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Abstract
Background: In longitudinal data, it is common to create ‘change scores’ by subtracting

measurements taken at baseline from those taken at follow-up, and then to analyse the

resulting ‘change’ as the outcome variable. In observational data, this approach can pro-

duce misleading causal-effect estimates. The present article uses directed acyclic graphs

(DAGs) and simple simulations to provide an accessible explanation for why change

scores do not estimate causal effects in observational data.

Methods: Data were simulated to match three general scenarios in which the outcome

variable at baseline was a (i) ‘competing exposure’ (i.e. a cause of the outcome that is

neither caused by nor causes the exposure), (ii) confounder or (iii) mediator for the total

causal effect of the exposure variable at baseline on the outcome variable at follow-up.

Regression coefficients were compared between change-score analyses and the appro-

priate estimator(s) for the total and/or direct causal effect(s).

Results: Change-score analyses do not provide meaningful causal-effect estimates

unless the baseline outcome variable is a ‘competing exposure’ for the effect of the expo-

sure on the outcome at follow-up. Where the baseline outcome is a confounder or media-

tor, change-score analyses evaluate obscure estimands, which may diverge substantially

in magnitude and direction from the total and direct causal effects.

Conclusion: Future observational studies that seek causal-effect estimates should avoid

analysing change scores and adopt alternative analytical strategies.

Key words: Analysis of change, change scores, difference scores, gain scores, change-from-baseline variables,

directed acyclic graphs
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Introduction

Studies of change are a cornerstone of research in the

health sciences. Understanding the natural history of dis-

ease, and in turn predicting prognoses, is of enormous in-

terest to physicians and patients alike. Analyses of ‘change’

are, however, deceptively complex in observational data.

One of the most common, yet poorly recognized, chal-

lenges stems from the use and interpretation of ‘change

scores’.

Change scores (e.g. DY ¼ Y1 � Y0), also known as ‘dif-

ference scores’, ‘gain scores’ and ‘change-from-baseline

variables’, are composite variables that have been con-

structed from repeated measures of a single parent variable

(Y) by subtracting a subsequent measure of the parent (Y1,

‘follow-up’) from a prior measure (Y0, ‘baseline’). The

resulting composite variable retains information from both

of its determining parents and hence will share a tautologi-

cal association with either if analysed by regression or cor-

relation.1 This was first recognized by Oldham in 1962,

who demonstrated that an association averaging r ¼ 61=
ffiffiffi
2
p

occurs between either of the parent variables (i.e. Y0 or

Y1) and their difference (i.e. Y1 � Y0) if both have similar

variances but are otherwise unrelated.2 This phenomenon

explains the ‘law of initial value’ as a consequence of the

sign disagreement between the baseline parent variable

(Y0) and its transformation in the composite change score

(�Y0), and is distinct from regression-to-the-mean.1

Relatively few analyses of change scores, however, in-

volve straightforward tautological associations. More of-

ten, change scores are used as outcome variables in

relation to a separate baseline treatment or exposure X0

(e.g. ‘How do beta-blockers affect change in blood pres-

sure?’). One of the most widely recognized issues in this

context is the discordance between change-score analyses

(i.e. where the outcome-change score DY is regressed on

the baseline exposure X0) and analyses of covariance

(ANCOVA; i.e. where the follow-up outcome Y1 is

regressed on the baseline exposure X0 and ‘adjusted for’

the baseline outcome Y0).3,4 For example, Senn (2006) and

Van Breukelen (2006) found that change-score analyses

and ANCOVA provide similar and unbiased estimates

when the exposure is randomized but provide ‘contradic-

tory results’ when the exposure is not randomized.

Frederick Lord’s eponymous paradox centres on this same

‘contradiction’ and the lack of an obvious ‘correct’

answer.5

Although studies of change are extremely common, the

concept of change—and the use of change scores as a puta-

tive measure thereof—has received relatively limited for-

mal consideration within a causal framework. Causal

diagrams such as directed acyclic graphs (DAGs) provide a

useful framework for understanding some challenges asso-

ciated with observational data analysis, but they have not

often been used to consider analyses of change scores spe-

cifically. Of the exceptions, Glymour et al. (2006) focused

on the role of measurement error, arguing that analyses of

outcome-change scores provide unbiased causal-effect esti-

mates in some cases, but that error can be introduced by

conditioning on the baseline outcome.6 Conversely, Shahar

and Shahar (2010) argue that change scores are ‘not of

causal interest’ and that ’modelling the change between

two time points is justified only in a few situations’.7

The present article aims to provide an accessible expla-

nation of why analyses of change scores do not estimate

causal effects in observational (i.e. non-randomized) data

and illustrate the potentially misleading consequences of

doing so.

Change scores do not represent exogenous

change

In this section, we consider the concept of ‘change’ using

DAGs. We focus on ‘exogenous change’ in an outcome

variable (Y), which represents the structural (i.e. non-ran-

dom) component of the follow-up outcome (Y1) that has

Key Messages

• ‘Change scores’ provide a simple summary measure of the average change in a variable between two time points;

they are commonly used when analysing ‘change’ in an outcome with respect to a baseline exposure.

• Analyses of outcome-change scores do not estimate causal effects except under randomized experimental

conditions; in some (non-randomized) situations, the implied ‘effect’ may be of the opposite sign to the total and/or

direct causal effect.

• Future observational studies that seek causal-effect estimates should avoid analysing outcome-change scores and

adopt alternative analytical strategies; studies that have conducted analyses of outcome-change scores should be

viewed with caution and their recommendations revisited.
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not been determined at baseline (Y0) and can therefore po-

tentially still be modified after baseline.

DAGs are semi-parametric graphical representations of

hypothesized causal relationships between variables.8

Variables or events (depicted as nodes) are connected by

unidirectional arcs (depicted as arrows), representing the

presence and direction—though neither the nature nor the

magnitude—of each hypothesized causal relationship. A

path is a collection of one or more arcs that connect two

nodes and a causal path is one in which all constituent arcs

flow in the same direction. No variable can cause itself. By

convention, we depict deterministic variables as double-

outlined nodes.9

We first consider the simple example of repeated meas-

ures of an outcome variable (Y) that only fluctuate due to

randomness (R) (see Figure 1, panel A). Values of the fol-

low-up (Y1) are entirely determined by the baseline (Y0)

plus the random features at follow-up (R1). In this

scenario, Y1 cannot be modified except by modifying Y0;

no exogenous change exists. This is obvious in repeated

measures of a fixed variable, such as height in healthy mid-

dle-aged adults. Although each individual’s height values

Y0 and Y1 would likely differ slightly due to the random

features at baseline (R0) and follow-up (R1), this only

dilutes the observed relationship between Y0 and Y1. In the

population, there would be no overall change in the aver-

age values of height at baseline and follow-up, and this

would be correctly reflected by a change score with a mean

of zero (Figure 1, panel Aþ).

The same causal scenario (i.e. Figure 1, panel A) could

also describe repeated measures of a dynamic variable,

whereby follow-up values are fully determined by baseline

values via an algebraic function. As an example, consider

the total expected number of radioactive particles Y in a

sample of (non-depleted) uranium rods at some future

point in time (Y1), which may be estimated without bias

Figure 1. Directed acyclic graphs (DAGs) depicting the relationship between an outcome variable at baseline (Y0) and follow-up (Y1), where the fol-

low-up measure is completely determined. In panel A, the values of Y1 are fully determined by Y0 (and random processes R1), so there exists no ex-

ogenous change. In panel B, the values of Y1 are partly determined by Y0 (and random processes R1) and partly determined by exogenous factors

representing ‘change’ (C1). C1, R0 and R1 are depicted as dashed (latent) variables, as they cannot be directly measured and are encapsulated within

their descendent variables Y1, Y0 and Y1, respectively. Panels Aþ and Bþ depict the same causal scenarios as panels A and B, respectively, but also

show the composite change-score variable (Y1 � Y0), which itself is completely determined by Y0 and Y1.
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from the current observed number of radioactive particles

(Y0) by the Universal Law of Radioactive Decay.10 The to-

tal observed value of Y would irrefutably change between

Y0 and Y1, and each individual uranium rod would have a

negative change score (the magnitude of which would in-

crease with the size of Y0). Nevertheless, no exogenous

change exists; as previously, Y1 cannot be modified except

by modifying Y0.

Finally, we consider a more realistic dynamic variable

(Y), whose future values (Y1) are only partly determined

by the past values (Y0), with the remainder determined by

random features (R1) plus other exogenous change (C1)

(see Figure 1, panel B). Here, C1 represents all non-random

changes in Y that are not pre-determined by Y0, and so the

concept of exogenous change can thus be considered an av-

erage of all the processes in C1 ! Y1. In reality, C1 is an

unmeasurable, ongoing latent process whose value is only

defined once the point of follow-up is fixed (in the same

way as ‘age’ is undefined until the date of measurement is

defined). Thus, the exogenous change between two time

points is fundamentally encapsulated within, and can only

be determined from, Y1.

We do not specify the time window between Y0 and Y1,

but it seems plausible that change could also be introduced

after baseline by altering the effect of Y0 on Y1. This is

equivalent to creating an intermediate node (Y0:5) along

the path between Y0 and Y1 that provides a later chance to

modify Y1 without invoking exogenous change. However,

this only serves to delay the distinction between the deter-

mined and change components of Y1, since, after Y0:5,

there is again no means to alter Y1 other than through ex-

ogenous change. In theory, we could introduce another

node and another, but eventually we would reach the node

immediately prior to Y1 in time (Y1�dt), at which point

there is no way to intervene in the effect of Y1�dt after

Y1�dt, and exogenous change is the only way to introduce

change in Y.

Isolating exogenous change with respect to a

baseline exposure

The causal effect of a baseline exposure X0 on ‘change’ in

Y hence corresponds to the effect of X0 on ‘exogenous

change’ in Y, i.e. the structural part of Y1 that has not al-

ready been determined by Y0. This quantity can be

expressed as the effect of X0 on Y1jY0 or the estimand a1 ¼
E Y1jdo X0 ¼ x0ð Þ;Y0 ¼ y0½ � � E Y1jdo X0 ¼ �x0ð Þ; Y0 ¼½f y0�g,

where x0 and �x0 are two contrasting levels of the exposure.

This effect may be estimated by constructing, e.g., a regres-

sion model of the form cY1 ¼ ba0 þ ba1X0þ ba2Y0, which we

refer to as the follow-up adjusted for baseline analysis,

where ba1 represents the estimate for the estimand of inter-

est (a1).

Construction and analysis of a change score likely rep-

resent an attempt to isolate this same effect from the ap-

parent ‘effect’ of X0 on DY ¼ Y1 � Y0 or the estimand

b1 ¼ E Y1 � Y0jdo X0 ¼ x0ð Þ½ � � E Y1 � Y0jdo X0 ¼ �x0ð Þ½ �f g,
where x0 and �x0 are again two contrasting levels of the ex-

posure. This quantity may be estimated by constructing a

regression model of the form cDY ¼ bb0 þ bb1X0, which we

refer to as the change-score analysis and where bb1 repre-

sents the coefficient that is often (mis)interpreted as esti-

mating the true effect of interest (a1). Instead of

‘standardizing’ Y1 relative to Y0, the change-score ap-

proach treats two separate events (i.e. Y0 and Y1) as one,

thereby conflating the causal pathways involved.

This can be seen by rewriting the estimand in full as b1 ¼
E Y1jdo X0 ¼ x0ð Þ½ � � E Y1jdo X0 ¼ �x0ð Þ½ � � E Y0jdo½f X0 ¼ð

x0Þ� þ E Y0jdo X0 ¼ �x0ð Þ½ �g, which depends jointly on ele-

ments of the effects of X0 on both Y0 and Y1, including the

negative of the total causal effect of X0 on Y0.

The degree of discordance between these two estimands

(a1 and b1), and hence the coefficients in the follow-up ad-

justed for baseline analysis (ba1) and the change-score analy-

sis (bb1), will depend on the strength of the association

between the baseline exposure X0 and the baseline outcome

Y0. Where the association between X0 and Y0 is trivial, the

association between X0 and DY will converge on the

association between X0 and Y1 because, when X0? Y0,

then b1 ¼ E Y1jdo X0 ¼ x0ð Þ½ � � E Y1jdo½f X0 ¼ �x0ð Þ� � E

Y0jdo X0 ¼ x0ð Þ½ � þ E Y0jdo X0 ¼ �x0ð Þ½ �g ¼ E Y1jdo½f X0ð ¼
x0Þ� � E Y1jdo X0 ¼ �x0ð Þ½ �� E Y0½ � þ E Y0½ �g ¼ E Y1jdo½f
X0 ¼ x0ð Þ;Y0 ¼ y0� � E Y1jdo X0 ¼ð½ �x0Þ;Y0 ¼ y0�g ¼ a1.

This would be expected in large, well-conducted random-

ized experimental studies, in which change-score analyses

may be used without invoking inferential bias (see Figure 2,

panel A).

However, as the association between X0 and Y0

strengthens—as in non-randomized, non-experimental (i.e.

observational) settings—the association between X0

and DY will be increasingly dominated by the component

‘�Y0’ and the spurious E Y½ 0jdo X0 ¼ �x0ð Þ� � E

Y0jdo X0 ¼ x0ð Þ½ � components of the estimand, thereby di-

verging from the association between X0 and Y1. Whilst bb1

provides a statistically unbiased estimate of b1, it may nev-

ertheless invoke serious inferential bias if misinterpreted as

estimating a1, since the divergence between a1 and b1 can

be substantial and even sign-discordant. For example, if X0

and Y0 share a strong positive correlation, the negative

transformation of Y0 in the change score may dominate a

smaller positive correlation between X0 and Y1, resulting

in an overall negative association between X0 in DY.

International Journal of Epidemiology, 2022, Vol. 51, No. 5 1607

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/51/5/1604/6294759 by U

niversity of Leeds user on 22 N
ovem

ber 2023



Exogenous change vs total causal effects

It may be tempting to conclude that a1 is always the esti-

mand of interest in analyses of change and a follow-up ad-

justed for baseline analysis will therefore always provide

the best solution where an association between X0 and Y0

is expected. Consideration must, however, also be given to

the direction of the causal relationship between X0 and Y0,

and the implications for which estimand(s) delivers the

most useful causal effect(s).

The randomized experimental setting is unique for en-

suring that X0 occurs at the same time or after Y0 by de-

sign. This guarantees that all changes in Y that are caused

by X0 will be fully realized by the effect of X0 on Y1. In

other words, the experimental setting ensures that the

Figure 2. Directed acyclic graphs (DAGs) depicting three causal scenarios for analyses of change in an outcome (Y ) in relation to a baseline exposure

(X0). Panel A represents a scenario in which the baseline outcome (Y0) is a ‘competing exposure’ for the total causal effect of X0 on the follow-up out-

come (Y1), i.e. X0 is unrelated to Y0 as in a well-conducted randomized experimental study. In this scenario, the total causal effect of X0 on Y1 is identi-

cal to the total causal effect of X0 on ‘exogenous change’ in the outcome (C1). Panel B represents a scenario in which Y0 is a confounder for the total

causal effect of X0 on Y1. In this scenario, the total causal effect of X0 on Y1 is again identical to the total causal effect of X0 on C1. Panel C represents

a scenario in which Y0 is a mediator for the total causal effect of X0 on Y1. In this scenario, the direct causal effect of X0 on Y1 that is not mediated

through Y0 is identical to the total causal effect of X0 on C1. Panels Aþ, Bþ and Cþ depict the same causal scenarios as panels A, B and C, respec-

tively, but also depict the composite change score variables (Y1 � Y0), which are completely determined by Y0 and Y1:
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effect of X0 on exogenous change in Y is equal to the total

causal effect of X0 on Y1 because E Y1½f jdo X0 ¼ x0ð Þ;
Y0 ¼ y0� � E Y1jdo X0 ¼ �x0ð Þ;Y0 ¼ y0½ �g ¼ E Y1jdo½f X0 ¼ð
x0Þ� � E Y1jdo X0 ¼ �xð½ 0Þ�g when X0? Y0. However, this

cannot be generalized to all observational settings.

In some non-randomized contexts, such as where the

baseline exposure is fast-acting and/or weakly autocorre-

lated over time, it may be obvious that X0 occurs after Y0,

and that the dominant direction of causality therefore

flows from Y0 to X0 (see Figure 2, panel B). In this setting,

the effect of X0 on exogenous change in Y again corre-

sponds to the total causal effect of X0 on Y1, and a follow-

up adjusted for baseline analysis—to estimate E Y1j½f
do X0 ¼ x0ð Þ;Y0 ¼ y0� � E Y1jdo X0 ¼ �x0ð Þ;Y0 ¼ y0½ �g—is

appropriate (and necessary), since Y0 is a classical con-

founder for the effect of X0 on Y1.

However, in many other contexts, it is plausible that the

baseline exposure causes both the baseline values of the

outcome and the follow-up values of the outcome, due to

delayed or prolonged causal effects. In such circumstances,

the dominant direction of causality flows from X0 to Y0,

and X0 causes Y due to its effects on both Y0 and Y1(see

Figure 2, panel C). In this context, the effect of X0 on exog-

enous change in Y—i.e. a1 ¼ E Y1jdo X0 ¼ x0ð Þ;Y0½f
¼ y0� � E Y1jdo X0 ¼ �x0ð Þ; Y0 ¼ y0½ �g—is arguably less

meaningful, since it only captures the direct effect of X0 on

Y1. If this effect is sought, then a follow-up adjusted for

baseline analysis may be appropriate—though such a strat-

egy would involve conditioning on the mediator Y0, which

introduces additional methodological challenges.11,12

However, if it is the total causal effect that is sought,

then a follow-up unadjusted for baseline analysis should

be conducted to estimate c1 ¼ E Y1jdo X0 ¼ x0ð Þ½ ��f
E Y1jdo X0 ¼ �x0ð Þ½ �g. This would involve constructing, e.g.,

a regression model of the form cY1 ¼ bc0 þ bc1X0, where bc1

represents the estimate for the estimand (c1) of interest.

The choice of whether to adjust for the baseline out-

come (i.e. Y0) is therefore context-dependent, as it depends

upon the hypothesized causal relationship between the

baseline exposure and outcome, in particular whether Y0 is

a confounder and which causal effect (a1 or c1) is of most

interest.

Illustrative example

To illustrate the inferential bias that may be introduced

from naı̈ve analyses of change scores, we consider

the causal effects of waist circumference (WC) on (log-

transformed) serum insulin concentration (IC) at two

times points in US adults aged 18–49 years from 2009 to

2014.13

Methods

Data were simulated to match eight simplified causal sce-

narios (see Figure 3):

1. IC at baseline (IC0) is neither caused by; nor the cause

of; WC at baseline (WC0); making it a ‘competing ex-

posure’ for the effect of WC0 on follow – up IC (IC1).

A. No unmeasured confounding.

B. Unmeasured variable (U) affecting all three source

variables.

2. IC at baseline (IC0) affects WC at baseline (WC0); mak-

ing it a confounder for the effect of WC0 on follow – up

IC (IC1).

A. No unmeasured confounding.

B. Unmeasured variable (U) affecting all three source

variables.

3. IC at baseline (IC0) is affected by WC at baseline

(WC0); making it a mediator for the effect of WC0 on

follow – up IC (IC1).

A. No unmeasured confounding.

Bþ. Unmeasured variable (U2) affecting IC0 and IC1

(i.e. ‘mediator–outcome confounding’12).

B. Unmeasured variable (U) affecting all three source

variables.

Bþ. Unmeasured variable (U) affecting all three source

variables, and unmeasured variable (U2) affecting

IC0 and IC1 (i.e. ‘mediator–outcome confounding’).

Parameter values were informed by data from the US

National Health and Nutrition Examination Survey

(NHANES), for the years 2009–2014.13 The total

causal effect of WC0 on IC1 was fixed at 0.200 Log[mmol/

L]/dm; when mediated through IC0, this was partitioned

into an indirect causal effect of 0.150 Log[mmol/L]/dm and

a direct causal effect of 0.050 Log[mmol/L]/dm. Full details

of the simulation are provided in the Supplementary

Material, available as Supplementary data at IJE online.

For each scenario, we then conducted three analyses us-

ing the resulting data:

1. A change-score analysis: dDIC ¼ bb0 þ bb1WC0.

2. A follow-up adjusted for baseline analysis:
dIC1 ¼ ba0 þ ba1WC0 þ ba2IC0.

3. A follow-up unadjusted for baseline analysis:
dIC1 ¼ bc0 þ bc1WC0.

We consider the resulting regression coefficients for

WC0 (i.e. bb1, ba1 or bc1) and how they relate to the causal

effects of interest. To demonstrate the impact of unmeas-

ured confounding by U and U2 in Scenarios 1B, 2B, 3Aþ,

3B and 3Bþ, we do not explicitly adjust for these variables.

Coefficient units (i.e. Log[mmol/L]/dm) are omitted to aid

readability.
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Figure 3. Directed acyclic graphs (DAGs) of the eight simulated scenarios. For ease of illustration, the exogenous change variable (C1) is not explicitly

depicted, but is implicitly encapsulated within log insulin concentration at follow-up (IC1). IC1, waist circumference at baseline (WC0), log insulin con-

centration at baseline (IC0), one or more unobserved confounding variables (U) and one or more unobserved mediator–outcome confounding varia-

bles (U2) were simulated with the specified path coefficients; for more details, see the Supplementary Materials, available as Supplementary data at

IJE online. Composite change-score variables (IC1 � IC0) were derived and are therefore depicted as a double-outlined nodes with dashed incoming

arcs, to indicate that these were not simulated. The standardized total causal effect of WC0 on IC1 was fixed at 0.433, as this corresponded to a regres-

sion coefficient of 0.200 Log[mmol/L]/dm. When mediated through IC0, the standardized direct effect of WC0 on IC1 was fixed at 0.108, as this corre-

sponded to a regression coefficient of 0.05 Log[mmol/L]/dm.
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Results

The resulting regression coefficients of WC0 for each of the

three methods of analysis for each of the three scenarios

are summarized in Table 1.

(i) Scenario 1: Baseline insulin is a ‘competing exposure’

(i.e. is neither caused by, nor the cause of, baseline waist

circumference)

In Scenario 1:

• a1 ¼ b1 ¼ c1 ¼ 0:200 ¼ the total causal effect

of WC0 on IC1 ¼ the effect of WC0 on exogenous

change in IC

Scenario 1A is analogous to a large, well-conducted ran-

domized experimental study. The association between

WC0 and DIC thus consists entirely of the causal effect of

WC0 on IC1. Since there is no confounding or mediation

by IC0, all methods of analysis provide an unbiased

estimate of the causal effect of WC0 on exogenous change

in IC (bb1 ¼ ba1 ¼ bc1 ¼ 0:200).

In Scenario 1B, the association between WC0 and DIC

again consists of the causal effect of WC0 on IC1 but this is

now confounded by U. All three methods of analysis pro-

vide a biased estimate of the causal effect of WC0

(bb1 ¼ 0:191, ba1 ¼ 0:203, bc1 ¼ 0:228). However, it is

worth noting that the follow-up adjusted for baseline esti-

mate (i.e. ba1) is less biased than the follow-up unadjusted

for baseline estimate (i.e. bc1), since adjustment for IC0

closes one of the two confounding paths between WC0 and

IC1.

(ii) Scenario 2: Baseline insulin is a confounder

In Scenario 2:

• a1 ¼ 0:200 ¼ the total causal effect of WC0 on

IC1 ¼ the effect of WC0 on exogenous change in IC

In Scenario 2A, the association between WC0 and DIC

consists of the causal effect of WC0 on IC1 and confound-

ing by IC0. Both the change-score analysis and follow-up

unadjusted for baseline analysis provide biased estimates

of the causal effect of WC0 on exogenous change in IC

(bb1 ¼ 0:119 and bc1 ¼ 0:351, respectively). The follow-up

adjusted for baseline analysis recovers the correct total

causal effect (ba1 ¼ 0:200) because conditioning on IC0

closes the confounding path through IC0.

In Scenario 2B, the association between WC0 and DIC

consists of the causal effect of WC0 on IC1 and confound-

ing from both IC0 and U. All methods of analysis provide

a biased estimate of the causal effect of WC0 (bb1 ¼ 0:114,

ba1 ¼ 0:205, bc1 ¼ 0:382), though the follow-up adjusted

for baseline analysis remains the least biased.
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(iii) Scenario 3: Baseline insulin is a mediator

In Scenario 3:

• a1 ¼ 0:050 ¼ the direct causal effect of WC0 on

IC1 ¼ the effect of WC0 on exogenous change in IC

• c1 ¼ 0:200 ¼ the total causal effect of WC0 on IC1

In Scenario 3A, the association between WC0 and DIC

consists of both the direct causal effect of WC0 on IC1 and

the indirect causal effect that is mediated through IC0. The

change-score analysis (bb1 ¼ �0:031) provides a biased esti-

mate of opposite sign to both the direct causal effect (a1) of

WC0 on IC1 (equivalent to the effect of WC0 on exogenous

change in IC) and the total causal effect (c1) of WC0 on

IC1. The follow-up adjusted for baseline analysis provides

an unbiased estimate of the direct causal effect of WC0 on

IC1 (ba1 ¼ 0:050), though the estimate is biased

(ba1 ¼ 0:025) in the presence of mediator–outcome con-

founding (Scenario 3Aþ), since conditioning on IC0 opens

a confounding path through U2.12 The follow-up unad-

justed for baseline analysis provides an unbiased estimate

of the total causal effect of WC0 on IC1 (bc1 ¼ 0:200),

which remains robust in the presence of mediator–outcome

confounding (Scenario 3Aþ).

In Scenario 3B, as previously, the association between

WC0and DIC again consists of the direct causal effect of

WC0on IC1 and the indirect causal effect mediated

through IC0, but this is now confounded by U. The

change-score analysis remains biased (bb1 ¼ �0:031) and

with the opposite sign to both the direct and total causal

effects. Both the follow-up adjusted for baseline analysis

and follow-up unadjusted for baseline analysis provide bi-

ased estimates of the direct causal effect (ba1 ¼ 0:047) and

total causal effect (bc1 ¼ 0:228) of WC0, respectively. The

bias of the follow-up adjusted for baseline analysis is exac-

erbated (bc1 ¼ 0:015) in the presence of mediator–outcome

confounding (Scenario 3Bþ) due to conditioning on the

collider IC0.

Discussion

Our study explains why analyses of change scores do not

estimate causal effects in observational data. To demon-

strate, we explored the ostensibly simple context of analy-

sis of change in an outcome (insulin concentration) with

respect to a baseline exposure (waist circumference) for

eight different causal scenarios. Misleading coefficients,

sometimes of opposite sign to the true effects of interest,

were observed in every scenario except where the baseline

outcome was a ‘competing exposure’, i.e. was neither

caused by, nor the cause of, the baseline exposure.

Although such independence is plausible, and is indeed ac-

tively sought in randomized experimental studies, it is

extremely unlikely when the exposure is not assigned ran-

domly. Many analyses of change scores in observational

studies are therefore likely to suffer inferential bias, the

size of which will vary with the strength and nature of the

association between the baseline exposure and baseline

outcome.

Recommendations

Analyses of outcome-change scores to estimate causal

effects in observational data should be avoided, including

‘percentage’-change scores, where the change between

baseline and follow-up is expressed as a percentage of the

baseline value. If the follow-up outcome is not normally

distributed, appropriate transformations and/or non-para-

metric methods should be preferred to calculating and ana-

lysing change scores.14

Ideally, all causal effect(s) of interest should be formally

identified using DAGs and estimated accordingly. We be-

lieve the total causal effect of the baseline exposure (i.e.

X0) on the follow-up outcome (i.e. Y1) will generally offer

the greatest interest and utility, as it provides the simplest

summary of how changing the exposure would be expected

to change future values of the outcome. Where the baseline

outcome (i.e. Y0) is a ‘competing exposure’ or confounder

for the effect of the exposure on the follow-up outcome,

the total causal effect of the exposure on the follow-up out-

come is the same as its effect on exogenous change in the

outcome. Where the baseline outcome is a mediator for the

effect of the exposure on the follow-up outcome, the

direct causal effect of the exposure on the follow-up out-

come captures its effect on exogenous change in the out-

come. If the direct causal effect is sought, estimating this

will need to account for potential mediator–outcome

confounding.11,12

Caveats

Not all uses of outcome-change scores will necessarily pro-

duce incorrect or misleading estimates. Change scores may

provide a robust summary of the average change in a vari-

able between two time points for a group or individual;

problems only arise when statistical comparisons are made

either between groups or individuals, or in relation to one

or more other variables. Change scores may therefore still

be qualitatively useful for tracking the progress of individ-

uals, provided it is recognized that the magnitude of any

expected change is functionally determined by the baseline

value.

Where the exposure is unrelated to the outcome at base-

line (such as in randomized experimental studies), analyses

of change scores provide unbiased estimates. However,
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even under these circumstances, analyses of change scores

are less efficient than follow-up adjusted for baseline anal-

yses (e.g. ANCOVA), unless the change-score analysis is

also adjusted for the baseline outcome.15 In fact, analyses

of change scores that adjust for the baseline outcome (i.e.

change score adjusted for baseline analyses) can provide

unbiased estimates even in non-randomized data, because

they are mathematically identical to follow-up adjusted for

baseline analyses. This is because adjusting for Y0 elimi-

nates the contribution of the ’�Y0’ component in the out-

come, i.e. ½ Y1 � Y0ð ÞjY0� ¼ ½Y1jY0�.17,18 However, extra

care must be taken to avoid interpreting the coefficient for

the baseline outcome as a model covariate, as this will pri-

marily reflect the tautological association with the change

score.

In some situations, the coefficient of a change-score

analysis (bb1) may coincide with the desired estimand (a1) if

the spurious elements of the change-score estimand happen

to equal all other unobserved confounding19 or else pro-

vide less biased ‘estimates’ than the appropriate estimator.

Unfortunately, since it is impossible to know when such

situations occur, it is inconceivable that this may ever offer

practical utility.

Even when adopting a robust analytical strategy, analy-

ses of change with only two measurements will almost al-

ways produce inaccurate effect estimates due to random

variation (whether error or otherwise) in the baseline and/

or follow-up measures. A diluted estimate can be expected

because it is not possible to distinguish between the (de-

sired) effect on exogenous change from the association

with the random determinants of change (which will aver-

age at zero). Some information about the random variation

can, however, be gained from the baseline outcome and

this explains why adjusting for the baseline outcome (e.g.

using ANCOVA) offers improved precision over uncondi-

tional analyses of the follow-up outcome in randomized

experimental data. In observational data, this benefit is

secondary to considering the causal relationship between

X0 and Y0. When Y0 is a confounder for the effect of X0

on Y1 (and hence ‘change’ in Y), reducing this confounding

through conditioning is theoretically appropriate and nec-

essary. However, some residual confounding will remain

because it is not possible to distinguish between the ‘stable’

or structural features of Y0 (that may cause Y1) and the

random features (that cannot cause Y1). Change scores

cannot offer a solution to these consequences of limited

measurement, since they contain no additional information

than their parent variables Y0 and Y1.

Additional measurements are necessary to reduce the

issues with random variation. Latent variable methods pro-

vide an elegant means to summarize the pattern of growth

over multiple time points, although care must be taken to

avoid other inferential biases due to regression-to-the-

mean.20 When used appropriately, latent growth-curve

models avoid the same problems as change-score analyses

because they are centred across all datapoints, ensuring the

intercept and slope do not share the same spurious negative

correlation as in analyses of change scores. This is concep-

tually similar to Oldham’s suggestion that change between

baseline and follow-up be compared against the mean of

the two values [i.e. Y0 þ Y1ð Þ=2]2—the same approach as

recommended by Bland and Altman for calculating limits

of agreement.20 Summary features, such as ‘slope’, never-

theless still possess some conceptual challenges, due to the

conflation of causal information from multiple time

points.21

Ontology of change

Whether analyses of change are meaningful or misleading

is ultimately a matter of ontology, since the problems that

arise are inferential, not statistical. We conceptualize three

reasons for a variable changing value over time. The first,

‘determined change’, is not really change, but the realiza-

tion of a past event at a later point in time. This is analo-

gous to the inevitable future consequences of a present

event within space-time.22 The second, ‘random change’,

represents all the random reasons for a variable changing

value beyond what has been determined. Strictly, this con-

sists of all uncertainty arising from the quantum, although,

pragmatically, it will also include all apparently random

behaviour arising from intractable complexity.23 Finally,

‘exogenous change’ represents all non-random reasons for

a variable changing value beyond what has been deter-

mined. This is analogous to the influence of all events in

the ‘absolute elsewhere’ within space-time.22 Of these three

reasons for a variable changing value, exogenous change

offers the only route to external influence, making it the

principal interest of causal enquiry.

Study limitations

Our simulations were deliberately simplified and made sev-

eral distributional assumptions that may not be entirely re-

alistic. Multiple variables are likely to confound the true

causal effect of waist circumference on insulin concentra-

tion. Rather than simulating these individually, we simu-

lated a single summary confounder U for illustrative

purposes. The focus of this paper was not, however, on

one specific context; rather, we sought to demonstrate the

potential problems with analysing and interpreting change

scores in observational studies and the utility of DAGs for

exploring and identifying such issues. No inferences should

be drawn from our simulations about the assumed causal
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effect of waist circumference on insulin concentration,

which may not exist. We did not consider the additional

complications that would result from non-linear relation-

ships, where change scores and linear conditioning for the

baseline outcome (e.g. using ANCOVA) would introduce

further bias. Where confounding is present and condition-

ing is required, appropriate parameterization should be

sought to reduce residual confounding.

Comparison with Lord (1967) and Glymour et al.

(2005)

Scenario 3A, in which the baseline outcome mediates the

effect of the exposure on the follow-up outcome, repre-

sents the same situation that originally puzzled Lord in

1967.5 Lord’s confusion arose because the change-score

analysis and follow-up adjusted for baseline analysis pro-

duced very different results, neither of which seemed to re-

solve the ‘pre-existing’ differences in weight at baseline.

Using a causal perspective, we can recognize that this ‘par-

adox’ occurred for two distinct reasons: (i) follow-up ad-

justed for baseline analyses do not provide total causal

effects because the baseline outcome is a mediator and (ii)

change-score analyses do not provide meaningful causal-ef-

fect estimates in observational data. Although these points

have been individually recognized elsewhere,7,24 they have

not yet been explicitly recognized jointly.

Our conclusion that change scores do not estimate

causal effects in non-randomized contexts, including any

effect on ‘exogenous’ change, may explain the divergence

between our conclusions and those of Glymour et al.6

Glymour et al.’s study compares two change-score analy-

ses: one with and one without adjustment for a mediating

baseline outcome. However, as discussed above, change

score adjusted for baseline analyses are equivalent to fol-

low-up adjusted for baseline analyses,17,18 meaning that

the scenario in Glymour et al. mirrored Lord’s paradox

and gave similarly divergent results. Glymour et al. attrib-

uted this divergence to the introduction of measurement er-

ror when adjusting for the baseline outcome and

concluded that ‘change-score analyses without baseline ad-

justment provide unbiased causal effect estimates’.6 We

suspect that the difference instead reflects the differing esti-

mands, with only the change score adjusted for baseline

analyses returning a potentially meaningful estimand—the

direct causal effect.

Conclusion

Judgements regarding clinical significance and the funding

and delivery of treatment are dependent on obtaining

meaningful causal-effect estimates, and analyses of

outcome-change scores in non-randomized data do not

provide this. Moreover, such analyses may even suggest an

‘effect’ that is of the opposite sign to the total causal effect.

Observational studies that have analysed outcome-change

scores should therefore be viewed with caution and their

recommendations revisited.
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In their manuscript ‘Analyses of change scores do not estimate

causal effects in observational data’ Tennant et al.1 make a

blanket recommendation against using analyses of change

scores—defined as the change in an outcome measurement be-

tween two time points—in causal research. This advice would

handicap research on many questions related to the determi-

nants of growth, aging, disease onset, and disease progression.

Many questions in epidemiology and clinical research

address determinants of how health changes over time. As

Tennant et al. note, the preferred analysis to evaluate

determinants of change depends on both the substantive

situation and the study design. The choice of analysis is

best served by considering the causal estimands of interest,

the causal structure of the specific setting, and the assump-

tions under which alternative analyses would deliver unbi-

ased estimates. Tennant attempts to add to a large

literature, including much written about Lord’s paradox,

with work by Pearl2 of particular relevance. Here, in re-

sponse to Tennant et al., I make the following points:

i. If the exposure precedes the baseline value of the out-

come, multiple causal estimands may be of interest: (a)

the effect of exposure on change in the outcome (which

we will call the change estimand); (b) a direct effect of

exposure on the follow-up value of the outcome, if the
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