and Robertson, 1968; Weir, 1979). This 682 

measurement takes into consideration difference in allele frequencies. The expected value of R2 683 

(E(R2)) can be approximated by (Hill and Weir, 1988):  684 𝐸𝐸(𝑅𝑅2) = � 10 + 𝑃𝑃
(2 + 𝑃𝑃) ∗ (11 + 𝑃𝑃)

� ∗ �1 +
(3 + 𝑃𝑃) ∗ (12 + 12𝑃𝑃 + 𝑃𝑃2)𝑛𝑛 ∗ (2 + 𝑃𝑃) ∗ (11 + 𝑃𝑃)

� 685 

Where C corresponds to product between the genetic distance (bp) and the population recombination 686 

rate (ρ) in n number of haplotype sampled. The population recombination rate was calculated as: ρ =687 

4 ∗ 𝑁𝑁𝑒𝑒 ∗ 𝑐𝑐, where c is the recombination fraction between sites and Ne is the effective population size. 688 

We fitted a nonlinear model to obtain least squares estimates of ρ using a customized R script. The 689 

decay of LD with physical distance can be described with this model (Remington et al., 2001).  LD 690 

values were grouped in three categories: i) comparison between windows with high proportion 691 

(Sp>0.7) of Sp ancestral group (Sp-Sp); ii) high proportion (Sk>0.7) of Sk ancestral group (Sk-Sk); and 692 

iii) high proportion of opposite ancestral groups (Sp-Sk). i) and ii) represent cases of positive ancestry 693 

disequilibrium, iii) will be denoted as negative ancestry disequilibrium. In order to reduce bias given 694 

the potential for secondary population structure (clusters in Figure 1c), the analysis was repeated 695 

using one random sample per cluster, resulting in similar general conclusions (Supplementary Figure 696 

27).  697 

 698 
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Data availability 699 

Nanopore, single-molecule real time sequencing data and de-novo genomes are available at NCBI 700 

Sequence Read Archive, BioProject ID PRJNA527756. 701 
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Figure legends 1034 

 1035 

Figure 1 | Distribution of Sp (red) and Sk (blue) ancestry blocks along the S. pombe genome. (a) 1036 

Example of principal component analysis (PCA) of a representative genomic window in chromosome 1037 

I (top) and the whole mitochondrial DNA (bottom). Samples fall into two major clades, Sp (red 1038 

square) and Sk (blue square). The proportion of variance explained by PC1 and PC2 is indicated on the 1039 

axis labels. Additional examples are found in Supplementary Figure 1 (b) Proportion of variance 1040 

explained by PC1 (black line) and PC2 (grey line) for each genomic window along the genome. 1041 

Centromeres are indicated with red bars.  Note the drop in proximity to centromeres and telomeres 1042 

where genotype quality is significantly reduced. (c) Heatmap for one representative of 57 near-clonal 1043 

groups indicating ancestry along the genome (right panel). Samples are organised according to a 1044 

hierarchical clustering, grouping samples based on ancestral block distribution (left dendrogram). 1045 

Colours on the tips of the cladogram represent cluster membership by chromosome (see 1046 

Supplementary Figure 9). Samples changing clustering group between chromosomes are shown in 1047 

grey. (d) Estimate of Dxy between ancestral groups and genetic diversity (π) within the Sp (red) and Sk 1048 

clade (blue) along the genome.  1049 

 1050 

Figure 2 | Population genetic summary statistics. (a) Proportion of Sp (red) and Sk (blue) ancestry 1051 

across all 57 samples along the genome. (b) Tajima’s D differentiated by Sp (red) and Sk (blue) 1052 

ancestry and pooled across all samples irrespective of ancestry (grey line). Genomic regions 1053 

previously identified under purifying selection (Fawcett et al., 2014) are shown with black triangles. 1054 

Reported active meiotic drives (Zanders et al., 2014; Hu et al., 2017; Nuckolls et al., 2017) are 1055 

indicated by yellow triangles. The third panel shows the difference between ancestry specific Tajima's 1056 

D and the estimate from the pooled samples. 1057 

 1058 

Figure 3 | Inferred evolutionary history of contemporary S. pombe strains. An ancestral 1059 

population diverged into two major clades, Sp (red) and Sk (blue) since approximately  2300 years ago 1060 

(Jeffares et al., 2015). Recurrent hybridization upon secondary contact initiated around 20-60 sexual 1061 

outcrossing generations ago resulted in admixed genomes with a range of admixture proportions 1062 

(bottom) prevailing today.  1063 

 1064 

Figure 4 | Ancestry explains variation in phenotype and reproductive isolation. (a) PCA of 1065 

normalized phenotypic variation across 228 traits. The proportion of variance explained by PC1 and 1066 

PC2 is indicated on the axis labels. Admixed samples (dots) are coloured coded by ancestry proportion 1067 

(cf. Figure 3) ranging from pure Sp (red triangle) to pure Sk (blue triangle) ancestry. (b) Phenotypic 1068 

distribution of example traits separated by the degree of admixture: admixed samples are shown in 1069 

grey, pure ancestral Sp and Sk samples are shown in red and blue respectively. The number of traits 1070 
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corresponding to a dominant, additive and transgressive genetic architecture is indicated on the right 1071 

hand side (c) Comparison of heritability estimates of all 228 traits based on 172,935 SNPs (abscissa) 1072 

and on 1925 genomic windows polarized by ancestry (ordinate). Colours indicate statistical 1073 

significance. NS: heritability values not significantly different from zero, AncHap: significant only 1074 

using ancestral blocks, SNPs: significant only using SNPs, SB: significant in both analyses. Diagonal 1075 

(slope=1) added as reference. (d) Histogram of the difference between heritability estimates using 1076 

SNPs and ancestry components for all 228 traits. (e) Correlation between the difference in ancestry 1077 

proportions between two strains (cf. Figure 2) and spore viability of the cross. Red box shows samples 1078 

with low spore viability but high genetic similarity.  1079 

 1080 

Figure 5 | Characterization of structural variation based on long-read, real-time sequencing. (a) 1081 

Schematic representation of the three chromosomes in different strains displaying SVs larger than 1082 

10kb relative to reference genome JB22 (left panel). Chromosome arms are differentiated by colour; 1083 

orientation is indicated with arrows relative to the reference; black bars represent centromeres. In the 1084 

second panel, additional SVs, their type and ID of the corresponding strain are illustrated in brackets. 1085 

(b) Size distribution of SVs below 10 kb. Colours indicate the type of SV. (c) Distribution of SV 1086 

density along the genome. Black bars represent centromeres. (d) Two-dimensional, folded site 1087 

frequency spectrum between inferred ancestral populations for all SVs, SNPs and LTR INDELs. 1088 

Numbers and colours show the percentage of the total number of variants in each category. Variants 1089 

with low frequency in both populations are shown in the blue box. Variants highly differentiated 1090 

between populations are show in red boxes with total in the upper right box. Fills with percentage 1091 

lower than 0.01 are empty.  1092 

Abbreviations: DEL: deletion; DUP: duplication; INS: insertion; INV: inversion 1093 

 1094 

Figure 6 | Decay in linkage disequilibrium (LD) with genetic distance. Relationship between LD 1095 

(R2) and physical distance is depicted for each chromosome. Black points represent values for each 1096 

window pair comparison. Lines show non-lineal regression model based on Hill & Weir (1988) and 1097 

Remington et al. (2001). LD estimates were divided into three categories representing comparison 1098 

between windows of shared ancestry (Sp-Sp or Sk-Sk) reflecting positive ancestry disequilibrium (AD) 1099 

or of opposite ancestry (Sk-Sp) reflecting negative AD.  1100 
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Supplementary Figures 

  



 

 



Supplementary Figure 1: Example of principal component analysis (PCA). Each panel is an 

example PCA of different genomic windows. The chromosome (Chr.), window number (Win), start 

and end position (Spos and Epos) and length of the window in bp (Len) are shown in the header for 

each panel. Samples are differentiated by colours.  

 

 

 

 

Supplementary Figure 2: Normalised PC1 distribution. Density plot of Normalised PC1 values 

shown separately for each of the three chromosomes. Each line represent one sample. The sample 

JB1207 is highlighted as it is the only sample with a high proportion of intermediate values.  



 

Figure continues on next page. 



 

Figure continues on next page. 



 

Figure continues on next page. 



 

Figure continues on next page. 



 

Figure continues on next page. 



 

Supplementary Figure 3: Distribution of normalised PC1 values alone the genome. 

Chromosomes are indicated by colour (chr1 = red; chr2 = green, chr3 = blue). Normalised PC1 values 

were polarized based on genetic diversity as described in the methods section, values close to 0 or 1 

represent genomic regions with the Sp or Sk haplotype, respectively.  

  



 

Supplementary Figure 4: Heterozygosity along the genome. Heatmap of heterozygosity per 20kb 

window and sample along the genome. High heterozygosity values are shown in red. Strains JB1207 

and JB1169 show high heterozygosity along large parts of the genome. 

 

 



 

Supplementary Figure 5: Difference in genetic diversity between ancestral groups. Histogram of 

the ratio in genetic diversity (π) between the ancestral clade Sk over the Sp clade. Note that values are 

presented on a log 2 scale.  

 

 

  



 



Supplementary Figure 6: Distribution of ancestral Sp and Sk haplotypes along the genome. 

Heatmap of ancestral Sp and Sk haplotypes along the genome for each sample. This figure 

corresponds to Figure 1c of the main manuscript, but uses all 161 samples.  

 

 

 

 

Supplementary Figure 7: Individual based forward simulations of population divergence for a 

single genomic window. Proportion of variance explained by PC1 over time (generations) (a-b) and 

divergence between subpopulations (Dxy in c-d), with different migration rates (in migrants per 

generation in a population of 1⋅106). In all panels, the horizontal blue line corresponds to the observed 

empirical values. In a) and c) each line corresponds to the mean value from 100 simulations. Panels b) 

and d) are boxplots of all 100 simulations for migration rates below 20. These plots show that 

observed values are only achieved under migration rates below ~20 migrants per generation.   

 

 



 

Supplementary Figure 8: Individual base forward simulations for an entire chromosome with 

different levels of migration. (a) Proportion of variance explained by PC1 and (b) divergence 

between subpopulations along simulated chromosomes of 3 Mb, after 15⋅106 generations for 100 

independent simulations. Different migration rates were used (in migrants per generation in a 

population of 1⋅106). Horizontal blue lines correspond to observed empirical values. (c) A 

representative example simulation of the resulting genomes, divided into genomic windows and 

processed as empirical data to obtain a matrix as in Figure 1C. These plots show that the observed 

empirical values are only achieved under low migration rates (below ~20 migrants per generation in 

(a) and (b)), but higher migration rate is needed to obtain large haplotype blocks with recombined 

ancestral haplotypes as seen in the empirical data. Contrary to empirical data, the observed blocks 

under higher migration show low divergence (Dxy below 0.002) and no clear clustering of samples 

between subpopulations (high proportion of windows per sample with normalized PC1 between 0.3 

and 0.7: yellow regions, contrary to observations in Supplementary Figures 1 - 3). General 

conclusions were consistent between replicated simulations.  

 



 

 

 

Supplementary Figure 9: Clustering analyses by chromosome. Clustering analyses using ancestral 

block distribution. Each panel shows the clustering using whole chromosome and independently by 

chromosome. Red numbers show bootstrapping support.  

  



 



Supplementary Figure 10: Mitochondrial phylogeny. Unrooted maximum-likelihood tree for 161 

samples based on mitochondrial SNPs. Red numbers show bootstrapping support when higher than 

50. Tips show sample ID and sampling location as in Supplementary Table 1. Scale bar units in 

substitutions per site. Samples with high proportion from one ancestral population are indicated with 

dots (red: high Sp clade proportion, blue: high Sk clade proportion).  

 

 

Supplementary Figure 11: Tajima’s D estimate. Relationship between proportion of ancestral 

haplotypes (here represented by the proportion of Sk clade) and Tajima’s D. Different panels show 

total Tajima’s D using all samples (black dots) and samples from the Sp (red) or Sk (blue) clade only.  

  



 

Supplementary Figure 12: Number of transitions (joins) between Sp and Sk haplotypes along the 

genome per chromosome and sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 13: Estimated number of sexual generations since hybridisation. 

Histogram displaying the number of outcrossing sexual generations since hybridisation using the 

model by Janzen et al. (2018). The analysis was divided by chromosome and sample. Counts 

represent the number of samples for which a given time of hybridization was inferred. The analysis 

was conducted using 200 and 50 SNPs per windows ((a) and (b) respectively).  

 



 

 

Supplementary Figure 14: Phenotypic distribution per trait. Boxplot of phenotypic distribution 

using normalised values. Traits are divided by ancestral admixture proportions: pure Sk clade (blue), 

pure Sp clade (red) and hybrids (gray).  



 

 

 

 

Supplementary Figure 15: Permutation test with phenotypic data. Histogram of total number of 

significant traits after randomising sample category (pure Sp clade, pure Sk clade and hybrids) without 

replacement. Blue lines show the observed number of significant traits. Matrix data was randomised 

10000 times to produce the distribution per category group.  

 

 

 

 

Supplementary Figure 16: Total number of structural variant calls. Venn diagram comparing the 

total number of structural variants in the reported list from Illumina reads (Jeffares, 2017), and long 

reads (this study). The latter is futher subset by the two genotype calling approaches: de-novo and 

mapping reads.   



 

 

Supplementary Figure 17: Comparison between SV detection using the de-novo vs. mapping 

approach. Histogram of consistent genotypes of SVs in samples sequenced with PacBio and/or 

Nanopore (29 in total). Panels represent different types of SV (INS: insertion, DEL: deletion, INV: 

inversion, DUP: duplication, TRA: translocation). The obtained genotype from the de-novo and 

mapping approach in each sample and variant was compared. The histogram shows the number of 

variants with consistent mapping and de-novo genotype (no necessarily the same genotype between 

samples). For example, there are around 150 insertions with consistent mapping and de-novo 

genotype in all 29 samples. In another 50 insertion one sample out of the total shows different 

genotype between the mapping and de-novo approach.  

 

 



 

Supplementary Figure 18: Consistency of SV genotype detection using PacBio vs. MinIon data. 

Histogram of consistent genotypes of SVs in samples sequenced with both PacBio and Nanopore (8 

strains in total). For each variants the genotype between the PacBio and Nanopore data was compared 

in each sample. The histogram shows the number of variants with up to 8 consistent samples. For 

example, 878 SVs show the same genotype per sample between PacBio and Nanopore data (not 

necessarily the same genotype between samples).  

 

 

 

 

Supplementary Figure 19: Difference in allele frequency using PacBio vs. MinIon data. 

Histogram of the difference in observed allele frequency of samples sequenced with both PacBio and 

Nanopore (8 in total).  



 

 

 

 

Supplementary Figure 20: Boxplot displaying the proportion of SV relative to the physical 

genetic distance from the closest double-strand break. Boxplot with the distribution of the 

expected proportion of structural variants by random permutation within different genetic distances. 

SV observed within 500bp and 1kb of the closes DSB are significantly overrepresented and those at 

10kb or 20kb are underrepresented. Red points represent the observed proportions from long read 

sequencing data. Significance in difference between permutations and observed values are shown with 

asterisks: * p-value < 0.05, ** p-value <0.001, *** p-value <0.0001. 

 

 

Supplementary Figure 21: Distribution of divergent SV. Proportion of Sp (red) and Sk (blue) 

ancestry across all 57 samples along the genome. Divergent between ancestral groups SV (with 

frequency difference > 0.7 between Sp and Sk) are shown with yellow lines. Centromeric regions are 

shown in gray.  



 

 

Supplementary Figure 22: Linkage disequilibrium between pairs of genomic windows polarized 

by ancestry. Heat map of linkage disequilibrium (R2) for all comparison between genomic windows 

(left panel). Proportions of ancestral groups (Sp or Sk) along the genome are shown in the right panel. 

Genomic regions fixed for one of the ancestral groups are shown in gray areas in the heat map.   

 



 

Supplementary Figure 23: Individual based forward simulations for a single genomic window of 

different sizes. a) Distribution of samples in the normalised PC1 for 100 replicate simulations, using 

window sizes from 5 to 100 SNPs. An increased number of counts for extreme values (1 and 0) are 

only observed in small windows (5 SNPs). This contrasts with empirical observations using window 

sizes of 200 SNPs where the values are almost exclusively centred around 0 and 1 (Supplementary 

Figure 2).  b) Proportion of variance explained by PC1 and PC2 in the PCA using different window 

sizes. Simulations using as few as 5 SNPs per window could artificially divide a panmictic population 

into two clusters and explain 40 % of the variance in PC1. However, the inclusion of more SNPs per 

window, reduced erroneous clustering and reduced the variance to << 0.1 for 100 SNPs. None of the 

simulations (100 replicates per window size) approached the empirical value of 64 % of the variance 

explained by PC1 using a window size of 200 SNPs providing evidence that bimodal group structure 

was not an artefact of small window size. 

 

 

 



 

Supplementary Figure 24: Inferred effective population size over time with multiple 

sequentially Markovian coalescence analyses (MSMC). Analysis was divided by secondary 

clusters presented in Figure 1c. Each cluster is label with one representative of the cluster. Inferred 

values are shown with the blue line and bootstraps with grey lines. Time in x axis in log10 scale using 

1000 generations per year and mutation rate of 2x10-10. Present time is in x=0 and increase in the past. 

Effective population size in log10 scale.  

 

  



 

 

Supplementary figure 25: DNA content per strain. Representation of flow cytometry 

measurements of percentage of cells with nuclear DNA content <C2 (two times haploid genomic 

content; left), nuclear content between C2 and C4 (middle) and larger than C4 (right). Due to the short 

G1 phase and late cytokinesis, few cells with C1 content are found in fission yeast. Haploid cells are 

thus mostly found in the C2 phase. Diploid cells will be mostly in C4 or larger.  The strain with high 

heterozygosity (JB1207) is indicated by the blue diamond and it has a large proportion of cells with 

large genomic content. Additionally, strain JB1169 (blue triangle) appears to be of higher ploidy, 

though it does not show increased heterozygosity, which suggests this strain was formed by auto-

diploidization. Data from Jeffares et al. 2015. 

  



 

 

 

Supplementary Figure 26: Overview of PCR primers used to verify inversions and 

translocations. For each SV first the positions in the reference genome are given (top), and below the 

organization in the rearranged form as observed in the long-read de novo assemblies. The three lines 

represent Chromosomes I, II and III. The small arrows indicate the position and direction of the 

primers with the numbers of the primers indicated. The large arrows indicate the size and orientation 

of inversions. Note that more than one SV can occur per strain, and that the representations are thus 

not always representations of actual strains. Primers in ‘Inv10’ from Zanders et al. 2014. 

 

 

 

 

 

 

 



 

Supplementary figure 27: Example of decay in linkage disequilibrium (LD) with genetic 

distance using one representative per cluster. Relationship between LD (R2) and physical distance 

is depicted for each chromosome. Black points represent values for each window pair comparison. 

Lines show non-lineal regression model based on Hill & Weir (1988) and Remington et al. (2001). 

LD estimates were divided into three categories representing comparison between windows of shared 

ancestry (Sp-Sp or Sk-Sk) reflecting positive ancestry disequilibrium (AD) or of opposite ancestry 

(Sk-Sp) reflecting negative AD. 

 

 


