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Abstract

Soil respiration, a major source of atmospheric carbon (C), canrfieedimate warming, which in
turn can amplify soil C@efflux by affecting respiration by plant roots, arbuscular mydnat fungi
(AMF) and other heterotrophic organisms. Although tropical ecosystemsiaite >60% of the
global soil CQ efflux, there is currently a dearth of data on tropical soil raBpir responses to
increasing temperature. Here we report a simulated warming andsgoiiation partitioning
experiment in tropical montane grasslands in the Western Ghatstiremn India. The study aimed to
(a) evaluate soil respiration responses to warming, (b) assess tive i@atributions of autotrophic
and heterotrophic components to soil respiration, and (c) assess thef saiésemperature and soil
moisture in influencing soil respiration in this system. Soiliraipn was tightly coupled with
instantaneous soil moisture availability in both the warmedcantiol plots, with CQefflux levels
peaking during the wet season. Soil warming by ~1.4 °C nearly doubledsgiilation from 0.62 g
CO, m? hr! under ambient conditions to 1.16 g 8@ hr' under warmed conditions. Warming
effects on soil C@efflux were dependent on water availability, with greatktise increases in soil
respiration observed under conditions of low (with a minimum of 2.6%), cemparigh (with a
maximum of 64.3%), soil moisture. Heterotrophs contributed to the myagdrsoil CO; efflux, with
respiration remaining unchanged when roots and/or AMF hyphae wetgledas the partitioning
treatments were statistically indistinguishable. Overall, our resulisate that future warming is
likely to substantially increase the largely heterotroph-drivdrCsfiuxes in this tropical montane

grassland ecosystem.

Keywords: Climate change, open top chambers, respiration partitioning, stasaland ecosystem,

soil carbon, heterotrophic respiration
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I ntroduction

Soils are substantial carbon (C) sinks, storing about 2157-2293 Pg C, ~3 times asgnoainave
vegetation (Batjes 1996; Cartmill 2011; Ciais et al. 2013). The®ailmosphere C flux of 64-94 Pg
C yrt globally, or soil respiration, also makes them significant C sourcésisTh30% of the total
terrestrial and marine atmospheric C contribution, and ~10 timé&3 toatribution from
anthropogenic sources such as fossil fuel combustion (Raich and &géte992; Baggs 2006;
Hashimoto et al. 2015; Le Quéré et al. 2017; Zhao et al. 2017; Bond-Lamberty 2018).ITropica
ecosystems are estimated to contribute >60% of the global sp@gfax (Bond-Lamberty and
Thomson 2010; Hashimoto et al. 2015), suggesting that even slight increases ipisatiordevels
in these regions can translate to large additions to global atmias@k® pools.

Increased atmospheric G@@vels are a major contributor to global warming (IPCC, 2013),
which in turn can feed back to influence soil £&ilux. Many studies have reported warming-
induced increases in soil respiration in subtropical, temperateagdl ecosystems (e.g. Buchmann
2000; Rustad et al. 2001; Conant et al. 2004; Bronson et al. 2007; Lu et al. 2013; 20&6al
Wangdi et al. 2017), and it is estimated that warming has account@@®%6rincrease in soil
respiration levels from 1989 to 2008 in tropical ecosystems as well (Bondergnand Thomson
2010). Warmer conditions can influence {lDixes by affecting both autotrophic respiration, from
plant roots and plant-associated symbionts such as arbuscular ngaddurhgi (AMF), and
heterotrophic respiration due to microbial (fungal and bactexrad)animal decomposers. Increasing
temperatures can lead to altered rates of metabolistanhnpots (Atkin et al. 2000), as well as
increased plant C investment in AMF leading to changes in root cdiionizavels, greater hyphal
growth and increased mycorrhizal respiration (Hawkes et al. 2008; Rustger 2014; Birgander et
al. 2017). Heterotrophic respiration can be affected under warmer cosdiianhanged soil
microbial biomass, community composition, bacterial:fungal ratios (Sindh20%0; DeAngelis et
al. 2015; Auffret et al. 2016), and microbial metabolism leading tcedltdéecomposition rates (see
Classen et al. (2015) and references therein for a review of soilhigic(including AMF) responses

to warming).



84 The contributions of roots, AMF and microbial decomposers to soilredsm differ across
85 ecosystems. For instance, root respiration can contribute anythinggmedio >90% of the total GO
86  efflux from soils. Microbial decomposers have also been reportashtoibute between ~30% and
87 >90% of the CQefflux from soils, and may be correlated with the autotrophidnagm
88  contribution (Hanson et al. 2000; Bond-Lamberty et al. 2004). Ecosystemsfdsinds oil
89 temperature and soil moisture controls on soil respiration, @@hefflux responding to changes in
90 either or both (e.g. Cartmill 2011; Wu et al. 2011; Liu et al. 2016; Hoover et al. 20hie. tWere are
91 anumber of reports of C@fflux measurements from tropical ecosystems (e.g. Bond-Lamberty and
92 Thomson (2010) and studies referred therein), there is a paucity of stadibavh evaluated soil
93 respiration responses to experimental warming in these ecosystemsoffamasMcNulty 2009; Lu
94  etal. 2013). Consequently, there is a dearth of data on tropical soiatiespiesponses, relative
95 contributions of the autotrophic and heterotrophic components, and aliatiiols on CQ efflux
96 under increasing temperature regimes.
97 We evaluated soil respiration responses to simulated warmingadpieal montane grassland
98 ecosystem in the Western Ghats biodiversity hotspot, India, agssassthe relative contributions of
99 roots, AMF and microbial decomposers to soil,@&flux, over 2 years. These montane grasslands
100  support high biodiversity but are also threatened as land use changedliggegeced their extent,
101  and the remaining grasslands are believed to be particularly vole¢oeclimate change (Sukumar et
102  al. 1995; Arasumani et al. 2018). In particular, we tested the predictibsdihrespiration will be
103  higher under simulated warming than under ambient (control) conditions. troaddie quantified
104  autotrophic and heterotrophic contributions to soil respiratidhis ecosystem by measuring £0
105  efflux with and without plant roots and/or AMF hyphal components. We alsssessthe roles of
106 instantaneous soil temperature and soil moisture in influencstgntaneous soil respiration in this
107  ecosystem.
108
109
110
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M ethods
Study area
The experiment was conducted in tropical montane grasslands abthegsassland ecosystem, a
unigue mosaic of grassland interspersed with pockets of stuntegtemmeforests (sholas), found in
the higher reaches of the Western Ghats (Robin and Nandini 2012). These gsasgigiodt several
species of grasses and herbs, and a variety of wild herbivores suatbas §ausa unicolor), gaur
(Bos gaurus), Asiatic elephant (Elephas maximus) and the endemic NilgifiNtifiritragus
hylocrius). These grasslands are representative of other montaskgdsand forest-grassland
mosaics globally, such as Afromontane ecosystems (Kotze and Samways, 208taP2014),
Campos-Araucaria forest mosaics in southern Brazil (Overbedk2207), and forest-patana
grassland mosaics in Sri Lanka (Gunatilleke et al. 2008).

Our experiment was located in the Avalanche area of the NiRjwisphere Reserve (11.27°
N 76.55° E, elevation: ~2300 m), in the state of Tamil Nadu in southern India. THagee@nual
temperature in the region is 14.4 °C, and the average annual rainfall is &8@ttps://en.climate-
data.org/location/24046/). The majority of the precipitation indlggasslands occurs during the
South-West monsoon season from early June to early September, and thEd$brttonsoon season
from early October to early December, accounting for ~905 mm and ~®2&imfall on average,
respectively. Summer precipitation from early March to latgy Blzerages ~200 mm, while the winter
months from late December to late February are the driest (DStaitistical Handbook, The Nilgiris,
2015-2016; https://nilgiris.nic.in/documents/). Temperatures peak around Magdawvamimum and
maximum temperatures are 12.07 °C and 21.7 °C, respectively), and are lowest amaand(¥ath
average minimum and maximum temperatures of 5.85 °C and 20.7 °C, redypgdtiile winter

temperatures frequently dropping below 0 °C.

Experimental setup

Open top chambers (OTCs)
To study soil respiration responses to simulated increasing temperagunsed 9 open top chambers

(OTCs), which are passive warming structures (Aronson and McNulty Zfifiree et al. 2011), and
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adjacent paired control plots (ZPnexperiencing ambient temperature conditions. Three OTCs and
control plots each were set up within three 10 m x 20 m fencegdtbceareas of similar slope and
aspect, in May and June 2014. The OTCs were hexagonal structures, 3 m in diamebérandall
(design modified from Godfree et al. (2011)). Iron frames supported thenfwal structures, each
with five sides having acrylic/polycarbonate walls placed at dmatmon of ~60° to the ground and
the sixth side left open after initial trials at our field site shougthat OTCs with all six sides closed

increased temperatures up to 11 °C, as opposed to up to 4 °C in the 5-sidei@@@ot shown).

Respiration partitioning treatments

To assess autotrophic and heterotrophic contributions to soil respirabansystem and to measure
their responses to warming, we set up respiration collars witei@TCs and adjacent to the control
plots. Soils within these collars were ‘partitioned’ to measure respiration contributions of ‘full soil’,

soil without roots, and soil without roots and AMF (referred to here on as ‘partitioning treatments’;
protocol adapted from Marthews et al. 2014; Fig. 1). Each OTC/contrdiguiiothree collars, one
each for the three soil partitioning treatments, for a total of BarsoThe partitioning treatments
were set up in the first week of November 2014.

The partitioning treatments consisted of polyvinyl carbonate (PVC)qoilters (length: 40
cm, diameter: 10.6 cm) buried in the soil to a depth of 35 cm with fEerraining above the ground.
Pits 35 cm deep were made at each collar location, and werkedesfith the same soil after inserting
the collar and sifting through the soil to remove all severed roots and other organic debris. The ‘full
soil’ treatment had collars with 4 circular holes of 4 cm diameter, with 2 pairs of holes drilled along
opposite sides of the collars (Fig. 1a). These holes allowed roots and AMF hyphae inlthertopf
the soil to freely grow into the collars, and contribute te €®ux. Collars for the ‘soil without
roots’ treatment had similar holes drilled, but were covered with nylon meshes with 40u pores to
allow the growth of AMF extraradical mycelium (ERM) into the aal]ébut not fine roots (Fig. 1b).
The ‘soil without roots and AMF’ treatment had collars with no holes, preventing the growth of roots
or AMF hyphae into them, thus allowing for €&fflux measurement from root- and AMF-free soil

(Fig. 1c).
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40 cm

Fig. 1 A representation of the design and dimensions of the PVC pipe coltat$anghe soil
partitioning treatments. (a) Full soil treatment, with circeggresenting the holes made on one side of
the collars, (b) Soil without roots treatment, with circles representileg bovered by nylon meshes

to keep out fine roots, and (c) Soil without roots and AMF treatment.

We tested the efficacy of the partitioning treatments using addltireatment collars set up
in early October 2015, from which we collected soils and medshe amounts of roots, AMF
hyphae and microbial biomass in November 2016. We found that the treatmenssieeassful in
allowing/preventing the growth of roots and/or AMF hyphae withindbllars (detailed methods and
results in Supplementary Information A). Further, to ensure thatlistuirbance during the setting up
of the collars did not affect soil respiration over the periodunfstudy, we set up two types of
‘method control’ collars that were installed along with the treatment collars, within an OTC-control
plot pair in each fence. One of these (designated as C1) consisté@ oblars set up exactly as the
other treatment collars, but without removing severed roots and other debrighé soils before
filling in the collars after installation. The second (designated as @2PY& collars hammered into
the ground to a depth of ~30 cm without displacing the soil beforelatgial We found that, after an

initial spike, soil respiration in these ‘method control’ collars was indistinguishable from the ‘soil
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without roots and mycorrhizae’ treatment (details of methods and results in Supplementary

Information A). We therefore report only results from the threstjgening treatment collars.

Soil respiration measurement and calculations

Soil respiration in the partitioning treatment and controbeslivere measured at approximately 15-
day intervals from late November 2014 to late January 2017, for a tet8lsaimpling days. We

used a portable IR-based gas analyser (Environmental Gas MonitorEB8RISystems, USA), to
measure Ceflux. Alongside CQ flux measurements, we also measured ambient atmospheric
temperature within each OTC and control plot, and collar heightg@ed across three measurements
per collar) at each measurement time point. These data wenesno calculate C@fflux

following Marthews et al. (2014), as:

C,—- C P Vy4 44.01 x 0.36 911
ruc = — —_— —_— —_— ] g C02 m ~“h (1)
t,— t T, /J\ A R

Vys+V
r, = ruc<%> g C02 m—2 h—l (2)
d

wherer,. denotes soil G@fflux calculated without correcting for the added volume of the

respiration collar, ang.  denotes £€¥flux corrected for volume in g GOn? h%; C, — C, is the
CO:; flux difference, typically between the last 10 readings per measureondrtween the first and
last flux values if the measurement had less than 10 readings, in ppmvi; is the difference in
time, in seconds, over which the difference in,@Ox was calculated? is ambient atmospheric
pressure, in mb, averaged ovgr t; as measured by the EGM;  is atmosghperature in
Kelvin; V is volume within the EGM respiration chambadr; is the areaibbser which CQ flux
was measured; R is the Universal Gas Constant, 8.314ndoK"; and V44,4 is the volume of the
respiration collar above the soil surface at the time of memsute A more detailed discussion of the
method for measurement and calculation ot @€flux can be found in Marthews et al. (2014).

To account for potential measurement errors in {0 while using the EGM in the field, we

assessed linearity of G@ccumulation for each collar for each sampling day using linearlsnoide



203 CO, accumulation versus time, and only those measurements that satisfaderia that R> 0.9

204  (Savage et al. 2008), and had a positive slope, were used for further analgtbes, since some

205 values of measured G@fflux were found to be unusually high or low, we excluded vahasfell
206  beyond 3 SDs of the mean g€fflux from the analyses. Our final analyses were based on 80.9% of
207  the original data collected.

208

209 Temperature and soil moisture measurements

210  Air temperatures were measured from December 2014 to Januaryy2plbging iButtons

211  (Thermochron Temperature Data Loggers, Maxim Integrated, USA) 2-Bawe &ghe ground within
212 all 9 OTCs, and 3 control plots, one in each fence. Soil temperataresweasured from May 2015
213  to January 2016, by placing iButtons just below the soil surface in an OTébatndl plot in each
214  fence. Data for some months are missing due to loss of iButton, or thggitag errors. We also

215 measured instantaneous soil temperature and soil moisture wheifiyimgeoil respiration.

216 Instantaneous soil temperature measurements were done at 12.Slcosdepa temperature probe
217  (HI145-00 and HI145-01, Hanna Instruments, USA), and instantaneous soil monsasurements
218 were done over the top 12 cm of soil using a soil moisture meter (FeidBDR 100 Soil Moisture
219  Meter, Spectrum Technologies, USA), with 3 replicates in the tyomfieach soil respiration collar.
220

221  Data analysis

222  We used linear mixed effects models (LMMSs) to test whether (a) spiragion in warmed plst

223  differed from control plots, (b) C{efflux was different in treatments where roots and/or AMF were
224  excluded from ‘full soil” respiration levels, and (c) partitioning treatment effects were different in

225  warmed versus control plots. Warming (OTC/control), partitig treatments (full soil, soil without
226  roots, soil without roots and AMF) and their interaction were used asffotors and collars nested
227  within plots, which were in turn nested within fences were asa@ndom factors to account for
228  multiple measurements across time from the same respiratiorsd@kayen et al. 2008; Zuur 2009;
229  Cunnings and Finlayson 2015). Soil respiration, measured at approxiiatdhy intervals from

230  November 2014 to January 2017 per warming and partitioning treatmenhenasponse variable.
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In all, there were 310-348 individual respiration measures per paitigj treatment per OTC/control
plot (median = 339.5), for a total of 1994 values. Soib@&fllux values were log transformed before
analyses to meet model assumptions.

We then tested whether instantaneous soil temperature and soil mioidivicually or
together best explained variation in soil respiration in th€ @nd control plots using LMMs in
conjunction with AIC based model selection. Instantaneous soil tatope and soil moisture,
warming treatment and their interactions were as fixed factorasimdthe previous analysis, collars
nested within plots, which were in turn nested withircéenwere the random factors. We only used
soil respiratia and instantaneous soil moisture and soil temperature data from the ‘full soil’ collars
for these analyses. The fixed effects in the three candidate LMivés(&) soil temperature x soil
moisture x warming treatment, (b) soil temperature x warmirgnrent, and (c) soil moisture x
warming treatment. We also computed marginal and conditichzlRes that give an indication of
the variation explained by only the fixed effects and itkedfand random effects, respectively, for all
three candidate models (Nakagawa and Schielzeth 2013). Again, s@f® values were log
transformed before analyses to meet model assumptions.

We used the R package Ime4 to conduct all the mixed effects modéts @10; Bates et al.
2014, Kuznetsova et al. 2015; Bates et al. 2017), the ImerTest package to coestsaiging
Satterthwaite approximations for the degrees of freedom, amdtheackage to conduct Tyfle
Wald chi-square tests to assess the statistical significance fofatieeffects (Bates et al. 2014, Bates
et al. 2017). Marginal and conditionat fRalues were computed using the piecewiseSEM package
(Lefcheck 2016). All analyses were conducted using R version 3.2.4 (The R FoufmtaBtatistical

Computing, 2016). The data and the R code are available in Supplemeftamation B and C.

Results

Temperature and soil moisture between treatments

Average daily soil temperatures of control and OTC plots ovepetied of the study was 16.10 +
0.13 °C and 17.53 £ 0.15 °C, respectively (over 277 measures from 146 days eaclijefémediin

mean daily temperature between OTC and control plots averaged 0.d8 %C overall (Fig. 2a),

10



259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

with a maximum temperature increase of 3.43 °C (t = 16.751, df = 145, P < 0.001, 95% CIl = 1.24,
1.57; results from a one-sample t-test, wititlt the true mean = 0). Monthly averages of soll
temperatures ranged from 14.55-21.67 °C in the controls and 16.09-22.93 °C in théR@rab).
Average daily air temperature responses were smaller than spénare responses to warming,
with the difference in mean air temperatures of OTCs and contitsl pbr day averaging 0.10 = 0.04
°C (details in Supplementary Information A and Fig. S1).

Soil moisture was lower in the OTCs than in the control plats &), with averages of
23.74 £ 0.76% and 25.98 £+ 0.81%, respectively (from 421 and 429 estimates, respectively, across 27
months). The average difference in soil moisture levels between cantt@TC plots was 2.22% (
=11.36, df = 420, P < 0.001, 95% CI = 1.84, 2.61; results from sange t-test, with KHthat the
true mean = 0). Soil moisture levels ranged from 3.26-64.30% and 2.60-58.88% ge avehe

controls and OTCs, respectively (Fig. 2d).
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282  Effects of warming and partitioning treatments on soil respiration

283  Warming significantly increased soil respiration by 55-89% comparedritrol levels in all three
284  partitioning treatments (P < 0.05). The three partitioning treatntemisever, were statistically

285 indistinguishable from each other in both controls and OTCs (Table 1, Figre3age soll

286  respiration over the entire duration of the experiment and agap88oning treatments was

287  0.62+0.01 g C@m? hrtin the controls and 1.16+0.03 g €@ hr' under warmed conditions.

288  Mixed effects model estimates of the average €ffux levels (and 95% CIs) in the three

289  partitioning treatments were 0.51 (0.40, 0.65), 0.56 (0.44, 0.72) and 0.46 (0.36, 0.59)ng @3,
290 respectively, in the control treatment, and 0.79 (0.62, 1.02), 0.94 (0.73, 1.20) and 0.87 (0.68, 1.12) g
291 CO; m?hr?, respectively, in the OTCs.

292 Soil respiration also differed by month mirroring the sea#yrafl our study system (Fig. 4).
293  Overall, control plots recorded minimum soil respiration of 0.16+0.02 gr&&hr? in March 2015,
294  while respiration peaked to 1.10+0.12 g 67 hrt in September 2016; while the OTCs recorded
295  minimum and maximum soil respiration levels of 0.63+0.07 g @®hr! and 1.84+0.36 g COm?
296  hr?, in February 2015 and April 2016, respectively (Fig. 4). Responses peopartjttreatment

297  were similar to this overall warming effect (Supplementary médion A).

| Full soil
. Without roots b

| |without roots & AMF b _I_ —i_

it |

Control OTC

-
o
L

Soil respiration
(gCO, m?h™
o
[9)]

o
o
1

Fig. 3 Average soil respiration in control and warmed conditions in tiee thartitioning treatments.
‘Full soil” treatment is represented by dark grey bars, ‘soil without roots’ by light grey bars, and ‘soil
without roots and AMF’ by white bars. Means and error bars (1SE around the mean) obtained from
the mixed effects model used for analysis. Different letters iredatatistically significant differences

among treatments (P < 0.01 or lesser).
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Table 1 Summary of LMM results of soil respiration responses to waritngagment, partitioning

treatments, and instantaneous soil temperature and instantane ousisinite.

Sl No. Predictors Effect Wald chi-square df P
1. Warming and Warming 44.7641 1 <0.001
partitioning Partitioning treatment 2.5216 2 0.28
treatments Warming x Partitioning
treatment 1.1280 2 057
2. Instantaneous Soil moisture 57.8397 1 <0.001
soil moisture  Soil temperature 0.0005 1 0.98
and sail Warming 9.7556 1 0.002
temperature, Soil temperature x Soil moisture 12.7965 1 <0.001
and warming Soil temperature x Warming 0.1610 1 0.69
Soil moisture x Warming 2.8782 1 0.09
Soil temperature x Soil moisture
x Warming 2.0987 1 0.15
3. Instantaneous Soil moisture 57.1421 1 <0.001
soil moisture  Warming 9.1714 1 0.002
and warming  Soil moisture x Warming 5.1778 1 0.023

Values in section 2 are from the ‘full model’, an LMM with soil moisture, soil temperature, warming
treatment and interactions as fixed effects.
Values in this section 3 are from the ‘best model’ (see Table 2), an LMM with soil moisture, warming

treatment and their interactions as fixed effects.

14
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Fig. 4 Average soil respiration in control and OTC plots averaged pathmacross partitioning
treatments. Dots in grey represent control plots and thoseck t@dpresent OTCs. Error bars

represent 1SE around the mean.

Effects of instantaneous soil temperature and moisture on soil respiration

The most parsimonious model predicting soil respiration in our systenthe model that included
warming treatment, instantaneous soil moisture and their intemaadi predictors (Table 2). The
addition of instantaneous soil temperature to the model does not improyieahand conditional R
values by much (Table 2). Soil respiration was higher in the warréi(fl = 0.002; Table 1), and
increased as soil moisture increased (P < 0.001; Table 1). However, ttefffarming on soil
respiration was more pronounced under low soil moisture conditionsr(gsilure x warming: B
0.023; Table 1; Fig. 5). Given that the partitioning treatments wdististly indistinguishable, only

data from the ‘full soil’ treatment were used for these analyses.
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Table 2 Model comparisons of LMMs to assess instantaneous soil moisture and/orakmgand

warming treatment effects on soil respiration. Marginal and tiondi R values give an indication

of the variation explained by the fixed effects only and the fixedandom effects together,

respectively, in mixed effects models.

M Odel (f|xed effeCtS) AI C AAI C Rzmarginaj Rzoonditiona]
Inst. soil moisture x Inst. soil temperature x 1455.884 28.524 0.16 0.30
Warming
Inst. soil temperature x Warming 1478.419 51.059 0.06 0.22
Inst. soil moisture x Warming 1427.360 0 0.15 0.28
2l
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Fig. 5 Sail respiration under control améirmed conditions in the ‘full soil’ treatment are positively

related to average soil moisture. Control: IngE@lux) =—1.17 + (0.02 x soil moisture); OTC:

IN(CO;, efflux) = —0.49 + (0.01 x soil moisture). Both slopes are significantly different from 0 (P <

0.001 in both cases). Slopes were obtained from linear mixed effectbanaflssis. Data for control

plots are represented in grey and OTCs in black.
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Discussion

Our study shows that even small increases in soil temperature (1.41 &@) mrituence soll
respiration rates in a tropical montane grassland ecosystemWestern Ghats. Further, soil
respiration was largely heterotrophic, ancreased with soil moisture in these grasslands. Warming
effects on soil respiration were more pronounced in dries,sgHile soil respiration is unrelated to
instantaneous soil temperature in the region.

Soil respiration in the study site was largely heterotroph-drivererbtebph-dominant soil
respiration, as observed in this study system, has been reported fronh sevdomest ecosystems,
such as grasslands, croplands and oak savannas, and also some temperatétorggisa@otrophs
generally contribute ~50% of the soil respiration in forest estesys (Kelting et al. 1998; Buchmann
2000; Hanson et al. 2000; Melillo et al. 2002; Scott-Denton et al. 2006; Cartmill 201é)otHephic
contributions to soil respiration have been shown to correlategly with soil detritus levels (Bond-
Lamberty et al. 2004) and increase with increasing soil nitrogen bNigflédRodeghiero and Cescatti
2006). Heterotroph contributions to soil respiration are also pdtgntiluenced by other factors
such as vegetation and soil microbial community composition, net pripnadyiction and litter
guality, though which of these factors underlie heterotroph daedraspiration in these montane
grasslands is unclear.

Another potential reason for the lack of differences in soil ragpn levels among
partitioning treatments in this study is soil microbial biomass @®falowing loss of plant roots
and AMF hyphae. Plants and microbes compete for soil resources (such rag iéypaval of plant
roots can lead to increases in decomposer biomass, which in turnrasesoil C@efflux levels,
masking the loss of the autotrophic contribution to soil respiratiottid study, while microbial
biomass carbon (MBC) increases with root exclusion, there are no increasesoinial biomass
with AMF hyphal exclusion (Supplementary Information A, Fig. S2). Thisestgghat the lack of
differences in soil respiration levels between treatmentssrsthdy is not entirely a consequence of
decomposer biomass increases in the root- and AMF- free soil. In othex, M@ responses to root
and AMF hyphal exclusion in this study further supports the conclusion thegsmration in our

system is heterotroph dominated. Another potential reason for thefldifferences in soil
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respiration we see between the root exclusion and ‘full soil” treatments is diffusion of CO2 from
below the root exclusion layer. While root exclusion to the depth of 20-48 common in
respiration partitioning literature, the absence of roots (and myzakybontributions has been
shown to create a GQ@radient due to respiration by the small amounts of fine rodtsridmaexist in
deeper soil layer. This can in turn lead to increasegdiffision to the upper layers, masking, in
part, the full extent of C&depletion due to root (and AMF) exclusion (Jassal and Black 2006).

Soil CQ, efflux levels in this experiment nearly doubled, from 0.62%ghmt under ambient
temperature conditions to 1.16 g?im* within the OTCs. This is in agreement with empirical
findings from other ecosystems including grasslands, as well agtibabstudies suggesting
increases in soil respiration under climate change in the trogibgn(@acher et al. 2009; Bond-
Lamberty and Thomson 2010; Lu et al. 2013; Wang et al. 2014). The observed increases in
respiration under warmer conditions can be driven by several meptmrtirst, greater soil GO
efflux can result from greater microbial metabolism undemveal conditions, given that heterotrophs
contribute the majority of the respiration in this system (&tthacher et al. 2011; Luo et al. 2014).
Previous studies have also shown that autotroph and heterotrophti@spasponses to changing
temperature regimes can be very different, with heterotropther dan autotrophs, reported to be
more sensitive to increasing temperatures (Wei et al. 2010; Li2@E3; Wang et al. 2014).
Heterotroph contributions to soil respiration, globally, havesiased from 54% to 63% from 1990 to
2014, potentially in response to changing climate (Bond-Lamberty et al. 2@t8nd& higher levels
of labile C under warmed conditions can drive shifts to a more ‘rapid’ nutrient and C cycling system,
leading to greater soil respiration (Metcalfe et al. 2011; Luo et al. 2014).

Soil respiration responses to warming can also be mediated byralarommunity shifts,
and soils with different microbial community compositions have lgesmonstrated to respond
differently to temperature increases (Auffret et al. 2016). Foariest warming has been shown to
promote certain bacterial phyla over fungal phyla (Luo et al. 2014), arhgeat bacteria:fungi ratios
are associated with faster C and nutrient cycling (Wardle et al. 260dyal communities, too, have
been demonstrated to shift under warming to favour taxa that aredssttenposers of recalcitrant C

(Treseder et al. 2016), which would then amplify;@@lux from these soils. However, at present, it
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367 s not clear which of these mechanisms may be driving warming-teddireases in soil respiration
368 in our study system.

369 Instantaneous soil temperature was found to be a weak predictdrreSpaiation in this

370 system. Respiration responses to the warming treatment, however, sygagtve effect of

371 shallow-soil temperature on respiration over longer timescalesieSpiration was positively related
372  toinstantaneous soil moisture in these markedly seasonal montaslaua, with clear wet and dry
373  seasons. Moisture effects on (especially heterotrophic) soilatiepihave been widely reported.
374  Moisture affects respiration via its influence on several physicdgddiochemical and ecological

375 factors such as decomposer substrate availability, nutrient ant/essoganic matter mobility,

376  osmoregulation and changes in microbial community composition (@relnarCook 1983; Scott-
377  Denton et al. 2006; Wei et al. 2010; Yan et al. 2009; Moyano et al. 2013). Further, experiments in
378 temperate ecosystems have demonstrated that while soibtaspiminima correspond to low

379  temperature conditions, peaks coincide with the ‘growing season’, often responding to moisture rather
380 than temperature maxima (Heinemeyer et al. 2012; Hoover et al. 2016; Lia@t@).

381 While soil respiration peaked in the wet season in this study sys&ming amplified solil
382  respiration during the dry season. Warming-mediated amplificafiogspiration during the drier

383 months can be because some of the driest months in these montane grasskladglze coldest,

384  during which soil microbes under warmed conditions will likelyengreater metabolism leading to
385 the higher levels of respiration. Overall, we see the highest réspilatels under wetter and warmer
386 conditions. Indeed, soil temperature and moisture have been shbawetocombined effects on soll
387 respiration in several ecosystems (Hursh et al. 2017). Further, a modaliitycanalysing global soil
388 respiration responses to environmental factors also suggests that the redidnghnsoil respiration,
389 globally, are associated with both high temperature andpita@n (Hashimoto et al. 2015

390 On the whole, the present study indicates that warming is likely to subByeimttrease soil
391 respiration levels in this tropical montane grassland ecosysteneffétts more pronounced under
392  drier conditions. While the mechanisms behind soil respiration regpda warming in our study
393  system are as yet unclear, our results suggest that decomposers playralenaj regulating

394  observed soil Ceefflux responses to warming. In the longer term, acclimation over timgots,
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AMF and other soil components to altered temperature regimes, otiaeplieresources such as
water or labile carbon, might alter @&fflux responses to warmer temperatures (Atkin et al. 2000;
Luo et al. 2001; Melillo et al. 2002; Kirschbaum 2004; Heinemeyer et al. 2006; Auffle?€16;
Romero-Olivares et al. 2017). Soil respiration can also be affectbd lang term by warming-
mediated alteration of factors such as vegetation composition aotiggr(Cartmill 2011; Metcalfe
et al. 2011; Rudgers et al. 2014; Mayer et al. 2017), length of growing season (Rusta@04i) a
AMF species pool (Kim et al. 2015) and decomposer community composition (Zogg et al. 1997;
DeAngelis et al. 2015). Other global change factors, such as increasegladnic nutrient
deposition, can also influence warming effects on plants andlmeE(@Isson et al. 2005). Future
longer term studies that also estimate warming-induced changes ipataereters such as
vegetation growth, foliar respiration, soil microbial biomass ahdracomponents of soil C are
needed to assess the net contribution of these ecosystems as@usirdesof carbon. Further, finer-
scale temporal measurements of soil temperature, moisture arespoihtion can lead to
quantification of parameters such as temperature sensitivityl oéspiration, and thereby, better

characterization of carbon fluxes in this ecosystem.
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Main article: Soil respiration in atropical montane grassland ecosystem is lar gely

heter otr oph-driven and increases under simulated war ming

Supplementary information A

Air temperature measurements between treatments

As mentioned in the main text (Methods section), air temperaturesweasured within all 9 OTCs

and in 3 of the control plots using iButtons from May 2015 to January 20%8.tke/period of the

study, average daily air temperatures of control plots and OEGs 1%.65 + 0.08 °C (from 793

measures over 371 days) and 15.42 + 0.05 °C (from 1985 measures over 371 days), respectively
However, the difference in mean air temperatures of OTCs and cplti®per day averaged 0.10 *

0.04 °C (Fig. 2c), with a maximum air temperature increase in the OTCs of2(62 2.7453, df

370, P =0.0063, 95% CI = 0.03, 0.18; results from a one-sample t-test,ovhtht kthe true mean =

0). Average monthly air temperatures ranged 12.34-18.46 °C in the controls and 12.55-19.15 °C in the

OTCs (Fig S1).
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Fig. S1 (a) Overall daily average differences between OTCs and control platsténaerature,

and (b) air temperature averaged per month in the control and OBCpits in grey denote control

plots and those in black denote OTCs. Error bars in (b) are 1SE around the mean.
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Testing the efficacy of the partitioning treatments and evaluating the effat disgurbance

during experimental setup on soil respiration

Methods
To measure the efficacy of the soil partitioning treatmenélowing/preventing the growth of roots
and/or arbuscular mycorrhizal fungal (AMF) hyphae into the colaeglditional collars, one for each
partitioning treatmenin each of the three fences, were seinugarly October 2015, outside the open
top chambers (OTCs) and control pldge harvested soil from these collansNovember 2016 and
transported the samplésthe National Centre for Biological Sciences, Bangalorejeasure root
biomas, AMF extraradical mycelial (ERM) length and soil microbial biomd$se samples were
storedat 4 °C till they were analysed.

To measure root biomass, soils from these samples weretsiftgttact roots, which were
then driedat 60 °C for 48hr and weighed.

AMF ERM lengthsin all samples were measured following Brundrett and others (1994).
Briefly, 5g of each airdried soil sample was suspended for 30nmiute sodium
hexametaphosphate (Calgon) solution, aligobighich were then passed through a 20u nylon
membrane on a vacuum filter extract hyphae. These were thersuspendedh and incubated for
1.5hrin trypan blue stain. Stained hyphae were extracted onto griddedell@pse nitrate filters,
which were then air dried, placed on glakdes, cleared with low viscosity, low fluorescence
immersion oil and observed under 400x magnification. Intersecticstainéd aseptate hyphae with
a 10 x 10 grid omneyepiece graticule were counted over 50-65 (median = 55) migiodelds of
view scanning across each sample slide, and hyphal length per slidalevdated. A subsamp(8
g) of each soil sample was ustedmeasure gravimetric water content (as the differemseil
subsample weight before and after dryat@10°C for 48 hr, per g dry weight of soil), and these
data, along with the volume of solution that was usatilute the samples, were ustedcalculate
AMF ERM length per g dry weight of soil (Brundrett and others 1994).

Microbial biomass carbon (MBC) was estimated using substrate indesgication and

titration (method adapted from Anderson & Domsch 1978; Hoper 2006; Faninhend 2011).
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Briefly, 10 g dry weight equivalent of each air dried soil peemvas pre-incubateat 30°C at near
80% water holding capacity (WHC) for T2 in airtight plastic containers. Glucose (1.6 g per g dry
soil) was then addeassolutionto the samples, bringing the soils tgB80% WHC, immediately after
which a vial with 2ml 2N NaOH was placeith the containerso serveasthe alkaliCO; trap. The
sealed containers were then incubated fdnrzt 30 °C. Two airtight containers without soil samples
but with vials containing the NaOH trap were also kept foubiationto serveascontrols. After
incubation, NaOHn the traps were titrated with phenolphthalein indicator ag@ibst HCIto
estimateCO; release, which was then ugectalculate MBC per kg dry weight of soil (Hoper 2006).
In orderto ascertain that soil displacement and handling during partijareatment setup
did not affect soil respiration over the periad our study, two types ofnethod control’ collars were
installed along with the treatment collars. @fi¢hese (designateasC1) consistedf 40cmPVC
pipes without holes, inserted 35cm depth, similato the treatment collars, but without sifting
through the soilo remove roots and organic debris. The second (desigas€?) consisted of
similar PVC pipes hammered into the soil (to a depth of ~3Qwith)out displacing the soil prido
installation. Respiration measurements from these contris expectetb be similarto the ‘soil
without roots andAMF’ treatment, afteaninitial spikein CO; efflux assevered roots and other
debris are decomposed. A collar each forGhie@ndC2 controls were set up one OTC-control plot

pairin each of the three fences, makingamadditional 12 collars.

Data analysis

We tested the efficacy of the partitioning treatmentallowing/preventing the growthf roots and

AMF into the collars, and their effect on soilcrobial biomass carbon, using linear models with root
dry weight, AMF ERM lengtlor MBC asthe response variable, and partitioning treatrastite
predictor. The statistical similarity of soil respirationrfr the method control collars (C1 and C2) and
the ‘soil without roots andAMF’ treatment was assessed using a linear mixed effects model (LMM).
Partitioning treatment including the method controls and warmingriezd were the fixed effects

and collar nested within plots nested within fences were assitne random factaio account for

repeated measures from the same collars. The R package Imadedsbuild the mixed effects
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model, and ImerTest and car packages were tasessess the statistical significammtehe fixed
effects (Bates 2010; Bates and others 2014, Kuznetsova and others 2015n@atesrs 2017). All
the analyses were conducted using R version 3.2.4 (The R Foundat8iatfstical Computing,

2016).

Results
The soil partitioning treatments were effectinallowing/preventing the growtdf roots and AMF
extraradical mycelium into the collars. Root biomass differed sogmifiy between the partitioning
treatments (F = 10.113, df =2, P = 0.012), with ~10 times higher biomass (P =if.0@8¥ull soil’
treatmentat 1.22 + 0.35g, thanin the other two treatments desigriedkeep out fine roots, which had
0.12+£0.01 gand 0.11 + 0.03 g roots, respectively (Fig. S2a). The treatmentéfatedidi AMF
ERM levels, though treatment effect was not statistically sigmifia = 3.8173, df = 2, P = 0.085).
‘Soil without roots andAMF’ treatment had the lowest ERM levels of 1.08 + 0.95'drg soil,
differing significantly from thesoil withoutroots’ treatment (P = 0.033)vhich had the highest ERM
levelsat3.56 + 0.17 m g dry soil, followedby the“full soil” treatment with ERMf 2.23 +0.52 m g
Ldry soil (Fig. S2b). Partitioning treatment was not a statisgisainificant predictor for soil MBC
(F=4.3571, df = 2, P = 0.068). However, theél soil’ treatment had the lowest MBC levals
212.94 + 25.05ng kg! dry soil. This was significantly lower than th@il withoutroots’ treatment
(P = 0.026), which had the highest MBC le\ati825.68 + 33.14ng kg* dry soil, followedby the
‘soil without roots andAMF’ treatment that had 263.05 + 21m@ kg* dry soil MBC (Fig. S2c).
Further, soil disturbance during collar setup did not influesoderespiration measurements.
An LMM with all respiration collar treatments (the three pemiing treatments and the two method
controls,C1 and C2Jasthe predictor, suggested tt@t andC2 were statistically indistinguishable

from the‘soil without roots andAMF’ treatment (P = 0.39 and 0.65, respectively).
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Fig. S2 Estimates within each partitioning treatment for (a) rogtveeight, (b) AMF extraradical
mycelium length, and (c) microbial biomass carbon. Error bars areld&iE the mean, with all
values obtained from fixed effects statisiitshe mixed effects models used for analyses. Different

letters indicate statistically significant differences amaegtments (P < 0.05).
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Warming effect on soil respiration per partitioning treatment

In the main text, given that the three partitioning treatmepte wtatistically indistinguishablee
present monthly respiration datathe OTC and control plots across all partitioning treatments,Her

we present these data separdiggbartitioning treatment (Fig. S3).
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Fig. S3 Average soil respiratiom control and OTC plots averaged per moimiteach of the
partitioning treatments. Dotis grey represent control plots and thaselack represent OTCs. Error

bars represent 1SE around the mean.
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