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Abstract 12 

The fault zone architecture of a thrust fault zone is critical for understanding the strain 13 

accommodation and structural evolution in contractional systems. The fault architecture 14 

is also important for understanding fluid flow behaviour both along and/or across thrust 15 

fault zones and for evaluating potential fault related compartmentalisation. Because 16 

meso-scale (1-100 m) structural features are normally beyond the seismic resolution, 17 

high-resolution outcrop in-situ mapping (5-10 cm resolution) was employed to study the 18 

deformation features of a thrust fault zone located in the Qaidam Basin, northeastern 19 

Tibetan Plateau. The excellent exposure of outcrops enables the detailed investigation of 20 

the Lenghu thrust fault zone and its architecture. The Lenghu thrust fault, a seismically 21 

resolvable fault with up to ~800m of throw, exhibits a large variation of fault architecture 22 

and strain distribution along the fault zone. Multiple structural domains with different levels 23 

of strain were observed and are associated with the fault throw distribution across the 24 

fault. Based on previously proposed models and high-resolution outcrop mapping, an up-25 

dated fault zone model was constructed to characterize the structural features and evo-26 

lution of the Lenghu thrust. The possible parameters that impact fault architecture and 27 
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strain distribution, including fault throw, bed thickness, lithology and mechanical hetero-28 

geneity were evaluated. Fault throw distributions and linkages control the strain distribu-29 

tion across a thrust fault zone, with local folding processes contributing important ele-30 

ments in Lenghu especially where more incompetent beds dominate the stratigraphy. 31 

Mechanical heterogeneity, induced by different layer stacking patterns, controls the de-32 

tails of the fault architecture in the thrust zone. The variations in bed thicknesses and 33 

mechanical property contrasts are likely to control the initial fault dips and fault/fracture 34 

density. Large fault throws are associated with wide strain accommodation and damage 35 

zones, although the relationship between the development and width of the fault zone 36 

with the throw accumulation remains to be assessed. By presenting the high resolution 37 

mapping of fault architecture this study provides an insight into the sub-seismic fault zone 38 

geometry and strain distributions possible in thrust faults and reviews their application to 39 

assessing fault zone behaviour. 40 

Keywords 41 

Detailed outcrop mapping, fault architecture, strain distribution, deformation mechanisms, 42 

mechanical stratigraphy 43 

1. Introduction 44 

The detailed meso-scale fault zone architecture controls the strain accommodation of 45 

faults and impacts on the fluid flow properties of the fault zones (e.g., Loveless et al., 46 

2011; Seebeck et al., 2014; Childs et al., 2017a; Childs et al., 2017b; Dimmen et al., 2017; 47 

Ferrill et al., 2017a; Ferrill et al., 2017b; Homberg et al., 2017; Peacock et al., 2017a; 48 

Peacock et al., 2017b; Cawood and Bond, 2018; Cooke et al., 2018; Pei et al., 2018). In 49 

order to understand the detailed fault architecture, previous studies have investigated the 50 

deformation features of a mechanically layered sequence of beds that are subject to de-51 

formation (e.g., Ferrill and Morris, 2003; Welch et al., 2009b; Ferrill et al., 2017a; Ferrill 52 
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et al., 2017b). The work shows that faults tend to form first in the brittle beds (e.g. sand-53 

stones or carbonates), while the weak/ductile beds (e.g. clay beds) can deform by distrib-54 

uted shearing to accommodate the overall strain (e.g., Eisenstadt and De Paor, 1987; 55 

Peacock and Sanderson, 1991; McGrath and Davison, 1995; Childs et al., 1996a; 56 

Schöpfer et al., 2006; Childs et al., 2009; Davies et al., 2012; Childs et al., 2017a; Childs 57 

et al., 2017b; Ferrill et al., 2017a; Ferrill et al., 2017b; Vasquez et al., 2018). Several 58 

quantitative dynamic models have also been presented (e.g., Egholm et al., 2008; Welch 59 

et al., 2009b; Homberg et al., 2017; Nicol et al., 2017; Peacock et al., 2017b) to analyse 60 

the mechanics of faulting and clay/shale smearing along faults in layered sand and 61 

shale/clay sequences (e.g., see also review in Grant, 2017). These models, from primarily 62 

extensional fault arrays, predict that the isolated initial faults formed within the brittle beds 63 

will grow until they eventually link up with increasing strain by propagating across the 64 

ductile intervals to create a complex fault zone architecture (Peacock and Sanderson, 65 

1991, 1992; Childs et al., 1996a; Walsh et al., 1999; Walsh et al., 2003; Soliva and 66 

Benedicto, 2004; van der Zee and Urai, 2005; Davies et al., 2012; Ferrill et al., 2012; 67 

Ferrill et al., 2014; Ferrill et al., 2017a; Ferrill et al., 2017b). Outcrop studies supporting 68 

these models of fault zone architecture include the Moab fault, in Utah (Davatzes and 69 

Aydin, 2005); the minor normal-fault arrays exposed within Gulf of Corinth rift sediments, 70 

Central Greece (Loveless et al., 2011); and faults in the multilayer systems in the South-71 

Eastern basin, France (Roche et al., 2012a; Roche et al., 2012b). Fault zone models 72 

defining the fault zone architecture have also been proposed in crystalline rocks (e.g., 73 

Caine et al., 1996); in poorly lithified sediments (e.g., Heynekamp et al., 1999; Rawling 74 

and Goodwin, 2003, 2006; Sosio De Rosa et al., 2018); within poorly consolidated sedi-75 

ments by (Loveless et al., 2011) and in transpressional faults (Choi et al., 2016). 76 
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However, most of these published studies have focused on the deformation features of 77 

extensional normal faults. There is still uncertainty on the detailed fault architecture de-78 

velopment of thrust faults, although some studies have illustrated the impact of mechan-79 

ical stacking on faulting deformation in thrust belts (Woodward and Rutherford Jr, 1989; 80 

Lloyd and Knipe, 1992; Woodward, 1992; Pfiffner, 1993; Cawood and Bond, 2018). In 81 

order to enhance the understanding of the evolution of fault architecture in thrust zones, 82 

we have studied the detailed (1m-10km scale) fault zone architectures of a thrust fault in 83 

the Lenghu fold-and-thrust belt of the Qaidam basin, northeastern Tibetan Plateau (e.g., 84 

Yin et al., 2008a; Yin et al., 2008b; Pei et al., 2014; Pei et al., 2017b). The fault architec-85 

ture and strain distribution across the Lenghu thrust fault were investigated using high-86 

resolution stratigraphic logging, satellite image interpretation and detailed outcrop map-87 

ping. The Lenghu thrust fault zone outcrops were separated into three general strain lev-88 

els (high, medium and low), related to the fault throw magnitudes and the amount of layer 89 

disruption. A more detailed thrust fault model was constructed to demonstrate the fault 90 

architecture and deformation processes. The effects of parameters that may influence 91 

the fault architecture and strain distribution (e.g., fault throw, bed thickness, stratigraphy, 92 

and mechanical heterogeneity) were then evaluated.  93 

2. Geological Setting 94 

The Qaidam basin, an oil/gas-bearing Mesozoic-Cenozoic, fault-bound, sedimentary 95 

basin, is located in the northern edge of the Tibetan Plateau (Fig. 1). Topographically, the 96 

Qaidam basin covers an area of ~ 120,000 km2 and has an average elevation of ~ 3 km 97 

(based on the SRTM DEM data). In map view, the Qaidam basin is a rhombic shaped 98 

basin, and its N-S width changes from ~ 150 km in the east to ~ 300 km in the west (Yin 99 

et al., 2007; Yin et al., 2008a; Yin et al., 2008b). Tectonically, the Qaidam basin is 100 

bounded by the Qilian Shan-Nan Shan thrust belt to the northeast (e.g. Molnar and 101 

Tapponnier, 1975; Burchfiel et al., 1989; Tapponnier et al., 1990; Meng et al., 2001; Yin 102 
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et al., 2008a), the left-lateral strike-slip Altyn Tagh fault to the northwest (e.g. Meyer et 103 

al., 1998; Cowgill et al., 2000; Cowgill et al., 2003; Cowgill et al., 2004a; Cowgill et al., 104 

2004b; Yue et al., 2004; Cowgill, 2007; Yin et al., 2007), and the Qimen Tagh-Eastern 105 

Kunlun thrust belt to the south and southwest (e.g. Chen et al., 1999; Meng et al., 2001; 106 

Jolivet et al., 2003; Yin et al., 2007; Craddock et al., 2012; Mao et al., 2016). The stratig-107 

raphy of the Qaidam basin is divided into three main packages, which are metamorphic 108 

basement, late Palaeozoic-Mesozoic sediments and Cenozoic sediments (e.g., Cui et al., 109 

1995; Deng et al., 1995; Gao et al., 1995; Xia et al., 2001). Based on outcrop observations, 110 

seismic sections, boreholes, terrestrial fossils, basin-scale stratigraphic correlation, fis-111 

sion-track and 40Ar/39Ar dating of detrital micas (Huo, 1990; Yang et al., 1992; Song and 112 

Wang, 1993; Huang et al., 1996; Xia et al., 2001; Qiu, 2002; Sun et al., 2005; Rieser et 113 

al., 2006a; Rieser et al., 2006b), a division and time assignments of Mesozoic to Cenozoic 114 

sediments have been proposed. The Qaidam basin contains thick Cenozoic sediments 115 

(E1+2-Q1, >54.8 Ma - present) up to 16 km thick and locally-developed thin Mesozoic sed-116 

iments (Jr, 206 - 65 Ma) (e.g., Huang et al., 1996; Yin et al., 2008b). The Qaidam basin 117 

contains different structural hierarchies: the first-order structure is a large-scale, regional 118 

structure composed of a series of tight anticlines and open synclines with associated 119 

faults extending for ~380kms along strike and to a maximum depth of up to ~16km. The 120 

second-order structures are regional scale folds/faults, including inverted normal faults in 121 

Mesozoic sediments and thrust faults in Jurassic-Eocene sediments that indicate a com-122 

plex geological history of the Qaidam basin (Wang et al., 2006a; Yin et al., 2008b). The 123 

central thickening of Cenozoic sediments suggests the Qaidam basin was controlled by 124 

NE-SW contraction associated with the uplift of the Tibetan Plateau (e.g., Molnar and 125 

Tapponnier, 1975; Xia et al., 2001; Pang et al., 2004; Wang and Burchfiel, 2004; Wang 126 

et al., 2006b; Zhou et al., 2006; Zhu et al., 2006). The detailed Qaidam basin strain history 127 

is complex and involves some along strike extension that may have been associated with 128 
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oblique slip on deep faults and/or the interference of propagating folds (Mao et al., 2016). 129 

The total shortening of the central Qaidam basin since 65 Ma is estimated as 20 ± 2 km, 130 

which leads to an estimated shortening rate of 0.30 ± 0.04 mm/yr (Zhou et al., 2006; Yin 131 

et al., 2008b; Liu et al., 2009).  132 

The Lenghu fold-thrust belt, located in the northern portion of the Qaidam basin, is a ~ 15 133 

km wide asymmetric anticline controlled by the underlying Lenghu thrust fault (Fig. 1), 134 

developed during the regional NE-SW oriented contraction (e.g., Chen et al., 2005; Wang 135 

et al., 2006a; Mao et al., 2016; Pei et al., 2017a; Pei et al., 2017b). The Lenghu thrust 136 

fault, with a fault throw ranging from ~300 m to ~800 m (Pei et al., 2017a), dips steeply 137 

SW at angles of 60 - 70° in the shallow subsurface, extending along strike NW to SE for 138 

~ 80 km. An anticline belt has developed in the hanging wall of the Lenghu thrust fault.  139 

The stratigraphy of the Lenghu fold-thrust belt is dominated by Neogene sediments, com-140 

prising primarily siltstone and sandstone (Fig. 1). The detailed stratigraphy of the Lenghu 141 

fold-thrust belt was logged on the ground along traverses that were positioned sub-per-142 

pendicular to the strike of the Lenghu fold-and-thrust belt (modified after Pei et al., 2017a; 143 

Pei et al., 2017b). The stratigraphy can be divided into four main packages (Fig. 2), (i) Sa, 144 

the oldest package, comprises fine sandstones and red/grey/mottled siltstones, with a 145 

thickness of ~ 170 m ( with individual bed thickness ranging from 1 m to ~10 m); (ii) Sb, 146 

the lower middle sequence, includes fine-medium sandstones interbedded with very a 147 

few thin red/grey siltstones and its thickness is ~ 440 m (with individual bed thickness 148 

ranging from 0.5 m to ~5 m); (iii) Sc, the upper middle package, is ~ 340 m thick (with 149 

individual bed thickness ranging from 0.5 m to ~20 m), shows a similar lithology to Sb, but 150 

with thin interbedded medium-coarse sandstones; (iv) Sd, the upper sequence, contains 151 

coarse-very coarse sandstones with a thickness exceeding 250 m (with individual bed 152 

thickness ranging from 0.5 m to ~25 m). Here the rocks finer than silty sandstone were 153 
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classified as incompetent layers, whereas rocks no finer than silty sandstone were clas-154 

sified as competent layers. This allows us to estimate the competent : incompetent ratios 155 

and level of mechanical heterogeneity of each individual package. These four packages 156 

represent different levels of mechanical heterogeneity (see Fig. 2): the Sa package has a 157 

high mechanical heterogeneity (competent : incompetent = 81% : 19%), the Sb package 158 

has a low mechanical heterogeneity (competent : incompetent = 100% : 0%), the Sc pack-159 

age has a medium to high mechanical heterogeneity (competent : incompetent = 99% : 160 

1%), and the Sd package has a medium mechanical heterogeneity (competent : incom-161 

petent = 97% : 3%). The excellent outcrops of the Lenghu thrust fault zone provide a 162 

good platform to assess the meso- and micro-scale structural features within the fault 163 

zones developed in these sequences. 164 

3. Data and Methods 165 

In this study, we integrated remote sensing data (e.g., Landsat images) and field obser-166 

vations (e.g., stratigraphy, fault system maps, and detailed maps of fault outcrops), to 167 

understand the detailed fault architecture and its controlling parameters. As meso-scale 168 

structural features are below seismic resolution, high-resolution landsat images were in-169 

terpretated with validation by stratigraphic logging (Fig. 2) and outcrop structural mapping 170 

(Fig. 3). The Lenghu thrust fault zone, e.g., F1 - F3 (Fig. 4) and F4 (Figs. 5-9), were 171 

mapped in detail to investigate the meso-scale structural features. Mapping included 172 

measurement of; fault azimuth/dip, fault throw, fault populations and linkages, and an 173 

assessment of the mechanical stratigraphy. The strain distribution across the fault zones 174 

was determined based on the level of estimated fault throws and the deformation of li-175 

thologies present. Representative thrust fault outcrops with different levels of deformation, 176 

fault throw, bed thickness, stratigraphy, mechanical heterogeneity were mapped in detail 177 

to understand the meso-scale fault architecture occurring along the thrust fault zone (Fig. 178 

10). The overall throw on the Lenghu thrust at the selected outcrops ranges from ~300 m 179 
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to ~800 m. Deformation responses of interbedded competent and incompetent layers 180 

were investigated based on the outcrop observations and measurements (Figs. 11). A 181 

more detailed static model of a thrust fault zone was then built, based on previous models 182 

and the high-resolution outcrop study reported here (Figs. 12). Schematic structural evo-183 

lutionary models of the different vertical stacking sequences were built to assess the con-184 

trol of stratigraphy and mechanical heterogeneity on fault development in the thrust fault 185 

zone (Figs. 13). 186 

4. Strain Distribution and Fault Architecture 187 

Landsat image interpretation and fault outcrop mapping were employed to evaluate the 188 

strain distribution (e.g., folding and faulting) along strike of the Lenghu fold-thrust belt 189 

(Fig. 2). The Lenghu thrust faults (red curves and plots in the stereonets in Fig. 3) devel-190 

oped from NE-SW shortening. An asymmetric anticline, with a steep or overturned NE 191 

fore-limb and relatively shallow dipping backlimb, is developed in the hanging wall of the 192 

Lenghu thrust. The topographic culmination (green triangle in Fig. 3) corresponds to the 193 

flat crest of the hanging wall anticline. The fault zone of the Lenghu fold-thrust belt is not 194 

a single fault plane in outcrop, but comprises a main thrust fault and several small splay 195 

faults. The main thrust fault, with a throw of up to 650 m, accounts for 85 – 90% of the 196 

overall fault throw of the fault zone (Pei et al., 2017a; Pei et al., 2018), although several 197 

splay faults are also observed in either the hanging wall or footwall. The splay faults, with 198 

throws of < 300 m, are not evenly distributed but concentrated along the hanging wall 199 

anticline crest and generate a number of fault bound lenses in the fault zone. Normal 200 

faults, with fault throws of up to tens of meters, form in the hanging wall (see the purple 201 

curves and plots in the stereonet in Fig. 3). The majority (~ 90%) of the minor structures 202 

develop in the fault zone and the hanging wall, suggesting that the strain is mostly con-203 

centrated in the hanging wall to the fault zone. In addition, the normal faults in the hanging 204 

wall are mostly concentrated in the silt-rich units (i.e., Sa - Sb, Fig. 3) present in the fold 205 
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crest area and near the main Lenghu thrust. The frequency of these structures decreases 206 

away from the main fault to the SW. The normal faults often terminate at the Lenghu 207 

Thrust (Fig. 3) and appear to represent a late fault extensional strain and extensional 208 

reactivation of the Lenghu Thrust where part of the normal fault activity is taken up on the 209 

main thrust (see Fig. 7 and Section 4.2). This along strike extension may be associated 210 

with local accommodation of oblique slip (e.g., Mao et al., 2016) or a regional E-W exten-211 

sion.  212 

4.1. Strain distribution and cross fault zones 213 

A set of well-exposed outcrops (approximate section size 50 m × 30 m) in the Lenghu 214 

field enables us to link the structures present on satellite images, at the > 100 m scale, 215 

with structures at a scale of < 100 m. Three well-exposed outcrops of the main thrust fault 216 

were mapped in detail (Fig. 4) to allow the generation of sections F1, F2 and F3 (see 217 

positions in Fig. 3). These three SW-NE traverses cut through the hanging wall of the 218 

main thrust fault ~ 50 m apart and are orientated sub-parallel with each other. The three 219 

outcrops all include the main fault and the adjacent damage zones of the Lenghu thrust 220 

fault where different sedimentary stacking sequences are present.   221 

The stereonets of measured fault strike/dip of the outcrops F1, F2 and F3 demonstrate a 222 

high-angle central fault zone and a splay thrust fault in the hanging wall, responding to 223 

the NE-SW shortening (Fig. 4). An anticline with a flat crest against the Lenghu thrust 224 

fault was developed in the hanging wall. Although the hanging wall folding clearly absorbs 225 

shortening, the overall strain is dominated by fault deformation (i.e., the Lenghu thrust 226 

fault and its splay faults). By restoring a regional seismic section, Pei et al. (2018) evalu-227 

ated the contribution of faulting and folding deformation to the overall strain in the Lenghu 228 

Fold-Thrust belt, which are 80% and 20%, respectively. The steeply dipping main fault 229 

zone contains disrupted and sheared stratigraphic units composed of foliated fault rocks 230 
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(primarily originally siltstones and subordinate sandstones), which accounts for the ma-231 

jority of the fault zone deformation in the central portion of the outcrop. The siltstones 232 

form vertical domains where they have been smeared into the fault zone from the hanging 233 

wall stratigraphy, while the sandstones are faulted and deformed by brittle deformation. 234 

The bedding within the central fault domains cannot be identified because of the intense 235 

deformation. The shearing into high strain fault zones generates silt smears and sand 236 

inclusions. The outcrops F1, F2 and F3 illustrate the lateral variation in the fault zone 237 

architecture along strike of the Lenghu fold-thrust belt. The strain distribution across the 238 

fault zone presents a similar pattern between the three outcrops (see the estimated strain 239 

curves in Fig. 4). The central portion of the fault zone mapped shows high strain defor-240 

mation, while the moderate and low strain deformation are unevenly distributed around 241 

this domain. 242 

4.2. Meso-scale fault architecture 243 

An additional outcrop, F4 (Fig. 5a), in the southern end of the Lenghu fold-thrust belt, 244 

(see position in Fig. 3) also demonstrates the detailed meso-scale fault architecture. 245 

Based on the regional section analysis by Pei et al. (2018), the fault throw on the main 246 

thrust fault here is 640 – 847 m, large enough to be imaged in a seismic reflection section. 247 

The Lenghu thrust at F4 is not a single-plane fault, but composed of several splay faults 248 

and domains with varying amounts of strain (Fig. 5). Fig. 5b demonstrates the well-ex-249 

posed outcrop of F4 and the structural interpretation. By integrating the stratigraphic se-250 

quences, Fig. 5c presents a composite of the detailed maps of five individual outcrops of 251 

splay faults; F4-1, F4-2, F4-3, F4-4 and F4-5. The outcrop F4-5 was not mapped in detail, 252 

because of the heavy weathering present. The outcrops F4-1 to F4-4 present different 253 

levels of fault throws and strain indicated by the amount of layer disruption. The uneven 254 

fault throw distribution (Fig. 5c) across the Lenghu thrust fault zone allows us to subdivide 255 

this fault zone into three structural domains with different levels of strain. These are (i). a 256 
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high strain domain: splay fault zone F4-4 (Fig. 6) and F4-5; (ii). a medium strain domain: 257 

splay fault zone F4-3 (Fig. 7); and (iii). a low strain domain: splay fault zones F4-1 (Fig. 258 

8) and F4-2 (Fig. 9). Each of these domains are reviewed separately below. 259 

(1) High strain domain: splay fault zone F4-4 260 

The high strain domain F4-4 (Fig. 6a), defined by intense deformation, well developed 261 

fault rocks and bed disruption, is directly in contact with the slightly deformed hanging 262 

wall (see position in Fig. 5). The stratigraphy of outcrop F4-4 fault is dominated by mottled 263 

fine-medium siltstones (see the stratigraphic column recorded in field, Fig. 6b, c). The F4-264 

4 presents a steeply dipping fault zone (70 - 80°) , ~ 5 m wide, with sheared lithologies of 265 

foliated fault rocks composed primarily of siltstones and some sandstones. This fault zone 266 

architecture is controlled by a series of NW-SE striking high-angle thrust faults with rela-267 

tive large throws (up to 650 m, based on stratigraphic correlation in Pei et al. (2018)), 268 

together with several SW-directed back thrust faults with smaller offsets (<1 m), demon-269 

strating NE-SW shortening (Fig. 6d). The siltstones form sheared domains apparently 270 

derived from both the hanging wall and the footwall. The sandstones are faulted and ex-271 

tended by discrete fault offsets to generate boudins in the attenuated layers. Although the 272 

fault rocks are variable in the fault zone of F4-4, the original bedding cannot be identified 273 

because of the intense shearing and faulting. In the northeast end of F4-4, the sub-hori-274 

zontal footwall bedding shows only slight deformation. A distinct slip surface separates 275 

the steeply dipping and sheared fault zone from the footwall stratigraphy, suggesting this 276 

slip surface forms the northeast boundary of the main fault zone F4-4. 277 

(2) Medium strain domain: splay fault zone F4-3 278 

The medium strain domain F4-3 (Fig. 7a) is based on the more continuous layer continuity 279 

compared to F4-4. F4-3 is located on the northeast side of the high strain domain F4-4 280 

(see position in Fig. 5). The stratigraphy of F4-3 is mainly composed of brown siltstones 281 

and grey sandstones (Fig. 7a, b). Thrust faults with measurable fault throws (5 cm - 5 m) 282 
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are well developed in this outcrop. The cumulative throw on these thrust faults is ~ 8 m. 283 

The bedding adjacent to the fault core dips steeply (> 50Ϩ) and is folded. However, in 284 

contrast with the high strain domain F4-4, the outcrop F4-3 contains low angle thrust 285 

faults (dips of 30 - 50°) that offset beds in a tightly folded zone. Through-go ing faults are 286 

developed in the thick homogeneous units (either the thick sandstone or the siltstone 287 

beds) in the top or bottom of the section) while fault segments and lenses are developed 288 

where the stratigraphic heterogeneity increases (e.g., interbedded thin sandstones and 289 

siltstones in the central section, Fig. 7c). The stereonets of the fault planes indicate NE-290 

SW shortening (Fig. 7d). 291 

(3) Low strain domain: splay fault zones F4-2 and F4-1 292 

A stack of small thrust faults representing a low strain domain, indicated by the small 293 

cumulative throw (<2m) and relatively low levels of layer folding, were also mapped in the 294 

profile of fault F4, i.e., F4-2 (Fig. 8a, b) and F4-1 (Fig. 9a, b).     295 

The maximum throw at F4-2 reaches up to 2 m within the imbricated thrust faults (Fig. 296 

8b). The outcrop F4-2 contains lithologies dominated by the upper siltstones and lower 297 

sandstones (Fig. 8c). More folding is observed in the silty layers (middle section) than in 298 

the sandy layers (lower section). This is likely to reflect the different mechanical properties 299 

of the stratigraphic sections with different silt/sand ratios. The strain (faulting and folding) 300 

decreases away from the largest throw thrust fault towards the edges of the outcrop and 301 

fault zone shown. The stereonets of the fault planes indicate NE-SW shortening (Fig. 8d). 302 

The thrust fault imbricates form at lower angles (20 - 40°) than in the high strain domain 303 

(e.g., F4-4 and F4-5) and the medium strain domain (e.g., F4-3). Fault splays are devel-304 

oped along the thrust faults, particularly where the fault propagates from sandstone layers 305 

to siltstone layers.  306 

A second low strain thrust fault F4-1, shown in Fig. 9b, is a small pop-up structure along 307 

a minor fold axis in the Lenghu thrust footwall. The outcrop is in the domain where beds 308 
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have low dips away from main thrust fault (Fig. 9b). The lower layers involved in F4-1 are 309 

primarily sandstones while the top layers are siltstone-dominated (Fig. 9c). F4-1 is a struc-310 

ture composed of a series of sub-parallel NW-SE trending thrust faults and SW back-311 

thrusting faults. The stereonets of the fault planes also indicate the NE-SW contraction  312 

(Fig. 9d). The silt-rich layers (upper section) of the fore-thrust show more folding than in 313 

the sandy layers (lower section), which is similar to that observed in the outcrop F4-2. 314 

Fault lenses were also developed along the thrust faults and back-thrusts, particularly 315 

where the fault propagates from sandy layers to silt-rich layers. 316 

Based on the outcrop mapping of the Fault F4, the deformation is primarily in the high 317 

strain fault domains F4-4/F4-5; the medium strain fault F4-3 is located in the intermediate 318 

hanging wall or footwall of the high strain splay faults; and the low strain splay fault zone 319 

domains, F4-1 and F4-2, are developed as isolated structures in the more external foot-320 

wall of the high strain fault (Fig. 10). In terms of the fault zone geometry, the high strain 321 

faults form steeper fault zones than the medium and low strain faults. In addition, the fault 322 

zone width and complexity appears higher where throws are larger, although the evolu-323 

tion of the fault zone width with changes in throw cannot be assessed from the limited 324 

number of outcrops described here. For example, the high strain fault F4-4 has a fault 325 

zone width of ~ 7 m (Fig. 6), whereas the low strain fault F4-2 and F4-1 form fault zones 326 

widths below 0.5 m (Figs. 8 and 9). 327 

5. Deformation Responses and Thrust Fault Model  328 

The strain distribution across fault zones and meso-scale fault architectures of the well-329 

exposed outcrops, together with the deformation responses associated with thrust fault-330 

ing are considered in this section. A thrust fault model is then presented for the detailed 331 

fault zone architecture evolution followed by an evaluation of the role of fault throw and 332 

stratigraphy on strain accommodation. 333 
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5.1. Deformation Responses 334 

Deformation responses to the thrust faulting are considered at the meso-scale and in-335 

clude an evaluation of the general strain level developed in the competent beds, the in-336 

competent beds, and the impact of the different mechanically layered sequences present 337 

in the study area. 338 

The competent beds, e.g., sandstones, are prone to brittle deformation, e.g., fractures or 339 

faults in the study area. The faults with minor offsets are considered to initiate early when 340 

the stress is applied. The through-going faults then develop later in the strain history. 341 

Although this is considered a continuous process, both the fractures/very low offset faults 342 

and the through-going faults with higher throws can be observed in a single outcrop. It is 343 

not possible to assign low strain features to an early time stage in the fault zone develop-344 

ment – they may have initiated at any stage in the fault zone evolution. The deformation 345 

of competent beds is linked to a very high fault propagation/slip ratio (see Erslev, 1991). 346 

The fault lenses can also form in the developing fault zone at different stages, either from 347 

fault linkage (Peacock and Sanderson, 1991; Childs et al., 1996a; Walsh et al., 2003; 348 

Lindanger et al., 2007; Childs et al., 2009; Ferrill et al., 2012) and/or from short-cut faulting 349 

(Knipe, 1985) or asperity reduction on the fault surface (Childs et al., 1996b; Walsh et al., 350 

1999; Ferrill et al., 2014; Ferrill et al., 2017a; Ferrill et al., 2017b). 351 

The incompetent beds, such as siltstones in the study area experience ductile defor-352 

mation, e.g., folding or smearing during faulting. The ductile folding appears to form in the 353 

incompetent beds at low strains and accommodates local shearing and more extensive 354 

smearing is then developed when increasing strain offsets the weak/ductile beds. The 355 

progress of folding and smearing can be linked to a relative low fault propagation/slip ratio. 356 

The folding and faulting process is well described by the trishear model (e.g., Erslev, 1991; 357 

Childs et al., 1996a; Childs et al., 1996b; Hardy and Ford, 1997; Childs et al., 2009; Pei 358 

et al., 2014) or the quadshear model (Welch et al., 2009a; Welch et al., 2009b), where 359 
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the strain is accommodated by upward and downward propagation of folding and even-360 

tually faulting into and through the incompetent layer sandwiched between other units 361 

(see also Freitag et al., 2017; Peacock et al., 2017b). At higher offsets continuous faulting 362 

through the incompetent (siltstone) layer, may allow the smearing to become discontinu-363 

ous which may leave some gouge patches along the slip surface, e.g., F4-4 (Fig. 6) (see 364 

also Welch et al., 2009a; Welch et al., 2009b).  365 

Stacked beds define mechanically layered sequences, e.g., interbedded sandstones and 366 

siltstones (Fig. 11a0, a1), where strength properties have evolved differently during the 367 

burial history. Previous studies describing the structural deformation of layered se-368 

quences include (e.g.Eisenstadt and De Paor, 1987; Withjack et al., 1990; Peacock and 369 

Sanderson, 1991; McGrath and Davison, 1995; Childs et al., 1996a; Schöpfer et al., 2006; 370 

Ferrill et al., 2017a; Ferrill et al., 2017b; Homberg et al., 2017; Nicol et al., 2017; Bubeck 371 

et al., 2018; Cawood and Bond, 2018; Vasquez et al., 2018). In the examples from the 372 

Lenghu Fold-Thrust Belt, when the mechanically layered sequence of beds are initially 373 

subject to stress, the fractures or small faults appear to form in the competent beds (e.g., 374 

sandstones in the Lenghu fold-thrust belt) (Fig. 11b0, b1), whereas the incompetent beds 375 

(e.g., siltstones in the Lenghu fold-thrust belt) are folded or sheared to accommodate the 376 

overall strain (Fig. 11c0, c1). As the strain increases, the fractures or small faults confined 377 

within the competent beds are considered to grow until they eventually propagate into the 378 

incompetent beds (Peacock and Sanderson, 1991; Childs et al., 1996a; Walsh et al., 379 

1999; Walsh et al., 2003), where siltstone folding and/or smearing can lead to gouge 380 

forming along the slip surfaces. 381 

 382 

5.2. Thrust fault model  383 

A basic model of fault zone development in the adjacent Junggar Basin was presented 384 

by Liu et al. (2017), where a conceptual model of reverse faults developed in igneous and 385 
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sedimentary rocks was based on integrating seismic, well logs and drilled cores. However, 386 

this model did not delineate the detailed meso-scale structural features present. Here we 387 

have reviewed the key features of the fault zones mapped in the Lenghu Thrust zone in 388 

Fig. 12 and use this to evaluate the controls on fault zone architecture. The Fig. 12 shows 389 

a fault zone formed in a mechanically layered sequence of beds. The yellow and brown 390 

units represent competent layers (e.g., sandstones) and incompetent layers (e.g., silt-391 

stones), respectively. The idealised fault zone is composed of a main slip fault, and a 392 

series of fault bound lenses, fault splays and isolated faults that make up the damage 393 

zone (see also reviews of fault damage zones in Wibberley et al., 2008; Choi et al., 2016; 394 

Peacock et al., 2017a). The amount of strain accommodated in the fault zones decreases 395 

in the damage zone away from the main slip surface.  396 

The majority of the fault throw is located in the most central position of the faulted section 397 

(Fig. 12), and is often confined by two discrete slip surfaces that are sub-parallel to each 398 

other (e.g., F4-4 in Fig. 6b). The common occurrence of two dominant slip surfaces was 399 

also recognised by previous studies (e.g., Childs et al., 1996b; Ferrill and Morris, 2003; 400 

Loveless et al., 2011; Liu et al., 2017; Nicol et al., 2017; Nicol and Childs, 2018; Xie et al., 401 

2018). The fault zone and fault rocks between these two discrete slip surfaces have the 402 

highest strain. The final geometry of the fault zone is dependent on the mechanical stra-403 

tigraphy of the sequence. For example, the number of faults accommodating the strain 404 

across the central fault zone between the main slip surfaces tends to increase in domains 405 

where more layers and more mechanical contrasts are present (e.g. see F4-4 in Fig. 5). 406 

In contrast, the incompetent layers (siltstones in this case) are likely to be incorporated 407 

as smears within the high strain zones (e.g. see the smeared grey unit H in Fig. 6, and 408 

especially layer B and D in Fig 7). The fault damage zones in sections with, what appear 409 

to be, higher mechanical contrasts tend to form domains with increased faulting (e.g. note 410 

faults present in Layers B and D above the thick sandstone unit in Fig. 7). The detailed 411 
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outcrop maps also suggest that the mechanical strength of a layered sequence is scale-412 

dependent. For example, although sandstone is prone to brittle deformation, a thin sand-413 

stone layer sandwiched by thick siltstone layers appears to have a limited impact on the 414 

bulk behaviour of the package and is likely to be entrained into the smear zone and follow 415 

the mechanical response of the dominant layers (e.g., the thin yellow sandstone layer 416 

sandwiched between the thick brown siltstone layers, upper section of F4-1, Fig. 9b). The 417 

degree of disruption of entrained sandstone beds therefore appears to depend on the 418 

embedded layer thickness and strength relative to the larger package. Sandstone beds 419 

may form faulted sand boudins, maintaining sand-sand continuity and defining a smear-420 

ing-like geometry in high strain zones, whereas thin sandstone beds may break down to 421 

form isolated boudins. 422 

The damage zones adjacent to the main slip surface (Fig. 12) are characterised by splay 423 

faults, fault bound lenses and folds, where the overall strain is lower than across the main 424 

fault surfaces. The splay faults and fault lenses appear to form within the competent beds 425 

(yellow), and then propagate into and through the incompetent beds (brown). The splay 426 

faults extend into the undeformed or slightly deformed beds, and creates more fault com-427 

plexity. The short-cut faults that remove local asperities on the developing slip surfaces 428 

can form new fault lenses, which increase the linkage of faults within the damage zone. 429 

The edges of the damage zone, away from the main slip surfaces (Fig. 12), with low 430 

strains are characterised by isolated faults or clusters of small throw faults; although the 431 

detailed linkage to other faults in 3D (out of the plane of exposure) is unknown.  432 

The mapped outcrops in the Lenghu fold-thrust belt expose thrust faults with different 433 

amounts of fault throw, ranging from 50 cm (e.g., F4-1) to hundreds of meters (e.g., F4-434 

4). Accordingly, multiple fault zones, with different individual widths (ranging from tens of 435 

centimetres to 5 meters) are developed across the traverses with a high total throw (see 436 

F4 in Fig. 10b) 437 
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 438 

6. Discussion 439 

Previous studies have highlighted that the generation and distribution of fault zone ge-440 

ometries and fault rocks are affected by several factors, e.g., the fault throw, lithology, 441 

deformation responses and internal fault structure (e.g., Hull, 1988; Blenkinsop, 1989; 442 

Loveless et al., 2011; Torabi and Berg, 2011; Pei et al., 2015; Childs et al., 2017a; Childs 443 

et al., 2017b; Ferrill et al., 2017b; Homberg et al., 2017). Based on the outcrop structures 444 

from the Lenghu fold-thrust belt, the effects of fault throw, bed thickness, host stratigraphy 445 

and mechanical stratigraphy on the thrust fault architecture are discussed here. 446 

Large displacements are associated with wider fault zones (see Childs et al., 2009). In 447 

the Lenghu fold-thrust belt, thrust faults (e.g., F4-4 with displacements of > 200 m) form 448 

fault zones of high strain that are > 5 m wide (Fig. 10b), whereas the low strain thrust 449 

faults (e.g., F4-1 with a cumulative displacement of ~ 1.5 m) have ~ 50 cm wide zones of 450 

concentrated deformation (Fig. 10b). This observation concurs with previous studies 451 

(e.g., Otsuki, 1978; Robertson, 1983; Hull, 1988; Evans, 1990; Knott, 1994; Childs et al., 452 

2009; Bastesen and Braathen, 2010; Davies et al., 2012; Childs et al., 2017a; Childs et 453 

al., 2017b; Ferrill et al., 2017a; Ferrill et al., 2017b), although the detailed relationship 454 

between the evolution of fault zone width (and fault rock width) with fault throw accumu-455 

lation are still to be clearly defined. The smearing of weak/ductile beds (e.g., siltstones) 456 

are observed along the high strain fault zones in the meso-scale outcrops of thrust faults 457 

(see Fig. 6 and layers in the SW part of 4-3 in Fig. 7). However, large fault throws tend to 458 

destroy the continuity of smears, although thin silt gouges may persist along the important 459 

slip planes (Brown et al., 2003; Childs et al., 2009; Grant, 2017). A number of tools have 460 

been proposed to predict the continuity of siltstone smears in fault zones. Examples of 461 

the tools include: Clay Smear Potential (CSP) (Bouvier et al., 1989; Fulljames et al., 1997), 462 

Shale Smear Factor (SSF) (Lindsay et al., 1993), Shale Gouge Ratio (SGR) (Yielding et 463 
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al., 1997), Scaled Shale Gouge Ratio (SSGR) (Ciftci et al., 2013) and more complex re-464 

distributions of smears (e.g., Grant, 2017).  465 

The term ‘mechanical stratigraphy’ in fracture and fault studies has been used to subdi-466 

vide layered sequences into discrete mechanical units defined by properties such as ten-467 

sile strength, elastic stiffness, brittleness and fracture mechanics properties (e.g., Corbett 468 

et al., 1987; Tyler and Finley, 1991; Peacock and Sanderson, 1992; Cooke, 1997; 469 

Cosgrove, 1999; Laubach et al., 2009; Ferrill et al., 2012; Delogkos et al., 2017; Ferrill et 470 

al., 2017b; Grant, 2017; Cooke et al., 2018). A mechanical stratigraphy with high hetero-471 

geneity may increase the complexity of the fault zone architecture in thrust systems  (e.g., 472 

Woodward and Rutherford Jr, 1989; Woodward, 1992; Pfiffner, 1993; Welch et al., 2009b; 473 

Davies et al., 2012; Cawood and Bond, 2018; Pei et al., 2018).  474 

For the deformation conditions experienced by the exposed Lenghu fold-thrust belt, the 475 

thrust fault architecture is influenced by the mechanical stratigraphy. We have con-476 

structed four sets of diagrams to demonstrate fault architecture and strain distribution that 477 

occur in different mechanical settings (Fig. 13a: thick competent layer; Fig. 13b: interbed-478 

ded thick competent layers and thin incompetent layers; Fig. 13c: interbedded thin com-479 

petent layers and thick incompetent layers; Fig. 13d: thick incompetent layer). In each 480 

case the competent : incompetent ratio varies (e.g., Ferrill and Morris, 2008; Ferrill et al., 481 

2017b). Concurring with the previous studies (e.g., Peacock and Sanderson, 1991; Childs 482 

et al., 1996a; Ellis et al., 2004; Schöpfer et al., 2006; Bose et al., 2009; Loveless et al., 483 

2011; Miller and Mitra, 2011; Yang et al., 2014; Homberg et al., 2017; Vasquez et al., 484 

2018), stratigraphy dominated by competent layers normally forms a strain zone evolving 485 

from fractures, small faults to through-going faults (Fig. 13a: competent : incompetent 486 

ratio = 100% : 0%), whereas stratigraphy dominated by incompetent layers experienced 487 

folding-dominated deformation in Lenghu (Fig. 13d: competent : incompetent ratio = 0% 488 
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: 100%). In these two end-member scenarios (Fig. 13a, d), the strain distribution is deter-489 

mined by the different mechanical properties of the stratigraphy. When the stratigraphy 490 

contains interbedded competent and incompetent layers, the final geometry of a de-491 

formed sequence is influenced by the mixture as well as the dominant mechanical layers 492 

of the stratigraphy. As illustrated in Fig 13, where the competent layers dominate the 493 

sequence a more brittle deformation behaviour (Fig. 13b: competent/incompetent ratio = 494 

90% : 10%) is expected. Where the incompetent layers dominate the sequence more 495 

ductile deformation features (Fig. 13c: competent : incompetent ratio = 10% : 90%) are 496 

present. In these two intermediate scenarios, the subordinate layers (e.g., incompetent 497 

layers 10% in Fig. 13b and competent layers 10% in Fig. 13c, respectively) will deform 498 

more passively to accommodate the strain distribution determined by the dominant layers 499 

(e.g., competent layers 90% in Fig. 13b and incompetent layers 90% in Fig. 13c, respec-500 

tively). For example, in F4-1 (see also top-right corner in Fig. 9), as the thin sandstone 501 

layer I (3 cm thick) is sandwiched between two thick siltstone layers H (8 cm thick) and J 502 

(15 cm thick), the overall deformation style is determined by the dominant mechanical 503 

layers H and J, rather than the subordinate layer I. However, the deformation behaviour 504 

of the stacking sequence often also has a scale-independency. Although the sequence 505 

of thin incompetent layers (i.e., ICL1, ICL2) sandwiched within thick competent layers (Fig. 506 

14a) can show an overall deformation behaviour similar to that of the sequence domi-507 

nated by strong layers (Fig. 13a), thin incompetent layers (i.e., ICL1, ICL2) may still form 508 

ductile folds at the layer-scale (Fig. 14a). For example, in F4-3 (Fig. 14c), the thin siltstone 509 

layer B, sandwiched in between the thick sandstone layers A and C, shows continuous 510 

smearing; although through-going faults are developed within the sequence dominated 511 

by competent layers. Similarly, the thin competent beds sandwiched within thick incom-512 

petent layers may accommodate strain at the layer-scale by local faulting (i.e., ICL1, ICL2, 513 

Fig. 14b). For example, in F4-1 (Fig. 14d, see also top-right corner in Fig. 9), the thin 514 
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sandstone layer I still illustrates faulting deformation, although the overall deformation 515 

response and strain of H-I-J sequence is dominated by folding deformation. 516 

Although the competent : incompetent ratio (Ferrill and Morris, 2008; Ferrill et al., 2017b) 517 

can help understanding the control of mechanical stratigraphy on fault zone architecture, 518 

we also note that (Tyler and Finley, 1991) highlight that variation in the fault zone archi-519 

tecture is possible for mechanical stratigraphies with identical competent : incompetent 520 

ratios. This reflects the different stacking patterns (e.g. layer thicknesses) possible in a 521 

stratigraphy that shows the same overall ratio. The detailed outcrop studies in the Lenghu 522 

fold-thrust belt enables us to observe variations in the fault architecture that reflects this 523 

situation. For example, the stratigraphy of the outcrop F4-3 (Fig. 7c) has a similar overall 524 

competent : incompetent ratio (68%) to that of the outcrop F4-1 (Fig. 9c) with a ratio of 525 

66%, but F4-3 appears to show a higher mechanical heterogeneity reflected by the more 526 

complex fault array. This is despite the likely impact of the higher strain and overall throw, 527 

in fault F4-3.  528 

The field-based outcrop analyses does suggest that high mechanical contrasts produce 529 

wider and complex fault arrays, whereas low mechanical contrasts generate more planar 530 

faults with narrow or absent damage zones. Examples from Lenghu include: a) the 531 

increased folding associated with the more incompetent sequence in the upper section 532 

of fault F4-1 (Fig. 9), and b) the increased fault population and fault lenses in the 533 

incompetent layers above the thick sand in Fault F4-3 (Fig. 7). This agrees with the 534 

published field-based studies (e.g., Loveless et al., 2011; Davies et al., 2012; Ferrill et 535 

al., 2014; Ferrill et al., 2017b; Nicol et al., 2017; Cawood and Bond, 2018). 536 

7. Conclusions 537 

The high-resolution, detailed, field observations reported from the Lenghu Thrust Belt 538 

allow the following conclusions on fault geometry: 539 
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1) A seismically resolvable thrust fault can exhibit multiple structural domains at the meso-540 

scale and variable complexity related to the fault throw distribution and strain accommo-541 

dation processes across the fault zone.  542 

2) Fault throw distributions and linkages control the strain distribution across the thrust 543 

fault zone, although local folding process contribute important elements in Lenghu espe-544 

cially where more incompetent beds dominate the stratigraphy. The variation in bed thick-545 

nesses and mechanical property contrasts are likely to control the initial fault dips and 546 

fault/fracture density. Large fault throws are associated with wide strain accommodation 547 

and damage zones, but the relationship between the development and width of the fault 548 

zone with the throw accumulation cannot be assessed from the outcrops studied.   549 

3) Mechanical heterogeneity, induced by different sediment stacking patterns, influences 550 

the fault architecture of the thrust fault zones studied (e.g., the location and generation of 551 

fault lenses, shear smearing, splay faults or fractures).  552 

 553 
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Figure Captions   564 

Figure 1. (a) Structural interpretation on SRTM elevation data of Qaidam basin and (b) 565 

geological map of the northern Qaidam basin (modified after Yin et al., 2008a; Pei et al., 566 

2017a). The Qaidam basin is an oil-bearing sedimentary basin developed associated with 567 

the uplift of the Tibetan Plateau. A series of NW-SE-trending folds and faults are devel-568 

oped in the basin. The study area is located in the NW-SE-trending Lenghu fold-thrust 569 

belt in the northern Qaidam basin, where a northeast-directing Lenghu thrust fault ac-570 

counts for the development of the hanging wall anticline. 571 

 572 

Figure 2. Field-based stratigraphic logging of the study area (modified after Pei et al., 573 

2017a; Pei et al., 2017b; Pei et al., 2018). The stratigraphy is dominated by middle Neo-574 

gene sediments, comprising primarily siltstones and sandstones. The lower portion of the 575 

N2-1 unit is silt-rich fine sandstones with high heterogeneity (Sa). The middle portion of the 576 

N2-1 unit is fine to medium sandstones with low heterogeneity (Sb). The top portion of the 577 

N2-1 unit contains medium to coarse sandstones with medium to high heterogeneity (Sc). 578 

The N2-2 unit is made up of coarse sandstones to conglomerates with medium heteroge-579 

neity (Sd). 580 

 581 

Figure 3. (a) Structural interpretation based on detailed field data integrating high-reso-582 

lution landsat image (see position in Fig. 1b). The hanging wall anticline, Lenghu thrust 583 

fault zone and minor faults/folds in both the hanging wall and footwall are interpreted. (b) 584 

Enlarged map showing the sites of four representative outcrops (see position in Fig. 3a), 585 

i.e., F1 - F4, used to analyse the detailed fault architecture and its controlling parameters 586 

in the Lenghu thrust-fold belt. The strain distribution of the fault outcrops was evaluated 587 

based on field mapping. 588 
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 589 

Figure 4. Detailed outcrop sections of F1 (a), F2 (b) and F3 (c) showing the lateral struc-590 

tural variation in the fault zone architecture along strike of the Lenghu thrust fault zone 591 

(see position in Fig. 3b) (modified after Pei et al., 2018). The strain distribution of these 592 

three sections are estimated from field observations. The strain distribution across the 593 

fault zone illustrates a similar pattern between the three outcrops (see the estimated 594 

strain curves). The siltstones form vertical domains where they have been smeared into 595 

the fault zone from the hanging wall stratigraphy, while the sandstones are faulted and 596 

deformed by brittle deformation. The bedding within the central fault domains cannot be 597 

identified because of the intense deformation. The shearing into high strain fault zones 598 

generates silt smears and sand inclusions.  599 

 600 

Figure 5. Detailed fault architecture of the outcrop F4 in the Lenghu thrust fault zone (see 601 

position in Fig. 3b): (a) field photo of the fault outcrop F4 and (b) its structural interpreta-602 

tion; (c) detailed mapping of F4 illustrating the structural domains with different levels of 603 

strain. Note 1: the scale is not even across the field photo because of the perspective, 604 

although an estimated approximate scale is provided. Note 2: the beds dipping in F4-5 605 

looks steeper in the photograph than the real dip because of perspective views. 606 

 607 

Figure 6. (a) Field photo and (b) detailed outcrop map of the high strain domain F4-4 in 608 

the F4 (see detailed position of F4-4 in outcrop F4 in Fig. 5). (c) The F4-4 fault zone 609 

stratigraphy with a competent : incompetent percentage ratio of 58% : 42%. (d) A stere-610 

ogram of structural features showing the NW-striking thrust faults. 611 

 612 

Figure 7. (a) Field photo and (b) detailed outcrop map of the medium strain domain F4-613 

3 in the F4 (see detailed position of F4-3 in outcrop F4 in Fig. 5). (c) The F4-3 faul zone 614 
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stratigraphy with a competent : incompetent percentage ratio of 68% : 32%. (d) A stere-615 

ogram of structural features showing the NE-directing thrust faults. 616 

 617 

Figure 8. (a) Field photo and (b) detailed outcrop map of the low strain domain F4-2 in 618 

the F4 (see detailed position of F4-2 in outcrop F4 in Fig. 5). (c) The F4-2 fault zone 619 

stratigraphy with a competent : incompetent percentage ratio of  55% : 45%. (d) A stere-620 

ogram of structural features showing the NE-directing thrust faults. 621 

 622 

Figure 9. (a) Field photo  and (b) detailed outcrop map of the low strain domain F4-1 in 623 

the F4 (see detailed position of F4-1 in outcrop F4 in Fig. 5). (c) The F4-1 fault zone 624 

stratigraphy with a competent : incompetent percentage ratio of 66% : 34%. (d) A stere-625 

ogram of structural features showing the NE-directing thrust faults together with SW-di-626 

recting back thrust faults (d). 627 

 628 

Figure 10. (a) Field photo of the fault outcrop F4 and its structural interpretation; (b) es-629 

timated approximate throw and strain distribution cross the fault zone. Note 1: the scale 630 

is not even across the field photo because of perspective, although an estimated approx-631 

imate scale is provided. Note 2: the beds dipping in F4-5 looks steeper in the photograph 632 

than the real dip because of the perspective views. 633 

 634 

Figure 11. Models delineating the fault kinematics for incompetent beds and competent 635 

beds within the interbedded stratigraphy. The central figures demonstrate the kinematics 636 

from the initiation of deformation to a later stage with increasing fault throw (a0ėa1). The 637 

top figures are details capturing the faulting kinematics of a competent layer sandwiched 638 

between two incompetent layers (b0ėb1). The bottom figures are details capturing the 639 
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faulting kinematics of an incompetent layer sandwiched between two competent layers 640 

(c0ėc1). When the mechanically layered sequence of beds is initially deformed, the frac-641 

tures or small faults (i.e., f1, f2 and f3) are modelled to initially form in the competent beds 642 

A, C and E (e.g., sandstones in the Lenghu fold-thrust belt) whereas the incompetent 643 

beds B and D (e.g., siltstones in the Lenghu fold-thrust belt) are folded or sheared to 644 

accommodate the overall strain. As the fault zone throw increases, the fractures or small 645 

faults confined within the competent beds will grow until they eventually propagate into 646 

the incompetent beds (e.g., f2 within layer C in b0 and b1), forming smearing along the 647 

slip surfaces. A through-going fault will be formed when the propagating faults (e.g., f1 648 

and f2 in c0 and c1) are linked together. The propagation of small faults from competent 649 

beds into the incompetent beds is well described by the trishear algorithm (Erslev, 1991). 650 

However, as the incompetent beds are sandwiched by the competent beds (c1), there 651 

may be a divergent trishear zone developed (i.e., in front of the upper tip of f1 and lower 652 

tip of f2) within the incompetent beds (i.e., A and C layers) during strain propagation from 653 

both the upper and lower competent beds (i.e., B layers). See also the Quadshear model 654 

of Welch et al. (2009b). 655 

 656 

Figure 12. A review of thrust fault zone elements: central through-going faults (TGFs) 657 

and damage zone (DZ). The central through-going faults accommodate a high percent-658 

age of the fault zone strain, while in the damage zone strain decreases away from the 659 

central fault zone (see the approximate strain distribution profile below the sketch). The 660 

majority of the fault throw is located in the most central position of the faulted section, and 661 

is often defined by two discrete slip surfaces that are sub-parallel to each other. The 662 

damage zone adjacent to the main slip, through-going faults are characterised by splay 663 

faults, fault bound lenses and folds, where the overall strain is lower than across the main 664 

slip surfaces. 665 
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 666 

Figure 13. Schematic models delineating the control of stratigraphy on fault architecture 667 

and strain distribution: (a) thick competent layer (competent layers 100%), (b) competent 668 

layers dominated sequence (competent : incompetent ratio = 90% : 10%), (c) incompe-669 

tent layers dominated sequence (competent : incompetent ratio = 10% : 90%), and (d) 670 

thick incompetent layer (incompetent layers 100%). Stratigraphy dominated by compe-671 

tent layers normally forms a strain zone evolving from fractures, small faults to through-672 

going faults, e.g., (a), whereas stratigraphy dominated by incompetent layers often expe-673 

riences folding-dominated deformation in Lenghu, e.g., (d). See text for detailed discus-674 

sion. 675 

 676 

Figure 14. Links between schematic models and field observations. (a) Sequences dom-677 

inated by competent layers: larger scale faulting deformation versus local folding defor-678 

mation in thin ICLs (incompetent layers) (see also Fig. 13b). (b) Sequences dominated 679 

by incompetent layers: larger scale folding deformation versus local faulting deformation 680 

in thin CLs (competent layers) (see also Fig. 13c). (c) Portion of F4-3 (see also Fig. 7), 681 

illustrating an example of a thin siltstone layer, B, sandwiched between thick sandstone 682 

layers, A and C, that shows continuous smearing, although through-going faults are de-683 

veloped. This corresponds to the situation shown  in (14a).  (d) Portion of F4-1 (see also 684 

Fig. 9), illustrating an example of a thin sandstone layer, I, sandwiched between thick 685 

siltstone layers H and J (corresponding to (14b)), that shows descrete faulting in I, with 686 

the faulted sandstone forming an anticline geometry. 687 

 688 

  689 
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