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 21 

Title:  22 

A framework to estimate and track remaining carbon budgets for stringent climate targets 23 

Preface  24 

Research during the past decade has shown that global warming is roughly proportional to the total 25 

amount of carbon dioxide released into the atmosphere. This makes it possible to estimate a 26 

remaining carbon budget; the finite total amount of anthropogenic carbon dioxide that can still be 27 

emitted into the atmosphere while holding the global average temperature increase to the 28 

temperature limit set by the Paris climate agreement. A wide range of estimates for the remaining 29 

carbon budget have been reported, which limits its effectiveness for setting emission reduction 30 

targets consistent with the Paris temperature limit. Here we present a framework that enables 31 

tracking and understanding how remaining carbon budget estimates improve over time as scientific 32 

knowledge advances. We propose that the application of the framework can help reconcile 33 

differences in remaining carbon budget estimates and can provide a basis for narrowing 34 

uncertainties in the range of future estimates. 35 

Text 36 

Since the Intergovernmental Panel on Climate Change͛Ɛ (IPCC) Fifth Assessment Report1, the concept 37 

of a carbon budget has risen to prominence as a tool in guiding climate policy2. We here define 38 

remaining carbon budgets as the finite total amount of CO2 that can be emitted into the atmosphere 39 

by human activities while still holding global warming to a desired temperature limit. This is not to be 40 

confused with another concept, the historical carbon budget, which describes estimates of all major 41 

past and contemporary carbon fluxes in the Earth system3. The idea of a remaining carbon budget is 42 

grounded in well-established climate science. A series of studies over the past decade has clarified 43 

and quantified why the rise in global average temperature increase is roughly proportional to the 44 

total cumulative amount of CO2 emissions produced by human activities since the industrial 45 

revolution4-13. This literature has allowed to define the linear relationship between warming and 46 

cumulative CO2 emissions as the transient climate response to cumulative emissions of CO2 (TCRE). 47 

Once established, the appeal of this concept became immediately evident: the possibility that the 48 

response of an enormously complex system ʹ such as the response of planet Earth to our emissions 49 

of CO2 ʹ could potentially be reduced to a roughly linear relationship would allow scientists to draw 50 

clear and easy-to-communicate implications. However, additional processes that influence and are 51 

influenced by future warming, like the thawing of the permafrost, have recently been included in 52 

Earth-system models. These new additions add uncertainty and can change our understanding of this 53 

linear relationship. Moreover, global warming is not driven by emissions of CO2 only. Other 54 

greenhouse gases (such as methane, fluorinated gases, or nitrous oxide) and aerosols and their 55 

precursors (including soot or sulphur dioxide) affect global temperatures and estimating remaining 56 

carbon budgets thus also implies making assumptions about these non-CO2 contributions. This 57 

complicates the relationship between future CO2 emissions and global warming.    58 

Carbon budgets still became a powerful tool for communicating the challenge we face when aiming 59 

to hold warming to 1.5°C and well-below-2°C ʹ the limits of global average temperature increase set 60 

in the UN Paris Agreement14-17. First, every tonne of CO2 emitted into the atmosphere by human 61 

activities adds to warming, and it hence does not matter whether this tonne of CO2 is emitted today, 62 

tomorrow, or yesterday. This also implies that to limit temperature increase to any level, global CO2 63 

emissions produced by human activities have to be reduced to net zero levels at some point in time 64 

and, on average, stay at net zero levels thereafter. Furthermore, when aiming to limit warming below 65 
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a specific limit, a finite carbon budget also implies that the more we emit in the coming years, the 66 

faster emissions will have to decline thereafter to stay within the same budget ʹ simple arithmetic. 67 

Finally, once net CO2 emissions are brought to zero, warming would stabilize but would not 68 

disappear or be reversed18-21. Any amount by which a carbon budget compatible with a desired 69 

temperature limit is missed or exceeded would thus have to be actively and permanently removed 70 

from the atmosphere in later years. This could be achieved through measures that result in net 71 

negative CO2 emissions, which come with their own technical and social complications22-27. Besides 72 

its role as a communication tool, the carbon budget concept also provides a vehicle to exchange 73 

knowledge across disciplines. For example, such knowledge exchange is already happening for 74 

climate change mitigation requirements between the geoscience community and other disciplines 75 

that study climate change from a more societal angle28,29. 76 

Diversity that may confuse 77 

Unfortunately, all that glitters is not gold. Over the past five years, a plethora of studies have been 78 

published12,30-44 further exploring and estimating the size of carbon budgets while in some way 79 

accounting for non-CO2 forcers. These studies most often focus on requirements for holding warming 80 

to the internationally agreed 1.5°C or 2°C limits14-16. Despite all aiming to evaluate the same quantity, 81 

the use of different definitions and non-CO2 climate forcing assumptions, as well as methodological 82 

and model differences have led to a wide variety of carbon budget estimates being reported to 83 

achieve temperature goals that are nominally the same (see Box 1 for an overview of carbon budget 84 

estimation approaches). This variation seems to have decreased instead of increased the broader 85 

understanding of remaining carbon budgets and has therewith tempered the initial enthusiasm 86 

about their usefulness as guides for policy making and target setting45,46. This confusion is avoidable, 87 

however. Differences in remaining carbon budget estimates can be understood if a set of potential 88 

contributing factors are carefully taken into account.  89 

[Insert Box1 here] 90 

Here we present a conceptual framework which allows one to track, understand, update and explain 91 

ĞƐƚŝŵĂƚĞƐ ŽĨ ƌĞŵĂŝŶŝŶŐ ĐĂƌďŽŶ ďƵĚŐĞƚƐ ŽǀĞƌ ƚŝŵĞ͘ TŚĞ ĨƌĂŵĞǁŽƌŬ͛Ɛ ƐƚƌƵĐƚƵƌĞ enables the assessment 92 

of individual contributing factors, including historical warming, the TCRE, the zero emissions 93 

commitment (ZEC), and non-CO2 contributions to future warming. It integrates suggestions made in 94 

earlier literature12,47 and is a generalisation and ĞǆƚĞŶƐŝŽŶ ŽĨ ƚŚĞ ĨƌĂŵĞǁŽƌŬ ƵƐĞĚ ŝŶ ƚŚĞ IPCC͛Ɛ SƉĞĐŝĂů 95 

Report on Global Warming of 1.5°C (ref. 48).  96 

Remaining carbon budget framework  97 

As indicated above, the remaining carbon budget can be defined as the remaining amount of CO2 98 

emissions that can still be emitted while keeping global average temperature increase due to human 99 

activities to below a specific temperature limit. The framework set out below applies to a situation in 100 

which one aims to limit peak (or maximum) warming and its associated impacts. It can, however, also 101 

be extended to apply to a situation where temperature rise has temporarily exceeded an intended 102 

temperature limit, often referred to as a temperature overshoot (see Supplementary Text 1).  103 

Estimates of the remaining carbon budget (RBlim) for a specific temperature limit (Tlim) change as a 104 

function of five terms that represent aspects of the geophysical and coupled human-environment 105 

system (Equation 1): the historical human-induced warming to date (Thist), the non-CO2 contribution 106 

to future temperature rise (TnCO2), the zero emissions commitment (TZEC), the TCRE, and an 107 

adjustment term for unrepresented Earth system feedbacks (EESfb). These terms are visualized in 108 

Figure 1 and are described and discussed in turn below.   109 
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RBlim = (Tlim ʹ Thist ʹ TnCO2 ʹ TZEC) x TCRE-1 ʹ EESfb   Eq. (1) 110 

[INSERT FIGURE 1 HERE]   111 

Arguably the most central term to estimating remaining carbon budgets is the transient climate 112 

response to cumulative emissions of carbon dioxide (TCRE, [°C GtCO2
-1], Eq. 1). In essence, the 113 

remaining carbon budget is estimated by multiplying the remaining allowable warming with the 114 

inverse of the TCRE, where the magnitude of remaining allowable warming is the result of various 115 

contributions shown in Figure 1 and discussed below. The TCRE can be estimated from several lines 116 

of evidence, including the observational record10,12,49-51, CO2-only10, and multi-gas simulations12,31,49-53 117 

with Earth system models of varying complexity. In its latest assessment54, the IPCC reported the 118 

TCRE to fall within the 0.2ʹ0.7 x 10-3 °C GtCO2
-1 range with at least 66% probability. TCRE, and hence 119 

the linear proportionality of warming to cumulative emissions of CO2, has also been found a robust 120 

feature for the domain up to about 7300 GtCO2 of cumulative emissions54,55, and probably more56. 121 

This domain of application easily spans the range of 1.5°C- and 2°C-consistent carbon budgets.  122 

After TCRE, the combined remaining allowable warming (represented by Tlim ʹ Thist ʹ TnCO2 ʹ TZEC) is 123 

the next central determinant for estimating remaining carbon budgets. Its first term is the specific 124 

temperature limit of interest relative to preindustrial levels (Tlim, [°C], Eq. 1), while its second term 125 

represents the historical human-induced warming (Thist, [°C], Eq. 1). The latter is the amount of 126 

human-induced warming since preindustrial times until a more recent reference period, for example, 127 

the 2006ʹ2015 period.  128 

The estimation of Thist is a central factor affecting the size of remaining carbon budgets, because it 129 

determines how far we currently are from policy-relevant temperature limits (e.g. 1.5° or 2°C). The 130 

assessment of Thist should adequately isolate the human-induced warming signal from the effects of 131 

natural forcing and variability57,58. The same is true for Tlim, and in case Tlim intends to represent an 132 

internationally agreed climate goal in line with the Paris Agreement it should do so by definition15. 133 

Two additional choices play an important role in determining or setting Thist and Tlim: the choice of the 134 

preindustrial reference period and the temperature metric for determining global average 135 

temperature increase. Neither the preindustrial reference period nor the specific warming metric are 136 

explicitly defined by the Paris Agreement and recent literature is exploring the implications and 137 

interpretations of this ambiguity34,35,59.   138 

The 1850ʹ1900 period is often used as a proxy for preindustrial levels because observational 139 

temperature records stretch back to the beginning of that period60, and key scientific reports that fed 140 

into the Paris Agreement also used this proxy1,59,61,62 (see Supplementary Text 2 for more details). 141 

Other periods have been suggested63-65, but ultimately the crux lies in that Thist and Tlim should always 142 

be expressed relative to the same preindustrial reference period to avoid introducing erroneous 143 

changes to the remaining allowable warming and therewith the remaining carbon budget. Besides 144 

defining an appropriate preindustrial reference period, the choice of metric by which warming is 145 

estimated from that period also plays an important role. Studies analysing climate model simulations 146 

or observational products can use different metrics to estimate global mean temperature change 147 

(see also Supplementary Text 2). The impact of this metric choice has been highlighted recently with 148 

studies34,59 showing that this choice can result in variations in the estimated global warming of the 149 

order of 10% (Supplementary Fig. 1), leading to a potential variation in remaining carbon budget 150 

estimates of more than 400 billion tonnes of CO2 (ref. 59). IPCC has typically specified carbon budgets 151 

based on globally area-averaged change in surface air temperature48,66 (SAT). Other studies, 152 

however, have also used different metrics and at times even change metrics between observations 153 

and projections (Supplementary Table 1). This limits the comparability of these budget estimates59 ʹ 154 

a situation this new framework attempts to avoid.  155 
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A further term affecting the remaining allowable warming is the non-CO2 contribution to future 156 

global temperature rise (TnCO2, [°C], in Eq. 1, Fig. 1). Current and future warming depends on both 157 

CO2-induced warming and warming due to non-CO2 forcers. Future non-CO2 warming might be 158 

considerable in light of the unmasking of warming due to reducing emissions of sulphur dioxide67 and 159 

the knowledge that no obvious mitigation options have been identified to completely eliminate 160 

several important sources of non-CO2 greenhouse gases68,69. For inclusion in the remaining carbon 161 

budget framework, the non-CO2 warming contribution between a recent reference period (e.g., the 162 

same period as Thist) and a specific time in the future has to be estimated. We suggest that this non-163 

CO2 contribution to future temperature rise is estimated from internally consistent multi-gas 164 

scenarios36,70-74 and at the moment at which global CO2 emissions reach net zero48. Estimating the 165 

non-CO2 warming contribution at that moment in time reflects a situation in which global cumulative 166 

emissions of CO2 are effectively capped and hence allows to directly inform the question of how 167 

much CO2 can be emitted while keeping warming to a given temperature level. If non-CO2 warming is 168 

estimated at other moments in time, its usefulness for informing mitigation requirements would 169 

potentially be strongly reduced.    170 

Besides the future evolution of non-CO2 emissions, the non-CO2 warming contribution also depends 171 

on estimates of the corresponding radiative forcing, including potential changes in surface albedo43. 172 

Non-CO2 forcing and warming can be estimated with the help of simple climate models43,75,76, 173 

inferred from more complex climate model runs77, or taken from the literature37,48. Importantly, non-174 

CO2 emissions would continue to affect warming levels after the time of net CO2 reach zero, which 175 

creates uncertainty in methods that estimate budgets by integrating changes over time and after an 176 

overshoot (e.g., see refs. 36,43, and Box 1). These uncertainties are reduced in the here proposed 177 

framework by focusing on the time of reaching net zero CO2 emissions and by considering internally 178 

consistent non-CO2 emissions. Under these assumptions, non-CO2 emissions are projected to result 179 

in a constant or declining forcing and warming after the time of net-zero CO2.48,73 However, if under 180 

alternative assumptions one would project non-CO2 warming to continue to increase irrespective of 181 

the level of CO2 emissions78, this further increase should also be accounted for in TnCO2 as it would 182 

add to future peak warming.    183 

The zero emissions commitment (ZEC) (TZEC, [°C]) is the next term in the remaining carbon budget 184 

framework represented by Equation 1. The ZEC is defined as the additional contribution to peak 185 

warming that is still to be expected after a complete cessation of CO2 emissions79,80, and hence 186 

provides a correction term for the instantaneous linearity postulated by the concept of the TCRE. 187 

This ZEC can be either positive or negative, or zero. For estimates of the remaining carbon budget, 188 

the ZEC when CO2 emissions go towards net zero levels is of particular interest. In more general 189 

terms, this could also be formulated as an assessment of the lag in CO2-induced warming at current 190 

and declining emissions rates50,79. When the ZEC is positive, not all warming will be experienced by 191 

the time global CO2 emissions reach net zero. The estimated additional warming would hence also 192 

have to be reduced from the allowable remaining temperature increase. Currently, the ZEC is most 193 

often neglected in carbon budget studies (see Supplementary Table 1, with exceptions only 194 

hypothesizing the effect of its contribution37) and hence implicitly assumed to be zero or negative. 195 

Several studies suggest, however, that there might be a smaller80-83 or larger84,85 lag between the 196 

time when CO2 emissions are ceased and the time of maximum warming from those emissions. 197 

Instead of being accounted for as a separate term, the ZEC could also be integrated in the 198 

assessment of TCRE, although a dedicated methodological framework to do so is currently lacking.  199 

Finally, emissions reductions due to unrepresented Earth system feedbacks (EESfb, [GtCO2], Eq. 1) are 200 

the last term in the proposed remaining carbon budget framework. Any Earth system feedbacks that 201 

are not yet incorporated in estimates of the TCRE or would reduce the applicability of TCRE should be 202 
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assessed in addition, and accounted and communicated through this term. These feedbacks have 203 

typically been related to permafrost thawing40-42,86 and the associated long-term release of CO2 and 204 

CH4. However, also other Earth system feedbacks that can affect remaining carbon budgets have 205 

been identified42, including changes in vegetation CO2 uptake linked to nitrogen availability87-89. If an 206 

unrepresented feedback results in a direct CO2 emission from an ecosystem, the translation to the 207 

EESfb term is direct. However, because of the diverse nature of Earth system feedbacks42, accounting 208 

for them through an adjustment in CO2 emissions is not always straightforward. For example, if a 209 

feedback results in the release of other greenhouse gases or affects the Earth system through 210 

changes in processes like surface albedo, clouds, or fire regimes, its contribution needs to be 211 

translated into an equivalent CO2 correction term (see refs. 90,91 for two examples). Because most of 212 

these Earth system feedbacks are either sensitive to rising CO2 or to variations in climate parameters, 213 

it is expected that these contributions are scenario dependent, non-linear, and in some cases 214 

realized over longer time-scales only40,41,86,92-99. This adds to the complexity of the translation into a 215 

CO2 equivalent correction term, and makes EESfb an uncertain contribution. EESfb could be estimated 216 

either for the time at which global net CO2 emissions become zero, but also, for example, until the 217 

end of the century or beyond, assuming anthropogenic CO2 emissions are kept at net-zero levels but 218 

feedbacks continue to change over time41,86,93,94,98. Finally, scenario-independent Earth system 219 

feedbacks that scale linearly with global average temperature increase could also be incorporated by 220 

adjusting the TCRE, as long as they are not double-counted in both EESfb and TCRE.  221 

Tracking and explaining scientific progress 222 

We are of the opinion that through conscientious and rigorous application of the framework we here 223 

propose, much of the confusion surrounding the size and variation of remaining carbon budget 224 

estimates can be avoided. Our proposed framework allows scientists to identify, understand, and 225 

track how the progression of science on multiple fronts can impact budget estimates. It also allows to 226 

identify and discuss key uncertainties and choices related to each respective term (Table 1). Together 227 

these two improvements can contribute to a more constructive and informed discussion of the topic, 228 

and better communication across the various disciplines and communities that research, quantify, 229 

and apply estimates of remaining carbon budgets. 230 

The road from geosciences to climate policy is long and winding. However, carbon budgets provide 231 

one of the simplest and most transparent means to connect geophysical limits imposed by the Earth 232 

system to implications for climate policy. For example, they provide the geophysical foundation for 233 

setting global net zero targets6,100 which have recently been picked up by policy scholars for 234 

potentially being more effective in guiding policy towards a more actionable climate change 235 

mitigation goal101. When combined with models that simulate possible transformations to a low-236 

carbon society102, they can also help inform other targets.  237 

Nevertheless, adequately characterizing and communicating the uncertainties that surround carbon 238 

budget estimates is a challenge that will remain. These uncertainties are not unfathomable, 239 

however, and precise language exists to describe the nature of the various uncertainty 240 

contributions103 (Table 1, Fig. 2). In some cases, uncertainties exist because of our imprecise 241 

knowledge of certain processes or lack of precise measurements. This uncertainty is applicable to all 242 

terms in our framework and will only gradually be reduced over time. In other cases, terms are not 243 

used consistently throughout the literature resulting in confusion and inconsistencies of carbon 244 

budget estimates (Table 1, Supplementary Table 1, Fig. 2). This is the case for the choice of global 245 

temperature metric or the time period over which remaining carbon budgets are computed. For 246 

increased comparability and flexibility, it would be useful if global surface air temperature (SAT) 247 

values would be routinely estimated for observational products, and climate model projections 248 

would report both metrics. Some uncertainties represent policy choices44. An example of such 249 
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uncertainty is the estimate of the non-CO2 emissions contribution to future warming. Future non-CO2 250 

emissions depend on future socio-economic developments and deployment of mitigation measures, 251 

and these are influenced by policy and societal choices today, for example, regarding how much 252 

emitting non-CO2 greenhouse gases is penalized or which sectors are targeted when promoting 253 

innovation for climate change mitigation. These policy-driven uncertainties and ambiguities can be 254 

understood, quantified, and explained by using a scenario-based approach. For some of the Earth 255 

system feedbacks which are not fully represented in models, a quantification of their impact remains 256 

difficult. Expert judgment can be applied in this case to provide an estimate of its importance. 257 

[INSERT TABLE 1 HERE] 258 

The overview of assumptions made in carbon budget studies (shown in Fig. 2, and Supplementary 259 

Table 1 and 2) can already provide a first step in understanding relative differences between 260 

estimates. For example, bar the most recent IPCC assessment48, none of the estimates available in 261 

the literature simultaneously apply consistent global warming metrics for historical and projected 262 

temperatures together with a non-CO2 warming contribution reflecting a future that is in line with 263 

the Paris Agreement (Fig. 2, Supplementary Table 1 and 2). Several estimates also infer the chance of 264 

limiting warming to 1.5°C from ad-hoc frequency distributions of model results, instead of a formal 265 

representation of the uncertainty in TCRE, and studies typically do not include all currently identified 266 

Earth system feedbacks, although the impact of some has been described in dedicated studies40-42,86.  267 

Comparing estimates that are the same in all but their inclusion of some of the unrepresented Earth 268 

system feedbacks (from refs 41,48) suggests that the inclusion of additional Earth system feedbacks 269 

could consistently reduce estimates of remaining carbon budgets ʹ something to be kept in mind 270 

when future studies that use the latest generation of Earth system models will become available104. A 271 

further insight is that estimates that apply temperature metrics other than global surface-air 272 

temperatures (SAT, see earlier, Fig. 2, and Supplementary Text 2) consistently suggest larger 273 

remaining carbon budgets compared to estimates that use SAT only. The reasons underlying this 274 

perceived shift are well-understood (see Supplementary Text 2) and can be identified as an artefact 275 

of a methodological choice. To be sure, estimates using temperature metrics other than global 276 

averaged SAT usually suggest larger remaining carbon budgets but also come with clear climate 277 

change consequences: a relatively hotter Earth. A sound rationale thus needs to accompany the 278 

choice of temperature metric. We strongly recommend using global average SAT as temperature 279 

metric because it is computed from invariable fields across models, model runs, and over time. 280 

Global average SAT would also allow to easily link findings from new studies to the Paris Agreement 281 

temperature goal59. More detailed comparisons are complicated or impossible at this stage because 282 

the quantifications of the various contributing factors by the original studies are lacking. Hence this 283 

call to the research community. Unless studies provide a quantitative discussion of assumptions and 284 

factors contributing to their remaining carbon budget estimates, it is often virtually impossible to 285 

determine them ex post.  286 

In the future, this framework can hence play a role in contextualizing new estimates, even if they use 287 

alternative methods. As science represents a continuous endeavour for deeper understanding, this 288 

framework can be used in combination with expert judgment to anticipate potential surprise changes 289 

in remaining carbon budgets. Finally, application of the framework presented here also allows to 290 

make a more independent assessment of remaining carbon budgets by drawing on multiple lines of 291 

evidence. A simplified version of this framework was also already applied in the recent IPCC Special 292 

Report on Global Warming of 1.5°C48 (see Box 2).  293 

[INSERT FIGURE 2 HERE] 294 
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Towards more robust carbon budget estimates 295 

The decomposition of remaining carbon budgets in their contributing factors also allows one to 296 

identify a set of promising avenues for future research. A first area of research that can help the 297 

advancement of this field is a closer look at TCRE. Future research is anticipated to narrow the range 298 

of best estimates of TCRE as well as clarify the shape of the uncertainty distribution surrounding this 299 

value, the influence of a potential lag of CO2 warming on estimating TCRE, the validity of the TCRE 300 

concept for annual emission rates approaching net zero, or during episodes of global net CO2 301 

removal. For example, at present there are no dedicated studies explicitly analysing the uncertainty 302 

distribution surrounding TCRE resulting in limited evidence to support the choice of a particular 303 

formal distribution (be it normal, lognormal, or otherwise10,31,54) when estimating remaining carbon 304 

budgets (see Fig. 2, Supplementary Table 1). A second promising area of research is the study of the 305 

interdependence between factors and their uncertainties, for example, between uncertainties in Thist 306 

and TnCO2. This could be pursued through the development of methods that allow robust estimates of 307 

recent levels of human-induced warming and allow to link them to internally consistent projections 308 

of future non-CO2 warming. For example, methodological developments with reduced-form climate 309 

models could prove useful to this end57,75,105, as they can flexibly and timely incorporate most up-to-310 

date observations and forcing estimates. This also ties into a larger question of trying to understand 311 

the overall, combined uncertainties affecting remaining carbon budgets. Currently, each factor of the 312 

presented framework comes with its own uncertainties, and a method to formally combine these 313 

uncertainties is lacking at present.  314 

Finally, an important uncertainty in determining remaining carbon budgets continues to be the 315 

quantification of uncertain and ill-constrained Earth system feedbacks that feed into the assessment 316 

of TCRE or EESfb. Besides affecting carbon budgets consistent with limiting maximum warming to a 317 

specific temperature threshold, they could be of particular importance to inform the risks that would 318 

be incurred by exhausting and exceeding a specific carbon budget and temperature limit, and 319 

attempting to return warming afterwards to lower levels through global net CO2 removal (see the 320 

Threshold Return Budget definition in Box 1). Challenges here lie in covering the full range of 321 

responses of these highly uncertain components, including high-risk low-probability outcomes.  322 

Advancements in any of these areas would enhance the robustness of our understanding of carbon 323 

budget estimates, and would be invaluable input in the on-going assessment of carbon budgets for 324 

the Sixth Assessment Report of the IPCC. A systematic understanding of remaining carbon budget 325 

estimates is possible if studies improve their reporting. We recommend that future studies 326 

estimating the remaining carbon budget report the factors considered within this framework (see 327 

Supplementary Text 3 for a check-list): the surface temperature measure and historic warming used, 328 

what is assumed for TCRE, and how non-CO2 warming and Earth system feedbacks are accounted for. 329 

A systematic understanding of remaining carbon budget estimates and how they can evolve as 330 

science advances will be essential for consolidating their use for target setting and communicating 331 

the climate change mitigation challenge.332 
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 333 

Tables 334 

Table 1 | Key choices or uncertainties of terms affecting estimates of remaining carbon budgets. 335 

They are listed for each of the terms in Equation 1. TŚĞ ůĂƐƚ ĐŽůƵŵŶ ŝŶĚŝĐĂƚĞƐ ƚŚĞ ĂƵƚŚŽƌƐ͛ ĂƐƐĞƐƐŵĞŶƚ 336 

of the current level of understanding of the various uncertainty components.  337 

Term Symbol Key choices or uncertainties Type Level of 

understanding 

Temperature limit Tlim Metrics used to express global warming.  Choice Medium to high 

Historical human-

induced warming 
Thist Choice of different temperature metrics to express 

global warming, and consistency with global 

climate goals.  

Choice Medium to high 

Historical human-

induced warming 
Thist Incomplete coverage in observational datasets, 

and methods to estimate human-induced 

component.  

Uncertainty Medium to high 

Non-CO2 contribution 

to future global  

warming 

TnCO2 The level of different non-CO2 emissions that are 

consistent with global net zero CO2 emissions, 

which depends on policy choices but also on 

uncertain success of their implementation.  

Choice and 

uncertainty 

Medium 

Non-CO2 contribution 

to future global  

warming 

TnCO2 Climate response to non-CO2 forcers, particularly 

in the level of aerosol recovery and temperature 

reduction from lower methane emissions.  

Uncertainty Low to medium 

Zero emissions 

commitment 
TZEC Sign and magnitude of zero emission commitment 

at decadal time scales for current and near-zero 

annual CO2 emissions. 

Uncertainty Low 

Transient climate 

response to 

cumulative emissions 

of CO2  

TCRE Distribution of TCRE uncertainty, linearity of TCRE 

for increasing and stabilizing cumulative CO2 

emissions, impact of temperature metrics on TCRE 

estimate.  

Uncertainty Low to medium 

 

Transient climate 

response to 

cumulative emissions 

of CO2  

TCRE When extended beyond peak warming 

(Supplementary Text 1):  

Linearity, value and distribution of TCRE for 

decreasing cumulative CO2 emissions. 

Uncertainty Low 

Unrepresented Earth 

system feedbacks 
EESfb Timescale and magnitude of permafrost thawing 

and methane release from wetlands and their 

representation in Earth system models, as well as 

other potential feedbacks.  

Uncertainty Very low 
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Figures 340 

 341 
Figure 1 | Schematic of factors contributing to the quantification of a remaining carbon budget. 342 

The schematic shows how the remaining carbon budget can be estimated from various independently 343 

assessable quantities, including the historical human-induced warming, the zero emission 344 

commitment, the contribution of future non-CO2 warming (consistent with global net zero CO2 345 

emissions or otherwise), the transient climate response to cumulative emissions of carbon (TCRE), and 346 

further correcting for unrepresented Earth system feedbacks. Besides estimating remaining carbon 347 

budgets, the framework can also be applied to understand, decompose and discuss estimates of 348 

carbon budgets calculated with other methods.       349 

350 
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 352 

Figure 2 | Comparison of recent remaining carbon budget estimates for limiting global warming to 353 

1.5°C and 2°C relative to preindustrial levels, and overview of factors affecting their variation. 354 

Estimates are shown for a 50% probability of limiting warming to the indicated temperature levels, 355 

while additional estimates for a 66% probability are provided in Supplementary Table 2. Several 356 

studies do not report formal probabilities, but report the frequency distribution across model 357 

ƐŝŵƵůĂƚŝŽŶƐ ŝŶƐƚĞĂĚ͘ TŚĞ ůĂƚƚĞƌ ĞƐƚŝŵĂƚĞƐ ĂƌĞ ŵĂƌŬĞĚ N ŝŶ ƚŚĞ ͞ĨŽƌŵĂů TCRE ƵŶĐĞƌƚĂŝŶƚǇ ĚŝƐƚƌŝďƵƚŝŽŶ͟ 358 

column. Estimates shown with dashed lines indicate carbon budget estimates with an imprecise level 359 

of implied global warming, for example, because they were reported for a radiative forcing target 360 

instead. Obs. constraints: observational constraints. TEB: threshold exceedance budget37; TAB: 361 

threshold avoidance budget37;  The listed studies are: IPCC Special Report on Global Warming of 1.5°C 362 

(SR1.5, ref. 48), Tokarska & Gillett32, Friedlingstein et al39 (with values for 1.5°C based on own 363 

calculations with the same method), Millar et al30, Goodwin et al31, IPCC Fifth Assessment Report 364 

(AR5, ref. 28), Mengis et al43, Matthews et al12, Gasser et al41, and Rogelj et al36. The latest IPCC 365 

assessment of remaining carbon budgets assumes 0.97°C of historical warming until 2006ʹ2015, 366 

while other estimates can assume either higher or lower warming for that period (Supplementary 367 

Table 1). Background and values for all studies are provided in Supplementary Tables 1 and 2.   368 

 369 
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Boxes 371 

Box 1 | Commonly used carbon budget definitions 

 

Studies differ in how they define carbon budgets, and these differences affect the accuracy, size, 

and usefulness of reported estimates. This box provides an overview of five ways carbon budgets 

can be defined, and highlights some of their strengths and weaknesses as well as how they link to 

the remaining carbon budget framework introduced in the main text of this paper.   

 

Peak temperature budgets (PTB) or maximum temperature budgets (MTB) are defined as the 

cumulative amount of net CO2 emissions that would hold maximum warming to a specific 

temperature limit. In most cases, peak warming roughly coincides with the timing of a pathway 

reaching net zero CO2 emissions, and peak temperature budgets are thus directly compatible with 

the framework proposed in this paper. They also provide a direct estimate of the amount of CO2 

emissions consistent with achieving international temperature goals48.  

 

Threshold return budgets (TRB) are defined as the cumulative amount of net CO2 emissions until a 

specific level of warming is achieved, yet only after having temporarily exceeded that level by a 

certain amount and during a certain period of time earlier36,47. By definition, they include a period 

of global net removal of CO2 and hence need to account for potential additional non-linearities in 

the Earth system response106. Supplementary Text 1 clarifies how the framework presented in the 

main text can be adjusted to suit this definition. 

 

Threshold exceedance budgets (TEB) are defined as the cumulative amount of net CO2 emissions 

until the time temperature projections for a given pathway exceed a temperature threshold of 

interest37. This method has been regularly applied by studies that estimate carbon budgets from a 

limited set of simulations of complex Earth system models10,30,32,54. They do not provide a direct 

estimate of the amount of CO2 emissions consistent with achieving international temperature 

goals but can still be discussed and understood with the framework presented in the main text of 

this paper, for example, by explicitly clarifying assumptions regarding historical warming, non-CO2 

warming at the time the temperature threshold is exceeded, and assumed ZEC and TCRE.  

 

Threshold avoidance budgets (TAB) are derived from emissions pathways that avoid crossing a 

temperature threshold of interest37. Their main drawback is that their definition leaves a lot of 

room for interpretation. First, in contrast to previous budget definitions, no unambiguous point in 

time is available for TABs until when net CO2 emissions should be summed, thus requiring 

additional assumptions37,39. Second, any scenario that limits warming below a threshold of interest 

ʹ be it only barely or by a much larger margin ʹ could be included in a TAB estimate71. This makes 

TAB estimates imprecise, very variable, and difficult to compare across studies. However, even 

here the framework presented in the main of this paper can help structure discussions.  

 

Finally, some studies report descriptive statistics of emissions pathways, like cumulative CO2 

emissions until 2050 or 2100, instead of estimates of remaining carbon budgets. These statistics 

are not directly selected based on their temperature outcome36,71 and should not be interpreted as 

geophysical carbon budget requirements.   

 

 372 
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Box 2 | Example application of remaining carbon budget framework  

 

With the framework at hand (see Equation 1), remaining carbon budgets in line with limiting 

warming to 1.5°C or 2°C can be estimated by drawing on information available in the literature. 

We here provide an example of how this could be done, starting from the assessment carried out 

in the context of the IPCC Special Report on Global Warming of 1.5°C48.  

 

Definition of temperature metric: Global warming estimated as globally area-averaged SAT 

change for historical warming and future projections so that Tlim is defined by a single consistent 

metric. 

Preindustrial reference period: The 1850ʹ1900 period is taken as a proxy for preindustrial levels. 

 

Thist: 0.97°C until 2006ʹ2015 since 1850ʹ1900, derived as the average over four observational 

datasets60,107-111 (0.87°C) corrected for by the ratio between SAT and BT informed by models. This 

level of warming is attributed to climate forcers emitted by human activities and hence accounts 

for the influence of natural (internal and natural forced) variability of the climate. 

TnCO2: Estimated from integrated pathways that include all climate forcers emitted by human 

activities and derived at the time global total CO2 emissions reach net-zero levels73,74. It is 

estimated75,76 at about 0.1°C (0ʹ0.2°C, 90% range) in scenarios that reach net-zero CO2 and limit 

warming to 1.5°C and at about 0.2°C (0.1ʹ0.4°C, 90% range) in scenarios limiting warming to 2°C.  

TZEC: Zero emission commitment is assumed to be zero or negative, and thus to not further impact 

the remaining allowable warming.  

 

Remaining allowable warming starting from the recent 2006ʹ2015 period is hence about 0.4°C 

and 0.8°C for global temperature limits of 1.5°C and 2°C, respectively.  

 

TCRE: Assumed to be normally distributed66 with a 1-sigma range of 0.2ʹ0.7°C x 10-3 GtCO2
-1 

 

EESfb: Estimated based on literature that explicitly quantifies the effect of permafrost thawing on 

additional CO2 release40,41,86,94 and that translates the effect of other unrepresented feedbacks into 

a CO2 equivalent correction42. Estimated to reduce the remaining carbon budget by about 100 

GtCO2 over the course of the 21st century, but subject to very low confidence (Table 1).  

 

The combination of all terms in the here presented framework, and subtracting 290 GtCO2 for 

global CO2 emissions since 2011, results in a median remaining carbon budget RBlim of 480 GtCO2 

with a 33ʹ66% range of 740ʹ320 GtCO2 for a global warming limit of 1.5°C and 1400 GtCO2 with a 

33ʹ66% range of 1070ʹ1930 GtCO2 for a 2°C limit. In the IPCC report48, reported numbers are 100 

GtCO2 larger as EESfb is reported separately. In addition, also the impact of varying levels of success 

in reduction non-CO2 emissions can be estimated from the variation in TnCO2, suggesting a variation 

of about ±250 GtCO2 for the remaining carbon budget for 1.5°C and -500 to +250 GtCO2 for the 

remaining carbon budget for 2°C. 
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