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Abstract12

1. Resource selection analysis (RSA) seeks to understand how spatial abundance covaries with environ-13

mental features. By combining RSA with movement, step selection analysis (SSA) has helped uncover14

the mechanisms behind animal relocations, thereby giving insight into the movement decisions underly-15

ing spatial patterns. However, SSA typically assumes that at each observed location, an animal makes16

a ‘selection’ of the next observed location. This conflates observation with behavioural mechanism and17

does not account for decisions occurring at any other time along the animal’s path.18

19

2. To address this, we introduce a continuous time framework for resource selection. It is based on20

a switching Ornstein-Uhlenbeck (OU) model, parameterised by Bayesian Monte Carlo techniques. Such21

OU models have been used successfully to identify switches in movement behaviour, but hitherto not22

combined with resource selection. We test our inference procedure on simulated paths, representing both23

migratory movement (where landscape quality varies according to season) and foraging with depletion24

and renewal of resources (where the variation is due to past locations of the animals). We apply our25

framework to location data of migrating mule deer (Odocoileus hemionus) to shed light on the drivers of26

migratory decisions.27

28

3. In a wide variety of simulated situations, our inference procedure returns reliable estimations of29

the parameter values, including the extent to which animals trade-off resource quality and travel dis-30

tance (within 95% posterior intervals for the vast majority of cases). When applied to the mule deer data,31

our model reveals some individual variation in parameter values. Nevertheless, the migratory decisions32

of most individuals are well-described by a model that accounts for the cost of moving and the difference33

between instantaneous change of vegetation quality at source and target patches.34

35

4. We have introduced a technique for inferring the resource-driven decisions behind animal movement36

that accounts for the fact that these decisions may take place at any point along a path, not just when the37

animal’s location is known. This removes an oft-acknowledged but hitherto little-addressed shortcom-38

ing of stepwise movement models. Our work is of key importance in understanding how environmental39

features drive movement decisions and, as a consequence, space use patterns.40

1 Introduction41

Resource selection is a fundamental tool for understanding the drivers behind spatial distributions of42

animals (Manly et al. (2002)). Applications not only include estimation of the distribution and abun-43

dance of species, but also prediction of species diversity, representation of interactions of species, and44
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identification of key spatial features of the landscape (e.g. Chetkiewicz & Boyce (2009), Lendrum et al.45

(2012), Boyce (2006), McLoughlin et al. (2010)). Furthermore, the role of movement as a primary cause46

of spatial patterning is becoming increasingly evident (Cagnacci et al. (2010), Thurfjell et al. (2014))47

and formally integrated into the resource selection framework (Moorcroft & Barnett (2008), Avgar et al.48

(2016)). This has diverse applications including home range formation (Merkle et al. (2017)), compe-49

tition (Vanak et al. (2013)), disease spread (Merkle et al. (2018)), territorial interactions (Potts et al.50

(2014b)), and predator-prey dynamics (Bastille-Rousseau et al. (2015)).51

Step Selection Analysis (SSA) has provided the main tool for incorporating movement into resource52

selection (Fortin et al. (2005), Forester et al. (2009), Thurfjell et al. (2014)). It relies on comparing move-53

ment between two successive location fixes (called a ‘step’) with various possible steps potentially avail-54

able to the animal. As well as explicitly incorporating movement into the resource selection framework,55

SSA has recently been extended to estimate movement and resource selection parameters simultaneously,56

termed integrated step selection analysis (iSSA; Avgar et al. (2016)). The iSSA procedure corrects for57

any error implicit in the choice of distribution for ‘available’ steps, and can be used to parameterise a58

mechanistic model of animal movement. In addition, appropriate modelling of resource selection at the59

level of the individual step can link it to the long-term utilisation distribution (Michelot et al. (2018)).60

However, both SSA and iSSA implicitly assume that movement decisions occur on the same scale as61

the observation frequency (McClintock et al. (2014)), or the scale of a regular subsample of the observa-62

tions (Potts et al. (2014c)). These assumptions may result in misleading interpretations of inferences from63

data, and in particular make it tricky to work with irregularly sampled data (McClintock et al. (2014),64

Thurfjell et al. (2014)). To avoid these issues, it makes sense to model the animal path as a continuous65

track, where decisions may have occurred at any point along that track, then fit this continuous-time66

model to the data.67

Continuous-time modelling frameworks for animal movement have existed for some time. An early68

example is that of Blackwell (1997). There, a switching Ornstein-Uhlenbeck (OU) process was proposed,69

which is flexible enough to capture a wide range of animal movement patterns, and has thus gained70

increasing popularity over the years. It has the advantage of being amenable to rigorous and efficient71

parameterisation by data using Bayesian Monte Carlo methods (Blackwell (2003)) and has recently been72

extended to incorporate spatial heterogeneity (Harris & Blackwell (2013), Blackwell et al. (2016)). This73

opens the question as to whether it can be combined with resource selection analysis (RSA) to model74

animal decisions as they move in continuous time.75

Several continuous-time models have already been developed to incorporate resource selection. John-76

son et al. (2008) was one of the first such studies. This study proposed various possible models for the77

distribution of a location along path, conditional on the knowledge of all previous locations. However,78

although the models themselves were defined in continuous time, they all model movement from one79
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measured location to the next, so do not account for the possibility of behavioural changes between80

location fixes.81

On the other hand, the approach of Hanks et al. (2015) does deal with between-observation be-82

havioural switches. This method discretises space into a lattice and models movement as jumps between83

neighbouring lattice sites, building on previous work by Hooten et al. (2010) and Hanks et al. (2011).84

Behavioual switches are possible at any nearest-neighbour jump, not just those that correspond to mea-85

sured locations. However, the implicit assumption of the model in Hanks et al. (2015) is that the spatial86

scale of discretisation represents the scale of behavioural decisions. In reality, animal movement decisions87

may play out on multiple scales, with localised considerations (e.g. moving around a small obstacle or88

over a fence) balanced with longer-term goals (e.g. moving to the next foraging patch or continuing89

a migratory journey). Furthermore, this technique only considers movement in response to proximate90

resources (e.g. a local resource gradient). In reality, animals may be attracted to resources that are quite91

some distance away, due to long-term memory processes. A continuous-time framework is needed that92

is flexible enough to account for such a variation of possibilities.93

Here, we extend the switching OU framework of Blackwell et al. (2016) to incorporate resource94

selection in two separate ways. The first considers resources as objects that have an attractive pull95

on animals, which may take place over a considerable spatial scale (e.g. in migratory cases). If it is96

beneficial to move to a new area to gain access to better resources, taking into consideration the cost of97

moving there, then the animal becomes attracted to that area. In mathematical terms, this corresponds98

to a switch in the OU process. Otherwise, the animal stays in the vicinity of its current position. At99

any point, the best possible attractor on the landscape could switch, causing the animal to change its100

movement mode. We consider cases both where the landscape undergoes seasonal changes and where101

the quality of resources depends upon the past positions of the animal (through resource depletion and102

renewal).103

The second modification is implemented separately from the first and takes a rather different ap-104

proach to modelling animal movement. Here, rather than assuming the animal assesses the whole land-105

scape and moves towards the most desirable goal, we assume that the animal considers only proximate106

aspects of the terrain and, as such, has a tendency to move up the resource gradient. This is similar to107

Hanks et al. (2015) but framed within a switching random walk framework. In doing this, the animal’s108

path does not need to be discretised (as in Hanks et al. (2015)). However, by using efficient Bayesian109

Monte Carlo methods developed over a series of papers (Blackwell (2003), Harris & Blackwell (2013),110

Blackwell et al. (2016)), inference is still possible within a reasonable time-frame. We compare our frame-111

work with that of Hanks et al. (2015), testing for both speed and precision of inference by application112

to paths simulated from the model proposed in this paper.113

We tested our modelling and inference method on both simulated and real trajectories. The simu-114
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lated trajectories model (a) migratory behaviour, (b) movement due to resource depletion and renewal115

in both patchy and lattice landscapes, and (c) resource-gradient following in a fixed (lattice) landscape.116

Real trajectories were measured from mule deer (Odocoileus hemionus) migrations in the Greater Yel-117

lowstone Ecosystem. Our simulation analysis demonstrates the ability of our method to infer parameters118

with reasonable accuracy. The application to mule deer data demonstrates that migratory timings may119

be explained by a simple trade-off between resource quality and travel distance. We include, in the Sup-120

porting Information, code for performing inference and simulating all trajectories used in this manuscript121

(instructions are found in Supplementary Appendix H).122

2 Methods123

2.1 Modelling framework124

In this section, we model movements in response to the environment in two scenarios. In the first125

situation, we assume that animals have complete knowledge of the environment and bias their movements126

towards the most attractive location in space. Then we consider the other extreme, where animals only127

have information about local conditions.128

2.1.1 Movements in response to resource change in the whole landscape129

A commonly used continuous-time movement model is the OU process, which describes a biased random130

walk with drift towards an attraction centre. The general formalism is given as follows131

dx(t) = B(x(t)− µ(t))dt+ ΛdW(t). (1)

Here, x(t) is the animal’s location at time t in n-dimensional space, µ(t) is the attraction centre at time132

t, B is an n by n matrix controlling the tendency towards the attraction centre, Λ is the covariance133

matrix, and W(t) is an n-dimensional Wiener process. Under the process given by Equation (1), the134

probability of an animal being at location x(t+ τ) at time t+ τ , given that it was at x(t) at time t, is135

x(t+ τ)|x(t) ∼ MVN(µ(t) + eBτ (x(t)− µ(t)),Λ− eBτΛeB
′τ ), (2)

where τ is a (small) time interval and MVN stands for “Multi-variate normal”.136

Throughout this paper, we work in two dimensions, so that B and Λ are 2×2 matrices. Furthermore,137

we assume B = −bI and Λ = vI with b, v > 0 and I the 2 × 2 identity matrix, so that there is138

no correlation between the horizontal and vertical coordinates. Larger b leads to a stronger tendency139

toward the attraction centre and faster approach to the attraction centre when far away from it, while140
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larger v induces a wider range of wandering near the central point. Hence we refer to b as the drift141

coefficient and v the diffusive coefficient.142

To determine the attraction centre µ(t) in the OU process in Equation (2), a function is incorporated143

into our modelling framework to evaluate the attractiveness of a location or an item in space. For this,144

we choose a commonly used functional form known as a resource selection function (RSF) and defined145

as follows (Boyce et al. (2002))146

w(x) = exp(β1z1(x) + β2z2(x) + · · ·+ βkzk(x)), (3)

where x is a location in space, z(x) = (z1(x), · · · , zk(x)) is the vector of predictor covariates, consisting147

of possible factors affecting selection decision – for example, some kind of vegetation, predator pressure,148

distance to a road, etc. (Manly et al. (2002)) – and β1, · · · , βk are coefficients representing the relative149

weight of each factor. We assume that the animal has complete knowledge of the available space and150

decides its destination µ(t) at time t by comparing the attractiveness of all potential target locations,151

given by Equation (3) (cf. Avgar et al. (2017)), then moves towards the most attractive destination.152

That is,153

µ(t) = µi where w(µi) = max
j∈Ω

w(µj). (4)

Here, µi is the centre of a resource unit, which may be a patch or an item, and Ω indexes the collection154

of all resource units, which is finite. In most typical situations, µ(t) will be unique, because Equation155

(3) will normally involve continuous covariates, and so each resource unit µj is likely to have a different156

value of w(µj) associated to it. In this study, we only consider such situations, so there is never an157

arbitrary choice between resource units of precisely equivalent quality.158

2.1.2 Movements following local resource gradient159

The OU model described above assumes the animal has complete knowledge of the landscape when160

making a decision. At the other extreme, we might assume that the animal only has proximate knowledge161

of the landscape. For this, we model animals as following the local resource gradient. This can be162

described by a process x(t) satisfying a stochastic differential equation with constant drift term (Preisler163

et al. (2004))164

dx(t) = αρ(t)dt+ΣdW(t), (5)

where α is a governing the drift speed, ρ(t) is a unit vector representing the direction of drift, Σ is165

an n × n matrix controlling the diffusive aspects of movement. Here we use a two-dimensional (Euler-166

Maruyama) approximation of the conditional distribution of the process defined by Equation (5), which167
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is valid for small τ . This is given as follows168

x(t+ τ)|x(t) ∼ MVN(x(t) + αρ(t)τ,Στ), (6)

where x(t) is the animal’s position at time t. We assume Σ = σ2I where I the 2× 2 identity matrix and169

σ is a scalar constant. The model in Equation (6) contrasts with that of Equation (2) in that the former170

assumes animals respond to a local resource gradient, whereas the latter models animals as choosing a171

target location from the landscape to move towards.172

Figure 1: Panel (a) illustrates the patch selection model (Equations 1-4). Assume the
animal is at the red star. In this simplified illustration, there are just three possible
patches it can choose to move towards, A1, A2, and A3 (in real situations there may be
many more). The animal’s choice is determined by both the patch quality, which may
vary over time, and the distance to the patch. Panel (b) gives example curves of how
the patch quality of each patch may vary over time, each in the format of Equation (11).
Panel (c) illustrates the gradient following model (Equations 5-8). The animal is located
at position x(t) at time t. Patches AN , AW , AE and AS are the adjacent squares to
the patch where the animal is located. N , W , E, S stand for the north, west, east and
south respectively. When calculating the resource gradient in the nearby area of x(t), the
resource qualities in the four adjacent patches are considered, which means the animal
only assesses resource qualities in neighbouring areas to determine its moving direction.

We assume that animals move in a rasterised landscape, that is, one subdivided into a square or173

rectangular lattice. Hereafter we will consider a square lattice for simplicity. We determine the drift174

direction ρ(t) in Equation (6) by considering the resource qualities in the four adjacent squares (North,175

East, South, West) to the one where the animal is located. Here, the resource gradient is given as follows176

(cf. Preisler et al. (2013)):177

∇w(x(t)) :=

(

w(AE)− w(AW )

∆x
,
w(AN )− w(AS)

∆y

)

, (7)
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where x(t) is the animal’s position at time t, w(AE), w(AW ), w(AN ), and w(AS) are the resource178

selection weightings (Equation 3) for the adjacent patches AE , AW , AN and AS in the east, west, north,179

and south respectively (Figure 1). We use ∆x to denote the distance between the centres of patches AE180

and AW while ∆y is the distance from the north patch to the south patch. Notice that, whilst there are181

also diagonally adjacent squares (NW, NE, SE, SW), it is sufficient to use just four to define the resource182

gradient, as shown in Equation (7). Then the vector ρ(t) in Equation (6) is defined as the normalised183

vector of ∇w(x),184

ρ(t) =
∇w(x(t))

|∇w(x(t))|
. (8)

Note that we model our drift speed as constant (α) rather than letting it vary with the magnitude of185

∇w(x). This means that the average speed of the animal across a time interval τ is kept constant, rather186

than being allowed to become arbitrarily large. However, the model could easily be adjusted so that187

ρ(t) = ∇w(x) if the user believes that to be more appropriate for their particular study species.188

2.1.3 Locations between observations189

In each of the above movement models, we assume that the animal can potentially make a decision190

to reassess its movement state at any instant in continuous time. To represent this, reassessments191

occur according to a Poisson point process with rate κ, as in Blackwell et al. (2016) (see Appendix192

A in Supporting Information). This process means that the time intervals between reassessments are193

exponentially distributed with parameter κ. At each reassessment time, we deterministically decide the194

movement state, which is defined by either the attraction centre µ(t) in Equation (2) or direction ρ(t) in195

Equation (6). The movement state is decided by comparing the relative quality of resources in different196

patches, using Equations (3-4), or calculating the resource gradient using Equation (7).197

The fact that the choice of target location is deterministic, based on a complex evaluation of the198

environment, contrasts with the stochastic switching of Blackwell et al. (2016), where the transition199

rates are relatively simple functions of habitat and time. One could, in principle, extend our model so200

that animals choose an attraction centre with a probability, based on the relative quality of each site.201

However, this introduces extra model complexity that may not increase realism, so we have chosen to202

model a deterministic switching process for simplicity.203

2.2 Inference by Markov chain Monte Carlo algorithm204

Having constructed the modelling frameworks, we use a Markov chain Monte Carlo (MCMC) algorithm,205

based on Blackwell et al. (2016), to parameterise the models from movement data. For details of the206

algorithm, see Appendix A in Supporting Information.207

The MCMC algorithm comprises two main parts, one of which updates the movement trajectory by208
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simulation and the other updates parameters. To take into consideration the fact that animals can make209

a decision to move at any time, we augment the observed data with points where the animal might have210

changed its destination. In every iteration, we select an interval from the observed data and generate211

a simulated path consisting of points where the switches of destinations might happen during the time212

of the selected interval. Subsequently, we compare this simulated path with the selected interval in213

existing trajectory by calculating the Hastings ratio, conditional on observed data points. After deciding214

whether to accept the proposal trajectory or not, we update the parameters conditional on the accepted215

trajectory (see Blackwell et al. (2016) for details).216

2.3 Simulations217

We test the MCMC algorithm on four classes of movement models. The first models migration, so218

we assume that the animal moves in response to seasonally changing resource qualities. In the second219

and third types of model, the resource quality depletes and renews according to the animal’s foraging220

patterns. The last is a gradient-following model, where the animal only compares resource qualities in221

the surrounding area to decide its direction.222

2.3.1 Migration model223

The first test of our inference method (Section 2.2) uses a very simple model of migration, whereby the224

decision to migrate is a trade-off between the quality of a patch, which may be a destination range or225

a stopover site, and how far it is away from the animal. Although migratory routes tend to be fixed,226

the decision as to when to move to the next patch is not. Rather it is determined by how the quality227

of patches over the migratory route are changing over time (e.g. due to green-up). We hypothesise that228

movement to the next patch will occur when the animal will make sufficient foraging gains from the229

next patch to make the movement worth while. The decision to migrate is thus caused by patch quality230

varying over time, so we use an adjusted form of Equation (3), which includes time as a variable:231

w(µ, t) = exp(β1R(µ, t) + β2|µ− x(t)|), (9)

where z(µ, t) = (R(µ, t), |µ−x(t)|) is the vector of predictor covariates with R(µ, t) the resource quality232

in a potential target location µ and x(t) the animal’s position at time t. We assume β1 > 0 and β2 < 0,233

representing the animal’s inclination for resources and aversion to distant places. Note that a similar234

quality/distance trade-off for patch selection was also used by Mitchell & Powell (2004) in the slightly235

different context of modelling home range formation.236

In practice, since our aim is to use the patch that maximises Equation (9) as the movement centre,237

comparing the value of Equation (9) is equivalent to comparing a constant multiple of its exponent.238

9



Moreover, we can only infer β1/β2 from data instead of inferring β1 and β2 simultaneously, because any239

proposed values for β1 and β2 with ratio close to β1/β2 will lead to the same attraction centre. Therefore,240

it suffices to consider a simplified version of Equation (9) as follows241

w(µ, t) = exp(βR(µ, t)− |µ− x(t)|), (10)

where β = −β1/β2 is termed the resource coefficient.242

Our model landscape consists of N non-overlapping patches, denoted by Ai, i ∈ {1, · · · , N}. The243

centre of patch Ai is denoted by µi = (xi, yi) with y1 ≤ y2 · · · ≤ yN , ordered by latitude. We assume the244

resource quality changes periodically over the year and shifts corresponding to the latitude. The resource245

quality R(Ai, t) in patch Ai at time t (Julian day) is assumed to be a cosine function with period 365246

days and shift controlled by (yi − y1)/(yN − y1), the relative latitude difference:247

R(Ai, t) = a cos

(

2π

365
t−

yi − y1
yN − y1

π

)

+m, (11)

where a and m are the amplitude and mean of resource quality and yi is the y-coordinate of the centre248

of Ai (Figure 1b).249

We generated migration trajectories by sampling from the model described above with various values250

of the drift coefficient, b, the diffusion coefficient, v, and the resource coefficient, β in the following ranges:251

0.1 ≤ b ≤ 0.8, 2 ≤ v ≤ 30, and 1.5 ≤ β ≤ 8.5. These are chosen to produce simulations showing migration252

patterns on a 90×160 unit2 landscape with 10 randomly generated non-overlapping food patches. These253

implicitly include the winter and summer ranges and stopover sites between them.254

We tested the MCMC algorithm on these simulations with resource qualities being given a priori.255

We used a normally distributed prior for each parameter value with a mean equal to the real parameter256

value and a standard deviation of 2. Example output is given in Figure 2a, illustrating migration from257

the winter range in the south to the summer range in the north and back to the south over a year. We258

used the MCMC algorithm to infer drift and diffusion coefficients (b and v respectively) from the OU259

process in Equation (2), together with the resource coefficient, β, from the RSF in Equation (10). To260

investigate the effectiveness of the MCMC algorithm when dealing with missing data, we carried out the261

inference using every 5th data point, shown as red triangles in Figure 2a. We also investigated the effect262

of finer rarification for certain simulated datasets from our study. This made very little difference to the263

inference (details in Supplementary Appendices D-E).264

2.3.2 Depletion-renewal models in a patchy landscape265

In Section 2.3.1, we assumed that animals do not contribute in any significant way to the change of266

resource quality (e.g. Illius et al. (2002)). In this section, we assume that the resource quality changes267
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according to the residential time of the animal in a food patch (e.g. Mitchell & Powell (2007), Van Moorter268

et al. (2009)). As in the migration model, we describe a situation where an animal moves in pursuit269

of quality food using the combination of the OU process and a RSF, introduced in Section 2.1.1. For270

example, this may represent how an animal forages in its home range with complete knowledge of the271

environment (e.g. Ford (1983)). As in Section 2.3.1, to test our inference method in a simple case, we272

assume that the decision to move to a patch is a trade-off between the quality of a patch and the distance273

to it and use the RSF given by Equation (10).274

We simulate movements using Equations (2-4) in a landscape with food patches Ai, i ∈ {1, · · · , N},275

assuming that the resources either are consumed (if the animal is present) or renewed (otherwise).276

Specifically, if the animal is foraging in patch Ai at time t, that is, x(t) ∈ Ai, then the resource quality277

R(Ai, t) in patch Ai decreases exponentially while those in other patches grow logistically, so that (Ford278

(1983), Van Moorter et al. (2009))279

R(Aj , t+ τ) =















R(Aj , t)e
−djτ if j = i,

KjR(Aj , t)e
rjτ

Kj +R(Aj , t)(erjτ − 1)
for j 6= i,

(12)

where dj , rj and Kj are the depletion rate, growth rate and carrying capacity in patch Aj respectively280

and τ is a (short) time-step. For simplicity, here we assume that the growth and depletion rates and the281

carrying capacity are the same in each patch, and thus denoted r, d and K respectively.282

We tested the inference procedure on simulations generated with various values of the drift coefficient,283

b, the diffusion coefficient, v, and the resource coefficient, β in the following ranges: 0.05 ≤ b ≤ 0.5,284

1700 ≤ v ≤ 3500 and 0.5 ≤ β ≤ 5. We used a 2000× 2000 unit2 landscape with 10 randomly generated285

non-overlapping food patches. Figure 2b shows an example of simulated trajectories of movements286

depending on resource depletion or renewal in a patchy landscape. We tested the MCMC algorithm with287

growth (r), depletion rate (d), and carrying capacity (K) being given. We used a normally distributed288

prior for each parameter value with a mean equal to the real parameter value and a standard deviation289

of 2. We then inferred b and v in the OU process (Equation 2) and β in Equation (10) using the Bayesian290

Monte Carlo algorithm. In principle, one could attempt to infer all five parameters (r, d,K, b, v) using291

our inference procedure, but we found that it was not usually possible to obtain precise inference in292

this case, so we would advise users to try to measure r, d, and K directly. An example of such a direct293

method is given by Fortin et al. (2002).294

2.3.3 Depletion-renewal models in a raster landscape295

Although there are many real-life situations where resource patches are disjoint and known (e.g. Merkle296

et al. (2014), Sawyer & Kauffman (2011)), often resources change continuously over the landscape and297
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are represented in data by a square grid (a.k.a. raster; e.g. Potts et al. (2014a)). To test whether our298

inference procedure is effective at determining resource attraction in such situations, we model movement299

on a square grid of resources that deplete and renew over time. In this case, the centre of each square in300

the grid is a potential attraction centre of the OU process (Equation 2).301

We started each simulation with homogeneous resource type in every square, which shares the same302

carrying capacity, K, depletion and growth rates, d and r, across the land (e.g. Figure 2c). The initial303

resource quality was equal to the carrying capacity and the resource quality in time τ from time t forward304

was calculated using Equation (12) in Section 2.3.2. We tested our inference procedure on simulations305

of the model in Equations (2-4) generated with 0.05 ≤ b ≤ 0.14, 0.05 ≤ v ≤ 0.5 and 0.2 ≤ β ≤ 2 on306

a 3 × 3 grid composed of unit squares. We carried out the MCMC algorithm on the assumption that307

d, r and K are known and attempted to infer the movement coefficients b and v in the OU process in308

Equation (2) and the resource coefficient β in Equation (10). As for the other simulations, we used a309

normally distributed prior for each parameter value with a mean equal to the real parameter value and310

a standard deviation of 2.311

2.3.4 Gradient-following models312

When landscape rasters are large, it may not be computationally feasible to test every square to see if313

it is an attractive centre. Instead, we take a different modelling approach, assuming that the animal314

tends to move up the local resource gradient, rather than towards a prime destination. This means that315

animals are predominantly using local perception rather than memory (cf. Bracis & Mueller (2017)).316

Figure 2d illustrates such a trajectory in a landscape with three different resource qualities, which are317

assumed to be static.318

Here, the movement process is described by Equation (6) with direction corresponding to the resource319

gradient calculated using Equations (7) and (8). We define the RSF in Equation (7) to be the resource320

quality at a square. The parameters to be inferred are α and σ for the drift term and covariance matrix321

in Equation (6). We tested the MCMC algorithm on simulations constructed with 0.1 ≤ α, σ ≤ 1 on a322

10×10 grid consisting of unit squares with 3 resource qualities. As with the other simulated trajectories,323

we used a normally distributed prior for each parameter value with a mean equal to the real parameter324

value and a standard deviation of 2. We also compared our framework with that of Hanks et al. (2015),325

testing for both inference speed and precision by application to simulated paths (details in Supplementary326

Appendix G). In total, for our study we analysed 45 simulated paths for the Migration model, 30 for327

the Patch depletion/renewal model, 30 for the Raster depletion/renewal model, and 20 for the Gradient328

following model.329
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2.4 A case study of mule deer data in the Greater Yellowstone330

Ecosystem331

We used GPS collar data from 28 adult (> 1.5 years of age) female mule deer captured using a netgun332

fired from a helicopter near Cody, Wyoming (USA). Collars (ATS, Iridium, Isanti, Minnesota, USA)333

were programmed to take a fix every 2 hours, and we used data collected from March-August 2016. All334

deer were captured following protocols consistent with the University of Wyoming standards.335

Before employing the MCMC inference procedure introduced in Section 2.2, we identified foraging336

patches by grouping data points where an animal stayed within a 3-km radius area for at least 3 days.337

Subsequently, the average longitude and latitude of locations inside the patches were regarded as the338

attraction centre (Figure 4a). For our data, these patches were quite straightforward to identify, being339

obvious just by looking at the location data (Figure 4a; Supplementary Video SV1), and the deer have340

high fidelity to these sites (Sawyer & Kauffman, 2011). However, this may not be true for all datasets341

on migratory movement. For each attraction centre, we extracted the values of the normalised difference342

vegetation index (NDVI) and instantaneous rate of green-up (IRG) for Julian days 1 to 250 from the343

corresponding pixels in the images (Figures 4c). NDVI and IRG data were compiled from the MODIS344

satellite based on the methods of Bischof et al. (2012) and Merkle et al. (2016).345

Our model is based on Equation (10) for decision making and the OU process in Equation (2) for

movement, and can be written out in full as follows

x(t+ τ)|x(t) ∼ MVN(µ(t) + e−bτ (x(t)− µ(t)), vI(1− e−2bτ )), (13)

µ(t) = argmaxi∈Ω[exp(βR(µi, t)− |µi − x(t)|)], (14)

where Ω indexes the set of attraction centres (centres of the foraging patches). We used our MCMC346

algorithm to parameterise two different models from data. The first was the NDVI Model, where R(µi, t)347

is the NDVI value of patch i at time t. The second was the IRG Model, where R(µi, t) is the IRG value348

of patch i at time t. We used the Deviance Information Criterion (DIC) (Spiegelhalter et al. (2002)) for349

model selection.350
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3 Results351

3.1 Testing MCMC inference on simulations352

3.1.1 Migration model353

Figure 3a shows the posterior distributions derived by applying MCMC inference on the trajectory shown354

in Figure 2a. The posterior distributions captured the real values of parameters used in simulations to355

a good degree of accuracy with the real values lying within a 95% quantile interval of the posterior356

distributions, indicated by black dashed lines in Figure 3a.357

When applying the MCMC algorithm on the migration model, the sampling chains converged within358

similar numbers of iteration in about 20 minutes (on a single thread of an i5 2.0GHz processor in a359

Windows desktop) regardless of various values for parameters used in simulation (Figure S1 in the Sup-360

porting Information). It took longer for the chains to converge when the number of proposed switching361

points increases (Figure S2a,b). However, the performance of estimation was not affected by the amount362

of proposed points (Figure S2c-e). Although the value of increasing κ was insignificant here, it might363

become important when the frequency of state switch is much higher than observation.364

As one would expect, the chains converged faster when the initial value of the drift coefficient, b, was365

closer to the real value, in cases when the diffusion coefficient, v, and the resource coefficient, β, were366

fixed at real values (Figures S3a,b). However, the initial value of v had little impact on converging time367

(Figures S3c,d), while the chains converged faster when the initial value of β was near the real value368

(Figures S3e,f).369

As for accuracy, the real values of b, v and β were within 95% central posterior intervals of the esti-370

mated values for about 2/3, 4/5 and 1/2 simulations respectively (Figure S4, Table S1). (See Appendices371

B, F in Supporting Information for more details.) However, where they did deviate from these intervals372

the deviations were generally quite small (a discrepancy of less than about 25% in all cases).373

3.1.2 Resource depletion-renewal models in a patchy landscape374

The 95% central posterior interval of each posterior distribution in Figure 2b contains the real values375

(Figure 3b), showing that our inference procedure has good accuracy in this case.376

The algorithm was able to converge within 26,000 iterations (approximately 55 minutes) in most cases377

(Figure S5 in the Supporting Information). It took longer for the chains to converge when the initial378

value of b was far away from the real value, whereas the initial values of v and β had little influence on379

the time before converging (Figure S6). While b and v were captured by 95% central posterior intervals380

for most cases, β was overestimated when the values of v or β used in simulations were higher (Figure381

S7, Table S1) (See Appendix C in Supporting Information for more details.)382
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3.1.3 Resource depletion-renewal models in a raster landscape383

For the case shown in Figure 2c, the posterior distributions captured parameters successfully, as shown384

in Figure 3c, despite that it is not straightforward to identify the attraction centres simply by eyeballing385

the trajectory.386

In general, the convergence time of the algorithm was independent of the values of coefficients used387

in simulations (Figures S8 in the Supporting Information). However, starting the algorithm with initial388

values closer to real values usually led to faster convergence, as one would expect (Figure S9).389

The performance of the MCMC algorithm using every 5th data point was similar to that using390

every 3rd point, but the discrepancy between sample means of β and real values was lower when more391

observations were considered (Figures S10,11,12). (See Appendix D in Supporting Information for more392

details.)393

3.1.4 Gradient-following models394

In the case shown in Figure 2d, the posterior distributions successfully captured the real values within395

95% central posterior intervals.396

The value of the drift speed, α, used to generate a simulated trajectory had no obvious impact on397

the time when MCMC chains converged (Figure S13a in the Supporting information). On the other398

hand, the chains tended to converge quicker when larger σ was used in simulation (Figure S13b). There399

was no clear relationship between the convergence time and initial values for the MCMC algorithm when400

inferring parameters from the simulation in Figure 2d (Figure S14). Initial values near real values did401

not guarantee faster convergence. On the contrary, the algorithm converged after fewer iterations when402

the initial values of α were more than 10 times larger than the real value (Figure S14b). This might403

result from the slower convergence of the sampling chain of σ, which dominated the overall converging404

time, and fluctuations in the chains caused by the augmentation of data points. In general, the accuracy405

of estimating σ improved significantly when more data points were used in the inference procedure, while406

the accuracy of estimating α was less affected by the density of data (Figures S15,16). (See Appendix407

E in Supporting Information for more details.) Our comparison with the method of Hanks et al. (2015)408

reveals that our method shows that our method is more precise (e.g. the posterior standard deviation of409

α was more than an order of magnitude smaller than the equivalent measure from the model of Hanks410

et al. (2015)) on data simulated from our model.411

3.2 Applying MCMC inference on the mule deer data412

When fitting the IRGModel to the deer data, the MCMC algorithm converged for 27 of the 28 individuals,413

whereas the NDVI Model only converged for 9. This gives some preliminary indication that the NDVI414
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model is not a good model for these data. In the 9 cases where both the NDVI and IRG Models led to415

convergent MCMC results (e.g. No. 4, Table 1), the DIC was used to determine the better model. This416

reveals that the NDVI Model is a better fit for one of the deer (No. 10) and the IRG Model for the other417

eight (Table 1), confirming our preliminary indications. For those cases where MCMC chains converged,418

we used the posterior mean of β of the best fit model to calculate the simulated departure dates of419

migration, shown together with the real departure dates in Table 1. The estimated departure dates were420

defined to be the dates when a switch of movement centre had occurred according to the RSF. The421

observed departure dates were the dates when locations occurring outside a patch and towards another422

patch were first observed. The agreement was generally good, suggesting that, when a model can be423

fitted to the data, the timing of migration can be explained by a simple trade-off between relative NDVI424

or IRG values and the distance between successive patches, but usually IRG is a better measurement to425

use (Figure 5).426

However, for one individual (No. 21, Table 1), the inference procedure estimated that the individual427

left a patch, and was attracted to it again for a very short time soon after migrating. This is probably428

not a behavioural feature, though, since it was not observed in the data. Rather, this is likely to be a429

quirk resulting from small up-and-down fluctuation in the IRG around the time of migration.430

Figure 4a gives an example migratory path of an individual, which can be compared with the431

simulated path from the best-fit model (Figure 4b). Supplementary Video SV1 shows an animation of432

both these paths superimposed (red dots are the observed locations and blue are simulated). In the433

best-fit model, the attraction centre changed from µ1 to µ2 on the 126th day of the year (Table 1). This434

is very close to the actual date of departure from winter range observed from data and is marked by an435

arrow in Figure 4c. Finally, the posterior distributions for this example are given in Figure 4d, where436

we observe a significant difference between the posterior mean and zero for each parameter (p < 10−5).437

4 Discussion438

We have constructed models of resource selection in continuous time, based on a switching random walk439

process, and parameterised using a Bayesian Monte Carlo algorithm. We have demonstrated that our440

method can be applied in a wide range of scenarios, including both movements driven by the evaluation441

of resources at the landscape scale, and those that simply follow local resource gradients. In broad terms,442

our model animals first (a) assess location and quality of different resources (either proximately or across443

the whole landscape), to decide the general direction of movement, then (b) move according to a process444

that incorporates not only the resource-based decision, but also some stochasticity to account for any445

unknown factors governing movement. Such stochastic continuous-time models allow us to make use446

of well-developed, flexible inference procedures (Blackwell et al. (2016)). When applying our inference447
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No.
simulated

departure date
(the NDVI Model)

simulated
departure date
(the IRG Model)

observed
departure date

∆DIC

4 128 126 125 167.58
6 138 134 133 117.25
10 124,132 124, 132 123,128 141.79
11 127,152 126, 151 125,149 182.79
13 148 142 140 75.53
18 130,158 124,158 123,157 97.84
20 135,146 134,146 133,145 54.27
21 152 149,150,150 144 185.09
25 142 141 140 496.41
1 – 100,151 132,150
2 – 153 147
3 – 126,158 125,154
5 – 143 142
7 – 151 148
8 – 157 154
9 – 147 144
12 – 146 140
14 – 140 139
15 – 149 139
16 – 101,138,148 112,136,147
17 – 142 139
22 – 149 146
23 – 134 133
24 – 140 139
26 – 125,141 124,137
27 – 148 128
28 – 134 131

Table 1: The comparison of models for the mule deer data. For cases where the switch of
movement centre occurred on two days, the numbers for the Julian dates are separated
with a comma. Figures in bold indicate the model with smaller DIC value on that
individual.
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algorithm to simulated data, where all the parameter values governing the movement are known, we448

were able to estimate the input parameters, including those governing the trade-off between maximising449

resource intake and minimising travel costs, with good accuracy. As such, our method can reliably450

capture important aspects of the processes underlying movement decisions.451

Our framework can be viewed as generalising ideas from several previous studies. The study of452

Hanks et al. (2015) developed a gradient following algorithm that allows for behavioural switches between453

observed locations. This is similar to our gradient-following model, yet relies upon discretising the path454

into presence or absence on pixels of a square lattice, whereas ours considers the full, continuous path. A455

comparison of our method with that of Hanks et al. (2015) on a path simulated from our model revealed456

that in this case our method is more precise. However, this is not surprising, as we would expect a better457

fit from a model that accurately mimics the true movement process. Employing the model in Hanks et al.458

(2015), Brennan et al. (2018) attempted better understanding of habitat preferences by considering the459

impact of corridor choice on speed during migration, while we focus on the movement direction decided460

by identifying the destination. Breed et al. (2017) gives a model of patch-to-patch movement, based on461

a switching OU process, but where only the decision to leave a patch depends on environmental features.462

Ours generalises this by modelling patch-to-patch movements as dependent on the source patch, the463

target patch, and the distance between them.464

In this study, we have examined gradient-following and patch selection models separately. In prin-465

ciple, it would be possible to combine these. One would begin by writing down a stochastic differential466

equation that combines the processes in Equations (1) and (5) then derive from these the distribution of467

movement across a short time-interval (similar to Equations 2 and 6). This distribution can then be fed468

into the inference algorithm described in Section 2.2. Of course, such a model would be more complex469

than those described here, so would likely require more running time and a good dataset to achieve470

accurate inference.471

We have focused on a few simple situations where the main factor in movement decisions is resource472

quality. However, being based on a resource selection function (RSF), our framework has potential473

to incorporate as wide a variety of movement covariates as in traditional resource- or step-selection474

analysis. For example, topography (Potts et al. (2014c)), interactions between animals (Vanak et al.475

(2013)), memory effects (Merkle et al. (2017)), barriers and corridors (Panzacchi et al. (2016)) have476

all been incorporated into step-selection analysis and so could, in principle, be incorporated into our477

modelling framework.478

Classical step selection analysis tends to examine resource selection from one measured location to479

the next (Thurfjell et al. (2014)). However, it has occasionally been used to measure patch-to-patch480

movements (e.g. Merkle et al. (2014)) and this is similar in flavour to our patch-based models. On the481

other hand, our raster-based models are more appropriate for studies where distinct patches are less482
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clear. In this case, it is often far less clear what spatio-temporal scales are being used by the animal483

to make selection decisions. However, to use step selection analysis, one is forced either to make an484

a priori choice of scale or perform a complicated model selection procedure (Bastille-Rousseau et al.485

(2018)). Our approach has the advantage that the spatio-temporal scale of decision-making emerges486

from the interface between the landscape and the movement processes, and is not tied to the frequency487

of the location data. In addition, the flexibility of the switching random walk framework means that488

our models have potential to include variation in behavioural modes in different parts of space (Harris &489

Blackwell (2013)) or in different states such as encamped and exploratory states (Morales et al. (2004)).490

Indeed, the switching OU framework used here has recently been used to model state-switching491

correlated random walks (Michelot & Blackwell (2019)). This makes use of the same code base as the492

code used for inference here, so is ready to be combined with our models. Furthermore, although we493

have developed our techniques for use with single animal tracks, there is ongoing work to incorporate494

collective movement and animal interactions into the switching OU framework (Niu et al. (2016)), which495

could be important for the study of mule deer (Sawyer et al., 2006). Therefore we intend for future496

studies to factor group movement into continuous-time resource selection.497

To demonstrate how our techniques can be applied to real data, we assessed the underlying mecha-498

nisms behind migration in mule deer. Our results support two hypotheses related to migration. First is499

the Forage Maturation Hypothesis, which posits that as plants grow herbivores face a trade-off between500

forage quality and quantity and therefore will select forage patches at intermediate stages of growth501

(Fryxell (1991), Hebblewhite et al. (2008)). Second is the Green Wave Hypothesis (Drent et al. (1978)),502

which is the spatial manifestation of the Forage Maturation Hypothesis (Merkle et al. (2016)). The503

Green Wave Hypothesis posits that animals migrate to acquire high-quality foods that are propagated504

as resource waves in space and time. For migratory herbivores, resource waves often correspond to the505

onset of spring along the migration route (Aikens et al. (2017)). The Green Wave Hypothesis has been506

tested in a variety of species of both birds and mammals (van Wijk et al. (2012), Kölzsch et al. (2015),507

Merkle et al. (2016)).508

We used a model where the animal trades-off the relative quality of resources at source and target509

locations with the effort of moving from one to the other (using distance between patches as a proxy for510

effort). We used two proxies for resource quality of a patch: NDVI and IRG. The former represents an511

index of green forage biomass, and the latter represents an index of intermediate forage biomass (Bischof512

et al. (2012)). Similar to the findings of Aikens et al. (2017) and Merkle et al. (2016) for mule deer, our513

results suggest that the movements of most individual mule deer could be explained by IRG. The use514

of growth rate (IRG), rather than absolute quality of biomass (NDVI) suggests that movement is caused515

predominantly by the process of change, i.e. green-up. This is consistent with the idea of ‘surfing a green516

wave’: tracking the places at which rate of change is greatest. Note that for one individual, however,517
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the model using NDVI did fit better (No. 10, Table 1). Nonetheless, the resulting best-fit models518

tend to anticipate the migratory times well (Table 1, Figure 5), and simulated paths are qualitatively519

similar to the real paths (Supplementary Video SV1). Therefore our method has potential to test various520

hypotheses explaining migratory movement, and resource-driven movement in general.521

In conclusion, we have developed a flexible framework for continuous-time inference of resource522

selection decisions in moving animals. The switching random-walk model, combined with Bayesian523

Monte Carlo inference, generalises several previous methods, and has potential to be extended to a wide524

range of scenarios. Whilst the inference speed is sufficient for paths of several hundred data-points, it525

may prove too slow with modern-era tracks that can contain millions (Hays et al. (2016)). Therefore a526

significant future challenge would be to develop either methods for speeding-up inference significantly527

(Kálmán filters may be an appropriate technique here: e.g. Fleming et al. (2017)), or rarefying high-528

resolution data to extract key locations in the path that represent animal decisions (Potts et al. (2018)).529

Indeed, the key limiting factor for speed is the number of MCMC samples required for convergence.530

Better data, sampled at behaviourally-meaningful locations, may have a clearer signal thus requiring531

less time for the MCMC procedure to converge, even if the datasets might be larger. In summary,532

our framework represents an important methodological step in understanding resource-use decisions by533

moving animals.534
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(a) (b)

(c) (d)

Figure 2: Simulations corresponding to (a) the Migration model (Section 2.3.1), (b) the
Patch depletion/renewal model (Section 2.3.2), (c) the Raster depletion/renewal model
(Section 2.3.3), and (d) the Gradient following model (Section 2.3.4). The blue dots
and line segments show the whole set of data points, and the red triangles are those
used in the MCMC algorithm. (a) A simulated trajectory of migration during one year
using the OU process in Equation (2) and RSF in Equation (10) with resource quality
in Equation (11). The animal moves towards the north from patches in the south and
comes back to the south. (b) A simulated trajectory in a patchy landscape with the
resource depletion-renewal model. The resource quality changes according to Equation
(12) and the movement process is given by Equations (2) and (10). (c) A simulated
trajectory in a homogeneous raster landscape with the resource depletion-renewal model.
The resource quality changes according to Equation (12) and the movement process
is given by Equations (2) and (10). (d) A simulation of movement following resource
gradient, according to Equations (6) and (7). The different colours in the landscape
represent different resource types. Dark green, light green and yellow stand for high,
medium and low resource quality respectively.
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(a)

(b)

(c)

(d)

Figure 3: Posterior distributions of parameters obtained by applying the MCMC inference
procedure to the simulationed trajectories in Figure 2. Red dotted lines indicate real
values used in simulations and black dashed lines shows 95% quantile intervals. Panel
(a) uses the Migration model (Figure 2a). Panel (b) uses the Patch depletion/renewal
model (Figure 2b). Panel (c) uses the Raster depletion/renewal model (Figure 2c). Each
of (a-c) show the inferred posterior distributions of the movement coefficients, b and v,
from Equation (2) and the resource coefficient, β, from Equation (10). Panel (d) uses the
Gradient following model (Figure 2d) and shows the posterior distribution of the drift
and diffusion coefficients (α and σ, respectively) from Equation (6).
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(a) (b)

(c)

(d)

Figure 4: A case study of mule deer data. (a) The migration trajectory of mule deer
No. 4. The blue dots are observed locations collected between March and August 2016.
The circles A1 and A2 are foraging patches where the mule deer spent more than two
weeks. (b) A simulated trajectory of mule deer migration, generated using posterior
means derived from analysing the data of deer No. 4 with the IRG model. (c) The
IRG values at µ1 and µ2, the centres of patches A1 and A2 illustrated in Figure 4a. The
arrow indicates the date when the mule deer left patch A1. (d) The posterior distributions
derived by applying the MCMC algorithm on the trajectory of mule deer No. 4, shown
in Figure 4a, with the IRG model.
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Figure 5: A comparison between the estimated and observed dates when leaving winter
ranges. Blue dots show the cases where the IRG Model fitted the data better, while the
red triangle represents the case where the NDVI Model was better (No. 10, Table 1).
Markers above and below the horizontal dashed line indicate that the estimated departure
date was later and earlier than the observed date respectively.
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