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Abstract—As many systems and equipment are sensitive to
magnetic disturbances, it is important to understand the
magnetosphere system, to reduce the negative effect caused
by severe space weather situations. The disturbance storm
time (Dst) index isused to measur ethe magnetic distur bances
and it is correlated with solar wind variables. This study
presentsanew machinelear ning enhanced NARMAX (MLE-
NARMAX) model for 3 hoursahead for ecasting of Dst index.
Animportant advantage of the MLE-NARM AX model isthat
it provides a transparent and explainable model structure.
The model performance is tested over three typical strong
storm periods, where the prediction skills are 0.9734, 0.9598
and 0.9206 in terms of correlation, and 0.9474, 0.9173, and
0.8333 in terms prediction efficiency (PE). Compared to the
conventional NARX model, the MLE-NARMAX produces
better model predictions.

Keywords-Space Weather; Dst Forecast; NARMAX model;
M achine L ear ning;

. INTRODUCTION
The magnetosphere i@ very complex system. To

Compared to neural networks, the nonlinear
autoregressive moving average with exogenous
(NARMAX) model provides a much simple representation
of nonlinear system§l8-19]. It employs an orthogonal
forward regression (OFR) algorithm to measure and rank
the significance of each candidate model terms, so that the
most significant model terms can be selected accordingly
[18-21]. More importantly, the NARMAX model provides
a transparent and parsimonious model structure, which is
very useful for understanding and interpreting the system
behaviour. In general, the neural network model is better
atgenerating model prediction and the NARMAX model is
better at providing a transparent and explainable model
structure. The NARMAX method and its varian@g][has
been successfully applied to various research fields
including ecological23], environmental24], geophysical
[2,14,25,26], medical [27], societal [28] and
neurophysiological sciences [29

Based on the above considerations, this study presents
a new modelling framework, which consists of two sub-
models, namely, the NARX model component and the
neural network model component. The NARX sub-model

understand the magnetosphere system, the Dst index wiasestablished to capture and represent the most important
developed to measure the magnetic disturbances and itsgstem dynamics in a transparent way, while the neural
known to be correlated with a number of solar windnetwork sub-model is established to accommodate the error
variables [1]-[3]¢]. There are plenty of studies aiming to details that are not captured by the NARX model. In this
forecast Dst index from solar wind measurements usingay, both the advantages of the NMIRX model (e.g.
different methods including machine learning techniquetransparent, interpretable, simple) and the neural networks
[5]. In [6],[7], Elman recurrent neural networks were first(e.g. general strong learning ability) can be well exploited

proposed for Dst index predictioSince then, many other

neural network models have been introduced for Dst index
prediction[8-13]. The NARMAX method has also been

applied to Dst index forecasting [14}1®ther methods

for example, wavelets models were also used to foreca"L
Dst index [1-2]. A comparison study of the Dst index
forecast models suggests that the neural network b
Temerin and Li produces the best predictions when all th
events are considered [17]. It is not surprising as th

advantage of neural networks is that they can describe tRIARMAX model
behaviours of complex systems and can usually achie
excellent model prediction performance. The performanc
of neural networks could become even more powerful

and combined.

The proposed framework is therefore referred to as
machine learning enhanced NARMAX (MLE-NARMAX)
odel. In this study, the MLE-NARMAX model is used to
nerate 3 hours ahead predictions for Dst index, on three
typical test periods of strong storms. The results are
ompared with those produced by the conventional NARX
Snd neural networks. The main features of the MLE-
are: 1) the resulting models are
ﬂ%nsparent and easy to interpreind 3 the model

eossesseg;ood prediction performance.

The paper is organized as follows. The proposed MLE-

when increasing the number of the hidden layers. HoweveNARMAX model is introduced in section Il. A brief
some common issues can arise with neural networks, fdescription of the dataset is presented in section Ill. A case
example, the interpretability of the model and the potentisgdtudy of modelling and forecasting of the Dst index is
overfitting problem. Another issue is that complicatedpresented in section IV, and finally the work is concluded
neural networks usually require a huge amount oin section V.

computational time.
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.  THEPROPOSEDMLE-NARMAX METHOD NARMAX model consists of two sub-models, namely, the
In this section, the NARMAX method is briefly NARX sub-model and neural network sub-model.

reviewed and the proposed MLE-NARMAX model is (i). First-stage NARX sub-model

introduced. Using the OFR algorithm (the details of the
. . implementation can be found [19-21]), the first-stage
A Abrief review of NARMAX method NARX sub-model can be established as:

Consider the case of multiple-input single-output _
(MISO) systems, for which a NARMAX model can be Ynarx (£) = 01,01, (O) + -+ 0,0, (1) +e(®) - (3)

written as: where ¢, (t), ¢, (t), ..., ¢, (t) are the selected model
y(t) = fly(t — d), ...,y(t _ ny), X, (t—d) o, %, (t — terms andg,,,,,,...,0,, are the esﬂr_nated .palrameters.
_ —d),..,x.(t— Note that the NARX sub-model is a lingarthe-
nu)vxz(t)v ,xz(t nu) 'xr(t ’ yrr . h . d d | d |
n), e(t —d), ..e(t —n,)] + e(t) (1) Parameters representation, where individual model terms

are fully transparent, and their contributions are measurable
wherey(t), x,(t), ..., x,(t),e(t) are the system output, and interpretable. The significant model terms are selected
input and noise signals, respectively,,, n,, andn, are  from a pre-specified dictionary and then ranked based on
the maximum time lags for the system output, input anthe values of the ERR index. While in most situations,
noise; d is a time delay, and inglstudy we assume that NARX model can provide a good representation of the
the time delay d =3, meaning that the model are use®i forunderlying system dynamics of interest, NARX model
hour ahead forecasting[-] is some nonlinear function. might not sufficiently capture all the details of the system.
Without including the noise moving-averaging modelThis motivates the use of a neural network sub-model in the
elements(t — d), ..., e(t — n,), the NARMAX model is second stage to improve the prediction performance.
reduced to the NARX model, which can be written in

linearin-the-parameters form as [19] 4ii). Second-stage neural network sub-model

In the second stage, a neural network is used to

V() = Em=1 Ompm () +€(0) @ approximate the model residual of the NARX model. Note
whereg;, (t) ... ¢, (t) are the model terms generated fromthat the output (desired signal) of the neural network is the
the regressor vector[y(t — d), ...,y(t — ny),xl (t — model error, whi[e thg inputs qf the neural network include
d) oo, 2y (= 1), X (E = ), s Xy (E — 1) o, X0 (E — not only the original input variables of the NARX model,

gbut also the lagged versions of the model residual variable.

d), ..., x.(t —n)] 7, 6,, are the unknown parameters an g g :
M is the number of candidate model terms. The' N€ Motivation of introducing a neural network model to

identification of NARMAX model consists of two main approximate the model error is to take advantage of neural

steps. The first step is to establish a NARX model usingetwork approximation capability to accommodate the
OFR algorithm [19]. However, the polynomial NARX ependent and correlated relations between the model error
structure might not perfectly describe the system behaviord"d all the candidate explanatory variables that are
but it can usually provide a good approximation if both theUfficiently explained by the NARX model.

NARX model structure and model parameters are well  To avoid any confusion, in this study we use e(t) and
estimated. To reduce bias of the NARX model, NARMAX¢(¢) to represent noise (of a general sense) and model error
method introduces a second step which is a noise modelligsidual). The model error of the NARX model (3) is:
process [18], where the noise signal (model residual) is

treated as an extra “input” (explanatory variable), referred e(t) = y() — Inarx (t) (4)

to as the moving average (MA) elements. In each search ; ; ; ;

step, a candidate NARX model is established first, based ‘?FhinTtTﬁe ﬂgﬂ% (;)eisvgrskegu%?nggfjji?iﬁg %ﬂtrg:ﬂ signal to
which the model error (residual) is calculated and used to

estimate an associated candidate NARMAX model. The e(t) = glw (), w, (L), ..., way, (8] (5)

procedure repeats many times until a NARMAX model
with good performance is established. whereg|-] represents the constructed neural network sub-

model, and the input vectoss, (t), withk = 1,2,..., M’,
B. The MLE-NARMAX model are defined as  y(t—d),..y(t—ny)x(t -

In this study, the MLE-NARMAX framework, @) - X1(t=ny),x(t—=a), ..., x;(t —1y) oo, (t—
combining NARX and neural network approaches, whictl), - %r(t = 1y), £(t = d)), ..., e(t —n;), where n, is
can effectively deal with correlated or colored noise, ighe time lag for the error signal. Note that the neural
proposed. It is a two-stage training method. In the firshetwork sub-model uses all the model terms
stage, a NARX model is established to represent the maim (t), w2 (¢), ..., wy, (t), meaning that the model structure
dynamics of the system of interest. Note that the NARXcan be extremely complicated and the modelling process
might not be sufficient for representing the systenrcan therefore time-consuming.

dynamics in every detail. In the second stage, a neural The general structure of the MLE-NARMAX model is

network is designed and trained to accommodate the moqﬁj PR
; . : esented in fg. 1, where the MLE-NARMAX model can
residual of NARX model and the potential correlatlons.s)e explicitly egpressed as:

(interactions) between model residuals (of the first stage),
system inputs and outputs variables. So, the final MLE-



y(t) = 0,0, (t) + 0,0, (t) + -+ 6, ¢, () + The Dst and solar wind data of year 2014 were used fo
, training the model. Three time periods of intense storms
glw1 (@), w3 (6), ..., wy ()] (6) (Dst<-100nT), Mar 2015, Jun 2015 and Sep 2017 were
here the 6 £+ 0 4t B £) is the used to eva!uate th_e model. The time series of the D_st index
\ll\lv ARX sub %gélle(l )a: @ﬁ)‘pl&(} )w+ ( t)+ lg)(pl"(g)% :s the @nd solar wind variables of the three interested periods are
- 1 y Wo y ey Whyy

2 shown in Fig. 2. For Dst index forecast, negative peak
neural network sub-model. The model prediction of th ; .
MLE-NARMAX model can be calculated as: Salues are important. From the figure, there are strong

storms in these periods. In total, there are ar@n@data
Vue—narmax ) = Ivarx () + an(®) (7) points in the training dataset and around 2200 data points

in the three test datasets.
wherejyarx (t) is the model prediction of NARX sub-

model andeyy(t) is the model prediction of neural o 0 0
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Figure 1. The MLE-NARMAX model structure.

. DATA

The process of Dst is treated to be a dynamic nonlinear
system, where the system inputs are solar wind variables _ ) _ N
and the system output is the Dst index. The description of This section presents the identified MLE-NARMAX
the solar wind variables and Dst index is given in Table Imodel that predict Dst index 3 hours ahead. The model
All the variables were sampled every 1 hour. It should bwas evaluated on three test periods.
noted thatVBst =V X Brsin® (g) /1000 is a multiplied ]
input which was suggested to be included in the modeﬁ‘ Forecast Dstindex 3 hours ahead
inputs BQ]. The 3 hours ahead prediction of Dst can be defined as:

IV. THEMLE-NARMAX MODEL FOR3 HOUR AHEAD
DSTINDEX FORECASTING

TABLE I. DST INDEX AND SOLAR WIND VARIABLES Dst(t) = Fyrp-narmax[Dst(t —3) ... DSt(t -
ny), V(t—-3)...V(t—ny),pt—3)..p(t —ny),n(t —
3)..n(t —ny),B(t —3)..B(t —n,),Bz(t —

Name Description

Dst  Dstindex [nT] 3)..Bz(t —n), Bst(t — 3) ... Bst(t —n,), VBst(t —
\Y solar wind speed/velocity (flow speed) [km/ 3) .. VBst(t — n,)] (8)
p solar wind pressure (flow pressure) [nPa] whereFy s_narmax 1S the MLE-NARMAX framework.

To evaluate the prediction of the model, the correlation
coefficient, prediction efficiency (PE), and normalized
B interplanetary magnetic field (IMF) [nT] root-mean square error (NRMSE) are calculated. The value

Bz the north-south IMF [nT] of PE is defined as
Bst Bst= Bysin®(6/2) [nT] [8] PE =1— zaezrmr )

9observed

solar wind density (proton density) [cin




where o3,....c IS the variance of the observed Dst valuesvas chosen to be a polynomial form with nonlinear degree
andq?,,, is the variance of the error between the predictedf 2.

and observed Dst values.

TABLE II. SELECTED MODEL TERMS OF THENARX SUB-MODEL
No Model Term E%g%) Parameter t-statistics
1 Dst(t-03) 78.1229 0.8462 103.3129
2 B(t-04) *VBst(t-03) 3.3731 -0.1680 4.6679
3 B(t-04) *VBst(t-04) 0.4205  0.1528 6.1903
4 p(t-03) *p(t-04) 0.3519 -0.2623  16.1041
5  Bz(t-03) *Bsf(t-03) 0.2090  0.2002 13.3520
6  p(t-04) *n(t-03) 0.1400  0.0728 11.8165
7 n(t-04) *Dsf(t-03)  0.1077 -0.0064  7.0959
8  Bsti{t-03) 0.0645 -0.6475  6.9029
9  Bz(t-03) *Bz(t-03) 0.0590  0.0346 8.5650
10 V(t-04) *Bz(t-04)  0.0844 -0.0006  6.5766

TABLE III. COMPARISON OF THE PERFORMNACES dRARX MODEL,
NEURAL NETWORK AND MLE-NARMAX MODEL OF THE THREE TEST
PERIODS
Period Model Correlation Prediction NRMSE
Type Coefficient  Efficiency
NARX 0.9502 0.9029 0.0353
Mar Neural
2015 Network* 0.9716 0.9439 0.0269
MLE-
NARMAX* 0.9734 0.9474 0.0260
NARX 0.8907 0.7368 0.0678
Jun Neural
2015 Network* 0.9599 0.9212 0.0364
MLE-
NARMAX* 0.9598 0.9173 0.0368
NARX 0.8828 0.7735 0.0642
Sep Neural
2017 Network* 0.9295 0.8487 0.0500
MLE-
NARMAX* 0.9206 0.8333 0.0529

* The algorithm was run for ten times and the avetagatistics are

recorded

B. The identified MLE-NARMAX model

In order to determine the maximum time lags for both -200
the input and output variables, following the approach
described in 21] we have carried out pre-modelling
experiments and simulation1], the results suggest that

In the first step, a 10-term bilinear NARX sub-model
was identifiel. The 10 model terms, together with their
corresponding ERR values and t-statistics, are shown in
Table Il. The t-statistics given in the table indicates that alll
the selected model terms are significant. Note the first-
stage bilinear NARX model reported in Table Il can be
written as:

Dst(t) = 0.8462 Dst(t — 3) — 0.1680 B(t —
4) VBst(t —3) + - (20)

In the second step, the neural network sub-model was
estimated to fit the error of NARX sub-modgkcording
to the trial experiments and simulations, the number of
neurons is chosen to be 10. The estimation algorithm was
run for 10 times and the averaged performances were
recorded. Then, the final MLE-NARMAX model is
obtained with the NARX sub-model and the neural network
sub-model. As the neural network contains too many nodes
and connections, the details of the model are not presented
here.
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C. Performance and advantage of MieE-NARMAX From the results shown in Table the NARX sub-
model models only consists of 10 significant terms. Obviously, the

model provides a parsimonious and transparent
The MLE-NARMAX model was used to generate 3 representation, where contributionstbé selectednodel
hours ahead Dst predictions for the three test periods: M

) #rms are clear. However, such a simple bilinear NARX
2015, Jun 2015 and Sep 20Hg. 3 presents graphical model may not always be sufficient to capture the

comparisons of the observed and predicted Dst index Oftrﬂﬁ‘]derlying dynamics of the process, and the model

three test periods. The statistical performances of t - : ; :
rediction performance may be improved by introducing a
NARX model, neural network and the MLE-NARMAX ub-model to characterize some dynamics of the system
modelon the three test periods are presented in Table IIEidden in the model residuals that is not captured by the
From the statistics, the performances of the MLEL /N ARX modelThis explains why the two-stage MLE-

NARMAX model are similarto those of the neural
networks and better than those of the NARX models for a[I\IARNIAX performs better than the NARX model.

the three test periods. It can be seen that for the test period Note that although the neural network sub-model
of June 2015, the improvement is obviously mordmproves the model performance, the model structure itself
significant than those for the other two periods. From Tableannot be written dowrkig. 5 shows the training state of
Il and Fig. 3, it can be noticed that while the bilinear oneof the neural network sub-modelhe two variables
NARX structure can well capture the features andgradient and ‘gamk’ indicate the values of the associated
dynamics of the Dst process at most times of the tegradient and the effective number of parameters at each
periods of June 2015 and September 281 model does iteration, respectively. The figure shows that during the
not sufficiently capture the system dynamics at the seveteaining process of the MLE-NARMAX models, the neural
situation times. The neural network sub-model, howevenetwork sub-model contains over 150 parameters. The
can help improve the model performance. model complexity of the neural network sub-model is much
higher than that of the NARX sub-model. In addition, the
neural network sub-model takes many steps to train. For
‘big’ data modeling problems where the data size is much
o larger, the training of neural network can take quite long
time. On the contrary, the training of the NARX sub-model
only takes a few steps and use relatively much less time
Therefore, the MLE-NARMAX model is developed so that
sl a 5 it can take the advantages of both NARX model and neural
W R o 20 A, 2 W network model. For example, it providestransparent
representation of complex nonlinear systems, which helps
to understand the systems behaviors. Meanwhile, it

March 2015
= ConventionaI.NARX = Conventional NN 5 MLE-NARMAX
50 ) 50

> o
3 &

predicton
=)

prediction
&

-150.

-200;

June 2015 A ..
, , providesgoodmodel prediction performance.
100 Conventional NARX 5 Conventional NN = MLE-NARMAX
i o, ) o® Gradient = 0.1241, at epoch 256
= °® 2 4 = ® i c 50 . f= ' ' ' '
2 £ 2 ()
§ 100l o § gwa . S
S ge® e = / S50t M S 100f . . .
200 & L[4
."’0 * .. =200 Num Parameters = 162.0985, at epoch 256
5300 — —— 200 T r v v
- -100 o -200 -100 ¢} -200 -100 (+] &~
observation observation observation % 100
0 56 OLO "0 2(;0 2:0
September 2017 ! 12 >
& Conventional NARX B Conventional NN MLE-NARMAX
. ° o 3 -" Figure 5. Training state of the neural network sub-model ofi\tté-
- '&T . . 2 = b NARMAX model.
2 ° s S -50
3 -100 :.f ° S -50 3
150 ® -100 ®
e 100 f °
s V. CONCLUSION
-250 -150 -150
e g T N Ssaryait In this paper, a new MLE-NARMAX method is

proposed for 3 hours ahead prediction of the Dst index.
Figure 4. Scatter plots of the 3 hours ahead NARX model, neural Three periods with typical strong storms were used to test
network model and MLE-NARMAX model of the three teatabets. the model performance. The MLE-NARMAX model
outperforms the conventional NARX model in terms of
'carrelation coefficient and prediction efficiency. More
n:al:ral _[letwort and MLEH“{AEMA&(LQC;\?EEJE? thedsel importantly, the MLE-NARMAX model is capable to
plots, 1t can be seen thal the A mode provide an interpretable representation of the system,

produces better predictions for strong storms (Dst< Wwhich can reveal the m ianificant model terms and in
100nT) than the bilinear NARX model alone. In other ch can reveal the most significant model terms and

words, the results show that the combination of the NAR>§-‘he meantime show good generalization properties. For

b-model and | network sub-model bett di any real data modelling problems, where the central
sub-modef and neural nework sub-model can betler pred odelling task and objective is not is not only for prediction
change of the Dst index during strong storm periods.

Fig. 4 shows the scatter plots of the NARX model



but also for understanding and explaining the ingutput

behaviour or cause-effect relationships of the systems, the

proposed MLE-NARMAX model is a good choice

[15]

For future work, we intend to further develop the neural
network sub-model by employing deep learning methods
[31][32], to seek further improvement of the prediction [16]

performance of the MLE-NARMAX model.
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