
This is a repository copy of Ray-based segmentation algorithm for medical imaging.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/148735/

Version: Published Version

Proceedings Paper:
Danilov, VV, Skirnevskiy, IP, Manakov, RA et al. (3 more authors) (2019) Ray-based 
segmentation algorithm for medical imaging. In: International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. 
International Workshop on “Photogrammetric & Computer Vision Techniques for Video 
Surveillance, Biometrics and Biomedicine", 13-15 May 2019, Moscow, Russia. , pp. 37-45. 

https://doi.org/10.5194/isprs-archives-XLII-2-W12-37-2019

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


RAY-BASED SEGMENTATION ALGORITHM FOR MEDICAL IMAGING 
 
 

V.V. Danilov1, 2, *, I.P. Skirnevskiy1, R.A. Manakov1, D.Yu. Kolpashchikov1, O.M. Gerget1, A.F. Frangi2 

 
1 Medical Devices Design Laboratory, Tomsk Polytechnic University, 634050, Tomsk, Russia – viachelsav.v.danilov@gmail.com, 

(skirnevskiy, ram8, dyk1, gerget)@tpu.ru 
2 Center for Computational Imaging and Simulation Technologies in Biomedicine, University of Leeds, LS2 9JT, Leeds, United 

Kingdom – (V.Danilov, A.Frangi)@leeds.ac.uk 
 

Commission II, WG II/5 
 
 

KEY WORDS: Segmentation, Medical Imaging, AdaBoost.M2, RUSBoost, UnderBagging, SMOTEBagging, SMOTEBoost 
 
 
ABSTRACT: 
 
In this study, we present a segmentation algorithm based on ray casting and border point detection. The algorithm’s main parameter is 
the number of emitted rays, which defines the resolution of the object’s boundary. The value of this parameter depends on the shape 
of the target region. For instance, 8 rays are enough to segment the left ventricle with the average Dice similarity coefficient 
approximately equal to 85%. Having gathered the data of rays, the training datasets had a relatively high level of class imbalance (up 
to 90%). To cope with this issue, ensemble-based classifiers used to manage imbalanced datasets such as AdaBoost.M2, RUSBoost, 
UnderBagging, SMOTEBagging, SMOTEBoost were used for border detection. For estimation of the accuracy and processing time, 
the proposed algorithm used a cardiac MRI dataset of the University of York and brain tumour dataset of Southern Medical University. 
The highest Dice similarity coefficients for the heart and brain tumour segmentation, equal to 86.5±6.9% and 89.5±6.7%, respectively, 
were achieved by the proposed algorithm. The segmentation time of a cardiac frame equals 4.1±2.3 ms and 20.2±23.6 ms for 8 and 64 
rays, respectively. Brain tumour segmentation took 5.1±1.1 ms and 16.0±3.0 ms for 8 and 64 rays respectively. By testing the different 
medical imaging cases, the proposed algorithm is not time-consuming and highly accurate for convex and closed objects. The 
scalability of the algorithm allows implementing different border detection techniques working in parallel. 
 

1. INTRODUCTION 

Image segmentation entails dividing up a digital image into one 
or more meaningful regions. Active research on this problem has 
been conducted for over four decades (Cremers et al., 2007). This 
fundamental problem in computer vision can be solved by a 
variety of algorithms. Each algorithm has its own advantages and 
disadvantages. Some of the widely used algorithms were 
considered in (Danilov et al., 2018, 2017; Noble and Boukerroui, 
2006; Pham et al., 2000). In several contexts, there is often a need 
to obtain segmented images. In medicine, there is an interest in 
obtaining digital 3D models of organs. The latter is linked with 
analysis and surgery planning (Dey et al., 2009; Lynch et al., 
2008). Some segmentation algorithms depend only on image 
intensities, for instance, thresholding (Lee et al., 1990; Sankur, 
2004) or k-means clustering algorithms (Ng et al., 2006). Other 
methods use spatial information, such as region growing, 
deformable models, and watershed segmentation. Finally, some 
approaches to image segmentation algorithms use statistical 
parameters, the first/second raw/central moments (mean and 
variance), and experimental distributions combined with 
statistical distances such as the Bhattacharyya distance, the 
Mahalanobis distance, total variation distance, Kullback–Leibler 
divergence and Jensen–Shannon divergence (Hu et al., 2010; 
Katatbeh et al., 2015; Li et al., 2013; Reyes-Aldasoro and 
Bhalerao, 2006). Some papers consider the global histograms, 
shape gradients and information theory to segment the region of 
interest (Herbulot et al., 2006; Junmo Kim et al., 2005). This class 
of segmentation techniques involves shape gradient and 
mathematical computations for the level set equations.  This class 
of approaches leads to non-convex methods. The latter means 
they are sensitive to the initialization choice and only compute a 
local minimizer of the energy. 

                                                                 
*  Corresponding author 
 

Graph-based algorithms represent other class of segmentation 
(Ayed et al., 2010; Gorelick et al., 2012). These algorithms are 
used for computing the accurate global minima without level set 
representation. One of the main disadvantages of these 
algorithms is the restriction by different distances such as Ȥ2 
distance, Bhattacharyya distance or L2 norm.  
 
Several segmentation methods are based on machine learning 
(Gorelick et al., 2012; Noble and Boukerroui, 2006). Such 
methods have several restrictions, and one of them is manually 
labeled data. The amount of this data should be relatively big and 
heterogeneous, to train a classifier/network with a high level of 
accuracy and absence of overfitting.   
The image segmentation techniques can be applied to both three-
dimension and two-dimension domains. Recently, 3D modalities 
have become popular in medicine. A large number of non-
invasive cardiac and other diagnoses are performed by MRI 
(magnetic resonance imaging) and CT (computed tomography) 
(Katatbeh et al., 2015). The output data of these modalities has a 
three-dimensional format. However, two-dimensional image 
processing is still relevant. In some cases, 3D segmentation 
problems can be dealt with efficiently as multiple 2D problems 
(so-called 2.5D analysis) as, for instance, in the cardiac chamber 
or brain tumour segmentation.  
 
In this paper, we describe a 2D automatic segmentation algorithm 
based on the spatial generation of rays used as detectors of the 
border point for the target region. The proposed algorithm 
requires minimal user interaction since it has only one global 
parameter – several emitted rays. The algorithm can be easily 
implemented in the image processing systems, including medical 
imaging systems, due to its efficiency, simplicity and execution 
speed. The latter allows using the algorithm in real-time for two-
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dimensional imaging. If the region of interest has a circular shape 
with an eccentricity value close to zero, then the small number of 
rays are required to perform segmentation for a relatively short 
time. Another advantage of the algorithm is its low sensitivity to 
noise due to the analysis of the ray data, rather than the whole 
image. The algorithm is practically insensitive to contour breaks, 
which is a crucial feature of segmentation algorithms. 
 

2. SYSTEMS AND DATA 

As a source of data for the heart chambers segmentation, we used 
short-axis cardiac MR images, which were acquired for 33 
patients with different diagnoses (Andreopoulos and Tsotsos, 
2008) by courtesy of York University (York, United Kingdom). 
Each patient’s dataset consists of 20 frames and 8-15 slices along 
the long axis. The size of each frame is 256*256 pixels. To test 
the proposed segmentation algorithm, we chose 3 subjects with 
different diagnosis (a 17-year-old patient with no cardiac 
disorders, a 16-year-old patient with Marfan syndrome, and a 9-
year-old patient with severe aortic insufficiency). The dataset 
images were manually segmented where both the endocardium 
and epicardium of the left ventricle (LV) were visible. The 
ground truth of left ventricles' endocardial and epicardial was 
performed by two clinicians (Radiologist-in-Chief and Cardiac 
Radiologist). 
 
As a source of data for the brain tumour segmentation, we used 
brain tumour dataset T1-weighted contrast-enhanced images 
from 233 patients with three kinds of brain tumour: meningioma, 
glioma, and pituitary tumour (Cheng et al., 2016, 2015). This 
dataset was acquired at Southern Medical University 
(Guangzhou, China). The size of each frame is 512*512 pixels. 
 
Patient records and information were anonymized and de-
identified prior to analysis. The brain tumour dataset was 
approved by the Ethics Committees of Nanfang Hospital and 
Tianjin Medical University. The cardiac dataset provided by the 
Department of Diagnostic Imaging of the Hospital for Sick 
Children in Toronto and the University of York. It is publicly 
available and provided for research purposes only. 
 
The data were pre-processed on a computer, equipped with an 
Intel Core i7-4790K CPU (4.0 GHz) and NVIDIA GeForce 960 
GT graphics card, using MATLAB 2018a on Windows 10. All 
classifiers were trained on a C5 instance (C5 High-CPU 
Quadruple Extra Large) of Amazon Web Services using R 3.5 on 
Linux Ubuntu 16.04. 
  

3. METHODS 

The main idea behind the proposed approach is to distinguish two 
classes based on a ray profile. The ray profile represents a one-
dimensional array. Using one-dimensional input data (rather than 
two-dimensional or three-dimensional input arrays) allows 
decreasing the complexity of the classifier. An intensity profile 
of a ray is shown in Figure 1. 
 

 
(a) 

 
(b) 

Figure 1. Data acquisition along the ray: an emitted ray (a) and 
its intensity profile (b) 

 
The common workflow of the proposed algorithm is reflected 
below in Table 1. 

Step Training Inference 
1 Pre-processing and 

normalization 
Pre-processing and 

normalization 
2 Truncated ray emission Full ray emission 
3 Data gathering Data gathering 
4 Classifier training Classifier inference 
5 – Post-processing 
Table 1. Algorithm workflow for training and inference 

 
3.1 Pre-processing  

For the proposed approach there are no limitations for application 
of pre-processing techniques. No pre-processing can also be 
applied. In our case, we used a bimodal Gaussian function as a 
general filtering method since it depends on the histogram of the 
input image. This method of adaptive equalization presented by 
Pizer et al. (Pizer et al., 1987) is considered universal. After 
implementation of this step, the dynamic range of the image was 
expanded, which allows displaying previously unseen details 
(Figure 2). And a cardiac MR image of this section is only used 
for the explanation of the main concept of the proposed 
algorithm. 
 
3.2 Ray emission 

The next step involves the generation of ray sets and gathering 
the data along the rays. To get training and testing datasets, we 
gather five ray sets for each image. This number is data-specific 
and depends on a certain case. Coordinates of starting points for 
each ray set are assigned randomly within an image. We have 
experimentally found out that the closer initial point is to the 
centroid of the region, the higher border detection accuracy is 
obtained. For instance, MATLAB regionprops function can 
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return a centroid (centre of mass of the region) and/or a weighted 
centroid (centre of the region based on location and intensity 
value). As for ray generation, we used the polar coordinate 
system with the origin at the starting point. The rays were 
propagated in all directions with a different change of angular 
steps ∆ĳ. The optimal angle change, which is equal to ʌ/16, was 
chosen experimentally since it maintains a balance between the 
processing time of the algorithm and the output segmentation 
accuracy. Ray emission is shown in Figure 3. The angular step in 
this figure equals to ʌ/4 and is only used for simplicity. 
 

  
(a) (b) 

Figure 3. Visual representation of ray emission: pre-processed 
source image (a) and manually labeled mask (b) 

 
There is a difference between gathering the ray data during 
training and inference steps. The data for the training step is 
acquired within the area restricted by a mask (blue rays of Figure 
3) going a little beyond the borders. The inference step assumes 
collecting the data along the entire length of the rays (red rays of 
Figure 3). 

Once the rays are obtained, we can apply any binary classifier to 
border detection. However, the length of each ray varies. The 
latter imposes a restriction on the classifier since almost every 
machine learning technique requires fixed-length input data. To 
manage this problem, we divide each ray into fixed-length one-
dimensional patches. We used different kernels and strides for 
the rays to figure out which set of parameters is best to apply. The 
generation of the fixed-length patch-based dataset is reflected in 
Figure 4. The upper row represents a ray mask, while the lower 
row is the grayscale normalized ray data. The values in blue 
boxes refer to the labels, representing border existence (stepwise 
increase/decrease). For simplicity, we used kernel size equal to 3 
in Figure 4. However, for the experiments, we used kernels sizes 
of 5, 7, 9, and 11. As for stride, its value varies from 1 to 7 namely 
1, 3, 5 and 7. The higher the kernel and stride values are, the 
fewer samples the dataset has. For instance, a dataset with     
kernel = 5 and stride = 1 has 955,726 samples. A dataset with 
kernel = 11 and stride = 7 has 151,251 samples. It worth noticing 
that lower values of kernel and stride tend to stronger dataset 
imbalance. The dataset with kernel = 5 and stride = 1 has 87:13 
class ratio, while the dataset with kernel = 11 and stride = 7 has 
70:30 class ratio. 
 

 
Figure 4. Example of gathering fixed-length one-dimensional 

patches with their labels. 
 

  
(a) (b) 

  
(c) (d) 

Figure 2. Image enhancement using the bimodal Gaussian function: source image (a) and its histogram (b), enhanced image (c) and its 
histogram (d) 
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3.3 Classifiers 

As described before the acquired datasets are class imbalanced. 
In some cases, the negative class is 8 times more frequent than a 
positive one. The classifier’s goal is to identify the minority class 
i.e. the border. One of the efficient ways to manage imbalanced 
datasets is to balance them either by oversampling instances of 
the minority class or under-sampling instances of the majority 
class. However, such simple sampling approaches have 
drawbacks. Oversampling the minority class can lead to model 
overfitting, since it will introduce duplicate instances, drawing 
from a pool of instances already small. Similarly, under-sampling 
the majority class can leave out important instances that provide 
important differences between the two classes. However, there 
exist more powerful sampling methods that go beyond usual 
oversampling or under-sampling techniques. The most well-
known example of such methods is Synthetic Minority Over-
sampling Technique (SMOTE), which actually creates new 
instances of the minority class by forming convex combinations 
of neighboring instances (Chawla et al., 2010; Galar et al., 2012). 
As Figure 5 below shows, it efficiently draws lines between 
minority points in the feature space and samples along these 
lines. This allows balancing a dataset without as much 
overfitting, as it creates new synthetic examples rather than using 
duplicates. Nevertheless, this method does not prevent all 
overfitting, as these are still created from existing data points. 
 

 
Figure 5. Visualization of SMOTE technique 

 
Another popular sampling technique is the Random 
Undersampling algorithm (RUS). It creates a new dataset 
comprising of all instances from the minority class and a random 
selection of instances from the majority class. 
To manage the problem of border classification based on 
imbalanced datasets, we chose the following ensemble-based 
classifiers:  

1. AdaBoost.M2. This is an extension of AdaBoost, 
introducing pseudo-loss, which is a more sophisticated 
method to estimate error and update instance weight in 
each iteration compared to regular AdaBoost and 
AdaBoost.M1 (Galar et al., 2012). 

2. RUSBoost. This method is based on AdaBoost.M2 and 
it uses random under-sampling to reduce majority 
instances in each iteration of training weak learners. A 
1:1 under-sampling ratio (i.e. equal numbers of the 
majority and minority instances) is used (Galar et al., 
2012; Seiffert et al., 2010). 

3. UnderBagging. This method uses random under-
sampling to reduce majority instances in each bag of 
bagging in order to rebalance class distribution. A 1:1 
under-sampling ratio (i.e. equal numbers of the 

majority and minority instances) is used (Galar et al., 
2012; Lu et al., 2016). 

4. SMOTEBagging. This method uses both SMOTE and 
Random Over-Sampling (ROS) to increase minority 
instances in each bag of bagging in order to rebalance 
class distribution. The manipulated training sets 
contain equal numbers of the majority and minority 
instances, but the proportions of minority instances 
from SMOTE and ROS vary for different bags, 
determined by an assigned re-sampling rate (Galar et 
al., 2012; Wang and Yao, 2009). 

5. SMOTEBoost. This method is based on AdaBoost.M2 
and it uses SMOTE to increase minority instances in 
each iteration of training weak learners (Chawla et al., 
2010; Galar et al., 2012). 

  
All aforementioned methods are originally implemented with 
decision trees; however, we used other supervised learning 
algorithms to build weak learners within ensemble models. The 
learning algorithms used to train weak learners within the 
ensemble models are Classification and Regression Tree 
(CART), C5.0 Decision Tree (C50), Random Forest (RF), and 
Naive Bayes (NB). If the classifier finds no border point within a 
ray, then this ray will be ignored. 
 
3.4 Metrics 

The problem of classification deals with the trade-off between 
recall (percent of positive instances classified as such) and 
precision (percent of positive classifications truly positive). 
However, when instances of a minority class are detected, we are 
usually concerned more so with recall than precision, as in 
detection, it is usually more costly to miss a positive instance than 
to falsely label a negative instance. When comparing approaches 
to imbalanced classification problems, it is better to consider 
using metrics beyond binary accuracy such as recall and 
precision. Such metrics as accuracy and specificity become 
inefficient since they achieve high values because of the strong 
predominance of the minority class. In addition, we estimated the 
harmonic mean of precision and recall – F1 score. It should be 
additionally noted that it is preferable to assess the ROC curve 
when there is a need to give equal weight to both classes’ 
prediction ability. 
 
3.5 Post-processing 

Once the border points are detected, the algorithm connects them 
smoothly. To perform this step more accurately, the periodic 
interpolating cubic spline curve is applied (Lee, 1989). A mask 
is obtained based on a received contour. An example of 16-ray 
segmentation is shown below in Figure 6. 
 

  
(a) (b) 

Figure 6. Set of border points obtained by the classifier (a) and a 
mask obtained after post-processing step (b) 
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4. RESULTS 

In this section, we describe the results obtained both for border 
detection and following segmentation task. As described before, 
recall, precision, and F1-score are used to estimate border 
detection accuracy. Additionally, we studied how the accuracy 
and processing time change regarding the different values of ∆ĳ 
and a different number of emitted rays. The Dice similarity 
coefficient (DSC) was the main metric for segmentation accuracy 
estimation. We have also analyzed the dependence of 
segmentation results on the shape of a region. 
 

4.1 Border detection 
 
To estimate border detection performance, 5 classifies were used 
(AdaBoost.M2, RUSBoost, UnderBagging, SMOTEBagging, 
and SMOTEBoost). Each classifier has been trained on 16 
datasets, where each dataset varied between four kernels (5, 7, 9, 
and 11) and four strides (1, 3, 5, and 7). However, stride change 
did not influence the performance while kernel change affected 
the border detection accuracy. Performance is visualized for 
different kernel values and stride equal to 1. Classifiers trained 
on stride of 1 have the highest performance in comparison with 
the ones using a stride of 3, 5, and 7. Performance of the studied 
classifiers is reflected in Figure 7–11. 

 
Figure 7. Performance of AdaBoost.M2 

 

 
Figure 8. Performance of RUSBoost 

 

 
Figure 9. Performance of UnderBagging 

 

 
Figure 10. Performance of SMOTEBagging 

 

 
Figure 11. Performance of SMOTEBoost 

 
All classifiers with kernel size equal to 11 showed a relatively 
high level of performance. While 5 features are not enough for 
classifiers to have a good quality of prediction. It should be also 
noted that RUSBoost, UnderBagging, and SMOTEBagging have 
a high value of precision and relatively low level of recall with 
kernel equal to 5. These classifiers manage well with the majority 
class (background pixels) and badly with minority class (border 
pixels). AdaBoost.M2 with pseudo-loss and SMOTEBoost 
perform classification task better and more reliably. 
 
As an additional performance metric, training time was 
estimated. Estimated training time for the classifiers is shown in 
Table 2. Only reduced versions of datasets containing 50,000 
samples were used for testing. The machine for algorithm time 
testing was based on C5 instance of Amazon Web Services and 
is described in more detail in section 2. 
  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019 

Int. Worksh. on �Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine�, 13�15 May 2019, Moscow, Russia

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLII-2-W12-37-2019 | © Authors 2019. CC BY 4.0 License.

 

41



 

 
CART C50 RF NB 

AdaBoost.M2 30±9 85±21 80±15 211±42 
RUSBoost 13±7 54±19 35±14 211±46 

UnderBagging 8±4 23±11 29±15 42±9 
SMOTEBagging 57±20 104±30 144±31 70±23 
SMOTEBoost 568±452 647±471 610±431 709±440 
Table 2. Training time for the classifiers in seconds (mean ± 

standard deviation) 
  
As seen, the most time-consuming classifier is SMOTEBoost. It 
should be additionally noted that the Naive Bayes learning 
algorithm increases the training time for all classifiers. The least 
time-consuming combination is UnderBagging based on the 
Classification and Regression Tree learning algorithm. The most 
accurate combination, AdaBoost.M2 based on Random Forest, 
took an intermediate position in the training time ranking.  
 

4.2 Heart segmentation 
 
As described in Section 2, the data acquired at the University of 
York was used to test the proposed algorithm. The examples of 
the left ventricle segmentation are presented below in Figure 12. 
  

  
Figure 12. Segmentation of the LV performed by the proposed 

algorithm (blue) and manual delineation (red) 
 
To test the accuracy and processing time of the heart 
segmentation, we used a dataset, which included 156 slices. 
Segmentation accuracy for different parameters is shown in 
Table 3. In our case, the target anatomical structure (left 
ventricle) for heart segmentation has a circular shape with an 
eccentricity value close to 0. It means that in such a case, a few 
rays (large value of angle change ∆ĳ) are enough for obtaining 
the relatively high value of accuracy. If the target object has an 
elongated shape with an eccentricity value close 1, then the 
number of rays should be increased, to improve the output 
segmentation accuracy.  
 

 ʌ/4 ʌ/8 ʌ/16 ʌ/32 
Mean±STD, % 84.7±8.3 85.0±8.0 84.7±8.9 84.2±9.1 

Table 3. Heart segmentation accuracy for different ∆ĳ (number 
of rays) 

 
Processing time, presented in Table 4 and Figure 13, generally 
depends on the number of emitted rays. We found out 
experimentally that doubling the number of rays leads to a 1.5/2-
fold increase in the processing time. Typically, the angle change 
∆ĳ equal to ʌ/8 allows obtaining relatively high values of the 
Dice similarity coefficient and low values of processing time. 

The processing time depends on different parameters, for 
instance on the data, noise, and the size of images. 
 

 
Figure 13. Processing time of the heart segmentation (in 
milliseconds) of the proposed algorithm for different ∆ĳ 

(number of rays) 
 

 ʌ/4 ʌ/8 ʌ/16 ʌ/32 
Mean± STD, ms 4.1±2.3 5.5±0.9 12.0±9.5 20.2±23.6 
Table 4. Processing time of the heart segmentation for different 

∆ĳ (number of rays) 
 

4.3 Brain segmentation 
 
The data acquired at Southern Medical University was used to 
test the proposed algorithm for brain tumour segmentation. The 
examples of the tumour segmentation are presented in Figure 14. 
  

Figure 14. Segmentation of the brain tumour performed by the 
proposed algorithm (blue) and manual delineation (red) 

 
To estimate the accuracy and processing time of the brain tumour 
segmentation, we used a dataset included 200 slices. The results 
describing the quantitative metrics of the algorithm are shown in 
Table 5, Table 6 and Figure 15. Table 5 confirms the value of the 
angle (number of rays) does not significantly affect the accuracy 
of the algorithm for the regions of circular shape.  
 

 ʌ/4 ʌ/8 ʌ/16 ʌ/32 
Mean±STD, % 82.2±11.8 83.0±11.4 82.5±11.6 82.7±11.2 
Table 5. Brain tumour segmentation accuracy for different ∆ĳ 

(number of rays) 
 
Similarly to segmentation of the left ventricle, the average 
accuracy remains at a sufficiently high level in the brain tumour 
segmentation. The average accuracy value varies within 83%. 
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Figure 15. Processing time of the brain tumour segmentation (in 

milliseconds) of the proposed algorithm for different ∆ĳ 
(number of rays) 

 ʌ/4 ʌ/8 ʌ/16 ʌ/32 
Mean±STD, ms 5.1±1.1 6.9±1.4 11.8±4.2 16.0±3.0 
Table 6. Processing time of the brain tumour segmentation for 

different ∆ĳ (number of rays) 
 
The processing time of left ventricle segmentation strongly 
depends on the number of rays and the image dimensions. Such 
a tendency can be observed when comparing processing time for 
the heart segmentation (Figure 13) and the brain tumour 
segmentation (Figure 15). 
 

5. DISCUSSION 

An important feature of the algorithm is an opportunity to obtain 
a relatively high level of accuracy varying ∆ĳ and, hence, the 
number of emitted rays. For instance, Figure 16 and Figure 17 
reflect two extreme cases for obtaining a good quality of 
segmentation. The algorithm can provide the best accuracy using 
different angle change ∆ĳ. Sometimes, a value of ∆ĳ = ʌ/32 (64 
rays) can provide a high level of segmentation. Such a case is 
reflected in Figure 17 for the left ventricle segmentation, where 
the accuracy reached 91.8% with ∆ĳ = ʌ/32. However, high 
segmentation accuracy can be achieved with the relatively large 
value of ∆ĳ. For instance, brain tumour segmentation accuracy 
of 89.0% was obtained using ∆ĳ = ʌ/4 and is depicted in Figure 
16. Sufficiently high accuracy of the algorithm was achieved due 
to the relatively simple shape of the regions under examination. 
When an object has a more complex, curved shape, the accuracy 
may have a lower value of the Dice similarity coefficient. To 
avoid this issue, the number of emitted rays should be increased 
significantly. But the main restriction of the proposed algorithm 
is the object shape. Objects with sophisticated non-convex shape 
will probably be segmented improperly or inaccurately. In this 
regard, this algorithm is better to apply to convex and closed 
objects. However, many organs of the human’s body have an 
elliptical or circular elongated shape. This allows the proposed 
algorithm to be applied to brain, lung, liver and heart 
segmentation. 
 
One of the important features of the proposed algorithm is its 
scalability. The latter means that several algorithms can be used 
for border detection. We used the ensemble-based classifiers. As 
an additional method, one-dimensional neural networks can also 
be applied. Another key feature of the algorithm is an opportunity 
to use it for three-dimensional imaging. The latter can be solved 
using a spherical or cylindrical coordinate system. 
 
 

DSC = 89.0% 
(a) 

DSC = 81.1% 
(b) 

DSC = 82.3% 
(c) 

DSC = 80.4% 
(d) 

Figure 16. Brain tumour segmentation with different ∆ĳ: ʌ/4 
(a), ʌ/8 (b), ʌ/16 (c) and ʌ/32 (d) 

 

  
DSC = 85.7% 

(a) 
DSC = 87.9% 

(b) 

  
DSC = 90.7% 

(c) 
DSC = 91.8% 

(d) 
Figure 17. Heart segmentation with different ∆ĳ: ʌ/4 (a), ʌ/8 

(b), ʌ/16 (c) and ʌ/32 (d) 
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According to the obtained results of segmentation (Table 3 and 
Table 5), there is a tendency of large spread for accuracy values. 
Such spread is related to the ray generation. The first ray of any 
object is always propagated in the same direction, not considering 
the features of the contour. If the first and subsequent rays fall 
into recesses or cavities of the contour, the accuracy of the 
contour decreases significantly. This disadvantage can be 
compensated by increasing the number of emitted rays. However, 
the random nature of the rays and their detachment from the 
peculiar properties of the contour are the drawbacks of the 
algorithm. A ray, falling into the contoured gap, deforms the 
resulting contour and reduces the final segmentation accuracy. It 
should be also noted the position of the initial point is important 
for the algorithm. When the starting point falls into a convex 
ejection, the accuracy of the algorithm decreases. This problem 
can partly be solved by increasing the number of generated rays. 
Ideally, the initial point should lie within the center of mass of 
the object. 
 

6. CONCLUSION 

The proposed algorithm is devoted to the segmentation of 
medical images. The algorithm assumes emitting rays to detect 
border pixels lying on the rays. Thus, the task is reduced to one-
dimensional operations, which allows segmentation to be 
performed faster. The algorithm was tested on the cardiac MRI 
dataset consisting of 156 MRI images and brain tumour dataset 
consisting of 200 MRI images. The cardiac dataset included three 
patients with different diagnoses including Marfan syndrome, 
severe aortic insufficiency and a patient with no cardiac 
disorders. In turn, the brain tumour dataset included patients with 
meningioma, glioma, and a pituitary tumour. The highest 
similarity Dice coefficients for the heart and brain tumour 
segmentation, equal to 86.5±6.9% and 89.5±6.7% respectively, 
were achieved by the proposed algorithm. Regarding the 
processing time for this study, we have established that the 
relationship between processing time and the number of rays is 
quasi-proportional. The lowest processing time for the heart and 
the brain tumour segmentation, equal to 4.1±2.3 ms and 5.1±1.1 
ms per slice respectively, were reached with 8 emitted rays. In 
addition, the algorithm can be accelerated using GPU-based 
computing because ray data processing can be performed in 
parallel. 
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