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Abstract—As many systems and equipment are sensitive to 
magnetic disturbances, it is important to understand the 
magnetosphere system, to reduce the negative effect caused 
by severe space weather situations. The disturbance storm 
time (Dst) index is used to measure the magnetic disturbances 
and it is correlated with solar wind variables. This study 
presents a new machine learning enhanced NARMAX (MLE-
NARMAX) model for 3 hours ahead forecasting of Dst index.  
An important advantage of the MLE-NARMAX model is that 
it provides a transparent and explainable model structure. 
The model performance is tested over three typical strong 
storm periods, where the prediction skills are 0.9734, 0.9598 
and 0.9206 in terms of correlation, and 0.9474, 0.9173, and 
0.8333 in terms prediction efficiency (PE). Compared to the 
conventional NARX model, the MLE-NARMAX produces 
better model predictions.    

Keywords-Space Weather; Dst Forecast; NARMAX model; 
Machine Learning;  

 

I.  INTRODUCTION 

The magnetosphere is a very complex system. To 
understand the magnetosphere system, the Dst index was 
developed to measure the magnetic disturbances and it is 
known to be correlated with a number of solar wind 
variables [1]-[3][4]. There are plenty of studies aiming to 
forecast Dst index from solar wind measurements using 
different methods including machine learning techniques 
[5]. In [6],[7],  Elman recurrent neural networks were first 
proposed for Dst index prediction. Since then, many other 
neural network models have been introduced for Dst index  
prediction [8-13]. The NARMAX method has also been 
applied to Dst index forecasting [14-16]. Other methods, 
for example, wavelets models were also used to forecast 
Dst index [1-2]. A comparison study of the Dst index 
forecast models suggests that the neural network by 
Temerin and Li produces the best predictions when all the 
events are considered [17]. It is not surprising as the 
advantage of neural networks is that they can describe the 
behaviours of complex systems and can usually achieve 
excellent model prediction performance. The performance 
of neural networks could become even more powerful 
when increasing the number of the hidden layers. However, 
some common issues can arise with neural networks, for 
example, the interpretability of the model and the potential 
overfitting problem. Another issue is that complicated 
neural networks usually require a huge amount of 
computational time.  

Compared to neural networks, the nonlinear 
autoregressive moving average with exogenous 
(NARMAX) model provides a much simple representation 
of nonlinear systems [18-19]. It employs an orthogonal 
forward regression (OFR) algorithm to measure and rank 
the significance of each candidate model terms, so that the 
most significant model terms can be selected accordingly 
[18-21]. More importantly, the NARMAX model provides 
a transparent and parsimonious model structure, which is 
very useful for understanding and interpreting the system 
behaviour.   In general, the neural network model is better 
at generating model prediction and the NARMAX model is 
better at providing a transparent and explainable model 
structure. The NARMAX method and its variants [22] has 
been successfully applied to various research fields 
including ecological [23], environmental [24], geophysical 
[2,14,25,26], medical [27], societal [28] and 
neurophysiological sciences [29]. 

Based on the above considerations, this study presents 
a new modelling framework, which consists of two sub-
models, namely, the NARX model component and the 
neural network model component. The NARX sub-model 
is established to capture and represent the most important 
system dynamics in a transparent way, while the neural 
network sub-model is established to accommodate the error 
details that are not captured by the NARX model. In this 
way, both the advantages of the NARMAX model (e.g. 
transparent, interpretable, simple) and the neural networks 
(e.g. general strong learning ability) can be well exploited 
and combined.  

The proposed framework is therefore referred to as 
machine learning enhanced NARMAX (MLE-NARMAX) 
model. In this study, the MLE-NARMAX model is used to 
generate 3 hours ahead predictions for Dst index, on three 
typical test periods of strong storms. The results are 
compared with those produced by the conventional NARX 
and neural networks. The main features of the MLE-
NARMAX model are: 1) the resulting models are 
transparent and easy to interpret, and 2) the model 
possesses good prediction performance. 

The paper is organized as follows. The proposed MLE-
NARMAX model is introduced in section II. A brief 
description of the dataset is presented in section III. A case 
study of modelling and forecasting of the Dst index is 
presented in section IV, and finally the work is concluded 
in section V. 
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II. THE PROPOSED MLE-NARMAX METHOD 

      In this section, the NARMAX method is briefly 
reviewed and the proposed MLE-NARMAX model is 
introduced. 
 
A.  A brief review of NARMAX method 

      Consider the case of multiple-input single-output 
(MISO) systems, for which a NARMAX model can be 
written as:  ݕሺݐሻ ൌ ݂ሾݕሺݐ െ dሻǡ ǥ ǡ ݐ൫ݕ െ ݊௬൯ǡ ݐଵሺݔ െ ݀ሻ ǥ ǡ ݐଵሺݔ െ݊௨ሻǡ ሻǡݐଶሺݔ ǥ ǡ ݐଶሺݔ െ ݊௨ሻ ǥ ǡ ݐሺݔ െ ݀ሻǡ ǥ ǡ ݐሺݔ െ݊௨ሻǡ ݁ሺݐ െ dሻǡ ǥ ݁ሺݐ െ ݊ሻሿ  ݁ሺݐሻ                     (1)                    

where ݕሺݐሻǡ ሻǡݐଵሺݔ ǥ ǡ ሻǡݐሺݔ ݁ሺݐሻ   are the system output, 
input and noise signals, respectively;   ݊௬ , ݊௨ and ݊   are 
the maximum time lags for the system output, input and 
noise; d is a time delay, and in this study we assume that 
the time delay d =3, meaning that the model are used for 3 
hour ahead forecasting; ݂ሾήሿ  is some nonlinear function. 
Without including the noise moving-averaging model 
elements ݁ሺݐ െ dሻǡ ǥ ǡ ݁ሺݐ െ ݊ሻ, the NARMAX model is 
reduced to the NARX model, which can be written in a 
linear-in-the-parameters form as [19]:  ݕሺݐሻ ൌ σ ሻݐ߮ሺߠ  ݁ሺݐሻெୀଵ                     (2) 

where ߮ ଵሺݐሻ ǥ ߮ሺݐሻ are the model terms generated from 
the regressor vector ሾݕሺݐ െ dሻǡ ǥ ǡ ݐ൫ݕ െ ݊௬൯ǡ ݐଵሺݔ െ݀ሻ ǥ ǡ ݐଵሺݔ െ ݊௨ሻǡ ݐଶሺݔ െ ݀ሻǡ ǥ ǡ ݐଶሺݔ െ ݊௨ሻ ǥ ǡ ݐሺݔ െ݀ሻǡ ǥ ǡ ݐሺݔ െ ݊௨ሻሿ ், ߠ are the unknown parameters and ܯ  is the number of candidate model terms. The 
identification of NARMAX model consists of two main 
steps. The first step is to establish a NARX model using 
OFR algorithm [19]. However, the polynomial NARX 
structure might not perfectly describe the system behaviors, 
but it can usually provide a good approximation if both the 
NARX model structure and model parameters are well 
estimated.  To reduce bias of the NARX model, NARMAX 
method introduces a second step which is a noise modelling 
process [18], where the noise signal (model residual) is 
treated as an extra “input” (explanatory variable), referred 
to as the moving average (MA) elements. In each search 
step, a candidate NARX model is established first, based on 
which the model error (residual) is calculated and used to 
estimate an associated candidate NARMAX model. The 
procedure repeats many times until a NARMAX model 
with good performance is established. 

B.  The MLE-NARMAX model 

In this study, the MLE-NARMAX framework, 
combining NARX and neural network approaches, which 
can effectively deal with correlated or colored noise, is 
proposed.  It is a two-stage training method. In the first 
stage, a NARX model is established to represent the main 
dynamics of the system of interest. Note that the NARX 
might not be sufficient for representing the system 
dynamics in every detail. In the second stage, a neural 
network is designed and trained to accommodate the model 
residual of NARX model and the potential correlations 
(interactions) between model residuals (of the first stage), 
system inputs and outputs variables. So, the final MLE-

NARMAX model consists of two sub-models, namely, the 
NARX sub-model and neural network sub-model.  

(i). First-stage NARX sub-model 

      Using the OFR algorithm (the details of the 
implementation can be found in [19-21]), the first-stage 
NARX sub-model can be established as:  ݕேோሺݐሻ ൌ ሻݐభ߮భሺߠ  ڮ  ሻݐ߮ሺߠ  ݁ሺݐሻ     (3) 

where ߮ భሺݐሻǡ ߮మሺݐሻǡ ǥ ǡ ߮ሺݐሻ  are the selected model 
terms and ߠభ ǡ మߠ ǡ ǥ ǡ ߠ  are the estimated parameters. 
Note that the NARX sub-model is a linear-in-the-
parameters representation, where individual model terms 
are fully transparent, and their contributions are measurable 
and interpretable. The significant model terms are selected 
from a pre-specified dictionary and then ranked based on 
the values of the ERR index. While in most situations, 
NARX model can provide a good representation of the 
underlying system dynamics of interest, NARX model 
might not sufficiently capture all the details of the system. 
This motivates the use of a neural network sub-model in the 
second stage to improve the prediction performance.  

(ii). Second-stage neural network sub-model 

      In the second stage, a neural network is used to 
approximate the model residual of the NARX model. Note 
that the output (desired signal) of the neural network is the 
model error, while the inputs of the neural network include 
not only the original input variables of the NARX model, 
but also the lagged versions of the model residual variable. 
The motivation of introducing a neural network model to 
approximate the model error is to take advantage of neural 
network approximation capability to accommodate the 
dependent and correlated relations between the model error 
and all the candidate explanatory variables that are 
sufficiently explained by the NARX model.  

      To avoid any confusion, in this study we use e(t) and ߝሺݐሻ to represent noise (of a general sense) and model error 
(residual). The model error of the NARX model (3) is:  ߝሺݐሻ ൌ ሻݐሺݕ െ  ሻ                       (4)ݐොேோሺݕ

      The signal ߝ (t) is used as the desired output signal to 
train the neural network sub-model of the form:   ߝሺݐሻ ൌ ݃ሾ߱ଵሺݐሻǡ ߱ଶሺݐሻǡ ǥ ǡ ߱ெᇱሺݐሻሿ             (5) 

where ݃ ሾήሿ represents the constructed neural network sub-
model, and the input vectors ߱ሺݐሻ, with ݇ ൌ ͳǡʹǡ ǥ ǡ  ,Ԣܯ
are defined as  ݕሺݐ െ dሻǡ ǥ ǡ ݐ൫ݕ െ ݊௬൯ǡ ݐଵሺݔ െ݀ሻ ǥ ǡ ݐଵሺݔ െ ݊௨ሻǡ ݐଶሺݔ െ ݀ሻǡ ǥ ǡ ݐଶሺݔ െ ݊௨ሻ ǥ ǡ ݐሺݔ െ݀ሻǡ ǥ ǡ ݐሺݔ െ ݊௨ሻǡ ݐሺߝ െ dሻሻǡ ǥ ǡ ݐሺߝ െ ݊௭ሻǡ  where ݊ఘ  is 
the time lag for the error signal. Note that the neural 
network sub-model uses all the model terms ߱ଵሺݐሻǡ ߱ଶሺݐሻǡ ǥ ǡ ߱ெᇱሺݐሻ, meaning that the model structure 
can be extremely complicated and the modelling process 
can therefore time-consuming.  

      The general structure of the MLE-NARMAX model is 
presented in Fig. 1, where the MLE-NARMAX model can 
be explicitly expressed as:   

 



ሻݐሺݕ ൌ ሻݐభ߮భሺߠ  ሻݐమ߮మሺߠ  ڮ  ሻݐ߮ሺߠ  ݃ሾ߱ଵሺݐሻǡ ߱ଶሺݐሻǡ ǥ ǡ ߱ெԢሺݐሻሿ                          (6) 

where the  ߠభ߮భሺݐሻ  ሻݐమ߮మሺߠ  ڮ   ሻ is theݐ߮ሺߠ
NARX sub-model and ݃ሾ߱ଵሺݐሻǡ ߱ଶሺݐሻǡ ǥ ǡ ߱ெᇱሺݐሻሿ is the 
neural network sub-model. The model prediction of the 
MLE-NARMAX model can be calculated as:  ݕොொିேோெሺݐሻ ൌ ሻݐොேோሺݕ  ேேෞߝ ሺݐሻ           (7) 

where ݕොேோሺݐሻ  is the model prediction of NARX sub-
model and ߝேேෞ ሺݐሻ  is the model prediction of neural 
network sub-model.  

 
Figure 1.  The MLE-NARMAX model structure. 

III.  DATA  

The process of Dst is treated to be a dynamic nonlinear 
system, where the system inputs are solar wind variables 
and the system output is the Dst index. The description of 
the solar wind variables and Dst index is given in Table I. 
All the variables were sampled every 1 hour. It should be 
noted that ܸ ݐݏܤ ൌ ܸ ൈ sin்ܤ ቀఏଶቁ ȀͳͲͲͲ  is a multiplied 
input which was suggested to be included in the model 
inputs [30].  

TABLE I.  DST INDEX AND SOLAR WIND VARIABLES 

Name Description 

Dst Dst index [nT] 

V solar wind speed/velocity (flow speed) [km/s] 

p solar wind pressure (flow pressure) [nPa] 

n solar wind density (proton density) [cm-3] 

B interplanetary magnetic field (IMF) [nT] 

Bz the north-south IMF [nT] 

Bst Bst = ்ܤsinሺߠȀʹሻ [nT] [8] 

      The Dst and solar wind data of year 2014 were used for 
training the model. Three time periods of intense storms 
(Dst<-100nT), Mar 2015, Jun 2015 and Sep 2017 were 
used to evaluate the model. The time series of the Dst index 
and solar wind variables of the three interested periods are 
shown in Fig. 2. For Dst index forecast, negative peak 
values are important. From the figure, there are strong 
storms in these periods. In total, there are around 8700 data 
points in the training dataset and around 2200 data points 
in the three test datasets. 

 
Figure 2.  Observations of sampled Dst index and solar wind variables 

of the three test periods. 

 

IV.  THE MLE-NARMAX  MODEL FOR 3 HOUR AHEAD 

DST INDEX FORECASTING 

      This section presents the identified MLE-NARMAX 
model that predict Dst index 3 hours ahead. The model 
was evaluated on three test periods. 
 
A.  Forecast Dst index 3 hours ahead 

The 3 hours ahead prediction of Dst can be defined as:  ݐݏܦሺݐሻ ൌ ݐሺݐݏܦொିேோெሾܨ െ ͵ሻ ǥ ݐ൫ݐݏܦ െ݊௬൯ǡ ܸሺݐ െ ͵ሻ ǥ ܸሺݐ െ ݊௨ሻǡ ݐሺ െ ͵ሻ ǥ ݐሺ െ ݊௨ሻǡ ݊ሺݐ െ͵ሻ ǥ ݊ሺݐ െ ݊௨ሻǡ ݐሺܤ െ ͵ሻ ǥ ݐሺܤ െ ݊௨ሻǡ ݐሺݖܤ െ͵ሻ ǥ ݐሺݖܤ െ ݊௨ሻǡ ݐሺݐݏܤ െ ͵ሻ ǥ ݐሺݐݏܤ െ ݊௨ሻǡ ݐሺݐݏܤܸ െ͵ሻ ǥ ݐሺݐݏܤܸ െ ݊௨ሻሿ                                                         (8) 

where ܨொିேோெ  is the MLE-NARMAX framework. 
To evaluate the prediction of the model, the correlation 
coefficient, prediction efficiency (PE), and normalized 
root-mean square error (NRMSE) are calculated. The value 
of PE is defined as ܲܧ ൌ ͳ െ ఙೝೝೝమఙ್ೞೝೡమ                                     (9) 



where  ݀݁ݒݎ݁ݏܾߪଶ  is the variance of the observed Dst values 
and ݎݎݎ݁ߪଶ  is the variance of the error between the predicted 
and observed Dst values. 

TABLE II.  SELECTED MODEL TERMS OF THE NARX SUB-MODEL 

No Model Term ERR 
(100%) 

Parameter t-statistics 

1 Dst(t-03) 78.1229 0.8462 103.3129 

2 B(t-04) *VBst(t-03)  3.3731 -0.1680 4.6679 

3 B(t-04) *VBst(t-04)  0.4205 0.1528 6.1903 

4 p(t-03) *p(t-04)  0.3519 -0.2623 16.1041 

5 Bz(t-03) *Bst(t-03)  0.2090 0.2002 13.3520 

6 p(t-04) *n(t-03)  0.1400 0.0728 11.8165 

7 n(t-04) *Dst(t-03)  0.1077 -0.0064 7.0959 

8 Bst(t-03) 0.0645 -0.6475 6.9029 

9 Bz(t-03) *Bz(t-03)  0.0590 0.0346 8.5650 

10 V(t-04) *Bz(t-04)  0.0844 -0.0006 6.5766 

 

TABLE III.  COMPARISON OF THE PERFORMNACES OF NARX MODEL, 
NEURAL NETWORK AND MLE-NARMAX  MODEL OF THE THREE TEST 
PERIODS 

Period Model 

Type 

Correlation 

Coefficient 

Prediction 

Efficiency 

NRMSE 

 NARX 0.9502 0.9029 0.0353 

Mar 
2015 

Neural 
Network* 

0.9716 0.9439 0.0269 

 MLE-
NARMAX* 

0.9734 0.9474 0.0260 

 NARX 0.8907 0.7368 0.0678 

Jun 
2015 

Neural 
Network* 

0.9599 0.9212 0.0364 

 MLE-
NARMAX* 

0.9598 0.9173 0.0368 

 NARX 0.8828 0.7735 0.0642 

Sep 
2017 

Neural 
Network* 

0.9295 0.8487 0.0500 

 MLE-
NARMAX* 

0.9206 0.8333 0.0529 

* The algorithm was run for ten times and the averaged statistics are 
recorded 

 

B.  The identified MLE-NARMAX model 

In order to determine the maximum time lags for both 
the input and output variables, following the approach 
described in [21] we have carried out pre-modelling 
experiments and simulations [21], the results suggest that 
the maximum time lags of the input and output were 
chosen to be ݊ݑ ൌ Ͷ and ݊ ݕ ൌ Ͷ. The initial full model 

was chosen to be a polynomial form with nonlinear degree 
of 2. 

In the first step, a 10-term bilinear NARX sub-model 
was identified. The 10 model terms, together with their 
corresponding ERR values and t-statistics, are shown in 
Table II. The t-statistics given in the table indicates that all 
the selected model terms are significant.  Note the first-
stage bilinear NARX model reported in Table II can be 
written as:  ݐݏܦሺݐሻ ൌ ͲǤͺͶʹ ݐݏܦሺݐ െ ͵ሻ െ ͲǤͳͺͲ ܤሺݐ െͶሻ ܸݐݏܤሺݐ െ ͵ሻ   (10)                  ڮ

In the second step, the neural network sub-model was 
estimated to fit the error of NARX sub-model. According 
to the trial experiments and simulations, the number of 
neurons is chosen to be 10. The estimation algorithm was 
run for 10 times and the averaged performances were 
recorded. Then, the final MLE-NARMAX model is 
obtained with the NARX sub-model and the neural network 
sub-model. As the neural network contains too many nodes 
and connections, the details of the model are not presented 
here.  

 
Figure 3.  Comparison of the predictions of the NARX model, neural 
network model and MLE-NARMAX model of the three test datasets.  



C.  Performance and advantage of the MLE-NARMAX 
model 

The MLE-NARMAX model was used to generate 3 
hours ahead Dst predictions for the three test periods: Mar 
2015, Jun 2015 and Sep 2017. Fig. 3 presents graphical 
comparisons of the observed and predicted Dst index of the 
three test periods. The statistical performances of the 
NARX model, neural network and the MLE-NARMAX 
model on the three test periods are presented in Table III. 
From the statistics, the performances of the MLE-
NARMAX model are similar to those of the neural 
networks and better than those of the NARX models for all 
the three test periods. It can be seen that for the test period 
of June 2015, the improvement is obviously more 
significant than those for the other two periods. From Table 
III and Fig. 3, it can be noticed that while the bilinear 
NARX structure can well capture the features and 
dynamics of the Dst process at most times of the test 
periods of June 2015 and September 2017, the model does 
not sufficiently capture the system dynamics at the severe 
situation times. The neural network sub-model, however, 
can help improve the model performance. 

 

Figure 4.  Scatter plots of the 3 hours ahead NARX model, neural 
network model and MLE-NARMAX model of the three test datasets.  

Fig. 4 shows the scatter plots of the NARX model, 
neural network and MLE-NARMAX model. From these 
plots, it can be seen that the MLE-NARMAX model 
produces better predictions for strong storms (Dst< -
100nT) than the bilinear NARX model alone.  In other 
words, the results show that the combination of the NARX 
sub-model and neural network sub-model can better predict 
change of the Dst index during strong storm periods. 

From the results shown in Table II , the NARX sub-
models only consists of 10 significant terms. Obviously, the 
model provides a parsimonious and transparent 
representation, where contributions of the selected model 
terms are clear. However, such a simple bilinear NARX 
model may not always be sufficient to capture the 
underlying dynamics of the process, and the model 
prediction performance may be improved by introducing a 
sub-model to characterize some dynamics of the system 
hidden in the model residuals that is not captured by the 
sub-NARX model. This explains why the two-stage MLE-
NARMAX performs better than the NARX model.    

Note that although the neural network sub-model 
improves the model performance, the model structure itself 
cannot be written down. Fig. 5 shows the training state of 
one of the neural network sub-models. The two variables 
‘gradient’ and ‘gamk’ indicate the values of the associated 
gradient and the effective number of parameters at each 
iteration, respectively. The figure shows that during the 
training process of the MLE-NARMAX models, the neural 
network sub-model contains over 150 parameters. The 
model complexity of the neural network sub-model is much 
higher than that of the NARX sub-model. In addition, the 
neural network sub-model takes many steps to train. For 
‘big’ data modeling problems where the data size is much 
larger, the training of neural network can take quite long 
time. On the contrary, the training of the NARX sub-model 
only takes a few steps and use relatively much less time. 
Therefore, the MLE-NARMAX model is developed so that 
it can take the advantages of both NARX model and neural 
network model. For example, it provides a transparent 
representation of complex nonlinear systems, which helps 
to understand the systems behaviors. Meanwhile, it 
provides good model prediction performance. 

 
Figure 5.  Training state of the neural network sub-model of the MLE-

NARMAX model.  

 

V. CONCLUSION 

In this paper, a new MLE-NARMAX method is 
proposed for 3 hours ahead prediction of the Dst index. 
Three periods with typical strong storms were used to test 
the model performance. The MLE-NARMAX model 
outperforms the conventional NARX model in terms of 
correlation coefficient and prediction efficiency. More 
importantly, the MLE-NARMAX model is capable to 
provide an interpretable representation of the system, 
which can reveal the most significant model terms and in 
the meantime show good generalization properties. For 
many real data modelling problems, where the central 
modelling task and objective is not is not only for prediction 



but also for understanding and explaining the input-output 
behaviour or cause-effect relationships of the systems, the 
proposed MLE-NARMAX model is a good choice.  

For future work, we intend to further develop the neural 
network sub-model by employing deep learning methods 
[31][32], to seek further improvement of the prediction 
performance of the MLE-NARMAX model.  
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