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Abstract

The ever-growing complexity of safety-critical control systems continues to require evolution in
control system design, architecture and implementation. At the same time the cost of developing
such systems must be controlled and importantly quality must be maintained.

This paper examines the application of Mixed Criticality System (MCS) research to a DAL-A
aircraft engine Full Authority Digital Engine Control (FADEC) system which includes studying
porting the control system’s software to a preemptive scheduler from a non-preemptive scheduler. The
paper deals with three key challenges as part of the technology transitions. Firstly, how to provide
an equivalent level of fault isolation to ARINC 653 without the restriction of strict temporal slicing
between criticality levels. Secondly extending the current analysis for Adaptive Mixed Criticality
(AMC) scheduling to include the overheads of the system. Finally the development of clustering
algorithms that automatically group tasks into larger super-tasks to both reduce overheads whilst
ensuring the timing requirements, including the important task transaction requirements, are met.

2012 ACM Subject Classification Computer systems organization → Real-time operating systems;
Software and its engineering → Real-time schedulability; Hardware → Safety critical systems

Keywords and phrases MCS, DO-178C, Real-Time
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1 Introduction

Real time embedded software tasks developed for safety critical systems, such as civil aircraft

engine controls, are typically developed according to a specific Development Assurance Level

(DAL) [28]. The DAL indicates a criticality level for a component and is assigned based on

the consequence to the system’s safety that a failure of this component could cause. This

paper shall consider the model presented in [28], that defines DAL-A as the highest criticality

level and DAL-E the lowest. It is typically assumed that the amount of effort assigned to

producing enough evidence to prove the correct operation of a software component is directly

proportional to its DAL [32]. However, in practice it is still essential that lower DAL software

operates as expected to deliver the desired customer capability. Put simply a task’s criticality

is not necessarily related to its “importance”.

In accordance with DO-178C [28], where two components developed against different DALs

are integrated in the same system, it is necessary to guarantee that high DAL components

have temporal and spatial isolation from “unproven” low DAL components.
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There are two forms of partitioning that must be employed [29]: temporal partitioning,

which is concerned with the response time of a component, and spatial partitioning, which is

concerned with the hardware and memory space of a component. This paper is principally

concerned with the former, however in order to develop a safety critical system it is vital to

consider both together.

In the literature a Mixed Criticality System (MCS) is a system which combines software of

multiple DALs on the same processor. The technical objective of which is to provide sufficient

evidence that a low DAL component cannot jeopardise any high DAL component’s temporal

or functional requirements, while still providing a level of service to the low DAL component.

One approach to MCS development is to deploy the partitioned architecture defined by the

ARINC 653 standard [1]. The standard defines a partitioned model principally aimed at the

development of Integrated Modular Avionics (IMA), but is capable of supporting partitions

developed against different DALs. The issue with the ARINC 653 approach is that the

solution defined for temporal partitioning, essentially a two-level scheduler with time division,

makes the approach difficult to apply to a complex control system [3]. This is because it can

lead to the introduction of higher completion jitter, longer end-to-end transaction response

times and in general it can be difficult to accommodate a complex task schedule into fixed

time partitions [3].

Instead, this paper examines the potential for applying a pre-emptive MCS scheduling

approach, available in the literature, to a real industrial safety critical avionics application.

The application chosen for prototyping was a Rolls-Royce DAL-A avionics engine control

system. This system was taken off a certified in-service application without modification or

simplification. The primary aim was to investigate whether a set of less critical monitoring

functionality could be executed on the same processor as the DAL-A control software whilst

still meeting its certification requirements. In order to support these requirements a move to

a preemptive system was required in order to allow the introduction of temporal partitioning

protection. Therefore a secondary aim was to study the migration of the existing non-

preemptive fixed priority scheduling approach [8] to using preemptive scheduling. This

offered further advantages such as responsiveness, avoidance of high blocking terms, however

at the expense of greater RTOS overheads and complexity.

This work considers AMC+, the Adaptive Mixed Criticality (AMC) [5] variant, which

uses a simple mode change protocol and recovery point on an idle tick [31]. AMC+ is chosen

as it is the simplest fixed-priority scheduling approach for MCS that allows the system to

return to low mode after a switch to high-criticality mode.

The paper describes the challenges involved in certifying a real industrial system with

AMC+ and as part of doing so three main contributions are made. The first contribution,

in section 3, is a process that explains how the scheduler can be constructed that when

combined with timing watchdogs allows AMC+ to be efficiently implemented whilst giving

the necessary temporal isolation between high and low criticality tasks. In section 4, given

a suitable RTOS and watchdog mechanisms, the standard AMC+ schedulability analysis

is extended to account for the real overheads of the Rolls-Royce aircraft engine control

system, referred to in this paper as a Full-Authority Digital Engine Controller (FADEC).

The extensions form the second contribution of the paper.

The main contributions of the paper, in section 5, are: demonstrating how real world

requirements of task dependencies and jitter requirements can be handled; and a task

clustering mechanism based around the tasks’ deadlines that mitigates the overheads of the

system such that more individual tasks are schedulable. This includes adherence to tight
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jitter requirements placed on certain tasks, as well as transaction requirements involving

multiple tasks. Even though the work is targeting the control system, the benefits of the

proposed clustering algorithms are also demonstrated on a larger-scale evaluation.

Sections 3, 4 and 5 are preceded by a Related Work section and followed by the conclusions.

2 Background

The purpose of this section is to consider related work to this paper, explain the standard

system model for AMC+, the standard schedulability analysis for AMC+, and finally the

existing Rolls-Royce control system’s approach to scheduling.

2.1 Related Work

This section considers the related work on two topics: reducing the cost of RTOS overheads

and MCS. The work on reducing the cost of overheads has two main approaches: firstly

making the analysis less pessimistic and secondly reducing the actual overheads. In terms

of the analysis pessimism, the majority of work has been in the area of Cache-Related

Preemption Delays (CRPD) where an understanding is derived of the impact of on-the-cache

contents and which parts of the software cannot preempt each other [24]. The focus in

this work is not reducing the pessimism of the analysis, although such approaches could be

applied as part of future work, but instead reducing the size of the RTOS overheads.

Overlooking the obvious aim that any RTOS or scheduler must be designed to be as efficient

as possible; two main areas of research have been performed on reducing the occurrences of

overheads. Firstly work has looked at minimising the number of priority levels, e.g. [2], which

can lead to a reduction in the number of task context switches. The second approach is

grouping a number of software components (tasks in the original Rolls-Royce control software)

into larger schedulable tasks (referred to here as super-tasks). This approach is the same

philosophy as adopted in AUTOSAR systems where runnables are grouped to form tasks

as part of reducing overheads [11, 16, 26]. The approach however suffers from restrictions

that prevent their application in the current case; they either ignore transactions between

tasks [11], or require the possibility to duplicate tasks shared between transactions [16]. This

paper identifies, for the system studied, that the most appropriate method was the latter

of the two mentioned here, that is reducing the number of tasks scheduled by the RTOS.

This paper extends this research by examining task sets incorporating task transactions and

jitter requirements.

Vestal [32] was one of the first publications to consider the schedulability of a MCS. The

work draws the comparison that the reliability of the Worst Case Execution Time (WCET)

figure used for each task is commensurate to its criticality. This is based on the observation

that lower DAL tasks are not developed, or verified, to the same rigour that higher DAL

tasks are, and therefore the output WCET figures cannot be expected to be as reliable.

Building off Vestal’s work, Baruah et al. [5] introduced three models for Mixed Criticality

Scheduling - partitioned criticality, Static Mixed Criticality (SMC) and Adaptive Mixed

Criticality (AMC).

Partitioned criticality [5] is the simplest form of mixed criticality scheduling, where

priorities are assigned according to each task’s criticality. Accordingly a task with a higher

criticality will always be scheduled with a higher priority than another task of lower criticality.

This approach ensures a timing error in a low DAL task cannot affect the temporal require-

ments of a high DAL task, therefore requiring no run time monitoring. However, because

the scheduler will always execute a high DAL task if one is ready, it makes it significantly

ECRTS 2019
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Figure 1 AMC+ State Flow Diagram.

more difficult to meet low DAL task deadlines [5]. Furthermore as Baruah et al. [5] point

out, the argument for avoiding run time monitoring is voided by the fact that many safety

critical systems already incorporate run time monitoring for the purpose of error detection.

SMC and AMC [5] on the other hand assign task priorities according to their temporal

requirements, regardless of criticality. The algorithms following Vestal’s work assume that

each task has a WCET bound (CL
i ) for each criticality level (L = {A, B, C, D, E}) where

CA
i ≥ CB

i ≥ CC
i ≥ CD

i ≥ CE
i . In most cases, previous works consider only two WCET

bounds, CHI
i and CLO

i , where CHI
i ≥ CLO

i . In this paper, DAL-A tasks have two execution

times, CHI
i and CLO

i , and DAL-C tasks have just CLO
i . Extensive software testing in

representative engine operation simulations provide confidence that CLO
i should not be

exceeded, however this cannot be proved, and so CHI
i , produced through WCET analysis,

provides a safe upper bound.

SMC allows low or high DAL tasks to execute up to their CLO
i or CHI

i respectively; but

they are then prevented from executing further [4]. This offers a stop dead point where

any task must cease executing and provides adequate protection for high DAL tasks from

low DAL tasks.

The AMC protocol builds off this; however whereas SMC de-schedules one task if it

executes for longer than CL
i , AMC de-schedules all low DAL tasks if any high DAL task

executes for longer than its CLO
i . While the original paper did not explicitly define a recovery

point, an obvious route back to re-enabling low DAL tasks is to use the Idle Task or state of

the system. This is referred to in this paper as AMC+ and is based around the simple mode

change protocol in [31]. The AMC+ protocol is achieved through a scheduler mode change

which is summarised in Figure 1.

There are a great number of refinements to the AMC+ model, e.g. the Bailout protocol

in [9, 10], however these are largely independent to the contributions of this paper. That is,

the papers lacked details of how the implementation would ensure the properties needed for

certification, the analysis did not consider overheads as part of the analysis, and the papers

did not consider how overheads could be reduced. Therefore, they are not covered here.

A number of papers have considered system development of an MCS. Sousa et al [30]

identify the overheads induced by a multi-core task-split mixed criticality system, a number

of the overheads identified and integrated into the schedulability analysis are similar to the

overheads identified in this paper. However, in this paper we go further by presenting a full

process for how overheads can be analysed and reduced.

Freitag et al [17] divides tasks of different criticalities across different cores on a multi-core

processor, in order to simplify system proof, the system supervisor analyses the interference

induced by low criticality cores on high criticality cores, disabling the low criticality core if

required. Herman et al [19] perform an analysis of the development of a mixed criticality
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multi-core system, however the initial analysis does not progress far enough to support actual

development, for instance through proof of the effect of overheads on the schedulability of

the system. Finally, Paolillo et al [27] examine the benefits of porting an industrial case

study to a mixed criticality system, finding that the potential low criticality task utilisation

is high, but also identifying how the identification of sound task WCETs had a significant

effect on the service afforded to low criticality tasks. The paper however did not progress far

enough to explore how such a system could be implemented and certified.

The focus of this paper is on applying an industrial avionics control system against the

mixed criticality model originally presented by Vestal [32] as this provides a model well

suited to industrial application. The specific implementation chosen is the AMC+ algorithm

introduced by Baruah et al. [5]. The following sub-sections present more formally the baseline

system model and schedulability analysis of AMC+.

2.2 System Model

A system is defined as a collection of tasks denoted by τi where 1 ≤ i ≤ N . Each task τi is

denoted by a deadline Di, a period Ti, a criticality level Li, and one or many WCETs

Ci. A task is said to have a hard deadline (Di ≤ Ti) if its execution must meet every deadline,

whereas a soft deadline allows deadlines to be missed without having an adverse impact on

the safe operation of the component.

Other parameters which describe a task include the release jitter Ji which denotes the

maximum permissible variation of the period Ti for the release of the task. Once a task has

been scheduled it may be assigned a priority Pi where 1 ≤ Pi ≤ N . It is possible for the

execution of one task τi to be reliant on the completion of another task τj , such an interaction

is described as a transaction. Transactions are formed in order to aid the proof of system

level timing requirements, where it may need to be proven that the system performs a set

sequence of activities in order, and within a set period of time.

Finally, a task τi is said to be schedulable if its worst case response time (WCRT)

Ri, is less than its deadline Di.

2.3 Static Schedulability Analysis

The static schedulability analysis assessed in this implementation follows the AMC-rtb

algorithm introduced by Baruah et al. [5]. The schedulability analysis is performed in

three stages. First, the response time of each task is assessed in the high and low modes.

Finally, the response times of the high criticality tasks are assessed during a mode change

from low to high.

The low and steady high mode response time analysis equations are defined below, where

hp(i) is the set of higher priority tasks than task τi and hpH(i) is the set of high DAL higher

priority tasks than task τi. Respectively hpL(i) for the set of low DAL higher priority tasks.

These equations calculate the high-criticality mode WCRT, RHI
i , and the low-criticality

mode WCRT, RLO
i .

RLO
i = CLO

i +
∑

j∈hp(i)

( ⌈

RLO
i

Tj

⌉

CLO
j

)

(1)

RHI
i = CHI

i +
∑

j∈hpH(i)

( ⌈

RHI
i

Tj

⌉

CHI
j

)

(2)

ECRTS 2019
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Where each equation should be recursively solved. Low criticality tasks are not considered

when in the high-criticality mode as they are de-scheduled by the system. The sufficient

mode change analysis [5] then defines the response time analysis for a high DAL task during

a low-to-high mode change as follows:

R∗

i = CHI
i +

∑

j∈hpH(i)

( ⌈

R∗

i

Tj

⌉

CHI
j

)

+
∑

k∈hpL(i)

( ⌈

RLO
i

Tk

⌉

CLO
k

)

(3)

This ensures the interference from low DAL tasks is capped as R∗

i must be greater

than RLO
i .

2.4 Existing Control System

“Visual Fixed Priority Scheduler” (VisualFPS) is a task attribute assignment and scheduling

analysis tool framework developed initially by Bate and Burns [8] and then used by Rolls-

Royce on all their FADECs since 2002 [15].

The current FADEC approach features a non-preemptive scheduler where all tasks are

released by a clock tick which has a period equal to the greatest common divisor of the

tasks’ periods [8]. Timing protection is provided by a hardware timing watchdog that counts

down from the clock tick period. If the counter is not reset before it reaches zero then the

processor is reset, re-initialising the system. When combined with a dual lane architecture

each with independent power supplies, sensors and actuators, the use of a hardware timing

watchdog ensures the likelihood of a processor or software fault leading to a hazardous safety

event is acceptably low.

The current system is controlled using a non-premptive scheduler supported by a hard-

ware timing watchdog. It consists of over 200 tasks, designed against an extensive set of

system timing requirements [8]. Certification is achieved using timing information from a

measurement-based timing analysis process [23] [22] [25].

The timing requirements for the task set include independent task requirements of period

Ti, deadline Di and in some cases completion jitter Ji as well as dependent task transaction

requirements. The transaction requirements are further complicated by two factors. Firstly

some tasks appear in more than one transaction, and secondly within a transaction it may be

the case that some tasks have different periods. For example a transaction may run a sequence

of tasks with periods of 25, 50, 50, 25, 100 and then 25 respectively. An important decision

taken is to use a repeatable algorithm (i.e. that always produces the same results) that takes

all the requirements and uses them to calculate the deadline for each task. Task priorities

are then assigned using the Deadline Monotonic Priority Ordering (DMPO) algorithm where

the task with the shortest deadline is given the highest priority. If all deadlines are met, all

the timing requirements are met; the method ensures the schedule is correct by construction.

This approach has a further advantage, key to industry, that by incorporating the timing

requirements for each task into its design-time calculated deadline; the system can be easily

proved, reviewed and understood by engineers and system integrators [8].

An aim of this work is to change the processing platform, scheduling mechanisms, and

tooling by only the minimum amount necessary, as the tooling is well understood and

accepted by engineers and certification authorities respectively.

Each task is designed to communicate with a common interface, and follows a format

of input-process-output, furthermore tasks are designed to execute upon the data that is

currently available and will not wait until fresh data is available. Where fresh data is required

to move between tasks this is generally controlled by a transaction. This approach has

the advantage of simplifying access to shared resources between tasks, and is therefore not

considered further as part of this paper.
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3 Achieving Sufficient Temporal Isolation

This section introduces the requirements surrounding the development of a MCS, both from

a certification and a system integration point of view.

3.1 Certification Requirements

The paper focuses on the development of software for avionics systems. Accordingly,

only the guidelines detailed in DO-178C [20] are explored in this section. However the

guidelines are considered similar to those detailed in other software domains such as ISO26262

and IEC61508 [18].

DO-178C Section 2.4 defines five requirements for partitioning as follows:

1. A partitioned software component should not be allowed to contaminate another parti-

tioned software component’s code, input/output (I/O), or data storage areas

2. A partitioned software component should be allowed to consume shared processor resources

only during its scheduled period of execution

3. Failures of hardware unique to a partitioned software component should not cause adverse

effects on other partitioned software components

4. Any software providing partitioning should have the same or higher software level as the

highest level assigned to any of the partitioned software components

5. Any hardware providing partitioning should be assessed by the system safety assessment

process to ensure that it does not adversely affect safety

These requirements form the basis for this mixed criticality assessment and they are

explored further in the following sections.

3.2 Target Processor

The target processor for this analysis is the Rolls-Royce in-house processor. The Rolls-

Royce processor is a packaged device that integrates a core, memory, IO and tracepoint

interfaces. Being targeted at the safety-critical embedded sector, the device is DO-254 –

Level A compliant. It has extensive single-event-upset protection and is suitable for harsh

environments. The processor does not incorporate a data or instruction cache due to their

impact on timing predictability.

The processor has been carefully designed to ensure that each instruction’s execution is

time-invariant; in other words each instruction will take the same time to execute, regardless

of the data its operation is performed upon. These design features further ensure that

previous processor state has no effect on the current operation of the device.

The use of such a deterministic processor allows worst case timing measurements of

software components, including the scheduler, to be taken during normal operation, without

the need for special builds [22,23]. These measurements are used in two ways. For High-DAL

tasks the measurements are input into a hybrid measurement based WCET analysis tool and

used for the task’s CHI
i . Secondly for both High-DAL and Low-DAL tasks the Maximum

Observed Execution Time (or High Water Mark - HWM) obtained during the extensive

software test regime is used as the task’s CLO
i .

Together with supervisor and user mode spatial partitioning control, this determinism

provides the basis for an argument to be made that different software partitions executing upon

the Rolls-Royce processor cannot affect each other from a spatial or temporal point of view.

ECRTS 2019
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3.3 Partitioning

The aim of this assessment was to identify how a set of low DAL monitoring tasks can be

integrated alongside a set of high DAL-Control tasks. The assumption that should be made

for a low criticality task is that the task may execute, if allowed, for longer than its observed

HWM; its CLO
i is assumed to be optimistic. However, due to the rigorous testing regime the

software undergoes and the extensive in-test and in-flight monitoring it is known that it is

rarely exceeded.

From a certification point of view as the evidence to prove otherwise may not have

been produced to the same level as a high DAL component, then a certification authority

must assume a low DAL component is more likely to contain an error. So as guided by the

requirements noted in Section 3.1, partitioning must be employed to prove that any errors

that occur in a low DAL partition, cannot propagate to a high DAL partition. Partitioning

is thus employed between high and low DAL tasks.

The scheduler proposed in this work implements two key protection mechanisms to

implement a DO-178C partitioned architecture: the use of timer driven interrupts, and

the use of processor memory protection. Figure 2 shows the statechart for the interrupt

driven scheduler.

A timer driven interrupt is employed both to control the release of new tasks by invoking

a scheduler tick, and to interrupt low DAL components when they reach their CLO
i . As

the interrupt handler prepares to switch in a task, one of the final operations is to set the

interrupt timer to the lowest of either 1) the time to the next task release, or 2) in the case

of a low DAL task the allowed execution time remaining.

High DAL tasks are not regulated in the same way. If a high DAL task executes beyond its

CLO
i then it is permitted to continue, but the next time the scheduler executes it will identify

the need to move into the high DAL mode. This is controlled by the “Handle Overrun” block

within Figure 2. Return to the low mode is controlled by a high DAL idle task.

Secondly, processor memory protection is employed in a User/Supervisor arrangement.

All tasks execute in a design-defined protected area of memory, with access to different

hardware features or memory regions either permitted or restricted as necessary. Should any

task execute outside these fixed boundaries, then an interrupt is raised and the interrupt

handler handles the data error. This is enforced by the scheduler setting the proper User

Mode when returning to a task as illustrated in Figure 2.

The memory protection employed ensures that each component executing on the processor

cannot execute outside its design time defined boundaries, thus providing protection for high

DAL tasks from low DAL task promiscuous memory or hardware interactions. Whereas the

timer driven interrupt restricts the execution of low DAL tasks, ensuring a low DAL task

cannot execute beyond its CLO
i .

The processor is further protected by the accepted and proven in use hardware timing

watchdog, which ensures any timing requirement not met is detected sufficiently quickly.

Finally, at a system level the control system is designed around a full dual redundant archi-

tecture.

The earlier certification requirements are now re-visited with the reasons they are met

in italics.

1. A partitioned software component should not be allowed to contaminate another parti-

tioned software component’s code, input/output (I/O), or data storage areas

The use of appropriately written and tested software makes this less likely, in addition

the control system processor provides memory and other hardware protections through the

use of a supervisor/user mode configuration. Furthermore, the processor is built upon a

deterministic platform.
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Figure 2 Partitioned Scheduler Statechart.

ECRTS 2019
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2. A partitioned software component should be allowed to consume shared processor resources

only during its scheduled period of execution

The software timing interrupt, controlled by the scheduler, should prevent this by bounding

the execution time of low criticality tasks according to the task’s CLO. High criticality

tasks are not interrupted except by a scheduler tick, this is based on the trusted WCET

analysis process followed for high criticality tasks.

3. Failures of hardware unique to a partitioned software component should not cause adverse

effects on other partitioned software components

If a failure prevents the software timing interrupt providing the expected protection then

the hardware timing watchdog, which is accepted and proven in use, combined with a

two-lane (duplex) architecture will ensure acceptable safety. Furthermore, the spatial

partitioning employed shall ensure a task cannot interact with address regions outside of

its permitted bounds

4. Any software providing partitioning should have the same or higher software level as the

highest level assigned to any of the partitioned software components

The RTOS, interrupt handler, scheduler and software timing watchdog should all be

developed to the highest DAL and are executed as protected “supervisor” mode components.

5. Any hardware providing partitioning should be assessed by the system safety assessment

process to ensure that it does not adversely affect safety

The processor timing supervision component has been verified to DO-254 DAL-A and has

been used on multiple certified systems.

4 Extending AMC+ Analysis to Allow for Overheads

In order to include the execution time of the scheduler shown in Figure 2 into the response

time analysis for the system, the overheads were broken down into three constituent parts as

described below:

1. Tick Overhead - δT (Figure 2 - dot/dash line, red). Calculated using the measured worst

case tick time CT ICK . It includes:

The pre-emption of the executing task.

The handling of system services, e.g. the watchdog.

The context switch, and calling, of the highest priority task.

The release of any tasks into the ready state. Measured separately as CREL. (Figure 2

- solid line, green)

2. Start Task Time - δS (Figure 2 - dashed line, blue). Calculated using the measured worst

case task switch in time CST ART . It includes:

The initial time taken to context switch each task into the executing state. Except for

the highest priority task, which is accounted for in the tick overhead.

3. Stop Task Time - δE (Figure 2 - dotted line, yellow). Calculated using the measured

worst case task switch in time CEND.

The end time taken when a task finishes executing and returns to the scheduler.

Task releases are fixed to only occur on a scheduler tick, and the scheduler tick is the

only component that can interrupt another task. The execution time of each overhead was

measured during normal system operation, which included at certain points, the schedule’s

critical instance. This ensures the maximum execution time for each overhead was captured

firstly by ensuring the maximum number of tasks were in the released state at certain points,

and that the maximum number of preemption points are observed.
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The release overhead was measured and recorded against the number of tasks being

released. This allowed the release overhead of each task to be assessed, which proved to be

linear against the number of tasks being released as per the design goal.

The credibility of this maximum observed overhead time is based on the following

implementation details:

The use of a time deterministic target processor.

Tasks are only released on the system tick. The system tick period is equal to the greatest

common divisor of the tasks’ period. All other task periods in the system are a harmonic

of the tick period.

Each overhead is measured while the system executes a full system test campaign on a

full simulation rig.

The RTOS is carefully designed to ensure the task release overhead is linearly proportional

to the number of tasks in the system.

Finally, each overhead was factored into the analysis through synthetic tasks, in the same

way originally introduced by Burns et al [13]. This method of essentially viewing certain

overheads as tasks provides a safe and suitable method for taking account of the periodicity

of the overheads, and allows the overheads to be placed at the appropriate place in the

schedule to ensure correct analysis of interference.

The effect that the tick overhead has on the response time of a task can then be calculated

as follows:

δMODE
T =

⌈

RMODE
i

TT ICK

⌉

CT ICK +
∑

j∈MODE(i)

( ⌈

RMODE
i

Tj

⌉

CREL

)

(4)

In Equation 4, as in the following Equations 5 and 6 the value of RMODE
i used should

either be RLO
i , RHI

i or R∗

i depending on whether the low mode, high mode or mode change

response time is being calculated.

Secondly, the set of higher priority tasks used in each equation (denoted as j ∈ MODE(i)

or j ∈ hpMODE(i)) should be limited to those tasks permitted to execute in order to avoid

undue pessimism. The scheduler tick occurs in all scheduler modes, as well as during a mode

change. However the release overhead for low DAL tasks will only occur in the low mode,

or during a mode change from low criticality to high. This low DAL task release overhead

cannot be ignored during a mode change because the release of these tasks occurs before the

highest priority task begins to execute.

The start and stop overheads of each task are calculated as follows.

δMODE
S =

∑

j∈hpMODE(i)

( ⌈

RMODE
i

Tj

⌉

CST ART

)

(5)

δMODE
E =

∑

j∈hpMODE(i)

( ⌈

RMODE
i

Tj

⌉

CEND

)

(6)

Equations 1 and 2 can therefore be extended as follows:

RLO
i = CLO

i + CST ART + δLO
T +

∑

j∈hp(i)

( ⌈

RLO
i

Tj

⌉

CLO
j

)

+ δLO
S + δLO

E (7)

RHI
i = CHI

i + CST ART + δHI
T +

∑

j∈hpH(i)

( ⌈

RHI
i

Tj

⌉

CHI
j

)

+ δHI
S + δHI

E (8)
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Finally Equation 3 can be extended as follows:

R
∗

i = C
HI
i + CST ART + δ

∗

T +
∑

j∈hpH(i)

( ⌈

R
∗

i

Tj

⌉

C
HI
j

)

+
∑

k∈hpL(i)

( ⌈

R
LO
i

Tk

⌉

C
LO
k

)

+ δ
∗

S + δ
∗

E (9)

This overhead model is built on the assumption that a switch from a low to a high DAL

task, and the associated context switch, takes a constant time. On the deterministic Rolls-

Royce aerospace company processor this is the case. However for less deterministic processors,

or more complex context or thread switching mechanisms this model, and associated priority

assignment mechanism, it may need to be adapted in a similar way to the work presented by

Davis et al. [14].

This section has introduced an overhead model for calculating the response time of tasks

in a preemptive mixed criticality system. The following section will now examine how these

overheads can be minimised through appropriate system design.

5 Clustering to Reduce the Overheads of a Pre-Emptive Mixed

Criticality System

The current Rolls-Royce control system architecture consists of a large number of tasks,

carefully designed to reduce the effects of task blocking in the current non pre-emptive

scheduler (§ 2.4). The system follows a correct by construction design approach; each task‘s

deadline is calculated as part of the design process to ensure that if all tasks meet their

deadline (as confirmed through response time analysis), then the system as a whole will meet

its temporal requirements. This relies on a task attribution assignment which calculates each

task’s deadline based on its period, transaction and completion jitter requirements. This

system can then be said to comply with its timing requirements provided all tasks meet

their deadlines.

The overhead assessment and implementation rules defined in Section 4 illustrated how

the approach of using a large number of individual scheduled tasks is less desirable for a

pre-emptive model. This is because firstly the RTOS overheads of the pre-emptive RTOS are

significantly higher than the overheads of the non-pre-emptive system due to the introduction

of context switching and task monitoring, but also because the overheads increase with the

number of tasks, and their associated releases, in the system. By reducing the number of

tasks called from the RTOS, the number of tasks N is reduced to NCLUST ER (referring to

Equation 4) reducing the overhead induced by task releases. Furthermore, the number of

higher priority tasks hpMODE(i) is reduced in Equations 5 and 6, reducing the start and

stop task induced overheads.

This meant that simply porting the existing control system task set to the new architecture

produced a system whose overheads exceeded 40% of the total system utilisation, making

the system unschedulable. Therefore, it is necessary to condense the set of tasks in order to

reduce the RTOS overheads to a level where a schedulable system can be defined.

There are two aspects that must be considered when porting components from one

architecture to another. The first is the correct handling, and protection, of data transfers

that are conducted across the system. The second is in the correct allocation of tasks to

fulfil the temporal requirements of the compiled system. This paper is concerned principally

with the latter, with the former being considered in parallel work.

A number of methods were investigated for controlling the clustering, all methods were

defined using some or all of the temporal requirements placed on the tasks within a system.

Each method follows the same basic process of placing tasks into a defined order, where
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Algorithm 1 Task Clustering Algorithm.

1: /* Calculate task deadlines based on each task’s timing requirements */

2: UnOrderedTasks = CalculateTaskDeadlines(Period, Jitter, Transactions)

3: /* Create OrderedTaskSet according to the defined clustering method */

4: switch (ClusteringMethod) is

5: case Period:

6: /* Order tasks based on their period, lowest period taking the highest priority */

7: OrderedTaskSet = OrderByPeriod(UnOrderedTasks)

8: case Transaction:

9: /* Order tasks based on their transaction requirements. Transactions with the lowest overall

deadline take the highest priority */

10: OrderedTaskSet = OrderByTransaction(UnOrderedTasks[Task ∈ Transactions])

11: /* Order tasks without transaction requirements based on their jitter requirements first, and

finally any remaining tasks by their period. */

12: OrderedTaskSet += OrderByJitter(UnOrderedTasks[Task /∈ OrderedTaskSet])

13: OrderedTaskSet += OrderByPeriod(UnOrderedTasks[Task /∈ OrderedTaskSet])

14: case Jitter:

15: /* Order tasks based on their Jitter requirements. Prioritising tasks with small Jitter require-

ments */

16: OrderedTaskSet = OrderByJitter(UnOrderedTasks)

17: OrderedTaskSet += OrderByTransaction([(Task /∈ OrderedTaskSet) ∈ Transaction])

18: OrderedTaskSet += OrderByPeriod([Task /∈ OrderedTaskSet])

19: case Deadline:

20: /* Order tasks based on their Deadline, shortest Deadline taking the highest priority */

21: OrderedTaskSet = OrderByDeadline(UnOrderedTasks)

22:

23: Move OrderedTaskSet[0] into SuperTask[0]

24: SuperTask[0].Period = OrderedTaskSet[0].Period

25: SuperTask[0].Criticality = OrderedTaskSet[0].Criticality

26:

27: j = 0

28: for i in 1..OrderedTaskSet.Length do

29: if OrderedTaskSet[i].Period is NOT a harmonic of OrderedTaskSet[i-1].Period

or OrderedTaskSet[i].Criticality 6= SuperTask[j].Criticality then

30: j++

31: Move OrderedTaskSet[i] into SuperTask[j]

32: SuperTask[j].Period = OrderedTaskSet[i].Period

33: SuperTask[j].Deadline = OrderedTaskSet[i].Deadline

34: SuperTask[j].Criticality = OrderedTaskSet[i].Criticality

35: else

36: Move OrderedTaskSet[i] into SuperTask[j]

37: SuperTask[j].Deadline = min(OrderedTaskSet[i].Deadline, SuperTask[j].Deadline)

38: SuperTask[j].Period =

GreatestCommonDivisor(OrderedTaskSet[i].Period, SuperTask[j].Period)

39: end if

40: end for

41:

42: Apply DMPO to SuperTask set
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Algorithm 2 Extension to Support Deadline_D.

29: if Task[i].Period is NOT a harmonic of Task[i-1].Period

or Task[i].Criticality 6= SuperTask[j].Criticality

or Task[i].Deadline 6= SuperTask[j].Deadline

nominally the first task would form the highest priority, and the last task the lowest. The

next step is to step through the ordered set breaking it down into super-tasks. The methods

studied are introduced in Algorithm 1 and described below:

No Clustering - no clustering is performed

Period - Tasks were ordered according to period, then one super-task was formed for each

different task period

Jitter - Tasks with completion jitter requirements were first organised into super-tasks,

before all remaining tasks were ordered and grouped using their transaction requirements

(if applicable) and finally period.

Transactions (Trans) - Tasks with cross-task transactional requirements were first placed

into super-tasks along with the other tasks in their transaction. The remaining tasks

were then sorted into super-tasks first using their jitter requirements (if applicable) and

finally periods.

Deadline_D (D_D) - Tasks were first ordered using their computed deadline, then the

ordered set was divided into super-tasks across task period boundaries. Finally, tasks

with different deadlines are not clustered together.

Deadline_P (D_P) - As Deadline_D, however tasks with different deadlines were per-

mitted to be clustered together.

In all cases no super-task contains tasks of different criticalities, this is vital to comply

with the partitioning approach introduced in section 3.3. Finally, if any two tasks’ timing

requirements are identical, then their order is decided arbitrarily.

For brevity, Deadline_D is not shown explicitly in Algorithm 1. Unlike Deadline_P,

Deadline_D does not cluster together tasks that have different deadlines. Deadline_D is

implemented by replacing line 29 of Algorithm 2 with line 29 of Algorithm 1.

As the deadline of a task is derived as described in [7], this in one respect means the

Deadline clustering methods are an implicit amalgamation of the Jitter, Transactions and

Period clustering methods.

In all cases the deadline for each super-task was set to the lowest deadline of any

task inside the super-task. The set of RTOS super-tasks were then prioritised using the

DMP Oprotocol [8].

In addition to the above stated clustering methods a search based optimisation algorithm

was used to attempt to identify an appropriate task set, however in no cases did it deliver

improved results. The reason is the transaction requirements have to be carefully handled,

which meant a guided random algorithm did not perform well. Therefore it is not included

in this paper.

6 Evaluation & Results

The various approaches to task clustering and their impact on the RTOS overheads were

assessed in three ways. Firstly, the clustering methods were each applied to a real Rolls-Royce

DAL-A control system, which was then complimented using a set of DAL-C monitoring

functions; thus providing a Mixed Criticality System for analysis. Secondly, the clustering
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Table 1 Clustering Results When Applied to the Rolls-Royce Aircraft Engine Control System.

#SuperTasks Sched Tasks Trans Pass? δS δE δT δSUM

NoClustering 228 24.1% Yes 17.6% 21.1% 6.3% 45.0%

Period 17 85.5% No 2.5% 3.0% 2.1% 7.6%

Transaction 10 9.2% Yes 4.0% 4.8% 2.5% 11.4%

Jitter 53 38.2% No 13.1% 15.7% 5.1% 33.9%

Deadline_D 167 40.4% Yes 11.7% 14.1% 4.7% 30.5%

Deadline_P 15 100.0% Yes 0.8% 0.9% 1.6% 3.3%

algorithms were applied to a publicly available aircraft engine control case study taken

from [6]. Finally, a random task set generator was used to produce a large number of tasksets,

each of which was clustered using the set of clustering algorithms.

The actual RTOS overhead figures used through the temporal analysis are as measured on

the Rolls-Royce control system application, and were obtained during a system test campaign

on an aircraft engine control system test rig, and are not discussed further in this paper.

However, in order to ensure the analysis was not influenced by these figures, the study also

investigated how the proposed methods responded to varying RTOS overheads.

6.1 “Current” Rolls-Royce Engine Control System Example

The Rolls-Royce control software example used for this analysis has already been certified as a

DAL-A system. The system consists of a large number of tasks, each of which has a measured

HWM and an analysed WCET, obtained using a hybrid-measurement based approach [23].

The HWM and WCET were used for the CLO
i and CHI

i respectively. Additional monitoring

tasks were added to the system simulating DAL-C functionality, which increased the number

of tasks in total to 228. The results from applying each clustering algorithm to the engine

control system are shown in Table 1. The table shows the percentage of tasks whose worst

case response time is lower than its deadline (Schedulable Tasks), whether all transactions

have maintained the correct order (Transactions Fulfilled), and the utilisation of the RTOS.

Each task has a defined period, approximately 5% of tasks have completion jitter re-

quirements and approximately 50% of tasks form part of a transaction. Each transaction

requirement, which consists of between 2 and 11 tasks, reflects a specific execution, or priority,

order that must be maintained to ensure compliance to system level timing requirements.

These transactions are often interconnected, and can feature tasks with different periods.

The task periods are taken from the set (2.5, 5, 10, 12.5, 25, 50, 100, 200, 500)ms.

The results in Table 1 showed that the Deadline_P clustering method was the only

algorithm able to generate a schedulable system, this was in-spite of the fact that it was not

the algorithm that produced the task set with the smallest number of Super Tasks. The

Period and Transaction clustering algorithms failed to prioritise tasks with jitter requirements,

and so those tasks presented worst case response times that would have failed to meet their

tight timing requirements. Whereas the Jitter clustering algorithm failed to correctly order

transactions, and created a system with a larger number of high rate super-tasks, leading to

a higher RTOS utilisation which left the system unschedulable. The Deadline_D method

correctly ordered transactional tasks, and prioritised tasks with jitter requirements, however

as it did not group together tasks with different deadlines, it created a system with a

prohibitively large RTOS overhead.
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Table 2 Clustering Results When Applied to an Aircraft Engine Control Case Study.

#SuperTasks Sched Tasks Trans Pass? δS δE δT δSUM

NoClustering 71 94.4% Yes 3.6% 4.3% 2.4% 10.4%

Period 5 53.5% No 0.3% 0.3% 1.5% 2.1%

Transaction 3 59.2% Yes 2.2% 2.6% 2.0% 6.8%

Jitter 8 38.0% Yes 4.4% 5.3% 2.6% 12.3%

Deadline_D 33 97.2% Yes 2.0% 2.4% 2.0% 6.4%

Deadline_P 2 100.0% Yes 0.1% 0.1% 1.4% 1.5%

In comparison to the original system, this partitioned approach allowed low DAL tasks

totalling 44% utilisation to be added into the system without compromising schedulability

across all clustering algorithms. This would not have been possible in the existing legacy

system and was only made possible as the analysis was able to capitalise on the difference

between each high DAL task’s CLO
i and CHI

i .

6.2 Public Domain Engine Control System Example

The second case study used for this analysis has been taken directly from a publicly available

aircraft engine control example, as documented in [6]. The task set features 71 individual

tasks, conjoined by 24 different transactions. All tasks in the original system were schedulable

with all transactions being met.

The results in Table 2 were similar to those produced by the Rolls-Royce case study in

section 6.1, and showed that only the Deadline_P clustering algorithm was able to produce a

schedulable system with all transactions being met. Similarly to the Rolls-Royce case study,

the RTOS overhead was considerable lower with clustering than without, but in order to

produce a fully schedulable solution it was necessary to prioritise Transactions and Jitter

requirements equally, as performed by the Deadline_D and Deadline_P algorithms.

6.3 Random Task Set Generation Assessment

The random task set generator is based on a version of the UUniFast algorithm [12], and

was extended, as detailed below, to feature jitter requirements and transaction requirements.

The random task set generation assessment was performed at varying target utilisations

from 30% to 100% (at an interval of every 5%), with a varying number of tasks (10, 50,

100). Each clustering technique was then applied to each generated task set. Finally the

result was statically analysed to confirm every task’s response time was less than its deadline

and that each transaction was correctly ordered. 1000 tests were then performed for each

test configuration.

Key characteristics of the real engine control software were identified (and simplified) to

constrain the generated tasksets as follows:

Harmonic periods from the set (2.5, 5, 10, 12.5, 25, 50, 100, 200, 500)ms, inline with the

real system used in section 6.1.

5% of tasks randomly chosen to contain a jitter requirement. If part of a transaction only

a task at the beginning or end of the transaction was given a jitter requirement.

Transactions consisting of three tasks, randomly chosen from the existing set. The number

of transactions in the system was set to one fifth of the number of tasks.

The CLO
i for each task was randomly defined based on the system level target utilisation.

Each task’s CHI
i was randomly selected from the range CLO

i ≤ CHI
i ≤ 2CLO

i .
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Figure 3 Schedulability of a 10, 50 and
100 Task System at Varying Target Utilisations.
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Figure 4 Schedulability of a 10, 50 and
100 Task System With No Transactions.
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Figure 7 Number of Schedulable Tasks with Varying Transaction Rates [10%, 25% and 50%].
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Figure 8 Number of Schedulable Tasks
with Varying Jitter Rates of [0%, 5% and 10%].
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Figure 9 Number of Schedulable Tasks with
Low, Medium and High RTOS Overheads.
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This follows principles similar to the approach defined in [21] where key characteristics are

extracted from a real application and fed into a generator to derive representative benchmarks.

However, the tasksets in [21] follow the AUTOSAR runnable model and do not include

transactions which have a profound effect on the scheduling approach.

Figure 3 shows the number of schedulable tests out of the 1000 executed for each clustering

algorithm at varying target utilisation configurations. The experiments showed that for a

small task system there was not a great difference across the different methods, with the

exception of the Transaction method. From the inspection of the results this was largely

because the Transaction method fails to take account of tasks with tight jitter requirements,

which consequently receive lower priorities and fail their response time analysis.

For a system with 50 tasks, as shown in the second plot of Figure 3, the difference

between the clustering methods is more profound. Neither the Transactions nor the Period

methods are able to generate reliably schedulable systems, failing to take account of jitter

requirements. The Jitter algorithm fares better, but a general failure to preserve transactions

causes the schedulability of the solutions to suffer as the task set utilisation grows. The only

algorithms able to track near the No Overhead ideal are the Deadline algorithms, with the

Deadline_P faring best as it is able to minimise RTOS overheads by producing systems with

less super-tasks. This hypothesis is further supported in Figure 5 which shows the RTOS

overhead produced by each clustering method.

These results are amplified as the task set size grows to 100 tasks, where again the only

algorithm following a similar trend to the No Overhead ideal is the Deadline_P algorithm.

One irregularity with the results is the fact that for 50 and 100 task systems no clustering

algorithms are able to achieve a 100% set of schedulable tests. This is because of the effect of

transactions as shown by Figure 4 which shows the same test as shown by Figure 3, however

without Transactions.

Figure 6 shows, for a 100 task system at varying target utilisation (50%,70%,90%), the

analysed maximum possible WCET inflation factor, or sensitivity. That is, the maximum

figure that every CLO
i and CHI

i can be multiplied by before the system is no longer schedulable.

This figure is determined by sensitivity analysis. Therefore a value above or below one

would indicate an increase or decrease (for an initially unschedulable system) in task times

respectively. The results showed the Deadline_P clustering method maintaining the highest

inflation factor across all three target utilisations with other algorithms, in particular Period

and Transaction, tracking inflation factors close to zero. The results further indicate that

even No Clustering is frequently better than Jitter, Period and Transaction.

Comparing Figure 5 to Figures 3 and 6; even though Period tended to have the lowest

overhead, it tended to produce less schedulable solutions. This is because the algorithm

frequently produces a system with the lowest number of RTOS tasks, however these tasks do

not take account of jitter or temporal requirements, and so is in general not schedulable. Either

because tasks with jitter requirements have high response times, or because transaction orders

are not maintained. This shows that the aim of this clustering operation is not necessarily to

simply minimise RTOS overheads.

In order to further review the effectiveness of the different clustering algorithms the

analysis was extended through application to different systems with varying transactions

rates (Figure 7), varying jitter rates (Figure 8) and varying overheads (Figure 9). This

analysis shows how the clustering algorithms performed when presented with different system

configurations which moved beyond the assumptions introduced by the avionic control system.

Again the results showed that the Deadline_P was reliably the best clustering method, it

was shown to be reliable while other clustering algorithms’ performance varied significantly

across the different system parameters.

ECRTS 2019



8:20 Industrial Appl. of a Partitioning Scheduler to Support Mixed Criticality Systems

7 Conclusion

This paper has considered the application of a MCS scheduler to a DAL-A avionics engine

control system. In particular, the paper examined how such a system should be developed

and analysed to prove schedulability in the face of real life overheads. The partitioned

architecture provides robustness against spatial and temporal infringements by low DAL

tasks, and is capable of achieving a greater software utilisation than existing legacy systems.

The paper further considers the temporal requirements surrounding porting of an existing

non-preemptive system. The study aimed to identify the most efficient implementation for

porting a large system to a new pre-emptive Mixed Criticality System.

The work in this paper has targeted the AMC approach of [31], however the key contri-

butions should be largely independent (or at least applicable to those that build off fixed

priority scheduling) of which scheduling approach is used. The reasons are: the architectural

approaches for detecting timing overruns and performing mode switches are independent

of the policy; the overheads added to the standard analysis are only dependent on the

architecture; and finally the method for reducing the number of pre-emptions and task

releases is also independent of the scheduling approach. It is worth noting the benefits of

the clustering algorithm would almost certainly be greater for systems with more complex

processors as the preemption overheads would also include Cache-Related Preemption Delays.

For future work this study shall develop the implementation explored in this paper toward

a full dynamic study of the operation and performance of the scheduled system. This will

include assessing the quality of service provided to low DAL tasks and validating that a

promiscuous low DAL task cannot affect the temporal performance of the system.
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