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Summary 

 Rising atmospheric carbon dioxide concentrations (eCO2) promote symbiosis 

between roots and arbuscular mycorrhizal fungi (AMF), modifying plant nutrient 

acquisition and cycling of carbon, nitrogen and phosphate. However, the 

biological mechanisms by which plants transmit aerial eCO2 cues to roots, to alter 

the symbiotic associations remain unknown.  

 We used a range of interdisciplinaryapproaches, including gene silencing, 

grafting, transmission electron microscopy, LC–MS/MS, biochemical 

methodologies and gene transcript analysis to explore the complexities of 

environmental signal transmission from the point of perception in the leaves at 

the apex to the roots. 

 Here we show that eCO2 triggers apoplastic H2O2-dependent auxin production in 

tomato shoots followed by systemic signaling that results in strigolactone 

biosynthesis in the roots. This redox-auxin-strigolactone systemic signaling 

cascade facilitates eCO2-induced AMF symbiosis and phosphate utilization. 

 Our results challenge the current paradigm of eCO2 effects on AMF and provide 

new insights into potential targets for manipulation of AMF symbiosis for high 

nutrient utilization under future climate change scenarios.  

 

Key words: apoplastic H2O2, arbuscular mycorrhizal fungi (AMF), auxin, elevated 

CO2, phosphate uptake, strigolactone, systematic signalling, tomato (Solanum 

lycopersicum)  
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Introduction 

Symbiosis between plants and arbuscular mycorrhizal fungi (AMF) facilitates 

efficient utilization of nutrients and alters carbon (C), nitrogen (N) and phosphate (P) 

cycling in terrestrial ecosystems (van der Heijden et al., 1998; Smith & Smith, 2011). 

Beneficial symbioses are predicted to play an increasingly important role in plant 

adaptation to projected increases in atmospheric CO2 levels, particularly as essential 

nutrients become exhausted (Heimann & Reichstein, 2008). AMF development is 

sustained by sugars and lipids supplied by the roots (Kiers et al., 2011; Jiang et al., 

2017; Luginbuehl et al., 2017), a process that is regulated by phytohormones such as 

auxin and strigolactones (SLs) and nutrient availability (Akiyama et al., 2005; 

Benjamins et al., 2008; Pozo et al., 2015; Lanfranco et al., 2018). For example, SLs 

trigger fungal pre-symbiotic development, while auxin signaling promotes AM 

formation (Gutjahr, 2014; Guillotin et al., 2017). Phosphate-deprived plants secrete 

SLs to initiate the establishment of symbiotic relationships with AMF (Akiyama et al., 

2005; Bucher, 2007). The AM symbiosis on roots is promoted by elevated 

atmospheric CO2 (eCO2) (Drigo et al., 2010; Terrer et al., 2016). To date, eCO2 effects 

on mycorrhizal symbiosis have been explained largely in terms of an increased flux of 

photo-assimilates to roots (Roth & Paszkowski, 2017). However, increases in 

photoassimilate availability are predominantly used for root growth leading to 

increased root/shoot ratios as nutrients such as nitrogen and phosphorus become 

limiting, and there is little change in the accumulation of carbohydrates in the roots 

(Jauregui et al., 2015). Moreover, eCO2 exerts many local and systematic effects on 

plant biology, including changes in redox homeostasis, hormone signaling, root 

development and defense responses (Munné-Bosch et al., 2013; Jin et al., 2015; Shi et 

al., 2015; Mhamdi & Noctor, 2016). Such observations suggest the probable existence 
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of an as yet uncovered and largely carbohydrate-independent systemic signaling 

pathway that underpins plant responses to eCO2. Here we address the key question of 

how plants transmit eCO2 signals systematically from the shoot to the roots in order to 

induce appropriate responses including effects on plant-mycorrhizal symbioses and 

associated nutrient uptake. 

 

Material and methods 

Plant material, plant growth and growth conditions 

Wild-type tomato (Solanum lycopersicum L. cv. Ailsa Craig),  a mutant in a 

cyclophilin A called diageotropica (dgt) in the Ailsa Craig background and transgenic 

tomato DR5:GUS lines in the Ailsa Craig and dgt backgrounds (Dubrovsky et al., 

2008) were obtained from M. G Ivanchenko of Oregon University, USA. The dgt 

mutant plants show a pleiotropic phenotype including lack of geotropism, abnormal 

xylem structure, lack of lateral roots (LRs), and higher  shoot-to-root ratios with 

abnormal auxin fluxes (Lavy et al., 2012). The AMF used in the following studies 

was an isolate of Rhizophagus irregularis, which was propagated in pot cultures with 

Zea mays L.  

To generate the RBOH1RNAi construct, a 318-bp specific DNA fragment 

of SlRBOH1 was amplified with the specific primers SlRBOH1-F 

(5ƍ-GGCCatttaaatggatccCGTTCAGCTCTCATTACC-3ƍ) and SlRBOH1-R 

(5ƍ-TTggcgcgcctctagaCCGAAGATAGATGTGTGT-3ƍ), which had been tailed 

with BamHI/XbaI and SwaI/AscI restriction sites at the 5ƍ end, respectively. The 

amplified products were digested with BamHI/XbaI and SwaI/AscI and ligated into the 

pFGC5941 vector at the BamHI/XbaI restriction site in the sense orientation and at 

the SwaI/AscI restriction site in the antisense orientation. The resulting plasmid was 
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transformed into Agrobacterium tumefaciens strain EHA105 and transformed into 

cotyledon of tomato (cv. Ailsa Craig) as described (Fillatti et al., 1987). Transgenic 

plants were identified by resistance to the herbicide Basta and then characterized by 

RT-qPCR. 

To determine the role of SL biosynthesis and SL signaling in eCO2-induced AMF 

development and P uptake, we used virus-induced gene silencing (VIGS) to suppress 

the transcript of CCD7, CCD8, MAX1 and MAX2 with the tobacco rattle virus 

(TRV)-based vectors (pTRV1/2) (Liu et al., 2002). The cDNA fragment of CCD7, 

CCD8, MAX1 and MAX2 was PCR-amplified using the gene-specific primers listed in 

Table S1. The amplified fragment was digested with EcoRI and XbaI, BamHI and 

XbaI, respectively, and ligated into the corresponding sites of the pTRV2 vector. 

Empty pTRV2 vector was used as a control. All constructs were confirmed by 

sequencing and subsequently transformed into Agrobacterium tumefaciens strain 

GV3101. VIGS was performed by infiltration of germinated seeds, followed by 

infiltration into the fully expanded cotyledons of 15-d-old tomato seedlings with A. 

tumefaciens harboring a mixture of pTRV1 and pTRV2-target gene in a 1:1 ratio. 

Plants were grown at 23/21 oC (day/night) in a growth chamber with a 12 h day length 

for 30 d until control pTRV-PDS plants (silencing of the gene encoding 

phytoene desaturase) showed strong bleaching (Ekengren et al., 2003). qRT-PCR 

analysis was performed to evaluate gene silencing efficiency. 

To determine the respective role of RBOH1 expression in the shoot and roots in 

the AM fungal growth, shoots of wild type (WT) and RBOH1-RNAi (rboh) plants at 

3-leaf stage were self-grafted or reciprocally grafted onto roots of WT and rboh, 

respectively, which resulted in four combinations: WT/WT, rboh/rboh, rboh/WT and 

WT/ rboh. Similarly, shoots of WT and dgt plants at 3-leaf stage were self-grafted or 

http://www.baidu.com/link?url=gdEWvoUymk89qX9f0uFaRS4pM0FzehEEWKqwXY02f_pFbka6JKzJBtnrCwgqkgeTWj_kMAA_BUgNX_9Om3sGQblDfFpS01s79ppLhRRNaIq&wd=&eqid=937da1a3000026b800000004592e6a52
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reciprocally grafted onto roots of WT and dgt roots, respectively, which resulted in 

four combinations: WT/WT, dgt/dgt, dgt/WT and WT/dgt. After adaptation under 

dark for 3 d, the grafted plants were transferred to growth chambers with the 

following environmental conditions: 12-h photoperiod, temperature of 25/20 °C 

(day/night) and photosynthetic photon flux density (PPFD) of 600 ȝmol photons m-2 

s-1. 

Tomato plants at 5-leaf stage were transplanted to pots (150 ml) filled with a 

sterilized soil/quartz sand/vermiculite mixture (1/1/1) or to pots containing the same 

mixture inoculated with Rhizophagus irregularis at a dose of 800 spores per plant or 

grown hydroponically in Hoagland’s nutrient solution (Hoagland et al., 1950). The 

content of extractable soil P was 8 mg kg-1. Plants were allowed to grow under two 

atmospheric CO2 conditions (aCO2 at 380 ppmv and eCO2 at 800 ppmv) in controlled 

growth chambers. CO2 was supplied to the growth chambers using compressed CO2 

gas and automatically controlled at ±10 ppmv. For the pot plants, seedlings were 

supplied with Hoagland’s nutrient solution containing 1 mM KH2PO4 or Hoagland’s 

nutrient solution without KH2PO4 but with the addition of 1mM KCl. Plants were 

watered daily with distilled water and fertilized with Hoagland nutrition solution 

every 2 d. For the hydroponically-grown plants, seedlings were exposed to P 

sufficient (1 mM KH2PO4) or P deficient (0.05mM KH2PO4 with the addition of 0.95 

mM KCl) conditions. For the AMF inoculation, Rhizophagus irregularis inoculum 

was sandwiched between the bottom (100 g) and top (50 g) layers of the substrate in 

each pot. The plants were placed in a controlled environment chamber with a 

day/night temperature of 25/20ௗ°C and a 12ௗh photoperiod. The photosynthetic photon 

flux density (PPFD) was 600ௗȝmol m-2 s-1 s. For biomass and P content measurements, 

leaves, stems and roots were harvested, dried at 80 oC for 3 d before analysis. 
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Histological analyses and microscopy 

To detect mycorrhizal colonization, root segments were rinsed by water and incubated 

in 10% (w/v) KOH heated to 90 oC for 1 h and then rinsed with water prior to 

acidification with 2% HCl solution for 5 min. The root samples were then stained with 

0.05% Trypan Blue, heated to 90 oC for 30 min and decolored 1 day by Lactic acid 

and glycerin (1:1, v/v). Then the root samples were observed under a Leica DM4000B 

microscope (Leica Microsystems, Germany) for mycorrhizal fungal colonization. A 

total of ca. 300 root/gridline intersects were recorded to assess the colonization level 

according to gridline intersect method described by Giovanetti and Mosse (1980).  

To determine the auxin signaling intensity, two transgenic tomato DR5:GUS lines 

with Ailsa Craig or dgt backgrounds (Ekengren et al., 2003) were used directly or as 

rootstock with shoots of RBOH1-RNAi and dgt plants as scion, respectively. GUS 

staining was performed as described previously (Ivanchenko et al., 2006). Root 

samples were analyzed under a Leica DM4000B microscope (Leica Microsystems, 

Wetzlar, Germany) with differential interference contact (DIC) optics. H2O2 in apex 

leaves was visualized at the subcellular level using CeCl3 for localization, as 

described previously (Thordal-Christensen et al., 1997; Xia et al., 2009).  

Pi and H2O2 quantification 

Metabolism was arrested in dried leaves, stems and root samples (0.1 g by grindingin 

2 ml 4:1 mixtures (v/v) of 65% nitric and 70% perchloric acids. The homogenates 

were filtrated and diluted with distilled water. The pH value  was adjusted to 7~8. Pi 

measurements were conducted as previously described (Delhaize and Randall, 1995). 

H2O2 was extracted from leaf tissue and measured as described previously (Xia et al., 

2009).  

Expression analysis by qRT-PCR 
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Gene expression analyses were done by qRT-PCR as previously described (Wang et 

al., 2016), with primers listed in Table S2.  

Measurement of hormones levels 

For the analysis of IAA, the developing leaves at the apex were used. IAA extraction 

and quantification were performed as described previously (Guo et al., 2016). For the 

determination of SLsin the roots, 0.5 g of roots was blended in a blender at top speed 

for 1 min in 40% acetone (1:5, w/v). After centrifugation for 5 min, SLs in the 

residues were extracted with 50% acetone (1:5, w/v). The acetone was evaporated 

under reduced pressure at 35 ºC. Root extracts were dissolved in methanol:water (1:1, 

v/v). SLs were detected using an Agilent 6460 triple quadrupole mass spectrometer 

(Agilent Technologies, USA) equipped with an electrospray ionization (ESI) source, 

operated in positive mode. HPLC separation was performed on a Zorbax SB C18 

column (150ௗ×ௗ2.1ௗmm, 3.5ௗµm). The mobile phases consisted of formic acid:water 

(1:100, v/v; solution A) and acetonitrile (solution B). The gradient program was as 

follows: 20–48% B in 3min, 48–50% B in 2 min,50–53% B in 1min, 53–65% B in 

1min, 65–95% B in 0.5min, 95% B for 3.5 min. The flow rate was set at 0.3 ml min-1. 

The SLs were detected in multiple reaction monitoring (MRM) mode (Koltai et al., 

2011). SLs contents were expressed as the relative content with peak area for plants 

under aCO2 as 1.  

Seed germination  

Germination assays were performed using Orobanche ramose seeds as reported 

previously with minor modifications (Matusova et al., 2005). Seeds of Orobanche 

ramose were preconditioned for 14 days at 21°C before the seeds became responsive 

to germination stimulants. Aliquots (50 ȝl) of 50% acetone extracts of tomato roots 

were added to duplicate 1-cm discs bearing approximately 50 preconditioned seeds 
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each. The synthetic germination stimulant GR24 (10−6 mM) and demineralized water 

were included as positive and negative controls in each bioassay. After 7 days, the 

germinated and ungerminated seeds were counted using a binocular microscope. 

Seeds were considered germinated when the radicle had protruded through the seed 

coat. 

Statistical analysis 

A completely randomized block design with at least three independent replicates was 

used in each experiment. Each replicate involved 15~20 plants. Data were statistically 

analyzed by analysis of variance (ANOVA). The significance of treatment differences 

was analyzed using Tukey’s test (P< 0.05). 

 

Results 

eCO2 induces strigolactone biosynthesis and AMF symbiosis 

To gain a better understanding of how eCO2 alters the plant-AMF symbiosis and 

associated P utilization efficiency, we firstly compared biomass accumulation, organ P 

content and AMF development in tomato plants grown in a soil/quartz 

sand/vermiculite mixture (1/1/1) in the absence or presence of a P supply and 

inoculation with the AMF Rhizophagus irregularis under ambient CO2 (aCO2, 380 

ppmv) or eCO2 (800 ppmv) conditions for 28 d. P starvation-induced decreases in 

plant biomass accumulation, tissue P concentrations and total plant P accumulation 

were greatly attenuated by inoculation with AMF and by eCO2 (Figs 1a, S1a,b). 

Conversely, AMF development was suppressed by adequate P supply. Growth under 

eCO2 significantly improved AMF development on the roots, especially under P 

starvation conditions, as shown by increased AMF colonization (Figs 1b, S1c). 

Significantly, the levels of transcripts encoding the SL synthesis enzymes, 
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CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), CCD8 and MORE 

AXILLARY BRANCHING 1 (MAX1), and MAX2, which are required for SL signaling 

in the roots, were induced by eCO2, especially under P starvation and in the presence 

of AMF (Figs 1c, S2a). Moreover, the increase in the levels of CCD7, CCD8, MAX1 

and MAX2 transcripts was accompanied by a large increase in the accumulation of 

orobanchol, didehydro-orobanchol and solanacol, which are the three principal SLs in 

the roots of tomato plants measured under eCO2 conditions, regardless of the P level 

or the presence of AMF (Fig. S2b). Concomitant with these changes, growth under 

eCO2 resulted in a higher abundance of transcripts encoding several phosphate 

transporters (PT1, PT2, PT3, PT4 and PT5) (Fig. S3). This was especially marked 

under conditions of P starvation and in the presence of AMF. These results show that 

eCO2-promoted AMF colonization and P uptake are linked to enhanced SL 

biosynthesis and signaling in roots.  

 

Requirement for leaf RBOH1 expression in the systemic induction of auxin 

signaling by eCO2  

Apoplastic H2O2 production can trigger auxin production, which hence has a potential 

role in the regulation of AMF growth (Etemadi et al., 2014; Chen et al., 2016). We, 

therefore, determined the local and systemic impacts of eCO2 on H2O2 homeostasis 

and the levels of auxin in the apex, together with auxin signaling in the roots in plants 

grown either with sufficient P supply or under P deficient conditions. The levels of 

RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) transcripts encoding 

NADPH oxidase, which is involved in apoplastic H2O2 generation, increased in the 

apex leaves of plants grown under eCO2 (Fig. 2a),. Concurrently, the levels of 

FLAVIN MONOOXYGENASE (FZY) mRNAs that encode an enzyme catalyzing a 
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rate-limiting step in auxin biosynthesis, the accumulation of H2O2 in the apoplast and 

the levels of indole-3-acetic acid (IAA) increased (Figs. 2b,-c, Fig. S4a,b). These 

eCO2-dependent increases were particularly marked under conditions of P deficiency, 

and were observed within one day of exposure to eCO2. Histochemical analysis of 

GUS-activity revealed that the auxin-responsive reporter gene DR5 was more highly 

expressed in root tips of plants grown under eCO2 (Fig 2d). Similarly, the abundance 

of IAA15 transcripts was increased in roots under eCO2, especially under conditions of 

P starvation (Fig. S4c). Taken together, these results show that eCO2 not only induces 

local changes in redox and auxin homeostasis of the apex, but also leads to enhanced 

auxin signaling in the roots as a result of greater polar auxin transport (PAT) from the 

shoots.Interestingly, the eCO2-induced accumulation of IAA was observed in WT 

plants but absent from the apex of the RBOH1-RNAi (rboh) plants, regardless of P 

level (Fig. S5a). When rboh shoots were grafted onto the roots of wild type (WT) 

plants (rboh/WT), eCO2-induced accumulation of IAA and DR5 in the roots were 

attenuated (Fig. S5b,c). Moreover, exogenous application of H2O2 to the leaves 

resulted in an increase in the accumulation of IAA in the apex, a concentration of 100 

µM H2O2 being the most effective in stimulating IAA accumulation (Fig. S5d).  

By using reciprocal grafting with WT and rboh1 as scion (S) or rootstock (R), 

respectively, we obtained four graft combinations (S/R), WT/WT, WT/rboh, rboh/WT 

and rboh/rboh. When these plants were grown in the presence of AMF under P 

deficient conditions, rboh/WT and rboh/rboh plants showed less IAA accumulation in 

the apex, with a lower tissue P concentration and plant dry matter and less overall P 

accumulation in the plants (Figs 2e, S6a-c). While eCO2 induced significant increases 

in the accumulation of IAA in the apex, as well as increases in plant biomass and P 

accumulation in the WT/WT plants and to a lesser degree in WT/rboh plants, these 
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effects were either not observed or they were attenuated in the rboh/WT and 

rboh/rboh plants (Fig. S6a-c). Moreover, AMF colonization rates were decreased 

(Figs. 2f, S7a). In addition, the eCO2-induced increases in AMF colonization and 

transcript of PT4 and PT5 as well as in P accumulation were attenuated in the roots of 

rboh/WT and rboh/rboh plants (Figs 2e,f, S6c, S7). These findings show that 

expression of RBOH1 in the shoots plays a critical role in eCO2-induced IAA 

biosynthesis and in systemic signaling leading to enhanced AMF symbiosis and P 

utilization, as well as whole plant growth under conditions of P deficiency.  

  

Dependency of strigolactone biosynthesis on auxin signaling in leaves 

Auxin perception is required for arbuscule development in the mycorrhizal symbiosis 

(Etemadi et al., 2014). To determine whether eCO2-dependent IAA biosynthesis in the 

apex is required for systemic signaling leading to greater AMF symbiosis and P 

utilization, we conducted a further series of grafting experiments using WT and an 

auxin-resistant diageotropica (dgt) mutant that has impaired PAT (Ivanchenko et al., 

2015) as rootstock or scion respectively. Under eCO2 conditions, the WT/WT plants 

had the highest biomass, tissue P concentrations and greatest overall P accumulation, 

as well as the highest levels of AMF colonization in the roots, followed by the WT/dgt, 

dgt/WT and dgt/dgt plants, in the absence of P supply (Figs 3a,b, S8, S9a). The effects 

of eCO2 on biomass accumulation, P concentration and accumulation, AMF 

colonization and the transcript of PT4 and PT5 were less marked in the WT/dgt plants 

than the WT/WT controls. Crucially, eCO2 had little effect on the dry biomass, tissue 

P concentration and P accumulation, AMF colonization and the transcript of PT4 and 

PT5 in the dgt/WT and dgt/dgt plants (Figs. 3a,b, S8, S9). Taken together, these 

results demonstrate that auxin signaling in the shoots plays a vital role in 
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eCO2-induced AMF growth and P uptake. 

DR5-GUS staining studies showed that while DR5 accumulation was only 

slightly induced in the roots as a result of P starvation, it was greatly increased in 

plants exposed to eCO2 (Fig. S10a). However, the eCO2-dependent induction in DR5 

accumulation was abolished in plants with dgt as scion. In contrast, DR5 

accumulation was induced in the roots of WT/dgt plants under eCO2 conditions but to 

a lesser degree, presumable because the mobility of DGT protein could remedy DGT 

deficiency, at least in part, in the dgt roots (Spiegelman et al., 2014) (Fig. S10b). 

Therefore, eCO2-induced increase in auxin biosynthesis in the leaves and associated 

polar auxin transport (PAT) contributes the systemic induction of auxin signaling in 

the roots, AMF symbiosis and P utilization.  

Given eCO2-induced SL signaling and its role in AMF symbiosis in the roots 

(Akiyama et al., 2005) (Fig. 1), we next examined whether SL biosynthesis is subject 

to the regulation of auxin signaling from the leaves. By using WT or dgt as scion, 

respectively, we observed decreased levels of CCD7, CCD8, MAX1 and MAX2 

transcripts and a decreased accumulation of orobanchol, didehydro-orobanchol and 

solanacol in the roots of the dgt/WT plants compared to WT/WT plants (Figs 3c, S11). 

Crucially, eCO2 failed to stimulate an increase in the expression of CCD7, CCD8, 

MAX1 and MAX2, or the accumulation of orobanchol, didehydro-orobanchol and 

solanacol in the roots of the dgt/WT plants. Taken together, these results indicate that 

eCO2 induces not only local changes in the redox-dependent auxin homeostasis in the 

apex, but also the induction of SL biosynthesis and expression of PT genes in the 

roots, as a consequence of auxin-dependent systemic signaling.  

 

Strigolactone signaling plays a role in eCO2-promoted AMF symbiosis and P 
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utilization 

SLs are important signals that activate the fungal partner in the plant/AMF symbiosis, 

particularly with respect to the stimulation of hyphal branching (Akiyama et al., 2005; 

Besserer et al., 2006). To determine whether eCO2-induced SL synthesis and signaling 

play a role in eCO2-induced AMF colonization and P utilization, we silenced CCD7 

(pTRV-CCD7), CCD8 (pTRV-CCD8), MAX1 (pTRV-MAX1), and MAX2 

(pTRV-MAX2) by virus-induced gene silencing (VIGS). This resulted in a reduction of 

the transcripts by ca. 80% (Fig. S12a). Consistent with the role of SL in shoot and root 

branching (Gomez-Roldan et al., 2005), silencing these genes promoted bud 

outgrowth with increased numbers of later branches observed under standard growth 

conditions (Fig. S12b). In agreement with this observation, root extracts from the 

pTRV-CCD7, pTRV-CCD8 and pTRV-MAX1 plants showed a decreased 

accumulation of the three SLs and stimulation of germination of Orobanche ramose 

seeds compared to the empty vector control plants (pTRV). In comparison, root 

extracts from the pTRV-MAX2 plants showed similar accumulation of the three SLs 

stimulation and caused a similar degree of germination to the pTRV controls (Fig. 

S12c). These findings confirm that SL synthesis was significantly suppressed in the 

roots of the pTRV-CCD7, pTRV-CCD8 and pTRV-MAX1 plants but not in the SL 

signaling silenced plants pTRV-MAX2. Importantly, the pTRV-CCD7, pTRV-CCD8, 

pTRV-MAX1 and pTRV-MAX2 plants showed decreased plant growth, lower levels of 

PT1, PT2, PT3, PT4 and PT5 transcripts, and less P accumulation in response to P 

starvation compared to the pTRV controls under both aCO2 and eCO2 conditions (Figs 

4a,c, S13a-c). Crucially, eCO2-induced stimulation of plant growth, AMF colonization 

and development, the levels of PT1, PT2, PT3, PT4 and PT5 transcripts and P 

accumulation were compromised in the pTRV-CCD7, pTRV-CCD8, pTRV-MAX1 and 
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pTRV-MAX2 plants (Figs 4, S13). However, no significant differences were found in 

the pTRV-CCD7, pTRV-CCD8, pTRV-MAX1 and pTRV-MAX2 plants in terms of 

biomass accumulation, P concentration, P accumulation, AMF colonization rate, 

indicating that both SL biosynthesis and signaling are involved in the eCO2-induced 

regulation of AMF colonization and P uptake.  

 

Discussion 

 The most common mechanism by which higher plants optimize soil P uptake in 

response to eCO2, is through AM symbiosis (Terrer et al., 2016). In a synthesis of 

135 published studies, Compant et al. (2010) reportedthat eCO2 generally had a 

positive influence on AMF colonization. However, the effects of eCO2 and P supply 

on the AMF varies with the host plant type, AMF species andlimate factors, as well 

as soil biology and chemistry (Jakobsen et al. 2016). Here, we report that growth 

under eCO2 significantly improved AMF development on tomato roots, especially 

under P starvation conditions (Figs 1b, S1c). Notably, enhanced AM symbiosis was 

followed by increased P accumulation and plant growth (Figs 1a, S1a,b). taken 

together these findings suggest that AM symbiosis will become increasingly 

important for plants in the future, as the atmospheric CO2continue to increase placing 

increasing demands on soil P availability. 

To date, the mechanisms by which plants transmit eCO2 signals systematically 

from the shoots to the roots have remained unclear. The simplest scenario would be 

that with increased CO2 fixation, more C would be available for transfer to AMF and 

hence the percentage of colonization would increase. The data presented here reveals 

the existence of a previously unrecognized systemic redox-hormone signaling 

pathway and provides a critical new insights into the mechanisms underpinning 



16 
 

eCO2-induced symbiosis. In the conceptual framework presented here (Fig. 5), eCO2 

triggers the apoplastic H2O2 dependent production of auxin in the tomato shoots 

followed by systemic induction of auxin signaling and resultant strigolactone 

biosynthesis in the tomato roots. In the absence of AMF, this signaling cascade may 

alter root system architecture (RSA) to enhance phosphate absorption as both auxin 

and SLs participate in the regulation of root system architecture (Ham et al. 2018). 

In the presence of AMF in the soil, this redox-auxin-strigolctone systemic signaling 

cascade can be used to facilitate mycorrhizal symbiosis and subsequent increased 

phosphate uptake from the soil. Moreover, our observations demonstrate that this 

signaling cascade is required for AMF symbiosis in response to eCO2 regardless of the 

presence of enhanced carbohydrate availability.  

ROS play a critical role in plant growth, development and responses to 

environmental stimuli (Xia et al., 2015). However, up to now it has remained 

unknown whether they are involved in eCO2-induced AM symbiosis and P uptake. 

Here, we demonstrate that leaf RBOH1 expression is essential for eCO2-induced AM 

symbiosis and associated P uptake. Growth under eCO2 increased the levels  of 

RBOH1 transcripts and the accumulation of H2O2 in the apoplast. Conversely, 

suppressed expression of RBOH1 in the shoot (rboh/WT) compromised 

eCO2-induced AM symbiosis and P uptake (Figs 2, S6c, S7). Hence, eCO2alters 

cellular  redox homeostasis as discussed previously (Mhamdi and Noctor, 2018). In 

addition,  RBOH-mediated ROS production facilitates lateral root emergence in 

Arabidopsis (Shi et al., 2015; Orman-Ligeza et al., 2016). The data presented here 

demonstrates that RBOH1 expression in the roots of WT/rboh1 plants had little 

effect on AM symbiosis and P uptake in response to changes in the concentration of 

atmospheric CO2 compared to  rboh/WT plants (Figs 2e,f, S6c, S7). Therefore, 
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eCO2 promote AM symbiosis by triggering ROS production in the shoots, rather by 

than in the roots.  

While auxin signaling is known to promoteAM development (Etemadi et al., 

2014; Chen et al., 2016), it has remainedunclear whether auxin participates in 

eCO2-induced AM symbiosis. The data presented here show that there was an 

increase in RBOH1-dependent IAA accumulation in response to eCO2, with the 

induction of transcripts encoding the auxin biosynthesis gene FZY (Fig. S4a). 

Crucially, plants with impaired PAT (dgt/WT and dgt/dgt) showed a compromised 

response to eCO2 in term of auxin signaling (DR5 accumulation), AM symbiosis and 

P uptake, suggesting that auxin signaling is responsible for eCO2-induced AM 

symbiosis (Figs 3a,b, S8-10). In addition, the dta presented her show that auxin 

biosynthesis was subject to redox regulation. Suppression of  RBOH1 transcripts 

attenuated eCO2-induced accumulation of IAA in the apex of rboh/WT plants (Fig. 

S6a). These results provide convincing evidences that redox signaling acts as a 

second messenger of auxin signaling in promoting AMF symbiosis and P utilization.  

Auxin is involved in the regulation of SL biosynthesis in roots (Koltai, 2015). 

The auxin deficient bushy mutant of pea showed decreased expression of the SL 

biosynthesis gene CCD8 and reduction in SL biosynthesis resulting in  low AM 

colonization (Foo, 2013). Similarly, the application of IAA increased root SL 

accumulation, while the application of an auxin transport inhibitor decreased SL 

accumulation in the roots (Yoneyama et al., 2015). Consistent with these fimdings, 

we show here that the roots of the dgt/WT plants had decreased levels of CCD7, 

CCD8, MAX1 and MAX2 transcripts with a lower accumulation of orobanchol, 

didehydro-orobanchol and solanacol compared to WT/WT plants (Fig. 3c, S11). 

Moreover, eCO2 failed to stimulate an increase in the expression of these genes or the 
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accumulation of these SLs in the roots of the dgt/WT plants. Taken together, these 

results collectively indicate that eCO2 induces a systemic redox-auxin-SL signaling 

cascade that promotes AMF symbiosis and P utilization. 

SLs have well known  roles in seed germination, plant architecture, stress 

responses and AM symbiosis (Akiyama et al., 2005; Besserer et al., 2006; Mostofa et 

al., 2018). Consistent with previous studies, the data presented here show that the 

CCD7, CCD8, MAX1 and MAX2-silenced plants had low AM colonization and P 

uptake (Figs. 4a,b, S13b,d). Importantly, silencing these genes also compromised 

eCO2-induced AM colonization, decreased the levels of  PT transcripts and P 

uptake, suggesting that SL biosynthesis and signaling are pivotal to eCO2-induced 

AM colonization and P uptake. Up to now, both induced or suppressed expressionof 

PT genes has beenobserved during AM symbiosis in different plant species. This has 

been mostly attributed to differences in parameters such as AM or plant species, 

growth stage, culture system and experimental conditions applied (Nagy et al., 2005; 

Balestrini et al., 2006; Fiorilli et al., 2009; Smith et al., 2011). In tomato, the 

expression of PT1, PT3 and PT4 was differentially induced by mycorrhizal 

inoculum (Xu et al., 2007). In addition, mutation of PT4 resulted in decreased P 

accumulation, with low plant biomass accumulation in the absence of  mycorrhiza 

inoculum, suggesting that PT4 is not only responsive to AMF but that it is also 

required for appropriate P status. In our studies, we show that eCO2 increased  the 

induction of expression of the PT genes and that this was particularly  significant 

for the  PT4 transcripts in the presence of AMF. These findings suggest that PT4 is 

pivotal in eCO2-induced and AMF-mediated P accumulation (Fig. S3). This dataset 

also raised the possibility of involvement of SLs and AMF in the regulation of PT 

gene expression through interactions  with other P-related physiological processes. 
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In support of this conclusion the max2-1 mutants displayed a lower induction of the 

expression of several phosphate-starvation response and phosphate-transporter genes 

(Mayzlish-Gati et al., 2012). 

In conclusion, the data presented here demonstrate the presence of a previously 

unrecognized redox-auxin-strigolctone systemic signaling cascade that facilitates 

mycorrhizal symbiosis and subsequent phosphate uptake in plants from soils. The 

findings have the following important implications for our current understanding 

plant responses to climate change. Firstly, plants have evolved a systemic signaling 

cascade that allows adaption to climate change. This strategy is especially important 

for adaptations to increased atmospheric CO2 levels and decreased P availability in 

terrestrial ecosystems, in which plants rely largely on AMF for mineral nutrients. 

Secondary, our studies highlight the importance of incorporating considerations of 

AMF-dependent effects on C, water and nutrient cycles in assessments of eCO2 

impacts in ecosystems, as well as in future climate change scenarios because 

eCO2-induced AMF not only have a major impact on plant 

variability and productivity through plant-soil feedback processes (van der Heijden 

et al., 1998; Clemmensen et al., 2013; Teste et al.,2017), but also on the biodiversity 

of soil microbial communities and associated turnover of C, N and P in soil 

(Compant et al., 2010; Cheng et al.,2012). Finally, our studies illustrate the potential 

for increasing nutrient utilization efficiency by targeting the components involved in 

the systemic signaling pathway described here, especially for improvement of crop 

productivity on marginal or infertile soils. Such considerations could also serve to 

reduce environmental pollution arising from high dose fertilization that is currently 

used in agricultural production systems. 
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Fig. 1 Elevated CO2 systemically induces strigolactone biosynthesis, AMF 

colonization and P uptake. (a) P accumulation per plant. (b) Root AMF colonization. 

(c) Transcript accumulation of strigolactone biosynthesis related genes in roots. 

Seedlings at 5-leaf stage grown in a sterilized soil/quartz sand/vermiculite mixture 

(1/1/1) were exposed to ambient atmospheric CO2 (aCO2, 380 ppmv) or elevated 

atmospheric CO2 (eCO2
, 
800 ppmv) for 28 d (a, b) or 10 d (c) in the presence of 

Rhizophagus irregularis AMF (+) or not (-) under P sufficient (+, 1 mM KH2PO4) or 

P deprivation (-, without KH2PO4 but with the addition of 1mM KCl) conditions. Data 

in (a) and (c) are mean±SD of three biological replicates. Different letters indicate 

significant difference at P<0.05. 

 

Fig. 2 Shoot RBOH1 mediates CO2-induced auxin signaling, AMF colonization 

and P uptake. (a-c) RBOH1 transcript (a), H2O2 accumulation in the apoplast (b), and 

IAA accumulation (c) in the leaves at the shoot apex. (d) DR5:GUS expression in the 

roots. (e, f) P accumulation in plants (e) and root AMF colonization (f) in grafted 

plants with RBOH1-RNAi (rboh) as scion (S) or rootstock (R). For (a-d), 

hydroponically-grown tomato plants at the 5-leaf stage were exposed to aCO2 and 

eCO2 with either P sufficient (1 mM KH2PO4) or P deficient (0.05mM KH2PO4 with 

the addition of 0.95 mM KCl) conditions for 1 d in controlled growth chambers. For 

(e and f), the grafted plants grown in a sterilized soil/quartz sand/vermiculite mixture 

(1/1/1) were exposed to aCO2 or eCO2 under P starvation (without KH2PO4 but with 

the addition of 1mM KCl) conditions in the presence of Rhizophagus irregularis for 

28 d. FW, fresh weight. Arrows in (b) indicates H2O2-CeCl3 precipitates. Data in (a), 

(c) and (e) are mean±SD of three biological replicates. AMF colonization in (f) was 
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scored from ca. 300 root/gridline intersects. Different letters indicate significant 

difference at P<0.05. 

 

Fig. 3 Auxin signaling activates CO2-induced biosynthesis of strigolactones, AMF 

colonization and P uptake. (a, b) P accumulation per plant (a) and root AMF 

colonization (b) in grafted plants grown in a sterilized soil/quartz sand/vermiculite 

mixture (1/1/1) with auxin-resistant diageotropica mutant (dgt) as scion (S) or 

rootstock (R) after exposure to ambient atmospheric CO2 (aCO2, 380 ppmv) or 

elevated atmospheric CO2 (eCO2, 800 ppmv) under P deprivation (without KH2PO4 

but with the addition of 1mM KCl) conditions in the presence of Rhizophagus 

irregularis for 28 d. (c) Transcript accumulation of strigolactone biosynthesis and 

signaling related genes in roots of hydroponically-grown plants with dgt as scion (S) 

or rootstock (R) after exposure to aCO2 or eCO2 under P deficient (0.05 mM KH2PO4 

with the addition of 0.95 mM KCl) conditions for 10 d. Data in (a) and (c) are 

mean±SD of three biological replicates. AMF colonization in (b) was scored from ca. 

300 root/gridline intersects. Different letters indicate significant difference at P<0.05. 

  

Fig. 4 Strigolactones are essential for CO2-induced AMF colonization and P 

uptake. (a) P accumulation per plant. (b) Root AMF colonization. (c) Transcript of 

PT genes in roots. The CCD7, CCD8, MAX1 and MAX2-silencing plants grown in a 

sterilized soil/quartz sand/vermiculite mixture (1/1/1) were exposed to ambient 

atmospheric CO2 (aCO2, 380 ppmv) or elevated atmospheric CO2 (eCO2, 800 ppmv) 

in the presence of Rhizophagus irregularis under P deprivation (without KH2PO4 but 

with the addition of 1mM KCl) conditions for 28 d (a,b) or 10 d (c), respectively. Data 

in (a) and (c) are mean±SD of three replicates. AMF colonization in (b) was scored 
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from ca. 300 root/gridline intersects. Different letters indicate significant difference at 

P<0.05. 

 

Fig. 5 A model for systemic eCO2 signaling that promotes AMF symbiosis and 

associated P uptake. eCO2 triggers an apoplastic H2O2 dependent production of 

auxin in the shoots followed by systemic induction of auxin signaling and resultant 

strigolactone biosynthesis in the roots of tomato plants. This signaling cascade 

enhances phosphate absorption by altering root system architecture (RSA) in the 

absence of AMF or facilitating mycorrhizal symbiosis in the presence of AMF. 
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