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Abstract New particle formation (NPF) represents the first step in the complex processes leading to
formation of cloud condensation nuclei. Newly formed nanoparticles affect human health, air quality,
weather, and climate. This review provides a brief history, synthesizes recent significant progresses, and
outlines the challenges and future directions for research relevant to NPF. New developments include the
emergence of state‐of‐the‐art instruments that measure prenucleation clusters and newly nucleated
nanoparticles down to about 1 nm; systematic laboratory studies of multicomponent nucleation systems,
including collaborative experiments conducted in the Cosmics Leaving Outdoor Droplets chamber at CERN;
observations of NPF in different types of forests, extremely polluted urban locations, coastal sites, polar
regions, and high‐elevation sites; and improved nucleation theories and parameterizations to account for
NPF in atmospheric models. The challenges include the lack of understanding of the fundamental chemical
mechanisms responsible for aerosol nucleation and growth under diverse environments, the effects of SO2

and NOx on NPF, and the contribution of anthropogenic organic compounds to NPF. It is also critical to
develop instruments that can detect chemical composition of particles from 3 to 20 nm and improve
parameterizations to represent NPF over a wide range of atmospheric conditions of chemical precursor,
temperature, and humidity.

Plain Language Summary In the atmosphere, invisible to the human eye, there are many
microscopic particles, or “nanoparticles,” that affect human health, air quality, and climate. We do not
fully understand the chemical processes that allow these fine particles to form and be suspended in the air
nor how they influence heat flow in Earth's atmosphere. Laboratory experiments, field observations, and
modeling simulations have all shown different results for how these particles behave. These inconsistencies
make it difficult to accurately represent the processes of new particle formation in regional and global
atmospheric models. Scientists still need to develop instruments that can measure the smallest range of
nanoparticles and to find ways to describe particle formation that allow for differences in temperature,
humidity, and level of pollution.

1. Introduction

Atmospheric aerosols, which are defined as liquid or solid particles suspended in air, have profound impacts
on the Earth‐atmosphere system. The aerosol effects include air quality, human health, ecosystem, weather,
and climate, all of which have important societal implications (IPCC, 2013; NASEM, 2016). For example,
aerosol particles absorb and scatter incoming solar radiation in the atmosphere, leading to important conse-
quences for the Earth's energy budget. This effect, commonly referred to as aerosol‐radiation interaction,
contributes importantly to cooling (by scattering) or warming (by absorption) in the atmosphere (IPCC,
2013; Peng et al., 2016; Y. Wang et al., 2013). By acting as cloud condensation nuclei (CCN) and ice nuclei,
aerosols also play an important role in controlling cloud formation/development, precipitation efficiency,
and the albedo, frequency, and lifetime of clouds (Albrecht et al., 1989; Fan et al., 2018; Li et al., 2008;
Rosenfeld et al., 2008; Seinfeld & Pandis, 2016; Twomey, 1974). These effects are often referred to collectively
as aerosol‐cloud interactions, which are also critical to radiative transfer in the atmosphere. Presently, the

©2019. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use
is non‐commercial and no modifica-
tions or adaptations are made.

COMMISSIONED
MANUSCRIPT
10.1029/2018JD029356

Key Points:
• Recent progresses include

development of instruments and
observations of multicomponent
nucleation and NPF at various
locations

• There is a lack of understanding of
fundamental chemical mechanisms
responsible for NPF in diverse
environments, especially in
megacities

• There is a need to develop NPF
parameterizations to represent a
wider range of pollutants,
temperature and humidity

Correspondence to:
S.‐H. Lee,
shanhu.lee@uah.edu

Citation:
Lee, S.‐H., Gordon, H., Yu, H.,
Lehtipalo, K., Haley, R., Li, Y., &
Zhang, R. (2019). New particle
formation in the atmosphere: From
molecular clusters to global climate.
Journal of Geophysical Research:
Atmospheres, 124, 7098–7146. https://
doi.org/10.1029/2018JD029356

Received 17 NOV 2018
Accepted 16 MAY 2019
Accepted article online 25 JUN 2019
Published online 10 JUL 2019

LEE ET AL. 7098

https://orcid.org/0000-0001-7702-6960
https://orcid.org/0000-0002-1822-3224
https://orcid.org/0000-0003-4944-4932
https://orcid.org/0000-0002-1660-2706
http://dx.doi.org/10.1029/2018JD029356
http://dx.doi.org/10.1029/2018JD029356
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-9208.GRANDCHAL1
mailto:shanhu.lee@uah.edu
https://doi.org/10.1029/2018JD029356
https://doi.org/10.1029/2018JD029356
http://publications.agu.org/journals/


aerosol effects associated with aerosol‐radiation interaction and aerosol‐cloud interaction represent the
largest uncertainty in predictions of anthropogenic forcing on climate (IPCC, 2013). In addition, fine
aerosols (i.e., particulate matter smaller than 2.5 μm or PM2.5) constitute a key component of air pollution
on local and regional scales, since high concentrations of PM2.5 not only cause visibility degradation but
also negatively impact human health (EPA, 2004). More than 3 million premature deaths each year
worldwide have been attributed to exposure to fine PM, representing one of the greatest risks to public
health (Lim et al., 2012). There is increasing evidence that exposure to fine aerosols not only causes acute
and chronic diseases but also exacerbates adverse health effects of gaseous criteria pollutants, including
ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), and nitrogen oxides (NOx = NO + NO2; Kimmel
et al., 1997; Künzli et al., 2005). In addition, it has been suggested that ultrafine particles likely exert the
most severe health effects, since small particles are more likely to be deposited in the pulmonary region
and to penetrate into bloodstream than large particles (Anderson et al., 2012; Araujo et al., 2008; Hamra
et al., 2014; NASEM, 2016; Oberdorster et al., 2004; Schlesinger et al., 2006).

Aerosol particles are either emitted directly into the atmosphere (referred to as primary particles) or pro-
duced in the atmosphere via gas‐to‐particle conversion (referred to as secondary particles; Seinfeld &
Pandis, 2016). In addition, primary and secondary aerosols undergo chemical and physical transformations
and are subjected to transport, cloud processing, and removal from air (Zhang et al., 2015). New particle
formation (NPF), which is characterized by a sudden burst of high concentrations of subnanometer‐sized
(1–3 nm) particles in the atmosphere followed by their growth (Figure 1), represents a major source for tro-
pospheric aerosol population. NPF events have been observed under diverse environmental conditions,
including urban locations, forested areas, marine/coastal regions, and the remote or free troposphere
(Kerminen et al., 2018; Kulmala, Vehkamäki, et al., 2004; Z. Wang et al., 2017). Atmospheric observations
show that about 10% to 60% of the NPF events lead to CCN formation and the average enhancement factors
in CCN concentrations due to NPF range from 0.5 to 11 depending on the location (Asmi et al., 2011; Dameto
de España et al., 2017; Kerminen et al., 2018; Kuang et al., 2009; Laakso et al., 2013; Lihavainen et al., 2003;
Rose et al., 2017; Shen et al., 2016; Sihto et al., 2011; Z. B. Wang, Hu, Sun, et al., 2013; Yu et al., 2014; Yue
et al., 2011). Global modeling predictions also show that NPF contributes around half of the CCN population
in the troposphere (Gordon et al., 2017; Merikanto et al., 2009; Yu et al., 2014; Yu & Luo, 2009; Yue et al.,
2011). NPF has been shown to be also associated with severe haze events in Chinese megacities
(Figure 1), producing a large number of nanoparticles that subsequently grow into submicron‐sized particles
(e.g., CCN size) even under polluted environments (Guo et al., 2014).

Figure 1. Aerosol nucleation and growth during a pollution episode (2–7 October, 2013) in Beijing. (a) Temporal evolutions
of particle number size distribution andmean diameter (white dashed curve). (b) PM2.5mass concentration (black solid line),
mean diameter (purple dashed line), and PM1 (particulate matter smaller than 1.0 μm) chemical composition. The
shaded colors denote the mass concentrations of the aerosol constituents, that is, green for organics, blue for nitrate, red for
sulfate, yellow for ammonium, purple for chloride, and black for black carbon. Adapted from Guo et al. (2014).
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NPF occurs in two stages (Kulmala et al., 2013; Zhang, 2010). The first step involves the formation of a cri-
tical nucleus during the phase transformation from vapor to liquid or solid. The second step is the growth of
the critical nucleus to a larger size (>2–3 nm) that competes with removal by preexisting aerosols. The
nucleation process results in a decrease in both enthalpy and entropy (i.e.,ΔH< 0 andΔS< 0). A free‐energy
barrier (i.e., ΔG = ΔH − TΔS > 0) needs to be overcome before the phase transition becomes spontaneous.
An additional limitation in the growth of nanoparticles is related to highly elevated vapor pressures over
small clusters and nanoparticles. This phenomenon is commonly known as the Kelvin or curvature effect,
which imposes another major restriction in the growth of freshly nucleated nanoparticles.

The mechanisms for nucleation have been widely investigated in many interdisciplinary areas, including
biomedicine, catalysis, fuel cell, magnetic data storage, agriculture, and solar cells, because of the broad
applications of nanoparticles (Thanh et al., 2014). These nanoparticles have unique magnetic, optical, elec-
tronic, and catalytic properties, which are size‐dependent and distinct from the bulk materials. Nucleation is
generally defined as the creation of molecular clusters prior to spontaneous formation of a new phase from
vapor, liquid, to solid transition (Lamer & Dinegar, 1950). Formation of the new phase without heterogene-
ities occurs through random fluctuations in vapor density, generating molecular clusters that grow or decay
by gaining or losing a monomer. Cluster growth occurs via a reversible, stepwise kinetic process for single or
multicomponent systems. Several theoretical frameworks have been developed to describe the rates and
mechanism by which clusters grow or decay. The phenomenological classical nucleation theory (CNT) con-
siders the thermodynamics and kinetics of nucleation, by evaluating the change in Gibbs free energy (ΔG)
for the formation a cluster of radius r (Flood, 1934; Reiss, 1950),

ΔG ¼ −nkTlnS′ þ 4πr2σ; (1)

where S′ = p/pS is the saturation ratio, p is the vapor pressure, pS is the saturation pressure over a plane sur-
face, and σ is the surface tension. The CNT utilizes the capillarity approximation, that is, assuming that the
cluster possesses identical particle density, surface tension, and equilibrium vapor pressure as the bulk. For a
spherical cluster, the number of molecules n is related to its radius n= (4/3)πr3 / vl, where vl is the volume of
a single molecule. The free energy reaches a maximum at the critical nucleus

ΔG* ¼ 4π
3
σr*

2 ¼ 16π
3

σ3ν2l
kT lnS′
� �2 : (2)

The ΔG* also corresponds to the minimum free energy required to form stable clusters. The critical radius
(r*) is defined as the minimum size at which a cluster survives evaporation

r* ¼ 2σνl
kT lnS′

: (3)

The critical nucleus is in a metastable state between the vapor and liquid, since addition of a monomer leads
to spontaneous growth, while removal of a monomer results in decomposition of the critical nucleus. The
nucleation rate (J), which is defined as the number of stable clusters formed per unit volume per unit time
(N), is expressed by an Arrhenius type equation,

J ¼ dN
dt

¼ Jo exp −
ΔG*

kT

� �
; (4)

where Jo is the preexponential factor relevant to gaseous kinetics. Major uncertainties of CNT lie in several
simple assumptions, including that the critical nucleus has a spherical shape and its physical properties are
identical to those of the bulk phase. However, many of the problems with CNT (Girshick & Chiu, 1990;
Olenius & Riipinen, 2017; Wilemski & Wyslouzil, 1995; Yu, 2003) can be overcome, for example, with
improved modeling of sulfuric acid hydrates (Noppel et al., 2001; Vehkamäki et al., 2002) or quantum che-
mical calculations (Du et al., 2009; McGrath et al., 2012).

The nucleation process can be formulated on the basis of the kinetics for growth and evaporation of clusters
by a reversible, stepwise kinetic process, according to the following expression (Seinfeld & Pandis, 2016):
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d Ci½ �
dt

¼ kþi−1 Ci−1½ � Ai−1½ �−k−i Ci½ �−kþi Ci½ � Ai½ � þ k−iþ1 Ciþ1½ �; (5)

where Ai−1 denotes a monomer species to be added to the cluster Ci−1 at
the (i − 1)th step, k−i and kþi represent the evaporation and growth rate
constants of the cluster, respectively, and [Ci] and [Ai] denote the concen-
trations of the cluster and monomer at the step i, respectively. Under the
steady‐state condition, the cluster concentrations of different sizes
become time‐independent, since the net rate to form each cluster is con-
stant. J is related to the growth (kþi ) and evaporation (k−i ) rate constants
for each cluster, which are typically calculated from the gas‐kinetic colli-
sion rate and the cluster stability (i.e., the free‐energy change for cluster
formation), respectively. Several kinetic approaches have been developed
to calculate cluster distributions and J by obtaining the rate constants of
formation and decomposition of clusters without explicit expressions of
the formation energy and surface tension of clusters. In addition, the
dynamical nucleation theory treats nucleation on the basis of multistep
binary collisions between nucleating molecules and clusters (Schenter
et al., 1999). Furthermore, microscopic schemes, including molecular
dynamics and Monte Carlo calculations, have been employed to predict
the structure and free energy of cluster formation according to the first
principles (Seinfeld & Pandis, 2016; Zhang et al., 2012).

The nucleation theorem is a thermodynamic expression to correlate the
nucleation barrier height to the change in log vapor concentration
(Kashchiev, 1982). The kinetic formulation of the nucleation theorem,

which can be derived by differentiating the steady‐state J (equation (4)) at constant temperature, is readily
generalized from a single component to a multicomponent system with a similar form (Oxtoby &
Kashchiev, 1994)

∂ lnJj
∂ lnS′j

¼ ∂ lnJj
∂ lnnj

¼ g*j þ δj; (6)

where δj= Jj / J (i.e., 0≤ δj≤ 1) and Ji,S
′

j, nj, and g
*
j are the nucleation rate, the saturation ratio, the monomer

number concentration, and the critical monomer number (in monomeric units), respectively, for species j.
The kinetic nucleation theorem has been widely applied to infer molecular compositions of the critical
nucleus on the basis of field and laboratory measured J and vapor concentrations (McGraw & Zhang,
2008; McMurry et al., 2005) but must be applied with care (Ehrhart & Curtius, 2013; Malila et al., 2015;
Vehkamäki et al., 2012).

Extensive efforts have beenmade to elucidate the fundamental mechanisms relevant to atmospheric NPF on
the basis of field measurements, laboratory experiments, and theoretical calculations (Kulmala et al., 2013;
Zhang et al., 2012). Recent field studies include ambient measurements of ultrafine particles down to the size
~1 nm, gaseous concentrations of nucleating precursors (such as sulfuric acid H2SO4, ammonia NH3, and
amines), and prenucleation clusters (e.g.,Yu & Lee, 2012 ; Zhao et al., 2011 ; Zheng et al., 2015). For example,
L. Yao et al. (2018) recently showed NPF in a very polluted Chinese megacity, Shanghai (Figure 2). They
measured particle number size distributions down to ~1.2 nm, along with sulfuric acid vapor, sulfuric acid
clusters (trimer and tetramer), and sulfuric acid‐dimethylamine (DMA) clusters with up to four molecules of
sulfuric acid and two molecules of DMA. Also, numerous laboratory experiments were conducted using a
flow reactor to monitor nucleation at a fixed time or a reaction chamber to follow the evolution of nucleation
(Yu, McGraw, & Lee, 2012; Zhang et al., 2009; Zhao et al., 2011). Notably, a major infrastructure, the
Cosmics Leaving Outdoor Droplets (CLOUD) chamber, was established at CERN, Switzerland. The
CLOUD experiment aims to understand aerosol nucleation and subsequent particle growth by integrating
advanced instrumentation for measuring gases and aerosols with a high energy physics accelerator (proton
synchrotron; Kirkby et al., 2011; Riccobono et al., 2014; Tröstl et al., 2016). In addition, theoretical investiga-
tions of aerosol nucleation were carried out to determine the stability and dynamics of prenucleation clusters

Figure 2. Measured particle formation rates for 1.7‐nm particles (J1.7) as a
function of sulfuric acid concentrations and condensation sink (CS) in
urban Shanghai, China (colored circles). In comparison, binary (diamonds)
and ternary nucleation with ammonia (triangles; Kirkby et al., 2011) and
diamine (squares; Almeida et al., 2013) experimental results taken from
CLOUD chamber experiments are also included. Adapted from L. Yao et al.
(2018).

10.1029/2018JD029356Journal of Geophysical Research: Atmospheres

LEE ET AL. 7101



using thermodynamic data from quantum chemical calculations (Xu & Zhang, 2012), the Atmospheric
Cluster Dynamics Code (ACDC) model (McGrath et al., 2012; Olenius et al., 2013; Zhao et al., 2009), and
kinetic modeling calculations (Lovejoy et al., 2004; Yu, 2010, 2011).

NPF is intrinsically connected to gasphase chemistry, since many of the chemical species relevant to aerosol
nucleation and growth are produced from photooxidation of atmospheric trace gases, including SO2 and
volatile organic compounds (VOCs),

SO2 þ OH→HSO3; (R1)

HSO3 þ O2→SO3 þHO2; (R2)

SO3 þH2OþM→H2SO4 þM; (R3)

VOCsþ OH or O3ð Þ→→highly oxygenated molecules HOMsð Þ: (R4)

The critical role of photochemistry in NPF is also reflected by the fact that most NPF events occur during the
day, while nocturnal NPF is also observed (Junninen et al., 2008). Sulfuric acid is considered the most pre-
valent nucleating species because of its low vapor pressure under typical atmospheric conditions (Sipila
et al., 2010; Zhang et al., 2012). Also, sulfuric acid is prone to form hydrogen bonding with many atmospheri-
cally important compounds, including water, basic species (i.e., ammonia and amines), and organic acids.
This ability to form hydrogen bonding renders sulfuric acid an ideal candidate to participate in nucleation.
In particular, the prenucleation clusters exist in a state that is distinct from the liquid phase, and the very first
step of nucleation (i.e., the formation of a dimer) is driven mainly by hydrogen bond. Field measurements
showed that gaseous sulfuric acid in concentrations of greater than approximately 105 molecules/cm3 is
necessary for observable NPF in the atmosphere (Erupe et al., 2010; McMurry et al., 2005; Nieminen
et al., 2009). In addition, several other nucleating precursors have been implicated for NPF under diverse
environments, including ions (Kirkby et al., 2011; Kirkby et al., 2016), ammonia/amines (Almeida et al.,
2013; Glasoe et al., 2015; Jen, Zhao, et al., 2016; Kirkby et al., 2011; Kürten et al., 2014; Yao et al., 2018;
Yu & Luo, 2014a; Yu, McGraw, & Lee, 2012), HOMs (Ehn et al., 2014; Jokinen et al., 2015; Tröstl et al.,
2016), other organic compounds (Metzger et al., 2010; Zhang et al., 2004), and iodine oxides (O'Dowd
et al., 2002; Sipilä et al., 2016).

Currently, the mechanism and chemical species responsible for atmospheric NPF are still highly uncertain.
In particular, consistent chemical mechanisms to explain NPF under diverse atmospheric conditions are still
lacking. Also, available results of NPF from laboratory experiments, field measurements, and theoretical cal-
culations are often conflicting, regarding the identity of the chemical species responsible for aerosol nuclea-
tion and growth under diverse ambient conditions. These inconsistencies are partially attributed to
difficulties in detecting the nucleating precursor species and the chemical composition of clusters and
freshly nucleated nanoparticles by analytical instrumentation and in calculating large prenucleation clusters
by reliable theoretical methods.

The present review provides a synthetic view of NPF in the atmosphere, by emphasizing the most recent
advancesmade in the understanding of nucleation and growth of atmospheric nanoparticles from laboratory
experiments, field measurements, and modeling studies. The review is organized according to the following
outline. Section 2 emphasizes on recent development of analytical instruments to measure the size and che-
mical composition of prenucleation clusters and nanoparticles. Recent progresses on atmospheric NPF from
laboratory studies, field observations under various environments, and NPF parameterizations in atmo-
spheric models are discussed in sections 3–5, respectively. Section 6 presents an overview on the outstanding
questions, challenges, and directions for atmospheric NPF research. Appendix A contains a list of acronyms.

There are several reviews on the topic of NPF from different aspects. The Kulmala, Vehkamäki, et al. (2004)
review is an earliest overview of NPF observations made at various locations. R. Zhang et al. (2012) provide a
comprehensive review of theories and observations of aerosol nucleation and growth. Hirsikko et al. (2011)
review air ion measurements. Theoretical aspects of homogeneous nucleation are discussed in several over-
view papers (Curtius, 2006; Enghoff & Svensmark, 2008; Hegg & Baker, 2009; Kazil et al., 2008; Vehkamäki
et al., 2012). Kulmala, Laakso, et al. (2014) discuss the instrument development related to NPF. More
recently, Yu, Ren, and Kanawade (2017), Z. Wang et al. (2017), and Chu et al. (2019) discuss NPF
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occurring under extremely polluted conditions. Kerminen et al. (2018) review recent findings of NPF from
field observations in different atmospheric regions. Semeniuk and Dastoor (2018) discuss NPF parameteri-
zations used in regional air quality models. The present review focuses on the latest progress in development
of new instruments, laboratory observations of multicomponent nucleation, and field observations of NPF at
under various ambient conditions and discusses the critical needs for the development of physically based
NPF parameterizations in atmospheric models.

2. Development of New Instruments

Measuring aerosol sizes, especially those including newly formed clusters, is necessary for NPF studies but
very challenging. Great progress has been made recently in this direction. Chemical analysis of nucleation
precursors is extremely important, as nucleation is a nonlinear process. In this section, we discuss analytical
methods used to detect major nucleation precursors, sulfuric acid, ammonia and amines, and newly
nucleated gas phase clusters, both charged and neutral.

2.1. Sizing of Nanoparticles

Understanding NPF requires reliable instrumentation capable of the detection of forming clusters as well as
their precursors. Measurement of particle concentrations and size distributions down to a few nanometers,
preferably down to ~1.5‐nm mobility diameter (Kulmala et al., 2012), is especially important, because this
information is needed to identify NPF events and retrieve parameters describing particle formation pro-
cesses, for example, formation and growth rates (GR).

The most common particle size spectrometer is Differential or Scanning Mobility Particle Sizer (D/SMPS),
which consists of a neutralizer, a Differential Mobility Analyzer (DMA), and a particle counter. D/SMPS
have been widely used in atmospheric measurements, but large deviations still exist in individual instru-
ment performances especially in the sub‐10‐nm size range (Wiedensohler et al., 2012). Much progress has
been thus made in recent years to develop instruments optimized for the measurement of smallest size par-
ticles (e.g., down to ~1 nm).

High‐Resolution DMA (HR‐DMA) was developed to accurately size particles and clusters down to the mole-
cular sizes. Several studies characterized the performance of HR‐DMAs down to ~1 nm (Brunelli et al., 2009;
J. K. Jiang et al., 2011; Kangasluoma et al., 2016; Steiner et al., 2010; M. R. Stolzenburg et al., 2018). For atmo-
spheric measurements, sufficiently high transmission of small particles through the DMA is required, since
concentrations of these small particles are generally low.

An important factor limiting the size range in a particle spectrometer is lower activation efficiencies of
Condensation Particle Counters (CPCs) at smaller sizes. The minimum size of water‐ or butanol‐based
CPCs is typically ~2–3 nm before they are homogenously nucleated by the working fluid. Instruments using
diethylene glycol (DEG) as the working fluid can reach even smaller sizes without homogenous nucleation
(Iida et al., 2009). Several particle counters using DEG have been developed (Kuang et al., 2012; Vanhanen
et al., 2011), but all of them require a second stage growth chamber, where small particles grow to the optical
sizes to be detected by light scattering.

More recent particle size spectrometers that combine HR‐DMAs and low cutoff particle counters can detect
particle sizes smaller than 2 nm. These instruments include D/SMPS systems with DEG‐based CPC (J. Jiang
et al., 2011; Kangasluoma et al., 2018), as well as the DMA‐train (Stolzenburg et al., 2017) that consists of
several DMAs in parallel set to different cutoff sizes. The main disadvantage of these new instruments is
low counting efficiencies of particles at small sizes, due to low charging probabilities, low transmission effi-
ciencies through the DMA, and diffusion losses throughout the system.

Other types of size spectrometers include Air Ion Spectrometer (AIS) that detects naturally charged ions
using electrometer (Mirme & Mirme, 2013). Neutral cluster and Air Ion Spectrometer (NAIS) can measure
particle size distributions of total aerosol particles (including charged and neutral) above ~2 nm, using cor-
ona discharge (Mirme &Mirme, 2013). Ion spectrometers often use large flow rates to reduce particle losses,
but the associated electric noise can be an issue at low particle concentrations.

NPF has also been studied using CPC‐based methods to retrieve the particle size information. Although less
accurate in sizing than DMA‐based methods, these instruments have an advantage in generating more
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signals at low concentrations of particles. The scanning Particle Size Magnifier (PSM, Vanhanen et al., 2011)
has been used to inversely derive particle size information down to ~1 nm, by continuously changing the
supersaturation ratio of the DEG working fluid to activate a different size fraction of sub‐3‐nm particles at
a time (Kangasluoma et al., 2015; Lehtipalo et al., 2014). Another approach is to use pulse‐height analysis
to resolve the original particle sizes based on measured droplet size distributions (Kuang, 2018; Sipila
et al., 2009). The main limitation of both aforementioned methods is that activation of particles inside the
CPC is sensitive to chemical composition of particles (Kangasluoma et al., 2014; Wimmer et al., 2013), so
for atmospheric aerosols with unknown chemical compositions, this issue can make analysis
more challenging.

2.2. Chemical Analysis of Nucleation Precursors

Atmospheric observations and laboratory studies of NPF have shown that Chemical Ionization Mass
Spectrometer (CIMS) is a powerful tool for sulfuric acid measurements. The CIMS is based on the ion‐
molecular reaction using nitrate ions (NO3) as reagent (Eisele & Tanner, 1993) at atmospheric pressure.
In general, the detection limit of CIMS is at 105 cm−3 or even lower, with an integration time of 1 min, with
the overall uncertainty of ~60% (Benson et al., 2008; Benson et al., 2009; Eisele & Tanner, 1993; Erupe et al.,
2010; Kürten et al., 2012; Petäjä et al., 2009).

Nitrate ions (and their higher order clusters) are produced in a flow annular to the sample flow by exposing a
parts per million by volume mixture ppmv of nitric acid in air to a commercial X‐ray source (<10 KeV) or a
210Po radiation source. During this process, hydroxyl (OH) radicals can also form from water molecules by
the ionization source, and if they react with SO2, they can produce artifact sulfuric acid molecules. To reduce
such artifacts, an electric field is applied in the ion‐molecule reaction region so that only charged nitrate
ions, as opposed to OH radicals, flow in to the reaction region to react with sulfuric acid molecules (Eisele
& Tanner, 1993). Calibration of sulfuric acid is made based on the known concentrations of OH, produced
from ultraviolet photolysis of water molecules, by converting the OH radicals to sulfuric acid in the presence
of excessive SO2 concentrations (Kürten et al., 2012; Sjostedt et al., 2007; Tanner & Eisele, 1995; Young
et al., 2008).

It is possible that strong base compounds, by clustering with sulfuric acid, can affect the detection of sulfuric
acid in CIMS (Kurten et al., 2011). However, Rondo et al. (2016) recently investigated the effects of amine‐
sulfuric acid clustering on the detection of sulfuric acid with CIMS and concluded that the nitrate‐CIMS can
measure sulfuric acid monomers efficiently even in the presence of amines.

An atmospheric pressure ionization‐ion drift‐CIMS was developed to measure ambient sulfuric acid and its
clusters (Zheng et al., 2010; Zheng et al., 2011). The application of the drift tube facilitates controlled ion‐
molecule reactions, with the advantages to detect and quantify gases without the necessity of calibrations
using authentic standards and to effectively prevent unwanted cluster formation (Fortner et al., 2004; Ji
et al., 2017; Zhao et al., 2004; Zhao et al., 2005; Zhao & Zhang, 2004). The atmospheric pressure
ionization‐ion drift‐CIMS exhibits the advantages over the low pressure ion drift‐CIMS and atmospheric
pressure ionization‐CIMS, by improving the detection sensitivity by 3 orders of magnitude and a factor of
3, respectively (Zheng et al., 2010).

Amines have been measured with offline analytical methods based on gas chromatography, high‐
performance liquid chromatography, and ion chromatography, coupled with flame ionization detectors,
mass spectrometry, ultraviolet detectors, fluorescence detector, or electrochemical detectors (Ge et al.,
2010). The advantage of these offline techniques is that the detection limit can be improved by an enhanced
analyte preconcentration (e.g., absorption in water or adsorption on solid sorbents), but the preconcentra-
tion with the prolonged sampling time also raises several technical issues. High‐performance liquid chroma-
tography and ion chromatography methods often involve amine absorption in water; and water contains
amines as impurities (Erupe et al., 2011; Yu, McGraw, & Lee, 2012). Nevertheless, DMA has been measured
by the ion chromatography method in CLOUD chamber experiments with an extremely low detection limit
at the sub‐parts per trillion by volume (pptv) level (Praplan et al., 2012).

CIMS have been used for fast‐time resolution detection of various atmospheric amines and ammonia (Eisele,
1988; Hanson et al., 2011; Jen, Bachman, et al., 2016; Kürten, Bergen, et al., 2016; Nowak et al., 2010; Sellegri
et al., 2005; Simon et al., 2016; You et al., 2014). Hanson et al. (2011) and Zheng et al. (2015) have used
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protonated water ions as reagent to measure various amines and ammonia. H. Yu and Lee (2012) applied
protonated ethanol and acetone ions as reagent to detect amines and ammonia together, and this ion‐
molecule reaction scheme later was applied for amine measurements also by other groups (Yao et al.,
2016; Yao et al., 2018). Either quadrupole mass spectrometry or high‐resolution time of flight mass spectro-
meter (HR‐TOF‐MS) has been used as detector. These CIMS can provide detection limits of pptv or sub‐pptv
for amines and several tens pptv of ammonia, with the time resolution of 1 min (You et al., 2014).

The main challenge of measuring amines and ammonia is to make reliable background measurements to
ensure the measured signals truly represent the concentrations of amines and ammonia. Background mea-
surements should “shield out” the effects of artifact signals rising from the desorption of amines and ammo-
nia from the sampling inlets and the effects of ambient conditions such as relative humidity (RH) and
temperatures and other atmospheric species on ammonia and amine signals (Hanson et al., 2011; You
et al., 2014; Yu & Lee, 2012). Thus, the zero air used in background measurements should be different from
the zero air typically generated from a commercial “zero air generator,” because the latter can show signifi-
cantly lower background signals, and thus, measurements can show higher concentrations of amines than
the actual values. Also, because sensitivities are dependent on the background signal levels, frequent in situ
calibrations are needed (You et al., 2014).

Reliable measurements of gas phase precursors such as sulfuric acid, organics, ammonia, and amines with
sufficiently low detection limits and high time response are needed for future studies. Measurements should
provide the robust calibration and stability during the long‐term operation and be reproducible under differ-
ent atmospheric conditions with varying temperatures, RH, and air pressures.

2.3. Chemical Analysis of Charged and Neutral Clusters

Prenucleated clusters containing sulfuric acid have been measured by CIMS (Eisele et al., 2006; Froyd &
Lovejoy, 2003; Froyd & Lovejoy, 2004; Hanson & Eisele, 2000; Zhao et al., 2010; Zhao et al., 2011).
Recently, chemical composition of atmospheric clusters (e.g., beyond tetramers) has been measured with
Atmospheric Pressure ionization‐Time of Flight mass spectrometer (APi‐TOF; Junninen et al., 2010) and
Chemical Ionization‐Atmospheric Pressure Ionization‐Time of Flight mass spectrometer (CI‐APi‐TOF;
Jokinen et al., 2012), both based on the HR‐TOF‐MS technique. The APi‐TOF is in fact an HR‐TOF‐MS
which is attached to an Atmospheric Pressure interface (APi). In this case, no chemical ionization is applied
to the sample flow, and it detects ions that naturally form in the atmosphere. The APi‐TOF can be configured
to measure either positive or negative ions.

The use of the HR‐TOF‐MS improves ion transmission by up to 2 orders of magnitude over a typical quad-
rupole mass spectrometry operated in m/z scanning mode. Complete mass spectra can be acquired at rates
greater than 100 Hz with mass resolving power between 3,000 and 7,000 m/z and mass accuracy better than
10 ppm. The nitrate CI‐APi‐TOF detects sulfuric acid, aminium, ammonium, iodic acid, and HOMs (Jokinen
et al., 2012; Kürten, Bergen, et al., 2016; Sipilä et al., 2016). The CI source for the nitrate CI‐APi‐TOF is based
on the Eisele and Tanner (1993) described in section 2.2. The quantification of HOM concentrations has
been achieved using the same calibration factor for the sulfuric acid detection, under the assumption that
HOMs are detected near the collision limit and have the same transmission efficiencies as sulfuric acid.
The lack of direct calibration and peak identifications of HOM species is the major technical issue for CI‐
APi‐TOF. Figure 3 shows mass spectra taken by CI‐APi‐TOF during α‐pinene ozonolysis reactions in the
Jülich Plant Atmosphere chamber, indicating a series of monomers and dimers of HOMs formed from bio-
genic VOC (BVOC) ozonolysis reactions (Bertram et al., 2011; Brophy & Farmer, 2015; Ehn et al., 2014;
Veres et al., 2008).

Other ion chemistries are also applied to CI‐APi‐TOF to measure specific classes of organic compounds,
using a low‐pressure ionmolecule reactor. Each chemical ionizationmethod has its own advantages and dis-
advantages. The advantage of nitrate anion is that it is selective and relatively easy to interpret the complex
spectra. The acetate anion can detect carboxylic acids (Brophy & Farmer, 2015; Veres et al., 2008). However,
there is acetate anion clustering and significant fragmentation including dehydration. Iodide anion cluster-
ing is similar to nitrate except that it can see less oxidized species (Bertram et al., 2011). It has the same
advantage as the nitrate chemical ionization when looking only at iodide‐containing clusters that are easily
resolved in the spectra.
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The large variety of oxidized organic compounds poses specific challenges for instrumentation, as different
ion chemistries used in the CIMS instruments measure different subgroups of organic compounds. For com-
pleteness, different techniques and ion chemistries should be used in parallel, ideally, but it is not straight-
forward to integrate or intercompare the mass spectrometer data obtained from different instruments. Also,
the current mass spectrometers still suffer from fragmentation and thermal decomposition of clusters and
particles during the sampling and measurement, which hinders the accurate quantification of
organic species.

With the recent instrumentation development, we are now able to measure the chemical composition (e.g.,
molecular mass, although without chemical identities) of newly nucleated clusters (Jokinen et al., 2012;
Junninen et al., 2010). There are several instruments that were designed to measure chemical composition
of sub‐20‐nm particles (Gomez‐Hernandez, 2015; Horan et al., 2017; Smith et al., 2004), but these instru-
ments have been primarily used for particles larger than ~20 nm. Thus far, chemical analytical techniques
that cover the particle size range from ~3 to 20 nm are mostly missing, because these particles are difficult
to ionize, have extremely low mass concentrations, and are very diffusive. There have been some indirect
methods used for chemical analysis of this size range particles, for example, Tandem DMA (Laaksonen
et al., 2008; Petäjä et al., 2005). Understanding the chemical composition of particles from 3 to 20 nm parti-
cles is essential for understanding the growth mechanisms of new particles and their effects on
CCN formation.

Atmospheric sensors currently used for chemical analysis and size distributionmeasurements are very costly
and labor consuming to operate and troubleshoot. Due to their high costs, deployment of these instruments
at a wide range of atmospheric locations, especially in developing countries and remote locations, is not fea-
sible. Due to various technical issues in their operation, they are usually not suitable for long‐term, online
measurements, especially at mountain‐top sites and onboard the aircraft. Development of low‐cost, portable,
and reliable instruments that can provide detailed size information of clusters and nanoparticles is needed.

3. Nucleation and Growth Mechanisms: New Results From Laboratory Studies

Laboratory nucleation observations conducted under well‐controlled experimental conditions are needed to
test and constrain nucleation theories, but nucleation experiments are extremely difficult to perform. The
major technical challenges include difficulties in measuring very low concentrations of nucleation precur-
sors and the chemical composition of newly formed particles in the size range from the critical clusters

Figure 3. Mass spectra taken by APi‐TOF during α‐pinene ozonolysis reactions in the Jülich Plant Atmosphere chamber.
Adapted from Ehn et al. (2014).
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(~1.5 nm) up to ~10‐nm particles. Experiments often suffer various contaminations of nucleation precursors,
especially relatively high concentrations of amines and ammonia that originate from deionized water. For
example, flow tubes (e.g., made by Pyrex) typically contain the pptv and tens pptv level of base compounds
depending on RH, even after very deliberate cleaning processes (Erupe et al., 2011; Yu, Dai, et al., 2017; Yu,
McGraw, & Lee, 2012), with some exceptions (Glasoe et al., 2015; Hanson et al., 2017). As nucleation is a
nonlinear process and the J are extremely sensitive to the temperature, RH, and concentrations of nucleation
precursors, it is difficult to obtain consistent data from different experimental setups. The chamber experi-
ment results are also difficult to interpret, because wall loss of nucleation vapors (Pierce et al., 2008;
Zhang et al., 2014), clusters (Ehrhart & Curtius, 2013; Kürten et al., 2015; McMurry & Li, 2017), and particles
(Pierce et al., 2008) must be accounted for the accurate calculation of J andGR. Nucleation studies have been
made with fast flow reactors (Ball et al., 1999; Benson et al., 2011; Berndt et al., 2010; Brus et al., 2010;
Hanson & Lovejoy, 2006; Lovejoy et al., 2004; Young et al., 2008; Zhang et al., 2004), expansion cloud cham-
bers (Katz, 1970), environmental smog chambers (Metzger et al., 2010; Riccobono et al., 2012), real plant
chambers (Hao et al., 2009; Joutsensaari et al., 2005; Mentel et al., 2009), and recently at CERN in the large
environmental chamber CLOUD (Almeida et al., 2013; Kirkby et al., 2016; Kürten et al., 2014; Lehtipalo
et al., 2016; Tröstl et al., 2016). The advantage of CLOUD is that it has extremely low concentrations of impu-
rities and is equipped with a large number of state‐of‐the‐art aerosol and chemical instruments through col-
laborations. Even the CLOUD chamber still suffers from the contamination of base compounds at high RH
and high temperature conditions due to desorption of base compounds from the stainless steel walls
(Kürten, Bianchi, et al., 2016). In this section, we highlight key scientific findings from the recent laboratory
experiments of nucleation and early growth.

3.1. Base‐Stabilization Nucleation

Sulfuric acid is the most important atmospheric nucleation precursor, and base compounds such as ammo-
nia and amines also enhance nucleation of sulfuric acid. This is because base compounds can reduce the
vapor pressure of sulfuric acid and thus stabilize critical clusters. Low molecular mass alkyl amines were
shown to be stronger stabilizing agents for sulfuric acid clusters than ammonia by laboratory experiments
and quantum chemistry (Jen et al., 2014; Kurtén et al., 2008; Yu, McGraw, & Lee, 2012).

Ammonia and amines have been observed in small sulfuric acid clusters in both the laboratory and the
atmosphere (Almeida et al., 2013; Bianchi et al., 2014; Hanson & Eisele, 2002; Kirkby et al., 2011; Kürten
et al., 2014; Schobesberger et al., 2015; Yao et al., 2018; Yu, McGraw, & Lee, 2012). Figure 4 shows an approx-
imate 1:1 molar ratio of sulfuric acid and ammonia (or DMA) in newly formed clusters at the atmospheri-
cally relevant gaseous [NH3]/[H2SO4] concentration ratios of 10–500 (Bianchi et al., 2014; Schobesberger
et al., 2015). While amines can strongly enhance the J (Almeida et al., 2013; Glasoe et al., 2015), studies show
there is a saturation effect of J or dimer concentrations with a further increase in DMA concentrations, for
example, when exceeding 5 pptv DMA at temperatures between 278 and 300 K (Almeida et al., 2013; Chen
et al., 2012; Jen et al., 2014; Kürten et al., 2014). With 5–32 pptv or higher concentrations of DMA, formation
of neutral sulfuric acid dimers reaches the kinetic limit with a power dependence of J on [H2SO4] of 2, indi-
cating highly stable clusters with negligible evaporation (Almeida et al., 2013; Kürten et al., 2014). This is
equivalent to the notion that the critical cluster size is smaller than the dimer.

It should be noted, however, that these laboratory observations do not necessarily mean that nucleation
always proceeds at the kinetic limit in the real atmosphere, because nucleation pathways depend on the con-
centration as well as the stabilizing ability of base compounds. For example, Jen et al. (2014) found that the
saturation concentration with respect to sulfuric acid dimer concentration was 1,800–2,300 pptv for ammo-
nia, in comparison to ~20 pptv in the case of DMA. M. Chen et al. (2012) observed that the measured sulfuric
acid tetramer concentrations in Atlanta and Mexico City were approximately equal to the collision‐limited
values, but the measured trimer and dimer concentrations were a factor of 8 and 16 below the collision‐
limited values, respectively. This implies that monomer evaporation from the dimer and trimer is the bottle-
neck for nucleation under these specific conditions. In Chinese megacities, average [NH3] of 1.7 ppbv were
reported in Nanjing, and total C1–C6 amines of ~79 pptv were reported in Shanghai (Yao et al., 2016; Zheng
et al., 2015). It is thus very likely that nucleation would proceed at the collision‐limit of sulfuric acid in these
highly polluted environments. Figure 2 shows the J and sulfuric acid concentrations measured in urban
Shanghai, China (Yao et al., 2018) and compares them with the CLOUD DMA‐ternary nucleation results
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(Almeida et al., 2013). These results imply that base compounds in these very polluted cities can be impor-
tant for aerosol nucleation, but the effects of other chemical species such as biogenic and anthropogenic
organics also cannot be excluded.

Amines also have an important effect on GR of new particles. Recently, Lehtipalo et al. (2016) observed that
when 5 to 70‐pptv DMA was present in the CLOUD chamber, the GR of 2 nm particles was a factor of ~10
higher than that could be expected based on the mass flux calculated from the apparent sulfuric acid
concentrations and cocondensation of DMA. It was thus concluded that the dominant growth mechanism
is a cluster‐cluster collision process, instead of sulfuric acid monomer‐cluster collision. This finding has an
important atmospheric implications especially in a highly polluted atmosphere. In the past, the higher GR
could not be explained by sulfuric acid condensation and were often attributed to additional contribution
from some unidentified organics (Yu, Ren, & Kanawade, 2017).

Laboratory observations show that the enhancement of nucleation is dependent on the proton affinity of
base compounds (Berndt et al., 2014; Glasoe et al., 2015; Yu, McGraw, & Lee, 2012). The enhancement of
nucleation is also stronger by ammonia and an amine together, compared to ammonia or an amine com-
pound alone (Berndt et al., 2014; Glasoe et al., 2015; Yu, McGraw, & Lee, 2012). Considering many common
emission sources (Ge et al., 2010) and the copresence of amines and ammonia in the atmosphere (You et al.,
2014; Yu & Lee, 2012), such synergetic effects have important atmospheric implications. Systematic labora-
tory studies are needed to understand the role of different amines and the synergetic effects on sulfuric acid
nucleation. Amines undergo rapid oxidation reactions in the atmosphere (Finlayson‐Pitts & Pitts, 2000).
Studies have shown that some oxidation products such as imines are very efficient in aerosol nucleation
and secondary organic aerosol (SOA) formation (Nielsen et al., 2011). Future studies are required to under-
stand how oxidation products of amines affect aerosol nucleation and growth.

3.2. HOMs Formed From VOCs Oxidation Reactions

Although sulfuric acid and bases are known to be the key precursors for NPF, sulfuric acid alone, or even
together with base compounds, cannot explain atmospheric observations in most part of the continental

Figure 4. Api‐TOF mass defect diagram for negatively charged clusters during new particle formation experiments at
CLOUD chamber (a–c) and in the boreal forest (d). The results from experiments of ternary nucleation with sulfuric
acid and ammonia (a), ternary nucleation with DMA (b), andmulticomponent nucleation with sulfuric acid and oxidation
products of pinanediol (c) are shown. Colors indicate different ions, and circle diameters are proportional to ion counts.
Adapted from Schobesberger et al. (2013).
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boundary layer. The importance of organic vapors in particle formation, and most certainly in particle
growth, has long been discussed (e.g., Riipinen et al., 2012, and references therein). R. Zhang et al. (2004)
for the first time showed that organic compounds such as benzoic acid can enhance sulfuric acid nucleation,
due to hydrogen bonding between sulfuric acid and benzoic acid molecules. Metzger et al. (2010) showed
trimethylbenzene (in the absence of ozone or OH) enhances sulfuric acid nucleation.

For organic compounds to participate in particle formation and in the early stage of growth, they need to
have extremely low saturation vapor pressures as well as high enough concentrations to overcome the
Kelvin barrier and condense on nanometer‐sized aerosol particles or form clusters by themselves.
Saturation vapor pressures of oxidation products of VOCs span over many orders of magnitude and can
be classified into the VOC, intermediate VOC, semi‐VOC (SVOC), low volatility organic compound
(LVOC), and extremely low VOC (ELVOC) (Donahue et al., 2011). For example, log saturation vapor con-
centrations (C* in μg/m−3) of ELVOC, LVOC, and SVOC may range approximately from −10 to 3
(Schobesberger et al., 2013). ELVOC and LVOC together are usually denoted broadly as HOMs, although
there are some cases where (E)LVOC and HOMs are not necessarily the same (Bianchi et al., 2019).

HOMs are produced from organic peroxides formed from oxidation reactions of BVOCs and anthropogenic
VOCs (AVOCs), via autoxidation reactions involving successive intramolecular H‐shift followed by O2 addi-
tion (Berndt et al., 2016; Crounse et al., 2011; Crounse et al., 2013; Ehn et al., 2014; Ehn et al., 2017). HOMs
contain a wide range of chemical functional groups such as peroxides, hydroperoxides, carbonyls, and per-
carboxylic acids. Due to their high O/C ratios (close to unity), they have sufficiently low volatilities to con-
tribute to aerosol nucleation and growth. Several studies have quantified HOM yields from monoterpenes
(Ehn et al., 2014; Ehn et al., 2017; Jokinen et al., 2015), isoprene (Jokinen et al., 2015), and AVOCs (e.g., alkyl
benzenes; Molteni et al., 2018; Praske et al., 2018; S. Wang et al., 2017). The exact formation pathways and
properties of HOMs are still under investigation (Berndt et al., 2016; Bianchi et al., 2019; Ehn et al., 2017).

Schobesberger et al. (2013) have shown that HOMs (e.g., C10H12–16O2–10) formed from OH oxidation reac-
tions of pinanediol (C10H18O2, a first generation oxidation product of monoterpenes) interact with sulfuric
acid to form monomers to tetramers (Figure 4), and these HOMs can enhance J for sulfuric acid.
Subsequently, Riccobono et al. (2014) derived that J in the same nucleation system are dependent on sulfuric
acid with the second power and on HOMs linearly. Ehn et al. (2014) have demonstrated the formation of
HOMs from ozonolysis of α‐pinene and derived that the J are dependent on sulfuric acid linearly and on
HOMs with the second power. They also showed that growth of particles in the size range between 5 and
50 nm can be explained exclusively with ELVOC (without LVOCs and SVOCs). On the other hand, the flow
tube experiments by Berndt et al. (2014) showed that HOMs produced from ozonolysis of monoterpenes do
not enhance sulfuric acid nucleation. Kirkby et al. (2016) claimed that nucleation can proceed from HOMs
(from α‐pinene ozonolysis) alone, assisted by ions. Tröstl et al. (2016) showed that GR of 5 to 50 nm particles
cannot be explained by HOMs alone, suggesting that LVOCs that are not measured by the nitrate‐CIMS and
some additional SVOCs may be also involved in the growth. Hao et al. (2009) have shown that oxidation of
real plant‐derived VOCs by OH can produce very different nucleation and growth rates than oxidation by O3.
These discrepancies imply that HOMs formed from different precursors and different pathways under differ-
ent conditions (e.g., different VOCs and different oxidants such as O3 vs. OH vs. NO3) can contribute to aero-
sol nucleation and growth in different ways.

Recently, Lehtipalo et al. (2018) and McFiggans et al. (2019) showed that the exact mixture of precursors
is crucial in determining particle formation rates in the systems involving HOMs and other compounds.
But how AVOCs and BVOCs interact together to affect aerosol nucleation and growth has not been
investigated. This is especially relevant in extremely polluted regions in the tropics and subtropics where
there are also strong biogenic emissions of BVOCs. Understanding these multicomponent nucleation sys-
tems of mixed chemical species requires comprehensive instrumentation and coordinated laboratory and
filed studies.

Under high NOx conditions, there is a competition between autoxidation and RO2‐NOx reactions (which
leads to formation of organonitrate HOMs, HOM‐ONs). Since NOx concentrations are abundant in large
parts of the daytime boundary layer, especially in urban environments, it is necessary to understand how
NOx affect nucleation and growth from HOMs. Chamber studies showed that NOx can suppress biogenic
NPF from terpenes (Lehtipalo et al., 2018; Wildt et al., 2014). Wildt et al. (2014) studied the impact of NOx
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on NPF and on photochemical ozone production from the real plant BVOC emissions. At high NOx

conditions (e.g., [BVOC]/[NOx] < 7 and [NOx] > 23 ppb), NPF was suppressed. Instead, photochemical
ozone formation was observed at higher OH and lower NOx concentrations. At the same time, NOx had
little effect on the mass concentration of SOA. Other studies, on the other hand, indicate a strong increase
in biogenic SOA due to NOx (e.g., Shrivastava et al., 2019). It is possible that organonitrate HOMs (HOM‐

ONs), which are formed from biogenic vapors in the presence of NOx, are much less efficient in forming
particles than other HOMs (Lehtipalo et al., 2018), probably due to their higher volatilities, but they
might still be efficient in the aerosol growth. Future studies are required to understand the relative roles
of HOMs versus HOM‐ONs on aerosol nucleation and growth.

3.3. Stabilizing Ions

Ions can enhance nucleation, especially when neutral nucleation is weak. This is because charged clusters
coagulate faster than neutral clusters and in turn stabilize the critical clusters and reduce the Gibbs free‐
energy barrier for cluster formation (Seinfeld & Pandis, 2016). Researchers have used different terms for
ion nucleation, such as ion‐induced nucleation (IIN; Laakso et al., 2004; Lovejoy et al., 2004; Modgil et al.,
2005) and ion‐mediated nucleation (IMN; Yu, 2010; Yu & Luo, 2014b; Yu & Turco, 2000; Yu & Turco,
2001; Yu et al., 2008), but in this review we use a more general term “ion nucleation” to include both IIN
and IMN.

Earlier ion nucleation studies were performed in the laboratory and showed in general that J are enhanced
by charges (Kim et al., 1997; Wilhelm et al., 2004). Lovejoy and colleagues performed flow tube experiments
of ion nucleation for the binary homogeneous nucleation of sulfuric acid and water system (Froyd &
Lovejoy, 2003; Froyd & Lovejoy, 2004; Lovejoy et al., 2004). They measured the thermodynamics for growth
and evaporation of prenucleated sulfuric acid cluster ions and incorporated these data into a kinetic aerosol
model to yield quantitative predictions of the rate of ion nucleation. This IIN parameterization was tested
and constrained by the temperature, RH, SO2, OH and H2SO4 concentrations, and aerosol size distributions
measured in a wide range of conditions from the ground level to the upper troposphere and lower strato-
sphere (Lee et al., 2003), which enabled the model to parameterize the atmospheric conditions using more
realistic parameters for atmospheric nucleation. The model predicts that the negative ion nucleation is more
important than positive ion nucleation and that ion nucleation of sulfuric acid and water mechanism is an
efficient source of new particles in the middle and upper troposphere. However, the model does not gener-
ally predict the nucleation events observed in the boundary layer.

The recent CLOUD measurements quantified the enhancement of ion nucleation compared with neutral
nucleation for several chemical systems (Kirkby et al., 2011). For the sulfuric acid and water binary nuclea-
tion, ions are more important at higher atmospheric temperatures than lower temperatures (Duplissy et al.,
2016). For the ammonia‐ternary nucleation, the contribution of ion nucleation is small at temperatures
between 208 and 248 K when ammonia is present at several pptv or higher, but the presence of ions
significantly enhances J for higher temperatures independent of ammonia levels (Kürten et al., 2016). Ion
nucleation of sulfuric acid and ammonia was recently suggested to drive NPF in the coastal Antarctica
(Jokinen et al., 2018).

For the case of ternary sulfuric acid and DMA, the contribution of ion nucleation is generally small, reflect-
ing the high stability of sulfuric acid‐DMA clusters and indicating that galactic cosmic rays exert only a small
influence on their formation (Almeida et al., 2013). Ion nucleation is also less important when HOMs are
mixed with sulfuric acid and ammonia (Lehtipalo et al., 2018; Riccobono et al., 2014). The current conclu-
sion from the CLOUD experiments is that although ions can be involved in nucleation in large parts of
the atmosphere, the dependence on ion concentrations and thus variation in ionization rates are weak
(Dunne et al., 2016).

Kirkby et al. (2016) showed that ions formed from galactic cosmic rays at the ground level ionization rates
can increase J by 1 to 2 orders of magnitude compared with neutral nucleation for the HOMs produced from
monoterpene ozonolysis reactions. Based on this study, modeling studies have suggested that pure biogenic
ion nucleation process can be an important contributor to the CCN production in preindustrial terrestrial
environments (Gordon et al., 2016). However, the role of pure biogenic ion nucleation in present day pristine
environments, such as in Amazon rainforests, is still high uncertain, because atmospheric observations
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showed that NPF is entirely absent in these pristine forests even with strong emissions of BVOCs (Rizzo
et al., 2018).

3.4. Temperature and RH Dependencies

Temperature and RH are the key thermodynamics parameters of aerosol nucleation and growth (Seinfeld &
Pandis, 2016). J is a function of Gibbs free‐energy barrier and temperature. At lower temperatures, the Gibbs
free‐energy barrier is lowered, and the critical cluster becomes smaller. RH is also the saturation ratio and
the chemical activity of water. In the atmosphere, temperature and RH vary greatly depending on altitude,
latitude, season, and the time of the day. Therefore, to simulate NPF correctly in the atmosphere, both J and
GR as a function of temperature and RH should be understood.

Duplissy et al. (2016) conducted binary homogeneous nucleation of sulfuric acid and water, with and with-
out ions in the CLOUD chamber, at temperatures from 207 to 299 K, and RH between 11% and 58%. At lower
temperatures, both ion nucleation and neutral binary nucleation are at the kinetic regime, while at higher
temperatures, J is strongly dependent on [H2SO4], indicating there are high Gibbs free‐energy barriers.
Kürten, Bianchi et al. (2016) showed the temperature dependence of ternary nucleation in the CLOUD
chamber, at conditions with temperatures from 208 to 298 K, [H2SO4] between 105 and 109 cm−3, and
ammonia mixing ratios up to ~1,400 pptv. At 208 K, J exceeded the threshold of 1 cm−3 s−1 at a [H2SO4]
of ~3 × 106 cm−3 for the binary case and at [H2SO4] of ~5 × 105 cm−3 for the ternary case with 5 pptv of
ammonia. Kürten, Bianchi et al. (2016) showed that ternary nucleation involving ammonia could be an
important mechanism for nucleation in the polluted boundary layer when temperatures are not too high
(e.g., 278 K).

Yu, Dai, et al. (2017) performed flow tube experiments of sulfuric acid aerosol nucleation, at temperatures
ranging from 248 to 313 K, RH from 1% to 79%, and under minimal base concentrations (ammonia < 23
pptv, methylamine < 1.5 pptv, and DMA < 0.52 pptv). Yu, Dai, et al. (2017) provided for the first time the
temperature and RH dependence of both J andGR. J shows the following dependence within the experimen-
tal conditions:

J ¼ 1041:8 RA½ �3 RH½ �e−2:4×104
T (7)

where RA is the saturation ratio (or relatively acidity) of sulfuric acid. GR is independent of temperature
below 290 K but significantly decreases at temperature above 290 K, while RH has a moderate effect on GR.

Recent studies have shown that oxygenated organics formed from BVOCs can grow newly nucleated parti-
cles in a wide range of troposphere temperatures (D. Stolzenburg et al., 2018). This is because gas phase auto-
xidation reactions involved in the formation of HOMs usually have strong temperature dependencies, with
higher reaction rates at higher temperatures (Frege et al., 2018), whereas nucleation is favored at lower tem-
peratures. Despite the low reaction rates, Bianchi et al. (2016) observed high concentrations of HOMs during
NPF at a high‐elevation site with low temperatures, with an average temperature of −5 °C at noontime. At
present, however, there is still no clear evidence from atmospheric observations which demonstrates “causal
effects” of temperature and RH on NPF.

3.5. Thermodynamics Measurements

Perhaps the most significant way to improve CNT theories is to directly measure Gibbs free‐energy changes
in cluster formation and surface tension and density of newly formed particles. Calculations have shown
that even small changes in thermodynamics can result in significant changes in cluster distributions
(Hanson et al., 2017). In this context, the most important future work will be to directly measure Gibbs
free‐energy changes of aerosol nucleation. Hanson and Lovejoy (2006) and Froyd and Lovejoy (2003,
2004) have conducted thermodynamics measurements of prenucleated sulfuric acid neutral and charged
clusters. Since the concentrations of prenucleated and nucleated clusters are extremely low and their life-
times are very short, the measurement of Gibbs free‐energy changes from monomer to critical clusters is
extremely challenging. Also measurements are needed to detect surface tension and densities of nucleated
clusters, as well as the effects of organics on the surface tension of sulfuric acid clusters, is another challen-
ging area for future work.
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4. NPF Observations in Various Environments

Hundreds of measurements have been made over the world during the past decades on various platforms,
such as at ground level, on aircraft, and at high mountain sites (Chu et al., 2019; Kerminen et al., 2018;
Kulmala, Vehkamäki, et al., 2004; Z. Wang et al., 2017; Yu, Ren, & Kanawade, 2017; Zhang et al., 2012).
Measurement locations varied from clean rural sites to polluted urban sites to extremely polluted megacities,
from tropics to polar regions, and from coastal sites to forested regions. Thesemeasurements in general show
a distinctive seasonality with higher NPF frequency in spring and higher GR during the summer, with some
exceptions (Nieminen et al., 2018). These observations show quite conclusively that sulfuric acid (e.g., at the
mid‐105 cm−3 level or higher) is required to initiate nucleation under most of the atmospheric conditions,
although NPF does not always take place even at high sulfuric acid conditions. In many studies, the reported
sulfuric acid concentrations were not measured but have been calculated from SO2 and radiation using the
statistical correlation of Mikkonen et al. (2011), for example. While J has a strong correlation with sulfuric
acid, it usually has a much weaker correlation (sometimes even an anticorrelation) with base compounds,
such as ammonia and amines (Erupe et al., 2010; Kürten, Bergen, et al., 2016; McMurry et al., 2005), despite
evidence from laboratory studies that base compounds are enhancing J (Almeida et al., 2013; Jen et al., 2014;
Kirkby et al., 2011; Yu, McGraw, & Lee, 2012). Field observations also show an opposite diurnal cycle of NPF
and HOMs (Bianchi et al., 2017; Kürten, Bianchi, et al., 2016; Rose et al., 2018; Yan et al., 2016), suggesting
that the role of HOMs in NPF is not well‐understood.

One of the most important future studies is to conduct long‐term measurements of NPF at diverse locations
to understand how different NPF processes dominate under different atmospheric conditions. The majority
of measurement sites with at least 1 year time series of aerosol size distributions are located in Europe, while
long‐term data from Asia, North America, and the Southern hemisphere are very limited (Nieminen et al.,
2018). For example, in North America, long‐term observations NPF have been conducted at limited loca-
tions (Hallar et al., 2015; Kanawade et al., 2012; Sullivan et al., 2018). Simultaneous measurements of aerosol
size distributions and chemical analysis of the precursors are especially scarce. Many of the existing time ser-
ies are too short to study the seasonal variation and trends of NPF over long time periods. Several studies
showed that dominant nucleation and growth mechanisms can vary even at the same site depending on
the availability of precursor vapors (Bianchi et al., 2016; Hodshire et al., 2016), indicating that long‐term
observations are needed before drawing conclusions about the prevailing nucleation mechanisms.

4.1. Atmospheric Observations of HOMs and Their Implications on NPF

The longest semicontinuous HOM measurements from the boreal forest area were conducted with a nitrate‐
CIMS at Station for Measuring Forest Ecosystem – Atmosphere Relations SMEAR II station in Hyytiälä in the
southern Finland (Bianchi et al., 2017; Yan et al., 2016). These measurements show that HOMs (containing up
to 40 carbons) are relatively abundant, withmaximum total HOMconcentrations during the spring, with concen-
trations more than 1 order of magnitude larger than those of sulfuric acid. The concentrations of HOMs were
usually higher during the night, whereas HOM‐ONswere higher during the daytime. For example, HOMdimers
show the opposite diurnal trend to sulfuric acid (i.e., a maximum at the night and a minimum during the day).

Furthermore, these measurements indicate that it is not possible to explain the measured GR with the mea-
sured sulfuric acid (106 cm−3) and HOMs (107 cm−3) in the atmosphere, since they together can explain only
a small fraction of themeasuredGR (up to tens of nanometers per hour), even assuming that HOMs also con-
dense on new particles with the collision‐limited process (Bianchi et al., 2017; Yan et al., 2016). Hence, it is
likely that a large fraction of oxidized organics (especially LVOCs and SVOCs) are not currently measured
with the nitrate CI‐APi‐TOF, and alternative techniques are needed for their detection.

The nighttime composition of HOMs in the boreal forest is similar to the ozonolysis products of α‐pinene
found in chamber experiments (Bianchi et al., 2017; Yan et al., 2016). This reflects the fact that α‐pinene
from coniferous trees is themost abundant monoterpene in boreal forests (Rinne et al., 2000), although other
VOCs, for example, Δ3

‐carene and β‐pinene, as well as sesquiterpenes, can also contribute to HOMs forma-
tion. Although nighttime NPF events are rare in boreal forests, HOM clusters may be responsible for fre-
quent formation of larger ion clusters during the nighttime (Rose et al., 2018). In a rural site in central
Germany, the measured HOMs were also more abundant during the nighttime, whereas NPF was observed
during the day (Kürten, Bianchi, et al., 2016). The reason for the lack of nighttime NPF in these
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environments is not known, but it is possible that there are not enough other low volatile vapors (e.g., HOM‐

ONs) available to grow the HOM clusters.

During the day, a large fraction of HOMs found in the boreal forest contains one or two nitrate groups (i.e.,
HOM‐ONs; Bianchi et al., 2017; Yan et al., 2016). The role of HOM‐ONs in particle formation is still under
debate. Field studies show good correlation between some of the HOM‐ONs and particle formation (Jokinen
et al., 2017). Laboratory studies, on the other hand, indicate that HOM‐ONs are in general more volatile and
thus less likely to form particles than nonnitrate HOMs, at least on their own (Lehtipalo et al., 2018).

Atmospheric observations show sometimes distinctive shrinkage (as opposed to growth) events of newly
formed particles, usually associated with high temperatures (Alonso‐Blanco et al., 2017; Cusack et al.,
2013; Salma et al., 2016; Skrabalova et al., 2015; Yao et al., 2010; Young et al., 2013; Zhang et al., 2016).
These observations imply that SVOCs are also involved in the growth of new particles. However, apparent
shrinkage of themean diameter of a particle population can also be caused by spatial variations in vapor pro-
duction and GR (Kivekäs et al., 2016).

4.2. Ion Nucleation

Observations of atmospheric ions and their connection to nucleation has been reviewed by Hirsikko et al.
(2011). Air ions are ubiquitous in the lower troposphere (Horrack, Mime, et al., 1998; Horrack, Salm,
et al., 1998). Prenucleated ion clusters have been measured, and the results in general show that negative
clusters play more important roles in aerosol nucleation in lower troposphere than positive ions (Eisele,
1988; Eisele et al., 2006; Eisele & Hanson, 2000). Large ions, both positive and negative, containing inorganic
and organic components, were also observed in the upper troposphere (Eichkorn et al., 2002). S. H. Lee et al.
(2003) showed that ion nucleation is important in the upper troposphere and lower stratosphere, while other
studies have not seen such effect (Mirme et al., 2010).

Based on long‐term measurements of ions made in the boreal forest in the southern Finland, Kulmala et al.
(2013, 2000) concluded that the contribution from ions is negligible in the boreal forest. On the other hand,
IMN modeling simulations showed that ion‐ion recombination plays critical roles for aerosol nucleation in
the boreal forest (Yu, 2011; Yu & Turco, 2008). Recent observations also suggest that ion nucleationmay play
a role in the formation of large clusters during the nighttime in the boreal forest (Junninen et al., 2008; Rose
et al., 2018). A multisite study has shown that boundary layer ion formation rates are in general 1–30% of the
corresponding total J depending on the location (Manninen et al., 2010). Ion nucleation is generally more
important in the chemical systems when there are no other species available to stabilize the forming clusters
(Wagner et al., 2017). The role of ions in different nucleation schemes and under different atmospheric con-
ditions remains to be quantified.

4.3. NPF in Extremely Polluted Conditions

There is a conventional wisdom that NPF should not occur under high concentrations of preexisting aero-
sols, because nucleation precursors condense on preexisting particles and small particles are scavenged by
high concentrations of large particles. Thus, the large condensation sink (CS, which is proportional to the
total surface area of preexisting aerosols) should suppress NPF. However, very frequent NPF has been
observed in extremely polluted megacities, as also summarized by Chu et al. (2019). Figure 2 shows NPF
takes place under highCS conditions in urban Shanghai (Yao et al., 2018). In particular, theGR is also higher
than those found in many places around the world with much lower CS (Table 1). In this section, we discuss
the primary quantities used to characterize atmospheric NPF events, occurrence frequency, J, GR, new par-
ticle number concentration (N), and CS, in polluted environments.

The observed CS is on the order of 0.01 to 0.1 s−1 in polluted urban locations (Table 1), which are 1 or 2
orders of magnitude higher than those in rural or remote environments (Kulmala, Vehkamäki, et al.,
2005). Nucleation measurements at ~1 nm show that J values in three megacities, Mexico City, Nanjing,
and Shanghai, for example, are 2 orders of magnitude higher than those observed in the boreal forest
(Kulmala et al., 2013). A global comparison of sub‐3‐nm particle number concentrations (Nsub‐3) further
indicates that Nsub‐3 in polluted megacities could be up to 2 orders of magnitude higher than in clean and
moderately polluted environments (Kontkanen et al., 2017). When particles grow to 3–15 nm, the J values
decay to a few to tens of new particles per cubic centimeter per second but are still higher than, or at least
comparable to, those in rural and remote environments (Kulmala, Vehkamäki, et al., 2004). Particle GR in
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urban locations in general tends to be higher than in rural or remote environments (Kulmala et al., 2004) but
are usually still within the same order of magnitude.

Long‐term measurements of NPF showed diverse temporal variations in different urban locations. The
annual averaged frequencies of NPF in Beijing (40%) and Nanjing (44%) of Northern China (Qi et al.,
2015; Wu et al., 2008) are clearly higher than in the Pearl River Delta region in the southern China (13%;
Wang, Hu, Mogensen, et al., 2013) and Pune (26%) and Kanpur (14%) in India (Yue et al., 2015). Distinct sea-
sonal variations of NPF events were also observed. For example, NPF in Beijing was characterized by high
frequencies during the spring and winter than the summer. In comparison to the boreal forest, the
Helsinki urban atmosphere also showed a less distinctive seasonal difference in Nsub‐3 between winter
and summer (Kontkanen et al., 2017). The fundamental reasons for these differences imply the balance
between factors that contribute to or suppress NPF and growth.

Unlike regional NPF in a large‐scale uniform air mass, NPF in polluted urban areas is dominated and com-
plicated by local sources like industrial plumes (Sarnela et al., 2015) and vehicle emissions (Alanen et al.,
2015; Karjalainen et al., 2016). Spatial variations of nucleation and growth in inhomogeneous air masses
thus lead to different evolution patterns of the particle size distribution observed at a fixed monitoring loca-
tion (Kivekäs et al., 2016). Dai et al. (2017) observed that NPF events in Nanjing were sometimes connected
to AVOC plumes emitted from nearby industrial areas. In those local NPF events, nucleation was estimated
to occur within a distance of ~50 km upwind of the observation site. As a result, further growth beyond 20
nm was not followed at their measurement site.

Correlation analysis between NPF and chemical and environmental variables provides indirect evidence of the
NPF mechanisms. There is strong evidence that NPF events at polluted urban locations are linked to sulfuric
acid (Kanawade et al., 2014; Kontkanen et al., 2017; Mönkkönen et al., 2005; Nie et al., 2014; Shen et al., 2016;
Xiao et al., 2015). Particle formation rates have been shown to be positively correlated with concentrations of
ammonia (Xiao et al., 2015) in Shanghai and amines (Yao et al., 2016) (e.g., Figure 2). Nie et al. (2014) and Xie
et al. (2015) also proposed that heterogeneous photochemistry between SO2 and NO2 induced by dust storm
and biomass burning particles may produce sulfate and nitrous acid (HONO). HONO produces additional gas-
eous oxidant OH upon photodissociation, which enhances the atmospheric oxidation capacity and the prob-
ability of NPF. This heterogenous reaction mechanisms need to be verified in future laboratory studies.

The relationship of NPF to temperature is not consistent at different locations. Positive correlations between
NPF and temperature were observed in Shanghai (Xiao et al., 2015), Kanpur (Kanawade et al., 2014), and
Singapore (Betha et al., 2013), whereas negative correlations were observed in Nanjing (Yu et al., 2016).
On the basis of the correlation analysis, several studies modeled the power law dependence of measured for-
mation rates on measured/modeled sulfuric acid and organic vapors under polluted atmospheric conditions
(Beijing and Nanjing; X. Huang et al., 2016; J. Wang &Wexler, 2013; Z. B.Wang et al., 2015; Z. B. Wang et al.,
2011). By doing so, different nucleation schemes of monomolecular nucleation, heteromolecular nucleation,
or a combination of both were proposed.

Table 1
A Summary of Formation Rate (J), Growth Rate (GR) in >3‐nm Sizes, and Condensation Sink (CS) Reported in Highly Polluted Environments

Location
J

(cm−3 s−1)
GR in >3‐nm
sizes (nm/hr) CS (s−1) Reference

Mexico City, Mexico J1 9–5,000 0.5–9.0 M. Chen et al. (2012) and Dunn et al. (2004)
Nanjing, China J1.4 92–2,500 5.5–10.1 0.016–0.033 H. Yu et al. (2016)
Shanghai, China J1.34 112–271 4.5–38.3 0.03–0.10 Xiao et al. (2015)
Beijing, China J3 3.3–81.4 0.1–11.2 0.006–0.06 Wu et al. (2007)
Beijing, China J3 2.2–34.5 2.5–15.3 0.027 ± 0.021 Z. B. Wang et al. (2013)
New Delhi, India J3 3.3–13.9 11.6–18.1 0.05–0.34 Mönkkönen et al. (2005)
Pune, India J5 3.5–13.9 6.1–7.6 0.0162 ± 0.007 Kamra et al. (2015) and Kanawade et al. (2014)
Kanpur, India J5 0.4–3.2 5.2–13.3 0.0333 ± 0.008 Kanawade et al. (2014)
Nanjing, China J6 0.24–10.9 3.6–23 0.007–0.068 Qi et al. (2015)
Taichang (YRD region), China J10 6.4 ± 1.6 0.024–0.082 Gao et al. (2009)
PRD region, China J15 2.4–4.0 4.0–22.7 0.023–0.046 D. L. Yue et al. (2013)
Wuxi (YRD region), China J15 6.2–13.3 0.009–0.028 Peng et al. (2014)
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Resolving high J and GR under high CS conditions will require coordinated field studies that employ a large
set of chemical and aerosol instruments at several different urban sites, along with comprehensive measure-
ments of trace gas species andmeteorological parameters. Finding out the potential chemical precursors that
are responsible for NPF in urban areas, as well as the synergetic effects between inorganic and organic pre-
cursors and between BVOCs and AVOCs, under different oxidation conditions will help to understand the
NPF mechanisms in megacities.

4.4. Coagulation Removal Versus Fast Growth in Polluted Areas

It would be tempting to argue that NPF frequently observed in highly polluted environments is due to the
abundant supply of low volatile vapors that may outcompete coagulation scavenging by preexisting aerosol
particles. However, calculations using the Kerminen‐Kulmala equation (Kerminen & Kulmala, 2002) still
yield extremely low survival probabilities of 10−4–10−17 for 1.5 nm clusters to grow to 3 nm, under the con-
ditions with high CS/GR ratios typically found in polluted environments (Kulmala et al., 2017). This indi-
cates that new particle formation should not occur in highly polluted environments, based on the current
knowledge of NPF.

From the perspective of the survival probability and the aerosol population dynamic balance, respectively,
Kulmala et al. (2017) and Dai et al. (2017) suggested that the detectable NPF under the highly polluted con-
ditions can be explained only if the coagulation sticking probability (ß) of molecular clusters with preexisting
particles is considerably less than 1, or the GR of 1‐ to 3‐nm particles is much faster than typical values pro-
vided by the current GR measurement methods or a suitable combination of both. As demonstrated in
Figure 5 (right panel), the estimated GR from the aerosol dynamic balance drastically varies with different
coagulation sticking probabilities ranging from 0.1 to 1. The evidence from the survival probability and
the aerosol population dynamic balance thus strongly imply that CS/GR values derived from the conven-
tional estimation methods (Kulmala et al., 2012) may be overestimated by a factor of ~20 for sub‐3‐nm par-
ticles in the highly polluted urban atmosphere of Nanjing (Kulmala et al., 2017; Yu et al., 2016).

Theoretical and experimental data of coagulation probabilities between clusters and particles are not avail-
able at present. The coagulation sticking probabilities may be considerably less than 1, considering the fact
that high kinetic energy of small particles of sub‐10 nm can cause the particle “bounce‐off” (Hollander et al.,
1995; Narsimhan & Ruckenstein, 1985). In other words, it is possible that small clusters, at least in extremely
polluted environments where most of preexisting particles are freshly emitted from primary sources, can
overcome the heterogeneous nucleation barrier before being incorporated into the bulk particulate phase
(Kulmala et al., 2017).

The high “apparent” CS/GR ratios found in highly polluted environments can also be due to the underesti-
mation of GR in the sub‐3‐nm size range. If clusters are charged, condensation flux of vapors onto charged
clusters is expected to be enhanced. On the other hand, Lehtipalo et al. (2016) found no enhancement effects
of charges on GR, in the presence of amines. Also, multiphase chemical processes, such as solvation effects
(Kulmala et al., 2004), surface adsorption (J. Wang & Wexler, 2013), and heterogeneous chemical reactions
(Zhang & Wexler, 2002) between organic activating vapors and clusters (Zhang & Wexler, 2002), could help
to overcome the Kelvin effect and facilitate the faster condensation of activating vapors onto 1 to 3 nm par-
ticles. In addition, the contribution of self‐coagulation of clusters to the growth under highly polluted con-
ditions may need to be reevaluated, although calculated cluster‐cluster collision rates are usually
negligible based on the current knowledge (Yao et al., 2018).

4.5. NPF in Coastal Regions

NPF has been long observed in the coastal regions of Ireland, Scotland, France, Australia, Antarctica and
China (Bigg & Turvey, 1978; Flanagan et al., 2005; Huang et al., 2010; O'Dowd et al., 2002; Saiz‐Lopez
et al., 2012; Wiedensohler et al., 1996; Y. Hu et al., 2019). The North Atlantic Aerosols and Marine
Ecosystems Study NAAMES campaign has elucidated the contribution of NPF involving sulfur to CCN con-
centrations in the marine atmosphere (Sanchez et al., 2018). In addition to sulfuric acid, methanesulfonic
acid (MSA) formed from oxidation of dimethyl sulfide (DMS) may contribute to NPF, as shown by CNT cal-
culations (Kreidenweis et al., 1989), quantum chemical calculations (Bork et al., 2014; Wen et al., 2018), and
flow tube experiments (Chen et al., 2015; Dawson et al., 2012; Ezell et al., 2014). AlthoughMSA concentrations
are comparable to sulfuric acid in the marine boundary layer, laboratory measurements showed that J of
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binary nucleation ofMSA and water are relatively small (Wyslouzil et al., 1991). Recently, H. Chen et al. (2016)
showed that MSA can form particles with ammonia and determined their cluster formation free energies.
Dawson et al. (2012) developed a kinetic model for the formation of particles from MSA and amines
employing quantum chemical calculations combined with flow tube experiments.

Iodine concentrations in aerosols are considerably enriched over the seawater composition, as indicated by the
measured I/Cl and I/Na ratios (Baker et al., 2000). This enrichment suggests there is a route for iodine species in
the seawater to be converted into particles in the ambient air. Iodinated hydrocarbons (e.g., CH3I, CH2ICl,
CH2IBr, and CH2I2) and molecular iodine (I2) emitted frommacroalgae, microalgae, and ocean surface iodide
activation are the known sources of volatile iodine compounds. The total oceanic emission of iodine species is
estimated to be ~1 Tg I/year (Simpson et al., 2015). Strong correlations of daytime tidal cycles, iodocarbons,
iodine monoxide (IO), and ultrafine particle bursts provide the strong evidence for the role for iodine com-
pounds for NPF in the coastal atmosphere (Commane et al., 2011; Furneaux et al., 2010; Huang et al., 2010;
McFiggans et al., 2010; Saiz‐Lopez et al., 2012; Simpson et al., 2015; Whitehead et al., 2009), although this does
not exclude the potential participation of sulfuric acid in nucleation and condensational growth. Vaattovaara
et al. (2006) observed that organics also contribute to the growth of freshly formed coastal (iodine) particles.
RecentlyH. Yu et al. (2019) have shown that previously unidentified organic iodine compounds, such as iodate,
aromatic iodinecompounds, iodoacetic acid or iodopropenoic acid, and iodide–organic adducts can also parti-
cipate in NPF in an iodine hotspot at the east coast of China.

Based on the current knowledge, the simplified schematic of atmospheric iodine oxidation and nucleation
processes can be described as the following: Volatile iodocarbons and molecular iodine are photolyzed to
produce I atoms. I radicals are relatively less active toward VOCs, and hence, their main sink is the reaction
with O3 (which produces IO and IO2 radicals). Self‐recombination of IO and IO2 produces higher oxides,
I2O2–5. Transmission electron microscopy and mass spectrometry analysis indicated that the probable solid
nucleating particles are composed of iodine oxides, for example, IO, IO2, or I2O2–5 (Gómez Martín et al.,
2013; Jimenez et al., 2003; O'Dowd et al., 2002; Saunders et al., 2010; Saunders & Plane, 2006).

Iodine oxoacids HIOx (X = 1–3) also form from IO/IO2 reactions with HOx (OH+HO2) or hydration of I2O2–5.
Sipilä et al. (2016) provided the field observation evidence in an Atlantic coastal site in Ireland that iodine
cluster formation primarily proceeds by a sequential addition of HIO3, followed by the subsequent dehydration
which forms I2O5, using CI‐APi‐TOF. The measured O:I ratio of 2.4 suggests a less pronounced addition of
HIO, HIO2, and/or I2O2–5. Thus, there is most likely a humidity‐dependent balance between clusters
contacting HIO3 and I2O2–5 in the atmosphere. Quantum chemical calculations may help to further facilitate
the development of full kinetic models for iodine nucleation (Khanniche et al., 2016).

It is also possible that NOx and VOCs, which control OH and ozone formation in the atmosphere, can also
affect formation of iodine oxides and iodine oxoacids in polluted coastal regions (Mahajan et al., 2009). The

Figure 5. Size‐dependent formation rate and growth rate estimated from aerosol dynamic balance in a NPF event on 6
November 2015 in Nanjing for an assumed coagulation sticking probability, β, of 0.1, 0.5, and 1.0 for sub‐10‐nm parti-
cles. Adapted from Dai et al. (2017).
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roles of sulfur species (MSA and sulfuric acid) versus iodine species inmarine and coastal, as well as in Arctic
and Antarctic regions, are not yet well quantified. As in many parts of the world including China, emissions
of SO2 are expected to decrease; the relative importance of sulfuric acid versus iodide oxidants in NPF will
become increasingly more relevant in the future coastal atmosphere.

4.6. NPF in Polar Regions

There has been increasing attention on NPF in the Arctic region (Abbatt et al., 2019; Asmi et al., 2016; Croft,
Martin, et al., 2016; Dall'Osto et al., 2017; Freud et al., 2017; Heintzenberg et al., 2017; Tunved et al., 2013).
Freud et al. (2017) compared long‐term measurements of particle size distributions taken at five stations
(Alert, Tiksi, Barrow, Nord, and Zeppelin) in the Arctic region and showed that the seasonal variation of
NPF is quite uniform across the whole Arctic. NPF events seem to be restricted to summer months (mainly
April–September) during the daytime, despite the presence of sunlight also during the summer nights. At
the Siberian station in Tiksi, the highest formation rates were observed in spring, while the highest GR
occurred later in summer (Asmi et al., 2016). Based on the comprehensive observations in the Canadian
Arctic, Abbatt et al. (2019) concluded that NPF might be more favorable in the Arctic marine and coastal
environments compared to the lower latitude marine atmospheres due to low CS, low temperatures, and
longer sun exposure hours.

Particle size distributions have been measured at several locations in Antarctica, but only few extended to
the sizes below 10 nm. NPF has been observed at the Aboa station, ~130 km from the coastline, with
~20% NPF frequency during the austral summer (Asmi et al., 2010; Jokinen et al., 2018; Koponen
et al., 2003; Kyrö et al., 2013; Virkkula et al., 2007). NPF has been observed also at continental
Antarctica at Concordia station at Dome C on 5–25% of days depending on the season, with the highest
occurrence frequency during the summer (Järvinen et al., 2013). Interestingly, NPF occurred sometimes
also in the absence of sunlight. However, the formation rates (J10) at Dome C were about 10 times lower
(median 0.002 cm−3 s−1) than those measured at Aboa (Järvinen et al., 2013). The median GR of nuclea-
tion mode particles were between 1 and 5 nm/hr at both locations.

Sulfur compounds (Giamarelou et al., 2016; Ito, 1993) from marine DMS emissions (Burkart et al., 2017;
Chang et al., 2011) have been proposed as nucleation precursors in polar regions, with possible influences
of ammonia from seabird colonies (Croft, Wentworth, et al., 2016) and iodine compounds (Allan et al.,
2015; Sipilä et al., 2016). The first measurements of molecular composition of nucleating clusters in the
coastal Antarctica indicated that the prevailing mechanism is ion nucleation of sulfuric acid and ammonia
(Jokinen et al., 2018). Future studies are required to determine the chemical composition of the vapors par-
ticipating in NPF across the polar regions with comprehensive chemical measurements.

4.7. NPF at High Elevation

There are several potential underlying principles that allow nucleation to occur more frequently at high
elevations. First, high elevations have lower temperatures and lower CS than at lower elevations. Also,
high elevations have a favorable thermodynamic condition for NPF due to turbulence, atmospheric
waves, storms, and other air mixing processes (Easter & Peters, 1994; Khosrawi & Konopka, 2003;
Nilsson et al., 2000; Nilsson & Kulmala, 1998; Nyeki et al., 1999; Young et al., 2007). Turbulence on var-
ious scales including boundary layer turbulence (Nilsson et al., 2001), atmospheric waves (Nilsson et al.,
2000), storms (Clement et al., 2002), and mixing across temperature and humidity gradients (Kulmala
et al., 1998) may promote nucleation. These mixing conditions can create higher supersaturation ratios
of nucleation precursors by mixing humid air with colder temperatures. Convection can also bring
nucleation precursors from the ground level to the free troposphere where temperatures and CS are
much lower (Benson et al., 2008; Lee et al., 2003). Ion production rates by cosmic rays are strongest at
the altitudes around 10 km (Reiter, 1992), so ion nucleation can also take place at high elevation.
Measurements above the boundary layer are needed to evaluate the effects of NPF on the global climate.
Table 2 summarizes the NPF measurements made at mountain sites over the world, including NPF fre-
quencies, particle formation rate, and GR.

Using two different high elevation sites, the Puy de Dôme research station (1,465 m above sea level [a.s.l.])
and the Opme Station (660 m a.s.l.) in central France, Boulon et al. (2011) illustrated the importance of
vertical extent for nucleation events. The NPF frequency was greater (36% frequency in occurrence) at the
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higher elevation site compared to the lower elevation site (21%). Frequent NPF events occurred at Mt.
Werner (3,220 m a.s.l.) in Colorado, during 52% of the 474 measurement days from 2001 to 2009
(Hallar et al., 2011). Venzac et al. (2008) have reported a NPF frequency of higher than 35% during
511 days including monsoon and post monsoon seasons at the Himalayas in Nepal (5,079 m a.s.l.).
They showed the high NPF frequency of 64% during the dry season (May–October). Several studies on
NPF has been made in high mountains in China, such as Mt. Tai (Lv et al., 2018), Mt. Heng (Nie
et al., 2014), Mount Waliguan (Kivekas et al., 2009), and Mt. Yulong (Shang et al., 2018). Lv et al.
(2018) conducted observations during the different seasons in 2004 and 2005 at the summit of Mt. Tai
(1,534 m a.s.l.) in the eastern China. Sixty‐six NPF events were identified during 164 days of measure-
ments with an occurrence frequency of ~40%.

These cited studies have only measured aerosol size distributions so far, and measurements of ions and the
chemical analysis of nucleation precursors at high‐elevation sites are limited. At Jungfraujoch, Switzerland
(3,580 m a.s.l.), NPF was found on 18% of the 309 measurement days (Boulon et al., 2010). Recently, using a
series of chemical analysis at the same site, Bianchi et al. (2016) showed that some of the NPF events were
associated with high concentrations of HOMs, unlikely chemical species expected in the free troposphere.
NPF occurred mainly through condensation of HOMs, in addition to taking place through sulfuric acid‐
ammonia nucleation. Neutral nucleation was more than 10 times faster than ion nucleation, and the GR
were size‐dependent. NPF occurred during a time window of 1 to 2 days after the contact with air masses
originated from the planetary boundary layer. While ion nucleation can be expected at high elevation, at
Puy de Dome, Rose et al. (2018) observed that neutral clusters dominate during NPF. Continuous measure-
ments of ions at high‐elevation sites are required to elucidate the role of ions at high elevation. Simultaneous
lidar measurements of the boundary layer dynamics are also required to understand the effects of convection
and air mixing on NPF at high‐elevations sites. How long‐range transported plumes, including biomass
burning plumes, affect NPF is another important scientific question.

Table 2
Summary of the Observed NPF Frequency, Particle Formation and Growth Rates at High‐Elevation Sites

Location/altitude (a.s.l.) Study period Frequency of NPF
Formation

rate (cm−3 s−1)

Growth
rate

(nm/hr) References

Mt. Yulong (3,410 m), China May to Apr 2015 14% 1.33 3.22 Shang et al. (2018)
Mt. Tai (1,534 m), China July to Dec 2014 June

to Aug 2015
40%, 164 days 0.82–25 0.58–7.76 Lv et al. (2018)

July 2010 to Feb 2012 32%, in the spring days 4 6.1 Shen et al. (2016)
Mt. Heng (1,269 m), China Mar to May 2009 0.15–0.45 4.3–7.7 Nie et al. (2014)
Mount Waliguan (3,816 m), China Sep 2005 to May 2007 Kivekas et al. (2009)
Mt. Werner (3,220 m),
Colorado, USA

2001 to 2009 52%, 474 days 0.39 7.5 Hallar et al. (2016)

Izaña Mountain (2,373 m),
North Atlantic

June 2008 to June 2012 50–60% 0.46 0.43 García et al. (2014)

Mukteshwar, Himalaya foothills
(2,180 m), India

2005 to 2010 64% during the dry
season

0.44 2.47 Neitola et al. (2011)

Mahabaleshwar (1,351 m), India Nov 2016 and Feb 2017 47%, 115 days 2.8 2.6 Singla et al. (2018)
Mt. Lemmon, Arizona
(2,790 m), USA

Feb to May 2002 112 days 12 Shaw (2007)

Puy de Dôme (1,450 m),
Central France

Feb 2007 to June 2010 36%, 157 days 1.38 6.20 Boulon et al. (2011)

Jungfraujoch
(3,580 m), Switzerland

Apr 2008 to Apr 2009 18%, 309 days 0.9 6.0 Bianchi et al. (2016) and
Boulon et al. (2010)

Chacaltaya (5,240 m), Bolivia Jan to Dec 2012 64% and maximum up to
100% in dry season

Dry season: 1.90
Wet season: 1.02

3.64–7.62 Rose et al. (2015)

Mt. Norikura (2,770 m), Japan Sep 2001 and Aug to Sep 2002 17%, 23 days 2.85 Nishita et al. (2008)
Himalayas (5,079 m), Nepal 16 months >35% during 511 days 0.35 1.8 Venzac et al. (2008)
Maïdo Observatory, Indian
Ocean (2,150 m)

May 2014 to December 2015 65% 0.9–0.5 15.16 Foucart et al. (2018)
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4.8. Isoprene Suppression of NPF

Absence of NPF in Amazon forests is one of the most striking features in NPF, especially in contrast to the
prevalent NPF events observed in many parts of the world, despite the high concentrations of monoterpenes
which chamber measurements suggested should oxidize and nucleate (Gordon et al., 2016; Kirkby et al.,
2016). In the last decades, measurements of submicrometer aerosol size distributions have been undertaken
in successive intensive field campaigns in the Amazon rainforest (Martin et al., 2016; Rizzo et al., 2018;
J. Wang et al., 2016). However, these studies consistently demonstrated the absence of NPF in Amazon,
either at forest sites (Rizzo et al., 2010; Zhou et al., 2002) or at the sites influenced by biomass burning
emissions (Rissler et al., 2004).

Absence of NPF has been also reported from observations in other forests in the United States, with domi-
nant isoprene emissions, for example, in a rural forest in Alabama (Lee et al., 2016), Michigan (Kanawade
et al., 2011), Whiteface Mountain (Bae et al., 2010), Pinnacle State Park (Bae et al., 2010), Duke forests
(Pillai et al., 2013), and the high‐elevation mountain‐top site in Steamboat Spring in Colorado (Hallar
et al., 2015; Yu et al., 2015). However, most of these studies did not investigate the mechanisms behind
the absence of NPF.

One explanation for the absence of NPF is that isoprene can suppress NPF, as suggested by biogenic plant
experiments (Kiendler‐Scharr et al., 2009; McFiggans et al., 2019). The plant chamber studies showed that
isoprene inhibits the OH production in the chamber to suppress NPF (Kiendler‐Scharr et al., 2009).
However, in real forest environments, OH is not depleted and often regenerated. For example, the measured
OH in Michigan and Amazon forests (1 × 106 cm−3 noontime peak) were relatively high (Di Carlo et al.,
2004; Kanawade et al., 2011; Martinez et al., 2010), consistent with OH measurements in other forests
(Hofzumahaus et al., 2009; Lelieveld et al., 2008; Paulot et al., 2009; Peeters et al., 2009). Currently, it is
not clear what chemical mechanisms are behind the suppression of NPF in isoprene‐dominated forests.
S. H. Lee et al. (2016) showed that in the case of the Alabama forest, there were sufficient precursors
such as sulfuric acid, ammonia, amines, and relatively low CS, all comparable to the conditions that should
allow NPF to take place. Furthermore, they found that there was a clear formation of sub‐3‐nm particles,
which were strongly correlated to sulfuric acid concentrations, but these clusters did not grow further.
From these results, they hypothesized that isoprene oxidation products are too volatile compared with
oxidation products ofmonoterpenes and competewithmonoterpene oxidation products for interactions with
sulfuric acid clusters.

In the case of the Amazon region, there may be other reasons that can also explain the absence of NPF. First,
the level of gaseous nucleation precursors (e.g., sulfuric acid and ammonia) in the Amazon under pristine
conditions may be too low to initiate nucleation (Andreae et al., 1990; Trebs et al., 2004). Pöhlker et al.
(2012) observed the pronounced biogenic potassium content in Amazon organic aerosols and suggested that
NPF may be suppressed by the presence of biogenic particles acting as seeds for condensation of aerosol pre-
cursors. J. Wang et al. (2016) have shown that NPF takes place in the cold free troposphere, and these nuclei
mode particles are then transported downward by convective movements and become a source of residual
concentrations of nuclei mode particles observed at the ground level in Amazon, but these particles still
do not grow to show the typical “banana” plots.

4.9. Nighttime Nucleation

Because sulfuric acid is the key nucleation precursor and its production is generally correlated with solar
flux, nucleation should occur during the daytime. However, there is evidence from aircraft measurements
over a large range of latitudes and altitudes that nucleation also takes place during the night in the free tro-
posphere (Hermann et al., 2003; Lee et al., 2008). Observations at the ground level have shown some night-
time particle formation events at different locations (Buenrostro Mazon, 2016; Duplissy et al., 2008;
Junninen et al., 2008; Kalivitis et al., 2012; Lehtipalo et al., 2011; Liu et al., 2014; Man et al., 2015; Ortega
et al., 2009; Ortega et al., 2012; Pushpawela et al., 2018; Rose et al., 2018; Russell et al., 2007; Salimi et al.,
2017; Suni et al., 2008; Svenningsson et al., 2008; Wiedensohler et al., 1997; Zhu et al., 2014). Nighttime
nucleation is characterized by enhanced nuclei mode particle concentrations, but they usually do not show
the typical “banana” shaped growth as seen during the daytime NPF events.
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The mechanisms behind nighttime nucleation are very uncertain. OH radicals can be produced from ozono-
lysis of monoterpenes even at night (Donahue et al., 1998; Paulson et al., 1997; Paulson et al., 1999), which in
turn react with SO2 to produce sulfuric acid and new particles. Mauldin et al. (2012) suggested that stabilized
Criegee intermediate oxidants, produced from monoterpene ozonolysis, can react with SO2 to produce sul-
furic acid. On the other hand, long‐termmeasurements of sulfuric acid in the boreal forest consistently show
distinctive diurnal variations with very low nighttime concentrations of sulfuric acid, even with abundant
monoterpenes (Petäjä et al., 2009). At present, it is not clear how these reaction pathways involving stabi-
lized Criegee intermediate can affect atmospheric sulfuric acid formation (Novelli et al., 2017) and NPF.
Recently, Kirkby et al. (2016) have shown that biogenic nucleation can occur assisted by ions even in the
absence of sulfuric acid. It is possible this nucleation process can contribute to the nighttime NPF observed
in some forests (Rose et al., 2018).

One feature of the nighttime NPF is that it often takes place after the sunset when air masses are influenced
by the transported SO2 plumes. For example, intense bursts of nuclei mode particles were observed in rural
forests in Michigan and Alabama with elevated SO2 concentrations (at ppbv), while NPF did not occur even
during the daytime under low or moderate SO2 concentrations (at sub‐ppbv; Kanawade et al., 2011; Lee
et al., 2016). It was hypothesized that some heterogeneous oxidation processes can produce sulfuric acid
on small particles (Lee et al., 2008), similarly to those found on cloud and fog droplets (Finlayson‐Pitts &
Pitts, 2000; Seinfeld & Pandis, 2016) and acidic aerosol particles (Hung & Hoffmann, 2015; Stangl
et al., 2019).

5. Parameterization of NPF in Atmospheric Models

In order to represent NPF in climate, air quality, and numerical weather prediction models, expressions for
the NPF rate as a function of relevant vapor concentrations, temperature, RH, and atmospheric ion concen-
trations are needed. When implemented in atmospheric models, the influence of these parameterizations on
atmospheric particle concentrations and radiative forcing of climate is strongly dependent not only on the
details of the parameterization but also on the rest of the model. Therefore, it is important for parameteriza-
tions to be based on experimental or theoretical results rather than tuned to reproduce observed particle
number concentrations, to avoid obtaining realistic particle concentrations by compensating for other
model biases.

In this section, we review the current status of parameterizations of NPF and their implications when imple-
mented in atmospheric models. We focus on homogeneous nucleation theories including ion nucleation and
on the troposphere rather than the stratosphere. However, other processes, such as heterogeneous nuclea-
tion (Tauber et al., 2018) may be also important. Recent theoretical work on cluster‐substrate interactions
may result in new parameterizations of heterogeneous nucleation appropriate for atmospheric models in
future (McGraw et al., 2018). Appendix B shows several NPF parameterizations retried from the
CLOUD experiments.

5.1. CNT for Binary Sulfuric Acid‐Water Nucleation

NPF in the majority of atmospheric models is parameterized from CNT (Becker & Döring, 1935; Flood, 1934;
Volmer & Weber, 1926), as described in section 1. Maattanen et al. (2018) made various improvements on
the (Vehkamäki et al., 2002) CNT parameterization, based on theoretical developments by Merikanto
et al. (2016) and hydrate distributions from Kurten et al. (2007). The theoretical developments of
Merikanto et al. (2016) were carefully tested against measurements at the CLOUD chamber (Duplissy
et al., 2016). Reasonably good agreement is found, although the theory predicts higher J than is observed
at the lowest temperatures, sometimes exceeding the experimental data by more than a factor of 10. At these
temperatures, however, uncertainties in the measurement of the sulfuric acid concentration limit the accu-
racy of the comparison, while at high temperatures, the contamination of the chamber by ammonia is
more important.

Alternative formulations of binary NPF, such as that of F. Q. Yu and Turco (1998), further
improved on by F. Q. Yu (2005), are now being built on to develop parameterizations for more com-
plex systems. F. Q. Yu (2005) employs a quasi‐unary assumption, which assumes that sulfuric acid
and water are always in equilibrium, so nucleation can be treated as a single‐component process.
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This simplification allows the pseudosteady‐state approximation used in CNT to be avoided. Then, as
done by Kazil and Lovejoy (2007), laboratory measurements of Hanson and Lovejoy (2006) replace
the bulk surface tension, avoiding another key problem with older CNT.

5.2. Ion Nucleation

At slightly warmer temperatures and lower altitudes, evaporation rates of neutral clusters become larger,
and ions may play a more important role in stabilizing them. Inorganic ion nucleation of sulfuric acid has
been considered in CNT (Chan & Mohnen, 1980; Seinfeld & Pandis, 2016). Laboratory measurements of
the thermodynamics of charged clusters (Curtius et al., 2001) permitted the development of the “kinetic
model for Sulfuric‐acid‐water Nucleation” (SAWNUC; Lovejoy et al., 2004). The data have also been used
by F. Q. Yu (2007) and Kazil and Lovejoy (2007) in kinetic models for ion nucleation, and these are extended
to the ternary system by F. Yu et al. (2018). Pure CNT has also been applied by G. K. Yue and Chan (1979)
and is still actively studied (Laakso et al., 2002; Maattanen et al., 2018; Merikanto et al., 2016). Future
research on critical clusters in ion nucleation may benefit from recently developed tools such as the identity
of McGraw et al. (2018) in CNT. Similarly to the neutral case, the ion nucleation rates from the SAWNUC
and CNT models have since been compared to data from the CLOUD chamber by Ehrhart et al. (2016)
and Duplissy et al. (2016), respectively. Both SAWNUC and CNT models agree reasonably well with the
data, although the SAWNUC model was slightly modified compared to its original formulation (Ehrhart
et al., 2016). Approximately, the J increases linearly with the ion concentration in typical conditions.
Discrepancies between themodel and themeasurements are as likely due to systematic measurement uncer-
tainties as to problems with the model.

Pure biogenic ion nucleation was parameterized by Kirkby et al. (2016) based on CLOUD measurements
(together with neutral nucleation, but the neutral rate is very low in atmospheric conditions). The commu-
nity awaits further research on the temperature dependence of this ion nucleation rate, as well as whether or
not the rate varies linearly with the ion concentration as in the inorganic case.

5.3. Ternary Nucleation Systems

Nucleation involving a third species as ammonia was considered in CNT by Coffman and Hegg (1995),
Korhonen et al. (1999), and Napari et al. (2002). However, early parameterizations produce unrealistically
high particle number concentrations in atmospheric models and need to be scaled down by a factor 106 to
yield better agreement with atmospheric observations (Jung et al., 2010). The temperature dependence of
the recent CNT parameterization is also rather weak compared to CLOUD chamber measurements
(Dunne et al., 2016).

Recent work has focused on addressing these shortcomings. The ACDC model (McGrath et al., 2012) was
used to model the role of ammonia in nucleation by Henschel et al. (2016) and Olenius et al. (2013). Their
results were implemented as a look‐up table (linked to the publication) in the PMCAMx‐UF by
Baranizadeh et al. (2016). ACDC calculations for the ternary ion nucleation system were published by
Kürten, Bianchi, et al. (2016) but did not include the most updated hydration calculations of Henschel
et al. (2016). Ion nucleation is unimportant at very low temperatures, but even at 250 K, ions can substan-
tially enhance low J. A ternary ion nucleation kinetic model by F. Yu et al. (2018) incorporating quantum
chemical calculations provides the RH dependence and critical sizes. In parallel, laboratory measurements
are used by McMurry and colleagues with a different acid‐base kinetic reaction model (Chen et al., 2012; Jen
et al., 2014; McMurry & Li, 2017). This model is presented in a dimensionless framework (McMurry &
Friedlander, 1979) and has the advantage of applying (with appropriately chosen evaporation rates) to both
ammonia and amines. The evaporation rates of clusters are derived by fitting the model to the Jmeasured in
a flow tube reactor. Analytical expressions for the J as a function of these evaporation rates are presented and
could be implemented in atmospheric models.

Acid‐base nucleation can also involve a range of amines, which are stronger bases than ammonia and there-
fore more efficient stabilizers of clusters (Kurtén et al., 2008). Along with other kinetic nucleation models
(Paasonen et al., 2012), the ACDC code has also been used for DMA (Almeida et al., 2013), other monoa-
mines (Olenius et al., 2017), and diamines (Elm et al., 2017). Stable clusters involving both ammonia and
amines may further accelerate amine‐driven nucleation (C. Y. Wang et al., 2018).
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5.4. “Activation” and “Kinetic” Nucleation Parameterizations

Parameterizations for boundary layer nucleation have been derived by fitting regression coefficients to J
measured in the field. Linear dependences on sulfuric acid are explained by the activation of a number of
preexisting clusters (Kulmala et al., 2006), while quadratic dependences are explained by kinetic nucleation
of sulfuric acid molecules stabilized by bases or organics (Kuang et al., 2008; Sihto et al., 2006; Weber et al.,
1998). Different field locations suggest different prefactors depending on the concentrations of other partici-
pating vapors. Above the top of the boundary layer, the parameterizationsmust then be shut off artificially in
models to avoid producing too many particles. Proxies for the organic compounds that participate in NPF
(Paasonen et al., 2010) are also included, and the resulting parameterizations are similar to those from some
chamber studies using organic proxy vapors (Metzger et al., 2010; Riccobono et al., 2014). Ions have also
been included in field‐based parameterizations (Nieminen et al., 2011).

We note that the smallest size at which nucleation rates are usually measured in the field is 3 nm, and uncer-
tainties are then introduced, either in assuming that the losses of particles smaller than 3 nm in the model
are the same as those at the location of the measurement or in extrapolating back to the critical size and then
forward again to correct for the difference in loss rates using formulations like that of Kerminen and
Kulmala (2002). Further uncertainties are introduced by the lack of a temperature or base dependence the
majority of in these parameterizations. F. Q. Yu et al. (2010) showed that unsurprisingly, activation‐type
parameterizations derived for the continental boundary layer, which had then been applied globally (e.g.,
Merikanto et al., 2009), significantly overpredict the particle number concentrations over tropical and
subtropical oceans.

5.5. Nuclei Mode Aerosol Microphysics

The growth and losses of newly formed particles must be either represented explicitly or parameterized to
determine their effects on atmospheric aerosols and climate. The most precise atmospheric model that expli-
citly represents the growth of nanoparticles is that of Jung et al. (2010), where 41 size sections are employed
in the TwO‐Moment Aerosol Sectional (TOMAS) algorithm. The Advance Particle Microphysics APM
scheme of F. Yu and Luo (2009) has similar high‐resolution nuclei mode microphysics, while Global
Model of Aerosol Processes (GLOMAP)‐bin, Community Aerosol and Radiation Model for Atmospheres
CARMA (Toon et al., 1988), and the extended Weather Research and Forecasting‐Model for Simulating
Aerosol Interactions and Chemistry WRF‐MOSAIC scheme (Matsui et al., 2011) use 20 size sections, and
most other models consider only lognormal modes. S. H. Lee et al. (2013) considered the length of time steps
required in microphysics models to capture the equilibrium of gaseous sulfuric acid concentrations with a
changing CS via the pseudosteady‐state approximation (Pierce & Adams, 2009b).

Parameterized approaches to microphysics, often used to extrapolate from field measurements to the atmo-
sphere as described in the previous section, generally employ the equation of Kerminen and Kulmala (2002),
preferably in its improved form (Lehtinen et al., 2007)

Jx ¼ J1 · exp −γ ·d1·
CoagS d1ð Þ

GR

� �
with γ ¼ 1

mþ 1
dx
d1

� �mþ1

−1

" #
; (8)

to extrapolate the formation rate at size d1, J1, to that at size dx, Jx. In this equationm is a constant with value
between −1 and −2, and CoagS is the coagulation sink for particles, which is directly proportional to CS for
vapors at fixedm and depends strongly on particle size. To a first approximation, the GR of the smallest par-
ticles is proportional to the concentration of condensable vapors. As this concentration is inversely propor-
tional to the CS, this means the particle survival probability is exponentially dependent on the square of the
sink (Westervelt et al., 2014). In areas where CoagS is low and GR is slow, self‐coagulation of newly formed
particles can be important (Anttila et al., 2010). For certain combinations of J and CoagS, changes in vapor
concentrations due to the diurnal cycle may lead to very large biases in the formation rates of particles para-
meterized in this way (Olenius & Riipinen, 2017).

Several approaches to treat the condensation of organic molecules onto nuclei mode particles inmodels have
been applied, the most popular being the Volatility Basis Set (VBS) (Donahue et al., 2011) approach
(Glotfelty et al., 2017; Matsui, 2017; Pierce et al., 2011), although other methods are in active use (Yu,
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2011). The Kelvin effect is considered for each volatility bin. Tröstl et al. (2016) found a strong sensitivity of
CCN concentrations to the very earliest stages of particle growth. Their study was updated by Stolzenburg,
Fischer, et al. (2018), who studied the temperature dependence of the growth rates and were able to exploit
more precise measurements using improved instrumentation.

5.6. Modeling NPF in the Boundary Layer and Free Troposphere

Nucleation parameterizations for the boundary layer based on chamber or field measurements have been
implemented in several atmospheric models. The simulated seasonal cycle of particle number concentra-
tions at surface sites can be reproduced reasonably well by adding ammonia‐sulfuric acid ternary nucleation
to organic‐sulfuric acid nucleation (Metzger et al., 2010; Paasonen et al., 2010; Riccobono et al., 2014). The
winter background appears to need ammonia, while the summer maximum can only be explained with
organics (Dunne et al., 2016). Ground‐based measurements in mixed deciduous forests often show low
NPF frequencies during the summer (Chu et al., 2019; Erupe et al., 2010; Kanawade et al., 2012;
Kerminen et al., 2018; Kulmala, Vehkamäki, et al., 2004), while models often predict frequent NPF during
the summer (Yu et al., 2015). None of the organic parameterizations used in current models (except the pure
biogenic parameterization of Gordon et al. (2016), which is relatively unimportant in the present day atmo-
sphere) are based on explicitly measured molecules from biogenic sources. Therefore, an element of model
tuning is introduced when these parameterizations are used with the molecules from BVOCs available in
models. Furthermore, the temperature dependence in these parameterizations is still very uncertain
(Gordon et al., 2016; Yu, Luo, et al., 2017; Zhu et al., 2019), and bases such as ammonia or amines may still
be required in reality. Concentrations of sulfuric acid in the gas phase are also uncertain, as the production
rate depends on photochemistry which is affected by local cloudiness (Pietikäinen et al., 2014). Also, tem-
perature dependence of organic NPF is likely to be extremely important (Dunne et al., 2016; Yu, Luo,
et al., 2017). These large uncertainties hinder simulations of both the present day and preindustrial atmo-
spheres and translate to large uncertainties in aerosol radiative forcing (Gordon et al., 2016).

Atmospheric emissions and losses of amines are not well constrained so are difficult to include accurately in
models, although several groups have implemented simplified treatments (Bergman et al., 2015; Dunne
et al., 2016; Yu & Luo, 2014a). Dunne et al. (2016) suggested amines participate in the formation of around
5% of new particles within 500m of the surface, but a larger contribution, as high as 30%, cannot be excluded.

The current state of our understanding of the different molecules that participate in NPF for altitudes below
around 5 km is summarized in Figure 6 (Gordon et al., 2017). It shows that in the present‐day lower atmo-
sphere, almost all nucleation involves sulfuric acid but usually with ammonia and organic molecules, while
in the preindustrial atmosphere, ammonia was much less likely to be involved.

At present, the role of ternary vapors and of ion nucleation at high altitude remains uncertain. F. Q. Yu et al.
(2010) found ion nucleation is important in both the middle and upper troposphere, whereas Dunne et al.
(2016) found ions are only important compared to binary and ternary neutral nucleation in the midtropo-
sphere. Ekman et al. (2012) found that nuclei mode particle concentrations at these altitudes were underes-
timated in the tropics. Remote sensing data can also be used in the model evaluation. For example, English
et al. (2011) evaluated a range of nucleation mechanisms in the stratosphere against Stratospheric Aerosol
and Gas Experiment II SAGE II data. Future modeling studies will need to include the contribution of
organic compounds to NPF in the free troposphere, following observations over the Amazon (Andreae
et al., 2018) and cloud‐resolving model simulations (Ekman et al., 2008; Murphy et al., 2015).

5.7. The Influence of NPF on Airborne Particulate Matter

Since early work by Jacobson (2001) and others, a large number of regional models have specifically consid-
ered NPF in the context of air pollution. Jung et al. (2010) and R. Zhang et al. (2010) determined the influ-
ence of a range of nucleation parameterizations on PM2.5 over the United States in the intercomparison
study. Gaydos et al. (2007) considered the contribution of nucleation to particle number concentrations in
the eastern United States using the PMCAMx model with TOMAS microphysics and a spatial resolution
of 36 km.

Other polluted regions have also been studied extensively. NPF events in Beijing were well reproduced by
the Weather Research and Forecasting (WRF) model with additional size bins in the Model for
Simulating Aerosol Interactions and Chemistry aerosol scheme by Matsui et al. (2011). Empirical
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activation and kinetic NPF schemes were used. The same model over a larger domain found that in China,
NPF contributes 26% of CCN number at 1% supersaturation despite the very high emissions of primary parti-
cles (Matsui et al., 2013). In Europe, similar studies with PMCAMx (Fountoukis et al., 2012) and GLOMAP
(Reddington et al., 2011) suggest NPF is more important, increasing concentrations of particles with at least
50 nm diameter by as much as a factor of 2. Julin et al. (2018) used PMCAMx with nucleation mechanisms
involving both ammonia and amines to predict the consequences of future emission controls in Europe. A
more focused study used the Consortium for Small‐scaleModelling‐Aerosols and Reactive Trace gases regional
model COSMO‐ART to show that NPF is enhanced in the plumes of “clean” power plants with reduced sulfur
and fly ash emissions (Junkermann et al., 2011). The localized NPF in power plant plumes was also parame-
terized for large‐scale models by Stevens and Pierce (2013) using large eddy simulations. The nucleation
mechanisms in the PMCAMx study (Fountoukis et al., 2012) highlight the importance of ammonia in bound-
ary layer nucleation, while those of the GLOMAP study highlight the importance of organics. A nucleation
parameterization including the synergy between these compounds is a priority for future research.

5.8. Influence of NPF on CCN Concentrations and Climate

Globally, the indirect radiative effect of NPF has been studied in several models, and estimates vary widely
even for individual nucleation processes. Kazil et al. (2010) found the radiative effect of ion nucleation was
1.15 W/m2, while F. Yu, Luo, et al. (2012) calculate−3.67 W/m2. The variation is not surprising, because the
radiative effect of nucleation depends on uncertain vapor concentrations, uncertain aerosol‐cloud interac-
tions, and uncertain concentrations of the preexisting particles that form the CS, as well as the uncertainties
in the nucleation parameterizations themselves. The radiative effect of BVOCs was not considered in these
early studies but also depends strongly on whether or not they are allowed to participate in NPF in the
boundary layer (Scott et al., 2014). The inclusion of biogenic NPF inmodels reduces estimates of indirect for-
cing (Gordon et al., 2016), while increased ammonia concentrations since preindustrial may also contribute
a significant forcing via their role in NPF (Dunne et al., 2016).

Our understanding of NPF in the preindustrial atmosphere is especially uncertain. Without organics com-
pounds participating in nucleation, Pierce and Adams (2009c) calculate an overall increase in CCN concen-
trations over the industrial period of 220%, due partly to primary emissions and partly to nucleation. With
organic compounds nucleating with and without sulfuric acid, this increase was reduced to only 60%
(Gordon et al., 2016), though some of the difference between these two results may be unrelated to nuclea-
tion as a different model was used. The uncertainty in preindustrial baseline CCN concentrations, for exam-
ple, due to fire emissions (Hamilton et al., 2018) may mean these estimated increases change again. As the
full ensemble of model uncertainties are better understood, we speculate that NPF will likely play an impor-
tant role in future refinements to aerosol forcing estimates.

Compared to changes to precursor vapor emissions, changes in atmospheric ion concentrations in recent
history have been very small relative to changes in gas concentrations from anthropogenic emissions or vol-
canic eruptions, of order 20% since the Maunder Minimum (Usoskin et al., 2015). Aerosol microphysics

Figure 6. The relative contributions of nucleation processes involving both organic molecules and sulfuric acid, in bright
green, organic molecules alone, sulfuric acid, and ammonia, and sulfuric acid alone. The pie chart shows annual
averages below 5 km altitude. Solid lines bound the ion‐induced fraction, so in the present day, atmosphere around half of
all NPF was ion‐induced, and at this altitude, neutral nucleation of sulfuric acid alone and neutral pure organic nucleation
are negligible. Adapted from Gordon et al. (2017).
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models were used to show that variations in ion concentrations over the solar cycle or on centennial time
scales (Svensmark & FriisChristensen, 1997) are very unlikely to substantially impact present day climate
via nucleation because of this small variability (Dunne et al., 2012; Kazil et al., 2006; Kazil et al., 2012;
Pierce & Adams, 2009a; Yu & Luo, 2014c). However, ions are still important. Based on CLOUD measure-
ments, Gordon et al. (2017) calculate that 50% of particle formation involves ions. Before the industrial pol-
lution, this figure was likely even higher, at an estimated 59%. Ions may also have a marginal effect on the
GR of new particles (Laakso et al., 2003), but this process was considered in a sensitivity study by Snow‐
Kropla et al. (2011) and found to be negligible. However, the role of ions in paleoclimatic variability, or in
the atmospheres of other planets, remains a promising avenue for further investigation.

The new generation of Earth systemmodels are ideally suited to study feedbacks from temperature and land
use changes involving NPF, especially cloud feedbacks and effects on NPF precursor emissions. Increasing
biogenic emissions in a warmer climate may lead to increased nucleation and growth (Paasonen et al., 2013;
Scott, Arnold, et al., 2018), while deforestation‐related decreases in biogenic emissions may lead to reduced
nucleation and hence climate warming (Scott, Monks, et al., 2018), but the large uncertainty maymean cool-
ing is also possible (Hantson et al., 2017).

The Arctic region can be singled out as NPF in the Arctic is of particular interest for climate, as CS in the
region are low and the clouds are very sensitive to aerosol (Mauritsen et al., 2011). While sea‐ice loss was
found not to lead to a large negative radiative feedback due to increased NPF from DMS, radiative effects
in this region from NPF can be substantial (Browse et al., 2014). Using Goddard Earth Observing System‐

Chem GEOSchem TOMAS, Croft, Wentworth, et al. (2016) calculate a 0.5 W/m2 cooling averaged over
the Arctic due to the enhancement of NPF by ammonia from seabird guano.

5.9. Cloud Feedback on NPF

NPF near clouds, or in the outflow of deep convective clouds, is a well‐established phenomenon (Clarke
et al., 1998; Hegg et al., 1990; Lee et al., 2004; Weber et al., 1999). While some NPF can be captured in mod-
eling studies using standard binary nucleation parameterizations (Clarke et al., 1999), clouds motivate new
studies of NPF as the spatial resolution of regional climate models increases. Because NPF rates are non-
linear in precursor gas concentrations, which are spatially inhomogeneous near clouds, higher resolution
reduces averaging biases. The NPF observed inside pockets of open cells generated by scavenging of aerosol
was captured by a high‐resolution model (Kazil et al., 2011). The role of clouds in the NPF process can now
be studied with new aerosol‐coupled large eddy simulations (Tonttila et al., 2017).

Clouds will strongly affect the balance of nucleation precursors by scavenging the most soluble gases.
Therefore, water‐insoluble organic vapors such as monoterpenes may be important for NPF close to clouds
as well as SO2 (Kulmala et al., 2006). The Stockholm cloud‐resolving model is able to simulate inorganic
(Ekman et al., 2008) and organic NPF inside convective clouds (Murphy et al., 2015). It was tested over
the Amazon with the nucleation parameterization schemes of Metzger et al. (2010) and a homogeneous
nucleation mechanism for pure organic nucleation based on CNT (Seinfeld & Pandis, 2016). Only the homo-
geneous organic nucleation could reproduce the observations of the Large‐Scale Biosphere‐Atmosphere –

Cooperative Airborne Regional Experiment LBA‐CLAIRE campaign (Krejci et al., 2003).

6. Summary: Outstanding Questions, Challenges, and New Directions

In the last decade, the greatest achievement in the field of NPF has been the beginnings of a quantitative under-
standing of the role of molecules other than sulfuric acid in the NPF process. This advance, which is still very
much work in progress, has been made possible primarily by advances in instrumentation, especially the pro-
liferation and improvement of mass spectrometers able to measure nucleated clusters, the development of
appropriate ion source technologies for these instruments, and the development of more accurate counters
for the smallest newly formed particles. The use of HR‐TOF‐MS has made it possible to identify some of the
organic molecules which are likely to form particles, both in laboratory and field studies. Critically important,
the operation of new facilities, especially the CLOUD laboratory, has enabled neutral and ion nucleation of
specific precursor gas mixtures to be quantified separately in almost contaminant‐free conditions.

In parallel, advances in quantum chemistry have facilitated significant progress in describing nucleation
accurately. Both the experimental and theoretical advances are rapidly being translated to new
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understanding of molecular clustering in ever more complicated systems and propagated to atmospheric
models via parameterizations. Field campaigns and long‐termmeasurements in more diverse environments
have provided substantial additional insights, as well as a critically important and ever‐growing database of
observations for model evaluation. Meanwhile, explicit representations of NPF have been included in more
diverse atmospheric and Earth system models, leading to new opportunities to study the important role of
NPF in Earth's changing atmosphere, from the scale of individual clouds to that of the globe.

Despite these new findings, there still exists inadequate knowledge concerning the fundamental chemical
mechanisms leading to nucleation and growth of nanoparticles. Available theories still cannot account for
NPF events observed under diverse tropospheric conditions, and the identities of the chemical species contri-
buting to nucleation and growth of nanoparticles have yet to be unambiguously established. Also, results of
recent laboratory experiments, theoretical calculations, and field measurements are often controversial con-
cerning the detailed roles of inorganic acids (i.e., sulfuric acid), base species (i.e., ammonia and amines),
organic compounds (i.e., organic acids, oligomers, and HOMs), and ions as well as the synergy of these various
species in promoting NPF as discussed in previous sections. Furthermore, the atmospheric conditions regulat-
ing NPF events are also poorly understood, including temperature, RH, and preexisting background aerosols.

One of the greatest challenges in laboratory experiments and field measurements of NPF lies in the lack of
chemical speciation during nucleation and growth of nanoparticles. Although major analytical advances
have been made in recent years to detect gaseous precursors and neutral and ionic prenucleation clusters,
especially with the development of CIMS and CI‐APi‐TOF, there still exist major drawbacks for the available
instruments to detect the NPF precursor species. For example, the current mass spectrometer‐based techni-
ques do not differentiate isomers (i.e., species with identical molecular weight but with different molecular
structures). Also, even with the soft ionization in the application of CIMS, fragmentation still occurs. In addi-
tion, detection of neutral/ionic clusters is further complicated due to the effects of cluster growth (by adding
monomers via ion‐molecule reactions) or decomposition (by losing monomers) within the mass spectro-
meter system, yielding chemical compositions that differ considerably from those of ambient clusters. In
addition, HOMs have been detected in numerous laboratory experiments/field measurements and in the
gaseous/condensed phases using CI‐APi‐TOF, but they are still generically characterized only by volatility.
True molecular identities of HOMs are yet to be elucidated to establish their chemical reactivity and to assess
their roles in NPF. Furthermore, analytical methods have yet to be developed to measure the chemical com-
position of particles in the size range from 3 to 20 nm.

Currently, experimental results on the physiochemical properties of subnanometer‐sized particles are lacking,
even though these properties for nanoparticles are distinct from those of the bulk phases. Specifically, the density,
surface tension, volatility, and hygroscopicity of nanoparticles have yet to be measured for atmospherically rele-
vant species, including sulfuric acid, ammonia/amines, organic acids/oligomers/HOMs, and ions as well as their
mixtures. Those quantities are necessary to validate atmospheric models that typically correct for the curvature
effects employing an empirical formulation (i.e., the nano‐Köhler theory). Also, recent analytical advance has
extended the detection of particle number and size distribution of nanoparticles down to the nanometer range
with the development of nano‐DMAs, DEG‐CPC, and PSM. However, the applications of particle counters are
likely biased with respect to the volatility and composition of nanoparticles. Such artifacts can have direct conse-
quences on both field studies and laboratory nucleation experiments, which typically characterize the nucleation
efficiency of chemical species (i.e., organic compounds and ammonia/amines) relative to a reference system (i.e.,
the sulfuric acid‐water binary nucleation) by an enhancement factor determined from the measured J.

Furthermore, available nucleation experimental studies using environmental chambers typically simulate
the photooxidation of single compound or a mixture of a few compounds; extrapolation of the laboratory
results to atmospheric conditions is highly uncertain. Even for the state‐of‐the‐art CLOUD facility at
CERN with the advantage of high purity, it is still challenging to replicate realistic ambient chemical com-
plicity for NPF events under pristine and polluted environments. Multiple inorganic and organic species
always coexist in the atmosphere, and the synergetic effects of photochemical oxidation of multiple inor-
ganic and organic compounds likely enhance or suppress NPF.

Recently improved power in supercomputation has tremendously facilitated theoretical investigation for
prenucleation clusters using quantum chemical methods and molecular dynamic simulations. However,
the available theoretical methods are still unable to predict the nucleation barrier on the basis of the
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potential energy surface during NPF and to estimate the size and chemical composition of the critical
nucleus. For large multicomponent molecular clusters, obtaining reliable thermodynamic data is still the
bottleneck, requiring advanced structure search algorithms (Lin et al., 2018; Xu & Zhang, 2012; Xu &
Zhang, 2013). Theoretical investigation of aerosol nucleation relies mostly on the cluster stability. The ther-
modynamic data for stable clusters predicted from quantum chemical calculations are typically employed as
the inputs for cluster dynamical models (e.g., ACDC) simulations to derive time‐dependent evolution for
molecular cluster concentrations. There exist additional deficiencies in the available cluster dynamical mod-

els, attributed to several inherent assumptions. For example, the forward reaction rate constants (i.e., kþi in
equation (5)) using the cluster dynamical model are commonly assumed to be equal to the collision coeffi-
cients and are calculated as hard‐sphere collision rates based on the cluster radii. Also, the backward rate
constants (evaporation coefficients or k−i in equation (5)) are computed using the Gibbs free energies of for-
mation of clusters under an equilibrium condition. However, steady‐state equilibrium for prenucleation
clusters is rarely established under atmospheric conditions, because of continuous forward reactions by add-
ing monomers to form larger clusters during NPF. In reality, the likelihood that a cluster grows to form a
nanometer size particle or decomposes back to gaseous molecules is dependent on the competition between
the forward reaction by adding a monomer and the backward reaction by losing a monomer (evaporation) at
each intermediate step of the cluster growth.While the evaporation rate is dependent on the thermodynamic
stability of the cluster, the forward rate constant is kinetically controlled, dependent on the activation and
kinetic energies of the colliding clusters and monomers. Electrostatic attraction between ionic clusters
and polar molecules and dipole‐dipole interaction for neutral clusters clearly plays a key role in reducing
the activation barrier.

Those above‐mentioned deficiencies in laboratory experiments, theoretical calculations, and field measure-
ments considerably hinder the effort in developing predictive parameterizations to account for the NPF process
in atmospheric models. In particular, the diversity of organic compounds produced from photooxidation of
biogenic and anthropogenic hydrocarbons and the diversity of amines and other species that may contribute
to NPFmake it very difficult to assess their contributions to nucleation and growth of nanoparticles. A possible
way forward is to represent and parameterize the detailed chemistry in boxmodeling studies, using simplifying
approaches such as VBS. Box model studies can be used to derive the simplifications are needed for climate
models, where computing limitations dictate that only a few precursor vapors for NPF can be represented
explicitly. However, the difficulties involved in accurately compiling emission inventories for NPF precursors
are likely to place a hard limit on the accuracy with which NPF can be modeled, irrespective of the accuracy
with which the physical and chemical processes involved in NPF itself are represented.

As a critical source of the tropospheric aerosol population, NPF needs to be understood at the fundamental
molecular level. Further laboratory experiments and field measurements are necessary to improve chemical
speciation for nucleation and growth of nanoparticles, including simultaneous detection of gaseous nucleat-
ing vapors and chemical compositions for neutral/ionic clusters and nanoparticles. To achieve this level of
chemical speciation, advanced analytical instruments need to be developed to identify and quantify the gas-
eous nucleating precursors and to measure the chemical composition from prenucleation clusters, critical
nucleus, to nanoparticles. Novel experimental methods are also necessary to investigate NPF under condi-
tions that mimic ambient chemical complexity (i.e., atmospherically relevant types and abundances for che-
mical species), temperature, RH, preexisting particles, and time scales. Advanced theoretical methodologies
need to be developed to interpret and corroborate the findings of laboratory experiments and field measure-
ments. These approaches are necessary to reliably predict thermodynamic data for large multicomponent
molecular clusters, accurately account for the detailed kinetics for the forward and backward reactions at
each stage of the cluster growth, and efficiently describe the activation barrier and the size and chemical
composition of the critical nucleus. Furthermore, physically based parametrizations of aerosol nucleation
and growth need to be established on the basis of improved laboratory, field, and theoretical studies and
to be incorporated into atmospheric models to assess the impacts of aerosols on human health, weather,
and climate.

Appendix A: List of Acronyms
ACDC Atmospheric Cluster Dynamics Code

AIS Air ion spectrometer
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APi‐TOF Atmospheric pressure ionization‐time of flight
mass spectrometer

APM Advance particle microphysics
AVOC Anthropogenic volatile organic compound
BVOC Biogenic volatile organic compound
CCN Cloud condensation nuclei

CERN European Organization for Nuclear Research
Conseil européen pour la recherche nucléaire

CI‐APi‐TOF Chemical ionization atmospheric pressure ionization‐time
of flight mass spectrometer

CIMS Chemical ionization mass spectrometer
CLOUD Cosmics Leaving Outdoor Droplets

CNT Classical nucleation theory
COSMO‐ART Consortium for Small-Scale Modeling-Aerosols and Reactive Trace Gases

CARMA Community Aerosol and Radiation Model for Atmospheres
CPC Condensation particle counter
CS Condensation sink

DEG Diethylene glycol
DMA Dimethylamine

Differential mobility analyzer
DMS Dimethyl sulfide

ELVOC Extremely low volatile organic compound
GEOS‐chem Goddard Earth Observing System‐Chem

GLOMAP Global Model of Aerosol Processes
GR Growth rate

HOM Highly oxidized molecule
HOM‐ONs Organonitrate highly oxidized molecules
HR‐DMA High‐resolution DMA

HR‐TOF‐MS High‐resolution time of flight mass spectrometry
IIN Ion‐induced nucleation

IMN Ion‐mediated nucleation
LBA‐CLAIRE Large-Scale Biosphere‐atmosphere‐Cooperative LBA Airborne Regional Experiment

LVOC Low volatile organic compound
MSA Methanesulfonic acid

NAAMES North Atlantic Aerosols and Marine Ecosystems Study
NAIS Neutral Cluster and Air Ion Spectrometer
NPF New particle formation
PM Particulate matter

PMCAMx Particulate Matter Comprehensive Air Quality Model
PMCAMx‐UF Particulate Matter Comprehensive Air Quality Model

with Extensions‐Ultrafine
PSM Particle size magnifier
RH Relative humidity

SAGE II Stratospheric Aerosol and Gas Experiment
SAWNUC Sulfuric‐Acid‐Water Nucleation
SMEAR II Station for Measuring Forest Ecosystem‐Atmosphere Relations

SMPS Scanning mobility particle sizer
SVOC Semi‐volatile organic compound

TOMAS TwO‐Moment Aerosol Sectional
VBS Volatility Basis Set
VOC Volatile organic compound
WRF Weather Research Forecasting
WRF‐

MOSAIC
Weather Research and Forecasting‐Model for Simulating Aerosol Interactions and
Chemistry
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Appendix B: Nucleation and Growth
Parameterizations Derived From
CLOUD Experiments
The full NPF model from the CLOUD experiment (Gordon et al., 2017)
consists of the sum of JSA, JSA‐NH3, JSA‐org, and Jorg. The inorganic compo-
nents are given by (Dunne et al., 2016)

JSA ¼ kb;n Tð Þ H2SO4½ �pb;n þ kb;i Tð Þ H2SO4½ �pb;i n−½ �;

and

JSA;NH3 ¼ kt;n Tð Þf n NH3½ �; H2SO4½ �ð Þ H2SO4½ �pt;n

þkt;i Tð Þf i NH3½ �; H2SO4½ �ð Þ H2SO4½ �pt;i n−½ �;

where all the k (T), for temperatures T in Kelvin, are given by

lnk x;yð Þ ¼ u x;yð Þ− exp v x;yð Þ
T

1; 000
−w x;yð Þ

� �� �

where x = b or t (binary and ternary) and y = n or i (neutral and ion‐
induced). The ion concentration is [n−]. The functions fy ([NH3], [H2SO4]) are

f y NH3½ �; H2SO4½ �ð Þ ¼ NH3½ �
ay þ H2SO4½ �pt;y

NH3½ �pA;y
:

The organic components are (Kirkby et al., 2016; Riccobono et al., 2014)

JSA−org ¼ 0:5kSA−org H2SO4½ �2 BioOxOrg½ �;
Jorg ¼ Jn þ Jiin;

Jn ¼ a1 HOM½ �a2þa5= HOM½ �;

Jiin ¼ a3 HOM½ �a4þa5= HOM½ � n±½ �:

The values of the parameters are given in Table B1; attention must be paid to the units of the gas concentra-
tions, specified in the caption.
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