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1.  Coupled two level systems.  

Coupled two level systems describe many problems in physics and chemistry, such as for example light 

harvesting complexes made of several chromophores each one of them having two electronic states, 

which also can interact with a number of vibrational modes considered as a bath.   

Let us define Coherent State of a two level system (2L-CS) as simply a superposition of  and 

0  

  01, 0121 aaaa         (1.1) 

The kets  and 0  can represent the two different quantum states or a single mixed 

occupied/unoccupied state such as that described in ref1.  Often 2L-CS is called SU(2) coherent state 

and is written as 

      0sin1cos,)2(    i

SU
e      (1.2) 

where one of the coefficients is assumed to be real, but it does not have to be.  Having both 0a  and 

1
a  complex would introduce an insignificant phase factor, but the advantage is that both states are 

treated on equal footing.   

Multidimensional 2L-CS representing M two-level systems (like several chromophores for 

example) is simply a Hartree product   

1
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The identity operator for a basis set of N 2L-CSs is 
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where their overlap matrix is 
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and 
(ab)

m
  is a “1D-overlap”.   

In this supporting material we will derive various forms of equations of motion for the wave 

functions represented as superposition of Generalized Coherent States ,ζ z  (GCS), which are a 

product of 2L-CSs ζ  and standard Harmonic oscillator Coherent states HO-CSs z :   

           )()(,
)()()()()()(

tttAtttAt
n

n
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n

nnn
zζzζ     (1.6) 

We will rely on the general methodology of variational principle, as suggested in ref2  and later 

adopted for HO CSs in ref3.  The main idea is the following:  if the wave function depends on a set of 

parameters its time dependence is that of the parameters  1
( ) ( ),..., ( )

M
t t t    , which can be 

found either by substitution to the Schrödinger equation or more elegantly via variational principle 

which introduces the Lagrangian   
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 α,αα*,*,α

 . (1.7) 

Then the equations of motion are simply the Lagrange equations. 

  0







jj

LL

dt

d


        (1.8) 

which after introduction of the momenta 
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can be written as the Hamilton’s equation 

 
*

ˆ
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1
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


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
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where 

1

*












α
p

 is the inverse of the 









*α
p

 matrix.   

 Kramer and Saraceno approach illustrates that quantum equations of motion have the same 

structure as those of classical mechanics.  The evolution of the parameters of a quantum wave 

function can be described by the Hamilton’s equation (1.10), regardless of the physical meaning of the 

parameters.  Kramer and Saraceno also provided a mathematical tool for deriving quantum equations 

of motion for any parametrisation of the wave function.  

Section 2 of this supporting material introduces the Hamiltonian in terms of GCSs.  In the 

section 3 the equations of motion for the wave function made of single Generalised Coherent State in 

(1.6) are obtained, which are equivalent to those of a single Ehrenfest trajectory.  Then in the section 

4 the analogue of the MCEv2 approach4 will be derived using the language of Generalised Coherent 

States.  After that in the section 5 the analogue of the MCEv15 is derived.  Finally in the section 6 a 

fully variational approach similar to vMCG6 is developed, which can be called variational 

multiconfigurational Generalised Coherent States (vMCGCS).  

vMCGCS can be derived easier if non-normalised Coherent States, which are sometimes are 

used.  For HO CS they are defined as: 

 2

2
z

zz e          (1.11) 

For the 2L-CSs there is no such difference between normalised and non-normalised 2L-CS, which both 

are given by (1.1) and we do not use separate notation for non-normalised 2L-CS.  Conservation of 

norm 1ζ ζ  is introduced as a constraint.   
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2. Generalised Coherent States Hamiltonian. 

Creation and annihilation operators acting on a single 2L-CS (1.1) can be defined as follows: 
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So that 
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Then the Hamiltonian of a set of coupled 2 level systems can be written as: 
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where the first term gives the energies of electronic states, the second term couples the states of 

single 2L system and the last term is responsible for the energy transfer between the coupled 2L 

systems.   

The parameters of the Hamiltonian can depend on the nuclear motion creation and 

annihilation operators:  
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where L is the number of vibrational modes.  The operators ˆ ˆ,a a


 are standard creation and 

annihilation operators of a Harmonic Oscillator, which act on the z part of Generalised Coherent State. 

Matrix elements of the Hamiltonian (2.4) with two Generalised Coherent States are as follows 
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and 
)11(~
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H , 

)00(~
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their complex conjugate.   The symbol  ” ~ ” is equivalent to the index “ord” in our previous CCS work7 

and means that the functions were obtained by ordering the operators 

m

â  and 
m

â  such that the 

powers of creation operator are on the left and those of annihilation operator are on the right and 

then replacing them by the powers of *
m

z  and m
z  respectively.  

 

3. Equations of motion for single Generalised Coherent State  

The equations of motion for a single GCS  
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can easily be obtained from the variational principle for the Lagrangian 
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In (3.2)  
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ˆ ˆ H
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      (3.3) 

is the Ehrenfest Hamiltonian and 
tt 







,  act on the right and left respectively.   

The Lagrange equations  
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d


        (3.4) 

where  *),*,,( zzaaα  become 
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      (3.5) 

which are the standard Ehrenfest equations.  It is easy to see that for a single 2-level system they 

become 

 

1 11 1 10 0

0 01 1 00 0

*

ia H a H a

ia H a H a

H
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 

 


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
z
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        (3.6) 

The equations (3.6) also can be obtain simply by substitution of (3.1) into the Schrödinger equation.  

 

4. The equations for A and D coefficients - the analogue of MCEv2 

The Ehrenfest wave function (3.1) is not flexible enough to represent quantum dynamics accurately, 

but a superposition of several GCSs   
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can be converged to the exact quantum result.  In the spirit of the CCS method7 we can use the 

equations (3.5) above to move the basis of   )(,
)()(

tt
nn

zζ  and then to get the equations for  tA
i )(

 

by simple substitution to the Schrödinger equation, or by applying the variational principle to A-
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coefficients only.  It is also useful to represent the coefficient A as a product of rapidly oscillation 

exponent and smooth preexponential factor: 
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Then similarly to refs3, 7 the equations for the amplitudes D become 
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which is a system of linear equations for the derivatives of the amplitudes 
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Similarly to the previously developed CCS method7, 8 the diagonal elements of   )()2(2 mnSU
H  in (4.4) 

are zero and the off-diagonal elements are always small.  Thus, in this section it is shown that the 

MCEv2 method can be viewed as a generalisation of the Coupled Coherent States approach, which 

uses Generalised Coherent States instead of Gaussian Coherent States of the Harmonic oscillator.  This 

property of Coupled Generalised Coherent States equations has already been demonstrated in ref9 

 

5. The analogue of MCEv1 

We should be able to develop the MCEv1 approach using the language of Generalised Coherent States.  

For the simple spin-boson model, comprised of a single 2-level system, MCEv1 has shown excellent 

convergence5.   One can represent a wave function as a superposition of several Generalised Coherent 

States  
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with the Ehrenfest Hamiltonian given by Eq(3.3) 

The equation of motion for ζ  in (5.1) can then be obtained by substituting (5.1) to the 

Schrödinger equation: 

        )(ˆ)()(
)()()()()()(

ttHttittit
t

i
n

n

nn

n

nn

n

n
zζzζzζ  




  

           (5.3) 

which can be rearranged as 

       )()(ˆ)(
)()()()()()(

ttittHtti
n

n

nn

n

nn

n

n
zζzζzζ      (5.4) 

or more specifically 

  

   

    )()(ˆ

)(0101

)()()()(

)()()(

1

,

)()(

1

ttittH

taaaai

n

n

nn

n

n

n

jk

k

n

okk

n

k

jn

j

n

ojj

n

j

zζzζ

z














 . (5.5) 

By multiplying (5.5) by  



lk

k

m

okk

m

kl

m
aa 011

)((

1

)(
z  a system of linear equations for the 

derivatives 
( )

1

n

l
a  and 

( )

0

n

l
a  can be obtained, 

 

     

    )()(1)(ˆ1)(

)()(

******

)()()()()()()()(

)()(

,

)()()(

1

)(

1

)()()(

1

)(

1

)(

1

)()()(

1

)(

1

)(

1

tttittHt

tt

aaaaaaaaaaaaaai

nm

n

n

lk

n

kl

n

nn

lk

n

kl

m

nm

lj lkjk

n

ok

m

ok

n

k

m

k

n

oj

m

oj

n

j

m

j

n

l

lk

n

ok

m

ok

n

k

m

k

n

l

zzζzζz

zz





  

 



 

















           (5.6) 

which becomes: 

     

   

       
)()(

)(ˆ)(

)()(

**

)()(

)(

1

)()(

)(

1

)()()()(

)()()()(

)()()(

1

)(

1

1)()()(

1

1)()(

1

tt
a

tt
i

a

ttHtt

tttt

aaaaaai

nm

n
n

l

nm

n
n

l

nnmm

nnmm

lj

n

oj

m

oj

n

j

m

j

mn

j

mn

l

n

l

mn

l

n

l

zz
ζζzζzζ

zζzζ



































 



10 

 

           (5.7) 
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are the 1D overlaps 

A similar system of linear equations  
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can be obtained by multiplication of (5.5) by  

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The equations (5.7) and (5.9) for ( )tζ  together with the equation (3.5) for the trajectories z(t) 

represent a generalisation of the MCEv1 approach5.   As the norm of individual Generalised CS is not 

conserved the Ehrehnfest Hamiltonian  
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     (5.10) 

must explicitly include the overlap    tt
nn )()( ζζ  in the denominator.   

 

6. Fully variational approach.   

For Generalized Coherent States a fully variational approach can be developed as well.  Let us 

represent the wave function as a superposition  

      )(~ )()(
ttt

n

n

n
zζ        (6.1) 
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where 
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tz  is the non-normalised Coherent State (1.11) so that the overlap  of two non-

normalised CSs is now  
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The momenta are  
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Then the elements of the parameter matrix 
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       (6.5) 

required for the variational equations (1.10) can be obtained by simple differentiation which yields a 

fully variational Generalilsed Coherent States method very similar in spirit to variational 

Multiconfigurational Gaussians (vMCG) approach3, 10 or variational Davydov ansatz11, 12.    
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