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Abstract 

The genus Meridianimaribacter is one of the least-studied genera within Cytophaga-

Flavobacteria. To date, no genomic analysis of Meridianimaribacter has been 

reported. In this study, Meridianimaribacter sp. strain CL38, a lignocellulose 

degrading halophile was isolated from mangrove soil. The genome of strain CL38 

was sequenced and analyzed. The assembled genome contains 17 contigs with 3.33 

Mbp, a GC content of 33.13% and a total of 2982 genes predicted. Lignocellulose 

degrading enzymes such as cellulases (GH3, 5, 9, 16, 74 and 144), xylanases (GH43 

and CE4) and mannanases (GH5, 26, 27 and 130) are encoded in the genome. 

Furthermore, strain CL38 demonstrated its ability to decompose empty fruit bunch, a 

lignocellulosic waste residue arising from palm oil industry. The genome information 

coupled with experimental studies confirmed the ability of strain CL38 to degrade 

lignocellulosic biomass. Therefore, Meridianimaribacter sp. strain CL38, with its 

halotolerance, could be useful for seawater based lignocellulosic biorefining. 

 

Keywords: Meridianimaribacter; genomics; lignocellulolytic enzymes; empty fruit 

bunch; halophile 
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1.0 Introduction 

Lignocellulosic biomass which comprises of cellulose, hemicellulose, lignin and 

pectin, is the most abundant form of fixed carbon on Earth (109 tons/annum) and its 

breakdown is a critical component of the global carbon cycle [1]. It is of major 

interest due to its renewable and sustainable nature as a feedstock to replace fossil 

fuels for the production of biofuels and chemicals [2]. The use of agricultural 

residues including rice straw, nut shell, maize stover and oil palm empty fruit bunch 

(EFB) as feedstocks are favourable as they are not used for food and are not 

compromising food security [3-5]. Palm oil is the most widely used edible oil and the 

waste generated at palm oil mills is currently creating a major disposal problem 

particularly EFB, shells, and fruit palm kernel, in addition to waste produced in the 

plantations, such as palm trunks and fronds. The generation of large amounts of 

lignocellulosic waste are mainly in the form of EFB [5]. The valorization of this 

abundant waste is highly encouraged in countries like Malaysia and Indonesia. 

Many bacteria are able to decompose plant biomass by secreting 

lignocellulolytic enzymes, including cellulases, hemicellulases, ligninases and 

pectinases [6-9]. These enzymes have been further classified, based on structure in 

the Carbohydrate-Active Enzyme database (CAZy), into glycosyl hydrolases (GHs), 

carbohydrate esterases (CEs), polysaccharide lyases (PLs) and auxiliary activities 

(AAs) [10]. Common well-known bacteria such as Bacillus spp., Brevibacillus spp., 

Cellulomonas spp., Streptomyces spp. and Pseudomonas spp. have been widely 

studied for their biomass degrading abilities for biorefining applications [6, 11, 12]. 

Lignocellulolytic enzymes from thermophiles, for example, Anoxybacillus spp. and 

Geobacillus spp. have also received considerable attention due to their enzyme 

stability [13, 14].  

Bacteria affiliated to Cytophaga-Flavobacteria have also been found to be wood 

degrading prokaryotes based on 16S rRNA amplicon analyses [15, 16]. To date, 

limited studies have been reported on wood degradation of this group of bacteria and 

culturing these bacteria remains challenging [15].  Among these studies, some of the 

members of Cytophaga-Flavobacteria such as Flavobacterium sp. and 

Chryseobacterium sp. isolated from decaying wood were recently found to be able to 

produce lignocellulolytic enzymes to degrade wheat straw [17, 18]. Other members 

of Cytophaga-Flavobacteria for instance Zhouia, Aquibacter, Flavimarina, 
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Seonamhaeicola, Hanstruepera and Meridianimaribacter are so far underexplored, 

and these genera are represented by less than three species each [19]. Furthermore, 

degradation of lignocellulose by these Cytophaga-Flavobacteria has not been studied.  

To date, only one species from the genus Meridianimaribacter has been reported 

[20]. Here we describe the genomic analysis of a halophilic bacterium which is able 

to produce extracellular cellulases and hemicellulases and show that the strain is 

phylogenetically related to Meridianimaribacter. 

 

2.0 Materials and methods 

2.1 Bacterial isolation and identification  

Mangrove soil was collected from Tanjung Piai, Johor, Malaysia (1°16'06.0"N 

103°30'31.2"E) with the permit number of CJB F No. 734342. A 0.1 ml of serially 

diluted sample was transferred onto marine agar (MA) 2216 (BD Dfico) and 

incubated at 35°C for 1 to 7 days. The isolates were then inoculated on MA plates 

supplemented with 10.0 g/L carboxymethyl cellulose (CMC) (Merck) and 5.0 g/L 

xylan from beechwood (Sigma) respectively for qualitative screening of cellulolytic 

and xylanolytic abilities. These plates were then stained with Congo red for MA-

CMC and Lugol’s iodine for MA-xylan. The screening was regarded as positive if 

clear zone formed surrounding the colonies.  

The bacterial genomic DNA (strain CL38) was extracted using DNeasy 

Blood and Tissue kit (Qiagen) and was purified using DNA Clean and 

Concentrator™-25 (Zymo Research) following the manufacturer’s protocol. The 

purity and concentration of harvested genomic DNA were checked using a 

Nanodrop™  1000 spectrophotometer and Qubit® 3.0 fluorometer (Thermoscientific) 

respectively, which were 2.03 (A260/280) and 820 ng/µl. The 16S rRNA gene of strain 

CL38 was amplified using primers: 27F (5’-AGAGTTTGATCMTGGCTCAG-’3) 

and 1525R (5’-AAGGAGGTGWTCCARCC-3’) [21] with conditions as stated [22]. 

Sequencing of 16S rRNA gene was performed at Apical Scientific Pte. Ltd., Seri 

Kembangan, Malaysia. The nearly full length of 16S rRNA gene was trimmed with 

Bioedit software and searched against sequences in EzBioCloud [23] and National 

Center for Biotechnology Information (NCBI) databases for bacterial identification.  
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2.2 Genome sequencing, assembly and annotation 

The whole-genome shotgun sequencing of strain CL38 was performed using pair-end 

sequencing (2 × 150 bp) in an Illumina HiSeq 2500 sequencing platform (Illumina, 

California, USA). After sequencing, the reads with low-quality nucleotides, 

contained N nucleotides and overlapped with adapter were eliminated. The quality-

filtered data (1,356 Mbp data size) was de novo assembled using SOAPdenovo 

version 2.04 [24] into contigs and then scaffolds. Gaps between contigs were closed 

and optimized by krskgf (version 1.2) and gapclose (version 1.12). The resulting 

assembled genome was annotated and analyzed using NCBI Prokaryotic Genome 

Annotation Pipeline (PGAP) version 4.5 [25]. Protein coding genes were predicted 

by GeneMarkS+ using “best-placed reference protein set” method [26]. Non-coding 

RNA sequences were anticipated by tRNAscan-SE version 1.21 [27], rRNAmmer 

version 1.2 [28] and Rfam version 12.0 [29] for tRNA, rRNA and small nuclear 

RNA respectively. The functional prediction of protein coding genes was 

accomplished by searching against Clusters of Orthologous Groups (COG) via 

WebMGA server [30] utilizing RPS-BLAST version 2.2.15 [31]. Metabolic 

pathways were predicted using KEGG Automatic Annotation Server (KAAS) [32].  

 

2.3 Phylogenetics and average nucleotide identity (ANI) 

Multilocus sequence typing (MLST) analysis was performed on three housekeeping 

genes: 16S rRNA, rpoB and dnaK. The sequences of housekeeping genes were 

acquired from genome data, aligned separately and concatenated in the following 

order: 16S rRNA–rpoB–dnaK. The phylogenetic trees of 16S rRNA gene and 

concatenated housekeeping genes were constructed by neighbor joining method [33] 

using Molecular Evolutionary Genetics Analysis (MEGA) version 7.0 [34] with 

following parameters: bootstrap value based on 1000 replications [35] and Kimura 2-

parameter model (K2P). The phylogenetic tree based on whole genome sequence 

was built using REALPHY 1.12 [36] and edited using MEGA 7.0. The ANI values 

based on BLAST (ANIb) and MUMmer (ANIm) between strain CL38 and its closely 

related taxa were determined by JSpeciesWS server [37]. 
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2.4 Comparative genomic analyses 

The genome of the only type species: Meridianimaribacter flavus NH57NT 

(Ga0079837) is available at DOE-JGI Integrated Microbial Genomes/Expert Review 

(IMG/ER) system and was downloaded for the comparative genomic analyses. The 

analyses of COGs using RSP-BLAST through WebMGA server, metabolic pathways 

using KAAS and genes of CAZymes using dbCAN 2 meta server (refer to section 

below) were performed and the results were compared for both strains.  

 

2.5 Analysis of CAZymes and mining of lignocellulose degrading genes 

Putative genes for carbohydrate active enzymes (CAZymes) encoded in the genome 

of strain CL38 were classified by dbCAN (using HMMER), CAZy (using 

DIAMOND) and PPR (using Hotpep) databases respectively, in the integrated 

dbCAN2 meta server using default settings [38]. The resulting data was imported 

into R studio and organized. The further screening of CAZyme genes was performed 

manually and confirmed based on the rule that the sequence shall at least be 

recognized by two of the aforementioned databases. The lignocellulose degrading 

genes were further revealed by cross-checking with the annotations available in 

CAZy database [10]. Other features of the lignocellulose degrading genes were 

assessed using InterProScan 5 [39]. 

 

2.6 Degradation of oil palm empty fruit bunch by monitoring lignocellulolytic 

enzymes activities 

For production of lignocellulolytic enzymes by strain CL38, empty fruit bunch (EFB) 

biomass obtained from a palm oil mill at Johor, Malaysia was used as an induction 

biomass. Prior to use, the collected EFB was washed, dried and grinded into 2 mm 

fine fibre form. A 5% (v/v) inoculum of strain CL38 was cultured in a medium (pH 

7.5) containing yeast extract (1.0 g/L), peptone (5.0 g/L), MgCl2 (5.0 g/L), 

MgSO4·7H2O (2.0 g/L), CaCl2 (0.5 g/L), KCl (1.0 g/L), NaCl (20.0 g/L) and EFB 

(10.0 g/L), incubated at 35°C and 180 rpm for 24 to 96 h.  

The flask containing EFB and cells was centrifuged at 4°C and 4500 rpm for 

20 min and the cell free supernatant was used as a crude enzyme extract for assays. 

Endoglucanase, exoglucanase, 1,4-β-xylanase and β-mannanase activities were 

determined by 3,5’-dinitrosalicylic acid (DNS) method [40] using 1% (w/v) CMC, 
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Avicel®, xylan from beechwood and locust bean gum as substrate, accordingly. 

While β-glucosidase and β-xylosidase assays were conducted by using 5mM of p-

nitrophenyl-β-ᴅ-glucopyranoside (pNPG) and p-nitrophenyl-β-ᴅ-xylopyranoside 

(pNPX) as substrate, respectively. All enzyme assays (biological triplicates) were 

carried by incubating the crude enzymes and substrate (1:1 ratio) in a reaction tube 

containing 50 mM sodium phosphate buffer (pH 7.5), at 35°C for 30 min. The 

optical density at 540 nm (for reducing sugar assays using DNS) and at 430 nm (for 

detecting p-nitrophenol (pNP) released from pNPG/ pNPX) were subsequently 

measured. For all the assays, one unit of enzyme activity (U/ml) is defined as the 

amount of enzyme that releases 1 µmol of respective product per minute under assay 

conditions.  

The remaining EFB obtained was washed three times using 1× PBS added with 

0.5% Tween 20, dried at 60°C and weighed on an electronic balance until constant 

weight was obtained. The weight loss of EFB was calculated by comparing to control 

(EFB without inoculation). The structural changes of EFB before and after bacterial 

inoculation were observed under Phenom Pro G5 scanning electron microscope 

(SEM) (Phenom-World BV) with accelerating voltage of 10 kV and 1000× 

magnification.  

 

2.7 Data access 

The genome sequence of Meridianimaribacter sp. strain CL38 has been deposited at 

DDBJ/ENA/GenBank and DOE-JGI Genome Online Database (GOLD) under 

accession QKWS00000000 and GOLD analysis project ID: Ga0311192, 

respectively. The 16S rRNA gene of strain CL38 is available at 

DDBJ/ENA/GenBank under accession MH819767. 

 

3.0 Results and discussion 

3.1 Taxonomic affiliation of strain CL38 

A halophilic bacterium with cellulolytic and xylanolytic capabilities, designated as 

strain CL38, was isolated from soil collected from a mangrove forest at Tanjung Piai, 

Johor, Malaysia. The bacterium was found to be Gram negative, yellow pigmented 

and grew well in range of 0.5 – 9% (w/v) NaCl. To identify this strain taxonomically,  

the 16S rRNA gene was amplified and compared with genomic data to obtain the 
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full- length sequence (1514 bp). Based on sequence searches against EzBioCloud and 

NCBI databases, the 16S rRNA gene of strain CL38 is 100% identical (97% query 

coverage and E value of 0.0) to Meridianimaribacter flavus strain NH57NT 

(FJ360684.1), which was isolated from Mischief Reef of the South China Sea [20].  

Besides the 16S rRNA gene, the alignment of housekeeping genes: rpoB and 

dnaK of strain CL38 with strain NH57NT  demonstrated 99% similarity. The 16S 

rRNA, concatenated housekeeping genes and whole genome sequences phylogenetic 

analyses of strain CL38 demonstrated that it clustered with strain NH57NT  with 100% 

of support (Fig. 1), and with distinct lineage to other closely related genera including 

Mangrovimonas, Psychroserpens, Hanstruepera and Seonamhaeicola. The pairwise 

ANIb and ANIm values between strain CL38 and strain NH57NT  were 97.80% and 

98.06% respectively (S. Table 1), indicating that strain CL38 could be a new strain of 

M. flavus.  

 

3.2 Genome metrics of strain CL38 

The genome of strain CL38 was sequenced and its genome features are 

summarized in Table 1. The assembly generated 17 contigs in 17 scaffolds, with a 

mapped coverage of 395-fold of the genome. The largest contig is 1,143,547 bp with 

N50 and N90 values 595,671 bp and 230,604 bp respectively.  These contigs were 

joined and the genome size of strain CL38 determined to be 3,332,696 bp with a GC 

content of 33.13% (Table 1). The genome size is slightly greater than strain NH57NT 

(3.22 Mbp) and both genomes of Meridianimaribacter spp. are notably larger than its 

close relative in the family: Mangrovimonas yunxiaonensis LY01T  (2.67 Mbp) [41]. 

The GC content of strain CL38 is similar to related members: Winogradskyella 

psychrotolerans RS-3T , Psychroserpens mesophilus JCM 13413T  and 

Seonamhaeicola aphaedonensis CECT 8487T  (33.4 – 33.7%). In contrast, 

Mangrovimonas yunxiaonensis LY01T  has higher GC content (39.3%) as compared 

to strain CL38. 

 The composition of the genome of strain CL38: protein coding genes, non-

coding RNA genes, pseudogenes and putative horizontal transferred genes is 

displayed in Table 1, with total of 2982 genes predicted using NCBI PGAP annotator. 

A closer analysis of the protein coding genes demonstrated that a total of 801 genes 

(27.33%) are assigned as hypothetical proteins, with 77 genes sharing no similarity 
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to any protein sequences in NCBI nr-protein database. These statistics suggested that 

more than 1/4 fraction of protein coding genes of strain CL38 could potentially serve 

as novel targets for future experimental studies [42]. Apart from that, a total of 17 

horizontal transferred genes was encoded in the genome of strain CL38 (S. Table 2). 

These genes which originated from other genera such as Mangrovibacter, 

Thioalkalivibrio and Reichenbachiella could lead to phenotypic variation and new 

adaptability of strain CL38 [43].  

 

3.3 Strain CL38 versus the only species of Meridianimaribacter 

Genomes of strain CL38 and strain NH57NT  were compared in aspects of COGs, 

KEGG pathway and CAZymes. Based on Table 2, strain CL38 and strain NH57NT 

seem to have a slightly different COG assignment profile. Both strains have the 

highest counted genes under the classification of general function prediction (12.95 – 

13.36%) followed by amino acid transport and metabolism (8.97 – 9.30%). The 

quantity of genes related to carbohydrate metabolism according to COG 

classification in strain CL38 represents 5.34% in the genome and higher than strain 

NH57NT  (4.72%), as described in Table 2. This group of genes shows the highest 

difference (0.62%) between both strains.  

Following the closer inspection in KEGG metabolic pathway analysis, both 

strains encode parallel set of genes in the metabolism of starch and cellulose to 

produce glucose (S. Fig. 1A). Strain CL38 encompasses an extra fructokinase (EC: 

2.7.1.4) to phosphorylate ᴅ-fructose to ᴅ- fructose-6-phosphate in sucrose metabolism 

(S. Fig. 1A). Additionally, there are seven genes presented in strain CL38 that are 

connected to pentose and glucuronate interconversions, which are absent in its 

counterpart (S. Fig. 1B).  

The genomes of both strains were annotated in dbCAN 2 meta server for 

CAZymes analyses, as shown in Fig. 2. Considering one annotated protein may 

contain more than one CAZyme domains, the total number of CAZyme domains may 

be higher than total annotated proteins. The genome of strain CL38 encompasses a 

total of 106 annotated proteins with 112 CAZyme domains, while only 90 annotated 

proteins with 94 CAZyme domains were detected in the genome of strain NH57NT .  

Taken individually, the annotated domains of CAZymes in strain CL38, 

including GHs, CEs, PLs and glycosyl transferases (GTs) are consequentially more 
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abundant than strain NH57NT  (Fig. 2). In total, 44 GHs, 10 CEs, 9 PLs and 44 GTs 

were found in strain CL38 while strain NH57NT  has 39 GHs, 7 CEs, 1 PL and 42 

GTs. Both strains do not possess encoded proteins assigned to auxiliary activities 

(AA) and they incorporate the same number of annotated carbohydrate binding 

modules (CBMs) (2 CBM48, 1 CBM32, 1 CBM50 and 1 CBM57). These CBMs 

whilst non-catalytic promote the proximity of associated catalytic domains with the 

polysaccharide [44]. Usually the CBM is attached with catalytic domains of 

CAZymes, however, CBM50 in both strains are not associated to any known 

catalytic domains.  

In depth analysis of CAZyme differences between both strains (Fig. 3) 

revealed that several CAZyme domains, CE8, CE10, CE12, GH28, GH100, GH105, 

GT11, PL6, PL7, PL10 and PL17 are unique to strain CL38. Some of these CAZyme 

domains are responsible for pectin degradation such as CE8, CE12 and PL10 [45]. 

While PL6, PL7 and PL17 are categorized as alginate lyase, a group of enzymes that 

deconstruct alginate, a key component of brown algae consisting of 40 % its dry 

weight [46]. In another study, it was found that purified halotolerant PL6, PL7 and 

PL17 could degrade algae material which is known to contain large amounts of salt. 

[47-50]. This suggests the potential application of PL6, PL7 and PL17 in marine 

algae degradation to release simple sugars as feedstock for bioethanol production. 

Apart from that, strain CL38 has an additional GH5 (WP_019386503.1) and GH43 

(WP_007845049.1) which are linked to cellulose and hemicellulose deconstruction 

respectively (Fig. 3).  

The divergence of these two strains, in particular in the composition of their 

CAZymes, most likely are a result of the different environmental niches they occupy. 

While strain NH57NT  was isolated from Mischief Reef of the South China Sea, the 

strain CL38 was isolated from a mangrove saline environment, an area located along 

ocean coastlines with numerous trees tolerant to salt and is associated with muddy 

sediments influenced by tidal waves [51]. These environments, situated in equatorial 

regions are some of the most productive in the world [52], and as such 

microorganisms, including strain CL38, have adapted to utilize biomass from this 

environment as carbon sources for growth. Therefore, the expansion of CAZymes in 

CL38 is not surprising. 
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3.4 Lignocellulose degrading enzymes of strain CL38 

Depolymerization of complex plant biomass into simple sugar requires the 

synergistical action of wide spectrum of lignocellulolytic enzymes such as GHs, CEs, 

PLs and associated domains of CBMs. Based on Table 3, a total of 30 encoded 

proteins in the genome of strain CL38 were found to be related to lignocellulose 

degradation. Among these proteins, 11 are categorized as cellulases, including 

members of the GH3, GH5, GH9, GH16, GH74 and GH144 families, which are key 

enzymes that contribute to the decomposition of cellulose into glucose [6]. Only one 

GH9 was found in the genome of strain CL38 and members from this family have 

previously been described as cellulases exhibiting either endoglucanase or 

cellobiohydrolase activities [53]. Sequence analysis through InterProScan detected a 

Type 9 Secretion System (T9SS) present at the C-terminal of the GH9 in strain CL38 

(S. Fig. 2A), with 69% similarity to GH9 with a T9SS from Winogradskyella 

pacifica (WP_115807879.1) based on BLASTp search. T9SS was recently reported 

as a novel secretion system involved the degradation of complex biopolymers, and 

has been reported in the phylum Bacteriodetes [54] under genera Porphyromonas 

[55], Flavobacterium [56], Rhodothermus and Cytophaga. Specifically, the T9SS 

was detected in a xylanase from Rhodothermus marinus [57] and cellulolytic 

enzymes sequences from Cytophaga hutchinsonii [58].  

Six β-glucosidases (3 GH3, 2 GH144 and 1 GH16) that release glucose from 

the hydrolysis of beta-ᴅ-glucosides and oligosaccharides [10], were also revealed in 

the genome of strain CL38 (Table 3). Interestingly, all the GH3s are fused with 

fibronectin type 3 domains (S. Fig. 2B). This domain could promote cellulose 

hydrolysis, as demonstrated with the cellobiohydrolase from Clostridium 

thermocellum [59].  

A variety of annotated GHs and CEs of strain CL38 are predicted to 

participate in hemicellulose degradation. A total of 15 hemicellulases, including 

xylanases and mannanases were found in the genome of strain CL38, as depicted in 

Table 3. For instance, 1,4-β-xylanase (GH43 sub-family 28 associated with CBM32) 

and β-xylosidase (GH43 sub-family 10) work cooperatively on xylan to release 

xylose [7]. In addition, a series of mannanases: β-mannanase (GH5 sub- family 7), β-

mannosidase (GH26) and α-galactosidase (GH27) were annotated in strain CL38. 

These enzymes were reported to be essential for mannan degradation (the second 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 
major part of hemicellulose beside xylan) to liberate mannose as simple sugars [8]. 

Notably, two hemicellulases were found coupled with CBMs: GH43 sub-family 28 

and GH2, attached with CBM32 and CBM57 respectively (Table 3). A GH 

associated with a CBM was proved to have a better efficiency in hydrolyzing 

cellulose and hemicellulose as compared to GHs without their CBM domains [60].  

 

3.5 Empty fruit bunch decomposition by strain CL38: reveal its polysaccharide 

degrading abilities 

The ability of strain CL38 to degrade lignocellulose was investigated by inoculating 

strain CL38 in medium with EFB. Structural and weight changes of EFB were 

monitored over a period of time. Around 22.4% of EFB was lost after a 96 h 

incubation period (Fig. 4A), compared to less than 0.05% of EFB reduction was 

observed in control (EFB without cells). In terms of structural changes (Fig. 4B), 

EFB before inoculation was smooth and intact, the fibrils were rigid and in a fairly 

ordered manner [Fig. 4B(i)], as described elsewhere [61]. The structure of EFB was 

significantly altered after 96 h of incubation with strain CL38 [Fig. 4B(ii)] with 

rough and broken surfaces being observed.  

In terms of lignocellulolytic enzyme activities including endoglucanase, 

exoglucanase, β-glucosidase, β-1,4-xylanase, β-xylosidase and β-mannanase, 

changes in activities were monitored across different incubation periods (24 h, 48 h, 

72 h and 96 h) (Fig. 5). Five lignocellulolytic enzymes activities were detected 

(except for β-1,4-xylanase) during the first 24 hours of incubation, with highest 

activities seen for exoglucanase and β-mannanase (Fig. 5). Subsequently, all tested 

lignocellulolytic enzymes showed variation in activities across 48 h and 72 h of 

incubation. Diminished activities were seen for four of the lignocellulolytic enzymes 

at 96 h (endoglucanase, exoglucanase, β-1,4-xylanase and β-mannanase). Both β-

glucosidase and β-xylosidase activities remained steady throughout the incubation 

period.  

Exoglucanase activity reached its peak after 24th h of incubation, while no 

activity was detected by 96 h. Unlike exoglucanase, the peak activities for 

endoglucanase, β-1,4-xylanase and β-mannanase were observed after 48 h of 

incubation (Fig. 5). In other study, the enzyme activity of β-1,4-xylanase and 

endoglucanase from Exiguobacterium sp. AS2B were monitored throughout 6 days 
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of incubation using wheat bran as carbon source. Maximum activities of β-1,4-

xylanase and endoglucanase were found at 24 h and 72 h of incubation respectively 

[62]. While for Klebsiella sp. MD21, by utilizing saw dust as substrate, the 

maximum activities for endoglucanase, exoglucanase and β-1,4-xylanase were 

observed at 96 h of incubation [63]. Collectively, these indicated that the maximum 

activity of lignocellulose degrading enzymes could occur at different time point 

depends on different bacteria and/or lignocellulosic substrates. 

Based on analysis of the genome (Table 3), GH9 and GH74 could potentially 

contribute to exoglucanase activity. Two GH5 (sub-family 26 and 42) present in 

genome of strain CL38 (Table 3) are annotated as endoglucanases, these enzymes are 

likely to responsible for the activity disclosed. The presence of β-1,4-xylanase and β-

mannanase activities in this study could be contributed by GH43 sub-family 28 

associated with CBM32 and GH5 sub-family 7 respectively (Table 3).  

To the best of our knowledge, this is the first genome sequence and analysis 

describing the biomass degradation (particularly EFB) by Meridianimaribacter sp. 

strain CL38. Such genomic and experimental data could provide new lignocellulose 

degrading enzymes for biomass processing. 

 

Acknowledgements 

This work was financially co-sponsored by the Ministry of Education Malaysia and 

Biotechnology and Biological Sciences Research Council (BBSRC) United Kingdom 

under program of United Kingdom-Southeast Asia Newton Ungku Omar Fund (UK-

SEA-NUOF) with project number 4B297 and BB/P027717/1, respectively. The 

authors would like to acknowledge Johor National Parks Corporation for sampling 

permit (CJB F No. 734342) at Tanjung Piai, Johor. Neil C. Bruce, Simon J. 

McQueen-Mason and Chun Shiong Chong are grateful for a BBSRC International 

Partnering Award (BB/P025501/1). Ming Quan Lam is grateful to Khazanah Watan 

Postgraduate (PhD) scholarship (scholar ID: 40852) from Yayasan Khazanah.  

 

Conflict of interest statement 

All authors declared that they have no conflicts of interest. 

 

References 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 
[1] R.A. Batista-García, M. del Rayo Sánchez‐Carbente, P. Talia, S.A. Jackson, 

N.D. O'Leary, A.D. Dobson, J.L. Folch‐Mallol, From lignocellulosic metagenomes 

to lignocellulolytic genes: trends, challenges and future prospects, Biofuels, 

bioproducts and biorefining, 10 (2016) 864-882. 

[2] Z. Anwar, M. Gulfraz, M. Irshad, Agro- industrial lignocellulosic biomass a key 

to unlock the future bio-energy: a brief review, Journal of radiation research and  

applied sciences, 7 (2014) 163-173. 

[3] P.E. Marriott, L.D. Gómez, S.J. McQueen‐Mason, Unlocking the potential of 

lignocellulosic biomass through plant science, New phytologist, 209 (2016) 1366-

1381. 

[4] D. Kumari, R. Singh, Pretreatment of lignocellulosic wastes for biofuel 

production: a critical review, Renewable and sustainable energy reviews, 90 (2018) 

877-891. 

[5] S.N. Shafawati, S. Siddiquee, Composting of oil palm fibres and Trichoderma 

spp. as the biological control agent: A review, International biodeterioration & 

biodegradation, 85 (2013) 243-253. 

[6] V. Juturu, J.C. Wu, Microbial cellulases: engineering, production and 

applications, Renewable and sustainable energy reviews, 33 (2014) 188-203. 

[7] V. Juturu, J.C. Wu, Microbial xylanases: engineering, production and industrial 

applications, Biotechnology advances, 30 (2012) 1219-1227. 

[8] S. Malgas, J.S. van Dyk, B.I. Pletschke, A review of the enzymatic hydrolysis of 

mannans and synergistic interactions between β-mannanase, β-mannosidase and α-

galactosidase, World journal of microbiology and biotechnology, 31 (2015) 1167-

1175. 

[9] G. de Gonzalo, D.I. Colpa, M.H. Habib, M.W. Fraaije, Bacterial enzymes 

involved in lignin degradation, Journal of biotechnology, 236 (2016) 110-119. 

[10] V. Lombard, H. Golaconda Ramulu, E. Drula, P.M. Coutinho, B. Henrissat, The 

carbohydrate-active enzymes database (CAZy) in 2013, Nucleic acids research, 42 

(2014) D490-D495. 

[11] N. Kamsani, M.M. Salleh, A. Yahya, C.S. Chong, Production of 

lignocellulolytic enzymes by microorganisms isolated from Bulbitermes sp. termite 

gut in solid-state fermentation, Waste and biomass valorization, 7 (2016) 357-371. 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 
[12] H.K. Sharma, C. Xu, W. Qin, Biological pretreatment of lignocellulosic biomass 

for biofuels and bioproducts: an overview, Waste and biomass valorization, 10 (2019) 

235-251. 

[13] K.M. Goh, U.M. Kahar, Y.Y. Chai, C.S. Chong, K.P. Chai, V. Ranjani, R.M. 

Illias, K.-G. Chan, Recent discoveries and applications of Anoxybacillus, Applied 

microbiology and biotechnology, 97 (2013) 1475-1488. 

[14] L. Potprommanee, X.-Q. Wang, Y.-J. Han, D. Nyobe, Y.-P. Peng, Q. Huang, J.-

y. Liu, Y.-L. Liao, K.-L. Chang, Characterization of a thermophilic cellulase from 

Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of 

lignocellulosic biomass, PLoS one, 12 (2017) e0175004. 

[15] S.M. Cragg, G.T. Beckham, N.C. Bruce, T.D. Bugg, D.L. Distel, P. Dupree, 

A.G. Etxabe, B.S. Goodell, J. Jellison, J.E. McGeehan, Lignocellulose degradation 

mechanisms across the tree of life, Current opinion in chemical biology, 29 (2015) 

108-119. 

[16] C.G. Björdal, Evaluation of microbial degradation of shipwrecks in the Baltic 

Sea, International biodeterioration & biodegradation, 70 (2012) 126-140. 

[17] L. Cortes-Tolalpa, J.F. Salles, J.D. van Elsas, Bacterial synergism in 

lignocellulose biomass degradation–complementary roles of degraders as influenced 

by complexity of the carbon source, Frontiers in microbiology, 8 (2017) 1628. 

[18] L. Cortes-Tolalpa, D.J. Jiménez, M.J. de Lima Brossi, J.F. Salles, J.D. van Elsas, 

Different inocula produce distinctive microbial consortia with similar lignocellulose 

degradation capacity, Applied microbiology and biotechnology, 100 (2016) 7713-

7725. 

[19] A.C. Parte, LPSN – List of prokaryotic names with standing in nomenclature 

(bacterio.net), 20 years on, International journal of systematic and evolutionary 

microbiology, 68 (2018) 1825-1829. 

[20] B. Wang, F. Sun, Y. Du, X. Liu, G. Li, Q. Lai, J. Luo, Z. Shao, 

Meridianimaribacter flavus gen. nov., sp. nov., a member of the family 

Flavobacteriaceae isolated from marine sediment of the South China Sea, 

International journal of systematic and evolutionary microbiology, 60 (2010) 121-

127. 

[21] D.J. Lane, 16S/23S rRNA sequencing, in: Stackebrandt E., G. M. (Eds.) Nucleic 

acid techniques in bacterial systematics, John Wiley and Sons, Chichester, United 

Kingdom (1991) pp. 125-175. 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 
[22] M.Q. Lam, N.N. Nik Mut, S. Thevarajoo, S.J. Chen, C. Selvaratnam, H. Huss in, 

H. Jamaluddin, C.S. Chong, Characterization of detergent compatible protease from 

halophilic Virgibacillus sp. CD6, 3 biotech, 8 (2018) 104. 

[23] S.-H. Yoon, S.-M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo, J. Chun, Introducing 

EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and 

whole-genome assemblies, International journal of systematic and evolutionary 

microbiology, 67 (2017) 1613-1617. 

[24] R. Li, Y. Li, K. Kristiansen, J. Wang, SOAP: short oligonucleotide alignment 

program, Bioinformatics, 24 (2008) 713-714. 

[25] T. Tatusova, M. DiCuccio, A. Badretdin, V. Chetvernin, E.P. Nawrocki, L. 

Zaslavsky, A. Lomsadze, K.D. Pruitt, M. Borodovsky, J. Ostell, NCBI prokaryotic 

genome annotation pipeline, Nucleic acids research, 44 (2016) 6614-6624. 

[26] M. Borodovsky, A. Lomsadze, Gene identification in prokaryotic genomes, 

phages, metagenomes, and EST sequences with GeneMarkS Suite, Current protocols 

in microbiology, 32 (2014) 1E.7.1-1E.7.17. 

[27] T.M. Lowe, P.P. Chan, tRNAscan-SE on- line: integrating search and context for 

analysis of transfer RNA genes, Nucleic acids research, 44 (2016) W54-W57. 

[28] K. Lagesen, P. Hallin, E.A. Rødland, H.-H. Stærfeldt, T. Rognes, D.W. Ussery, 

RNAmmer: consistent and rapid annotation of ribosomal RNA genes, Nucleic acids 

research, 35 (2007) 3100-3108. 

[29] E.P. Nawrocki, S.W. Burge, A. Bateman, J. Daub, R.Y. Eberhardt, S.R. Eddy, 

E.W. Floden, P.P. Gardner, T.A. Jones, J. Tate, R.D. Finn, Rfam 12.0: updates to the 

RNA families database, Nucleic acids research, 43 (2015) D130-D137. 

[30] S. Wu, Z. Zhu, L. Fu, B. Niu, W. Li, WebMGA: a customizable web server for 

fast metagenomic sequence analysis, BMC genomics, 12 (2011) 444-444. 

[31] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local 

alignment search tool, Journal of molecular biology, 215 (1990) 403-410. 

[32] Y. Moriya, M. Itoh, S. Okuda, A.C. Yoshizawa, M. Kanehisa, KAAS: an 

automatic genome annotation and pathway reconstruction server, Nucleic acids 

research, 35 (2007) W182-W185. 

[33] N. Saitou, M. Nei, The neighbor-joining method: a new method for 

reconstructing phylogenetic trees, Molecular biology and evolution, 4 (1987) 406-

425. 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 
[34] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary genetics 

analysis version 7.0 for bigger datasets, Molecular biology and evolution, 33 (2016) 

1870-1874. 

[35] J. Felsenstein, Confidence limits on phylogenies: an approach using the 

bootstrap, Evolution, (1985) 783-791. 

[36] F. Bertels, O.K. Silander, M. Pachkov, P.B. Rainey, E. van Nimwegen, 

Automated reconstruction of whole-genome phylogenies from short-sequence reads, 

Molecular biology and evolution, 31 (2014) 1077-1088. 

[37] M. Richter, R. Rosselló-Móra, F. Oliver Glöckner, J. Peplies, JSpeciesWS: a 

web server for prokaryotic species circumscription based on pairwise genome 

comparison, Bioinformatics, 32 (2016) 929-931. 

[38] H. Zhang, T. Yohe, L. Huang, S. Entwistle, P. Wu, Z. Yang, P.K. Busk, Y. Xu, 

Y. Yin, dbCAN2: a meta server for automated carbohydrate-active enzyme 

annotation, Nucleic acids research, 46 (2018) W95-W101. 

[39] P. Jones, D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, 

J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A.F. Quinn, A. Sangrador-Vegas, M. 

Scheremetjew, S.-Y. Yong, R. Lopez, S. Hunter, InterProScan 5: genome-scale 

protein function classification, Bioinformatics, 30 (2014) 1236-1240. 

[40] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing 

sugar, Analytical chemistry, 31 (1959) 426-428. 

[41] Y. Li, H. Zhu, C. Li, H. Zhang, Z. Chen, W. Zheng, H. Xu, T. Zheng, Draft 

Genome sequence of the algicidal bacterium Mangrovimonas yunxiaonensis strain 

LY01, Genome announcements, 2 (2014) e01234-01214. 

[42] M.Y. Galperin, E.V. Koonin, ‘Conserved hypothetical’ proteins: prior itization 

of targets for experimental study, Nucleic acids research, 32 (2004) 5452-5463. 

[43] M. Ravenhall, N. Škunca, F. Lassalle, C. Dessimoz, Inferring horizontal gene 

transfer, PLOS computational biology, 11 (2015) e1004095. 

[44] Alisdair B. Boraston, David N. Bolam, Harry J. Gilbert, Gideon J. Davies, 

Carbohydrate-binding modules: fine-tuning polysaccharide recognition, Biochemical 

journal, 382 (2004) 769-781. 

[45] V. Lombard, T. Bernard, C. Rancurel, H. Brumer, Pedro M. Coutinho, B. 

Henrissat, A hierarchical classification of polysaccharide lyases for glycogenomics, 

Biochemical journal, 432 (2010) 437. 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 
[46] B. Zhu, H. Yin, Alginate lyase: Review of major sources and classification, 

properties, structure- function analysis and applications, Bioengineered, 6 (2015) 125-

131. 

[47] A. Trincone, Update on marine carbohydrate hydrolyzing enzymes: 

biotechnological applications, Molecules, 23 (2018) 901. 

[48] H. Yagi, A. Fujise, N. Itabashi, T. Ohshiro, Purification and characterization of 

a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from 

brown algae, Bioscience, biotechnology, and biochemistry, 80 (2016) 2338-2346. 

[49] M. Hirayama, W. Hashimoto, K. Murata, S. Kawai, Comparative 

characterization of three bacterial exo-type alginate lyases, International journal of 

biological macromolecules, 86 (2016) 519-524. 

[50] F. Xu, F. Dong, P. Wang, H.-Y. Cao, C.-Y. Li, P.-Y. Li, X.-H. Pang, Y.-Z. 

Zhang, X.-L. Chen, Novel molecular insights into the catalytic mechanism of marine 

bacterial alginate lyase AlyGC from polysaccharide lyase family 6, Journal of 

biological chemistry, (2017) jbc. M116. 766030. 

[51] V. Chong, Sustainable utilization and management of mangrove ecosystems of 

Malaysia, Aquatic ecosystem health & management, 9 (2006) 249-260. 

[52] D.M. Alongi, Carbon sequestration in mangrove forests, Carbon management, 3 

(2012) 313-322. 

[53] B. Henrissat, G. Davies, Structural and sequence-based classification of 

glycoside hydrolases, Current opinion in structural biology, 7 (1997) 637-644. 

[54] P.D. Veith, M.D. Glew, D.G. Gorasia, E.C. Reynolds, Type IX secretion: the 

generation of bacterial cell surface coatings involved in virulence, gliding motility 

and the degradation of complex biopolymers, Molecular microbiology, 106 (2017) 

35-53. 

[55] K. Nakayama, Porphyromonas gingivalis and related bacteria: from colonial 

pigmentation to the type IX secretion system and gliding motility, Journal of 

periodontal research, 50 (2015) 1-8. 

[56] M.J. McBride, D. Nakane, Flavobacterium gliding motility and the type IX 

secretion system, Current opinion in microbiology, 28 (2015) 72-77. 

[57] E.N. Karlsson, M.A. Hachem, S. Ramchuran, H. Costa, O. Holst, Å.F. 

Svenningsen, G.O. Hreggvidsson, The modular xylanase Xyn10A from 

Rhodothermus marinus is cell-attached, and its C-terminal domain has several 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 
putative homologues among cell-attached proteins within the phylum Bacteroidetes, 

FEMS microbiology letters, 241 (2004) 233-242. 

[58] G. Xie, D.C. Bruce, J.F. Challacombe, O. Chertkov, J.C. Detter, P. Gilna, C.S. 

Han, S. Lucas, M. Misra, G.L. Myers, Genome sequence of the cellulolytic gliding 

bacterium Cytophaga hutchinsonii, Applied and environmental microbiology, 73 

(2007) 3536-3546. 

[59] I.A. Kataeva, R.D. Seidel, A. Shah, L.T. West, X.-L. Li, L.G. Ljungdahl, The 

fibronectin type 3- like repeat from the Clostridium thermocellum cellobiohydrolase 

CbhA promotes hydrolysis of cellulose by modifying its surface, Applied and 

environmental microbiology, 68 (2002) 4292-4300. 

[60] A. Várnai, M. Siika-aho, L. Viikari, Carbohydrate-binding modules (CBMs) 

revisited: reduced amount of water counterbalances the need for CBMs, 

Biotechnology for biofuels, 6 (2013) 30. 

[61] F. Hamzah, A. Idris, T.K. Shuan, Preliminary study on enzymatic hydrolysis of 

treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of 

cellulase and β 1-4 glucosidase, Biomass and bioenergy, 35 (2011) 1055-1059. 

[62] H. Guo, H. Chen, L. Fan, A. Linklater, B. Zheng, D. Jiang, W. Qin, Enzymes 

produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls 

and facilitate lipid extraction, Renewable energy, 109 (2017) 195-201. 

[63] M.A. Dar, A.A. Shaikh, K.D. Pawar, R.S. Pandit, Exploring the gut of 

Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential 

strain for lignocellulosic biomass deconstruction, Process biochemistry, 73 (2018) 

142-153. 

 

 

Fig. 1 Phylogenetic trees of strain CL38 constructed using neighbor-joining method 

with respect to related members based on 16S rRNA (A), concatenated housekeeping 

genes 16S rRNA–rpoB–dnaK (B) and whole genome sequences (C). The sequences 

of Capnocytophaga canis were used as an outgroup. Bootstrap values (>50%) based 

on 1000 replications are expressed as percentages at nodes. The scale bar represents 

the substitutions per nucleotide position. 

 

Fig. 2 Number of CAZymes domains (GHs, CEs, PLs, GTs and CBMs) encoded in 

genome of strain CL38 and strain NH57NT , annotated using dbCAN 2 meta server.  
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Fig. 3 Comparative analysis in terms of the CAZymes abundance between strain 

CL38 (1) and strain NH57NT  (2).  

 

Fig. 4 Empty fruit bunch (EFB) degradation by strain CL38 with respect to total 

biomass weight loss (A) and structural changes (B). EFB structure before inoculation 

(i) and after 96 h of incubation (ii), viewed under scanning electron microscope. 

 

Fig. 5 Lignocellulolytic enzymes activities of strain CL38 across different 

incubation period. Mean values (n=3) are expressed and standard deviations are 

indicated as error bars. 

 

S. Fig. 1 KEGG metabolic pathway annotated in genome of strain CL38 and 

strain NH57NT: starch and sucrose metabolism (A) and pentose & glucuronate 

interconversions (B). Green coloured box, genes annotated in both strain CL38 and 

strain NH57NT; yellow coloured box, genes annotated exclusive for strain CL38 only.   

 

S. Fig. 2 Domain organization of GH9 (A) and GH3s (B) encoded in genome 

of strain CL38. SP, signal peptide; E set, Immunoglobulin E-set domain; GH, 

glycosyl hydrolase; T9SS, Type 9 secretion system; FN3, fibronectin type 3 domain. 

 

Table 1 General genome statistics of strain CL38 and strain NH57NT . 

Category Strain CL38 Strain NH57NT  

Number % of total Number % of total 

Number of contigs 17 - 16 - 

Number of scaffolds 17 - 14 - 

Genome size (bp) 3,332,696 100.00 3,223,525 100.00 

G + C content 1,104,122 33.13 1,069,019 33.16 

Total genes predicted 2982 100.00 2894 100.00 

Protein coding genes 2930 98.26 2827 97.68 

  with COGs 2230 74.78 2139 73.91 

  connected to KEGG pathway 1313 44.03 1300 44.92 

Noncoding RNA genes 43 1.44 52 1.80 
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  rRNA genes     

    5S rRNA 1 0.03 3 0.10 

    16S rRNA 1 0.03 3 0.10 

    23S rRNA 1 0.03 3 0.10 

  tRNA 36 1.21 39 1.35 

  ncRNA 4 0.13 4 0.14 

Pseudogenes 9 0.30 15 0.52 

Putative horizontal transferred 

genes 

17 0.57 34 1.17 

 
 

Table 2 Clusters of Orthologous Groups (COGs) assignment of protein coding genes 

of strain CL38 and NH57NT . 

COG 

class 

COG functional categories Strain CL38 Strain NH57NT  

Count Percentage 

(%) 

Count Percentage 

(%) 

R General function prediction only  298 13.36 277 12.95 

E Amino acid transport and 

metabolism  

200 8.97 199 9.30 

M Cell wall/membrane/envelope 

biogenesis  

199 8.92 195 9.12 

S Function unknown  170 7.62 164 7.67 

J Translation, ribosomal structure 

and biogenesis  

154 6.91 157 7.34 

K Transcription  141 6.32 132 6.17 

P Inorganic ion transport and 

metabolism  

119 5.34 113 5.28 

G Carbohydrate transport and 

metabolism  

119 5.34 101 4.72 

T Signal transduction mechanisms  107 4.80 102 4.77 

C Energy production and conversion  106 4.75 107 5.00 

H Coenzyme transport and 

metabolism  

102 4.57 101 4.72 
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L Replication, recombination and 

repair  

98 4.39 102 4.77 

O Posttranslational modification, 

protein turnover, chaperones  

98 4.39 97 4.53 

I Lipid transport and metabolism  94 4.22 81 3.79 

F Nucleotide transport and 

metabolism  

64 2.87 64 2.99 

V Defense mechanisms  53 2.38 49 2.29 

U Intracellular trafficking, secretion, 

and vesicular transport  

41 1.84 40 1.87 

Q Secondary metabolites 

biosynthesis, transport and 

catabolism  

39 1.75 29 1.36 

D Cell cycle control, cell division, 

chromosome partitioning  

20 0.90 20 0.94 

N Cell motility  7 0.31 7 0.33 

Z Cytoskeleton  1 0.04 0 0.00 

 
Table 3 List of potential lignocellulose degrading enzymes found in the genome of 

strain CL38. 

Category CAZy family Activities in the family Locus tag 

(scaffold: gene 

position) 

Cellulase GH3 β-glucosidase Scaffold1: 415157 

– 417442 

Scaffold3: 138356 

– 140503 

Scaffold3: 469288 

– 471630 

GH5 sub-family 

26 

Endoglucanase Scaffold1: 392649 

– 393644 

GH5 sub-family 

42 

Endoglucanase Scaffold1: 618054 

– 619568 
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GH9 Endoglucanase/Exoglucanase Scaffold1: 412891 

– 415044 

GH16 Glucan endo-1,3-β-D-

glucosidase  

 

Scaffold3: 137595 

– 138359 

Scaffold3: 140663 

– 142294 

GH74 Endoglucanase/Exoglucanase Scaffold1: 862541 

– 865630 

GH144 β-glucosidase Scaffold3: 472429 

– 473796 

Scaffold3: 473797 

– 475179 

Xylanase GH43 sub-

family 28 with 

CBM32 

1,4-β-xylanase Scaffold3: 462208 

– 464016 

GH43 sub-

family 10 

β-xylosidase  Scaffold1: 189046 

– 190662 

CE4 Polysaccharide deacetylase Scaffold5: 183683 

– 184324 

Mannanase GH5 sub-family 

7 

β-mannanase Scaffold1: 411532 

– 412884 

GH26 β-mannosidase Scaffold1: 404605 

– 405762 

Scaffold1: 409991 

– 411529 

Scaffold1: 

1118683 – 

1119762 

GH27 α-galactosidase Scaffold1: 393641 

– 394852 

GH130 β-1,4-mannooligosaccharide 

phosphorylase 

Scaffold1: 407607 

– 408794 

Other GH2 with β-galactosidase Scaffold3: 466675 
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hemicellulase CBM57 – 469278 

GH2 β-galactosidase Scaffold1: 389791 

– 392574 

Scaffold1: 582786 

– 585224 

GH28 Glycosyl hydrolase Scaffold1: 171089 

– 172441 

Scaffold1: 185327 

– 186763 

GH53 Arabinogalactan endo-1,4-β-

galactosidase 

Scaffold1: 581626 

– 582783 

Pectinase GH105 Glycosyl hydrolase Scaffold1: 187796 

– 189040 

CE12 Rhamnogalacturonan acetyl 

esterase 

Scaffold1: 172445 

– 173221 

PL1 sub-family 

2 

Pectate lyase Scaffold1: 173208 

– 175208 

PL10 + CE8 Pectate lyase Scaffold1: 184000 

– 185316 

 
 

Highlights 

 This is the first genome analysis of genus Meridianimaribacter.  

 Genome data mining of Meridianimaribacter sp. strain CL38 revealed that a 

series of lignocellulose degrading enzymes such as cellulases (GH 3, 5, 9, 16, 74 

and 144), xylanases (GH43 and CE4) and mannanases (GH5, 26, 27 and 130) are 

encoded in the genome. 

 The genome information coupled with experimental studies confirmed the 

abilities of strain CL38 in degrading lignocellulosic biomass, therefore could be 

useful for lignocellulosic biorefining.  
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