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Abstract. Metallic mirrors are to be used extensively within ITER for diagnostics

and real time control. Erosion of the first wall within ITER will cause particles to be

redeposited around the machine, including on these first mirrors, which will cause a

reduction in reflectivity and a degradation in quality of signal received by the detectors.

Powering these mirrors to form Capacitively-Coupled Plasmas (CCPs) with an induced

self bias, and using the ions within the plasmas to bombard and remove the deposits,

has shown some experimental success in recovering mirror reflectivity. In this work the

Ion Energy Distribution Functions (IEDFs) from an Ar CCP formed on a 5 cm radius

metallic mirror are modelled and investigated using the Hybrid Plasma Equipment

Model (HPEM). Initially a geometry variation is done showing that a simple increase

in reactor volume can significantly impact the spatial distribution of the ion flux to

the mirror surface leading to non-uniform etch rates across the surface, even after the

maximum bias has been achieved. The ion energies need to be sufficient to remove

depositions (focussing on the first wall material of Be which forms a surface oxide BeO)

but not subsequently damage the underlying mirror. In order to achieve this both the

voltage (50 V to 1000 V) and the frequency (13.56 MHz to 60 MHz) have been varied

within the model showing trends that may lead towards IEDF optimisation. The

increase in voltage increases the self bias linearly and the plasma density super-linearly,

whereas increasing the frequency barely effects the self bias while increasing the plasma

density sub-linearly. Both increases cause an increase in ion flux for these reasons but

both also decrease the homogeneity of the ion flux across the mirror surface which will

be required should the energies be above the threshold for the mirror. These results

are also unique to the geometry being investigated and thus the conclusion is that it

would be prudent to model individual mirror geometries to find optimal parameters.

This becomes especially clear with the introduction of a perpendicular magnetic field

into the simulation that significantly reduces electron transport within the plasma.
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Modelling radio-frequency plasma cleaning of fusion optics 2

1. Introduction

The design of the ITER includes multiple optical diagnostic systems. These diagnostics

rely on metallic mirrors in close proximity to the fusion plasma to gather optical

information, and direct it down shielded pathways. With the high flux of particles

from the fusion plasma impacting the Be first wall, and W divertor, the surfaces will

be eroded. Erosion of mirrors themselves is not considered an issue as the surface

can be maintained using materials with an ordered structure or small-scale crystals [1].

However the material eroded from the first wall will deposit on these optics and cause

reduced reflectivity which degrades the quality of the signal received by the diagnostic

detectors [2–4].

This issue is one that has found a proposed solution [5]. The mirrors, being stainless-

steel, molybdenum, or rhodium-coated molybdenum, are all metallic and therefore can

be used as a powered electrode to form a Capacitively-Coupled Plasma (CCP) [6, 7].

The ions created within this plasma can then be attracted to the surface with sufficient

energy to sputter the deposited material using a self-bias voltage [8]. This is physical

etching and is a well understood process that is used extensively in the manufacturing

of microprocessors [9, 10]. It is known that when forming a CCP a difference in ratio

between grounded and powered electrode areas causes the formation of a self bias. This

is from circuit theory where a smaller powered electrode will have a smaller capacitance

which increases the sheath width up to that of the RF amplitude [11]. This is then

compounded through the use of a blocking capacitor between the electrode and the AC

supply which stops the electrons, that have reached the surface during the RF cycle,

from flowing to ground [12]. This imparts a DC component which further increases the

sheath width such that ions may accelerate to an energy that is a combination of the

plasma potential and the self bias voltage.

This method has been successfully tested within the laboratory environment

multiple times [5, 7, 8, 13–16]. However, exact optimisation of the procedure is very

challenging in experiments since the important self bias effect critically depends on the

system’s geometry. In particular the distances between the powered electrode and any

grounded components nearby. The effects of the geometry will need to be understood

first before further optimisation can be addressed e.g. voltage and frequency variations.

With vacuum chambers being expensive pieces of equipment the size of a reactor is

usually just sufficient for the experiment they are designed for and no larger. Some

work has been done looking at very close grounds [17], but these were wire mesh and

cannot represent permanent internal mirror housing geometries. In most CCP reactors,

designed primarily to investigate semi-conductor etching, there is a parallel grounded

electrode. Within ITER the only ground for a powered mirror will be the nearest wall.

The orientation and distance of this wall from the electrode will change the distribution

and energies of ions impacting the surface of the mirror which will change the etching

profile. Replication of ITER-relevant geometries is clearly challenging experimentally,

therefore, modelling studies are more appropriate at this stage.
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Modelling radio-frequency plasma cleaning of fusion optics 3

In this paper the impact of geometry on Ion Energy Distribution Functions (IEDFs)

is shown. Also investigated are IEDF changes in one geometry with variations in voltage

and frequency. The gas used throughout this work is Ar as it has been used extensively

in the published work and has also been suggested as the working gas for this on

ITER [7, 8, 13–17]. Also in this paper are some brief results on the impact of a small

perpendicular magnetic field which are shown and discussed.

When considering the energies of the ions it is important to know what a useful

etching energy is. Most of the deposits within ITER will be BeO for which no

experimental sputtering data using Ar ions could be found. Although the, previously

cited, experiments have been done they have not provided energy thresholds. Any

data available is mainly theoretical and is focussed on light ions, where the Bodhansky

formula for sputtering yield may be used [18]. Comparisons from work done by Moser

give BeO about half the sputtering yield as Al2O3 in Ar at a 200 V bias [7]. However

these are based on fits from Yamamura which have limited data at the lower energy

levels [19]. It is also contrary to etching with D2 which is a lower mass ion but for

which BeO has a lower threshold energy than Al2O3 by more than 50 % (29 eV to

66 eV respectively) [16]. It has also been shown by Moser that BeO etches faster when

bombarded with Ar ions as opposed to lighter elements, such as He or H2 [14], but

no direct experimental comparison for sputtering thresholds has been found. With the

limited data available an informed estimation of a sputtering threshold of 25 eV has been

made for BeO under bombardment from Ar ions. This is half of that of Al2O3 [20, 21].

2. Methods

For this work the Hybrid Plasma Equipment Model (HPEM) was used. This is a 2D

modular plasma simulation code for simulating low-temperature plasma sources. This

code was developed by Mark Kushner and collaborators with a simple description given

here and a more comprehensive detailing of the code found in [22–25].

The modules used throughout are the Electro-Magnetics Module (EMM), which

takes inputs of currents, properties of boundary materials, and plasma conductivity to

solve Maxwell’s equations. The EMM outputs vector components and phase of electric

and magnetic fields which are fed into the Electron Energy Transport Module (EETM).

This in turn outputs electron sources and impact rate coefficients, derived from the

solution to the Boltzmann equation, which are passed into the Fluid Kinetics Poisson

Module (FKPM). The FKPM solves for ion and neutral transport, with associated fields,

using Poisson’s equation.

As this work is done at low pressures < 75 mTorr, where non-local electron heating

is significant in CCP sources [26, 27], the electron transport cannot be dealt with

sufficiently using a fluid momentum equation. The electron Monte-Carlo Simulation

(eMCS) is used where pseudo particles are released from random numeric cells and their

paths integrated in the electric fields produced by the FKPM. The initial location of the

pseudo particles is according to the electron density, also generated within the FKPM.
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Modelling radio-frequency plasma cleaning of fusion optics 4

Collision rates for electrons are determined using collision cross-sections from a gas

phase chemistry input file. The time step used for advancing the particle is stochastic,

as is such with a Monte Carlo method, and the details can be found in [28]. The

pseudo particle is then integrated through that time step and collisions are stochastically

determined to have occurred or not. If the collision occurs then the collision type and

scattering angle are also randomly assigned. Else if no collision occurs then the particle

is integrated through another time step. Over a number of RF cycles statistics are

gathered and an electron energy distribution is output for each location. The electron

impact rate and transport coefficients are then calculated and fed back into the FKPM.

The FKPM and EETM iterate through these above processes multiple times in order

to reach convergence.

Fluid equations are used to solve for the heavy species transport, which means that

energies and angular distributions are not available for the calculation of the Ion Energy

Distribution Functions (IEDFs) at the electrode surface. To access IEDFs the Monte

Carlo techniques, similar to the ones used in the eMCS, are utilised in the Particle-in-

Cell Monte Carlo Module (PCMCM) in the final iteration of the code. The gas phase

collisional processes use the same reaction mechanism as in the FKPM. The particle

trajectories are followed until they strike a surface at which point energies and angular

distributions are output [29]. The gas phase chemistry used in this work is Argon and

has been validated and used in other works such as [30–32]. The species in the simulation

are Ar, Ar+, Ar(1s1), Ar(1s2), Ar(1s3), Ar(1s4), Ar(4p), Ar(4d), Ar2(
3
∑

+

u
), Ar+2 , and

e−. Neutral Ar gas flows in at a rate of 30 sccm and a pressure of 10 mTorr is maintained

through a calculated flow out of the reactor. The working pressure of 10 mTorr is chosen

as it has been suggested as a useful working pressure for this deposition removal method

on ITER [17].

In order to investigate the effect of geometry on the plasma properties, in particular

IEDFs, a simple geometry, shown in figure 1, is considered. The reactor height and

radius, a, and the electrode radius, b, are varied. The variations in reactor volume

are shown in figure 2. In each case the electrode radius remains roughly the same size

between 5 cm and 5.6 cm while the volume of the reactor increases. The reason that the

electrode radius is not exactly constant is the limitation imposed by the geometry mesh

which changes with the change in overall reactor size. The mesh must be small enough

to resolve the plasma accurately, but not so small that the computational time becomes

unreasonable or that the ions travel non-locally. The cell sizes therefore increase with

each geometry and are 0.2 cm2, 0.4 cm2, 0.8 cm2, and 1.6 cm2 for geometries 1 to

4 respectively. The geometries are all cylindrical about the symmetric axis and have

geometry defined spatial variation on the electrode surface for recovery of the IEDFs

radially.

For the geometry variations the power was supplied to the lower electrode at 130 V

and 13.56 MHz. There have been suggestions that frequencies as high as 60 MHz may

be used for this cleaning method, but most published experiments have been done at

13.56 MHz. The voltage was not varied and the self bias is calculated by the code and
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Modelling radio-frequency plasma cleaning of fusion optics 5

Figure 1. Geometry used in this work. The height and radius of the geometry, a,

varies between 11.8 cm and 47.2 cm. The electrode radius, b, is between 5 cm and

5.6 cm.

was not set. Any changes in the plasma potential or self bias are therefore products of

the geometry.

For the voltage variations 50 V, 200 V, 300 V, 500 V, and 1000 V were analysed.

Each one was done within the smallest of the simple geometries (geometry 1 in figure 3)

and at 13.56 MHz. The pressure was not varied and remains at 10 mTorr throughout.

This was also kept constant for the frequency variation through the harmonics of

13.56 MHz (13.56 MHz, 27.7 MHz, 40 MHz, and 60 MHz).

3. Results and discussion

3.1. Geometry variation

In figure 3 the variations in ion energy and flux for the different geometries are shown.

The trends with the increasing reactor volume are decreases in peak flux and maximum

energy. In all cases there is a peak in total flux at the edge of the electrode due

to increased fields from standing waves. These are due to surface waves propagating

radially into the discharge at these high frequencies [11, 33, 34]. The flux difference is

shown more clearly in figure 4 where it appears less disjointed than in figure 3. Ignoring
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Modelling radio-frequency plasma cleaning of fusion optics 6

Figure 2. Visual representation of variation in geometries. The height and radius

of the various geometries are, in order from 1 to 4; 11.8 cm, 17.7 cm, 23.6 cm, and

47.2 cm.

the results from geometry 4 for a moment, in both figures the minimum flux for the

geometries lies at a dip between a central peak, caused by the high plasma density above

the centre of the electrode, and outer peak from edge effects. This is not unusual for

CCP devices. Edge effects, undesirable in manufacturing due to inhomogeneity, can be

ignored by having any surface to be etched much smaller than the electrode itself. This

is not the case for fusion optics as the whole electrode is the mirror. Geometry 1 is

the only geometry where the maximum flux is at the centre of the electrode where the

bulk plasma is dense enough to provide more ions than procured by the edge effects.

However, geometries 2 and 3 present a more homogeneous etch across the majority of

the electrode surface which would be more desirable when attempting to maintain the

mirror shape should etching continue beyond the oxide layer.

With the threshold energy taken into consideration, in the introduction to this

paper, it can be seen that within these parameters the energies are much higher than

those required to etch BeO (> 25 eV). This is good as it means that in all cases the

deposits would be removed from the surface. However the etching threshold for Mo, the

material out of which a substantial number of mirrors will be made, is only 35 eV [19].

Removing the deposits may not be useful if the underlying mirror is also damaged,

especially if that damage is non-uniform etching that deforms the mirror surface.

Page 6 of 19AUTHOR SUBMITTED MANUSCRIPT - PPCF-102376.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Modelling radio-frequency plasma cleaning of fusion optics 7

1

1 2 3 4 5

Radial distance from centre (cm)

0

20

40

60

80

100

E
n

e
rg

y
 (

e
V

)

0

2

4

6

8

10

12

14

16

18

Io
n
 fl

u
x
 (

c
m

-3
s

-1
)

10
12

2

1 2 3 4

Radial distance from centre (cm)

0

20

40

60

80

100

E
n

e
rg

y
 (

e
V

)

0

1

2

3

4

5

6

7

8

Io
n
 fl

u
x
 (

c
m

-3
s

-1
)

10
12

3

1 2 3 4 5

Radial distance from centre (cm)

0

20

40

60

80

100

E
n

e
rg

y
 (

e
V

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Io

n
 fl

u
x
 (

c
m

-3
s

-1
)

10
12

4

1 2 3 4

Radial distance from centre (cm)

0

20

40

60

80

100

E
n

e
rg

y
 (

e
V

)

0

0.5

1

1.5

2

2.5

3

3.5

4

Io
n
 fl

u
x
 (

c
m

-3
s

-1
)

10
12

Figure 3. Total ion flux and energies for the geometry variations.

The distribution of energies shows that in geometries 1 and 2 there is a single peak

of ion energies across the majority of the electrode. Geometry 3 shows a more bimodal

structure with a second peak forming at about 50 eV corresponding to the minimum

sheath potential. In each case, from geometries 1 to 3, there is an increase in lower

energy ions which will pay a role in the etching process. Any ions below the sputtering

threshold could be made up of previously sputtered material and thus could be a source

of re-deposition. The low energy ions will neutralise on the surface of the mirror and

redeposit.

From table 1 the values for the self bias and plasma potential can be seen. When

considering the self bias of a system the accepted theory is that as the grounded area

increases in relation to the powered area the self bias will increase. This is due to the

flow of current to the ground increasing which needs to be balanced. This increase is not

seen in this work. In this simple geometry the input voltage is already at the maximum

required to balance the current and thus no further increase in the grounded area will

change the bias voltage. However when we reach geometry 4 an extreme case is seen

where the plasma potential drops and the self bias increases dramatically. The effects of

this can be seen in figures 3 and 4. The drop in plasma potential and increase in the self
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Modelling radio-frequency plasma cleaning of fusion optics 8

Figure 4. Total ion flux at the electrode surface for each geometry.

bias can be explained by the orientation and surface area of the available ground. Either

the initial plasma that is invoked at the start of the simulation is unsustainable, and

should the simulation be run for an increased time period then quenching may occur,

or the plasma is sustainable but potentially only as a coronal discharge around the

electrode. The electric fields of geometries 3 and 4 are compared in figure 5 where the

electric field is not seen for the vast majority of geometry 4. A lack of connection with

the ground suggests that the plasma is in fact quenching and would not be sustainable

for removing deposits. This may be checked with an increased run time, however, with

this simulation already taking over a month to run, the result not impacting this work

substantially, and HPEM failing to output on a quenched plasma, the simulation time

was not increased. The simulations themselves were mainly run on four threads on

Intel Xeon E5-2683 v4 2.1 GHz processors housed within a Dell PowerEdge R630. Only

some of HPEMs modules are parallelised and we found that running on four threads

provided a factor of three decrease in run time which did not decrease much further

with increased thread count.

3.2. Voltage variation

As ITER is now in the building stage and designs for the machine are set it is clear that

geometry is not a feasible optimisation parameter but instead a set boundary condition.

One variable that may be adjusted in order to optimise IEDFs in fixed mirror geometries

is the voltage.
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Modelling radio-frequency plasma cleaning of fusion optics 9

Geometry Plasma potential and self bias (V)

1 24.7, -58.8

2 23.0, -56.0

3 20.6, -51.8

4 8.8, -71.1

Table 1. Values for measured maximum plasma potential and self bias in the simple

geometries.

Figure 5. The electric field for geometries 3 (a), and 4 (b).

Figure 6 shows the ion flux and energies for the varying voltages and also shows a

linear relationship with the self bias and the input voltage. As expected the maximum

ion energies are at the sum of the bias voltage and the plasma potential in each case with

the bottom of the main band of ions sitting at the bias voltage. Any ions with energies

below the bias voltage must be ions that have undergone collisions in the sheath, they

have either simply lost energy, or they have transferred charge to a neutral through

charge exchange. For each increase in voltage the energy of the ions shifts upwards as

expected while maintaining a similar structure. The band of high energy ions across

the surface of the electrode widens as the voltage increases, but this is an expected

result considering the divergence of the plasma potential and the self bias. The number

of low energy ions also decreases comparatively to the overall flux implying reduced

redeposition with increased voltage.

The total flux can be seen in figure 7(a) which also shows a more homogeneous

flux at the lower voltages. This does not come across as easily in figure 6 where the

overall flux shape may appear to be fairly similar in each case. The large spread of

energies masks the flux inhomogeneity across the electrode surface in the contour plots.

Figure 7(b) also shows that the average increase in flux is super linear with voltage, by

comparing the maximum and minimum flux for each voltage the inhomogeneity is also
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Modelling radio-frequency plasma cleaning of fusion optics 10

Figure 6. Ion energies and total flux as a function of radius for varying voltages at

10 mTorr in geometry 1. The plasma potential and electrode bias as a function of

input voltage is also shown.
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Modelling radio-frequency plasma cleaning of fusion optics 11

Figure 7. Total ion flux variations on the powered electrode as a function of input

voltage. (a) shows the spatial distribution of the flux with electrode radius and (b)

gives the average flux as a function of input voltage.

shown to follow this trend. Increasing the voltage would therefore decrease etching time

dramatically, reducing the re-deposition rate along with increased etching. However the

non-uniformity of the etch would increase at the same rate and given the energies the

damage to the underlying mirror would be unavoidable, especially at the edge. Therefore

there is a trade off between etch uniformity and rate, but with a requirement to maintain

mirror performance after deposition removal the decision should be made to reduce the

rate and protect the mirror. Therefore the recommendation regarding implementation

of this method, for this specific geometry, would be to keep the voltage low enough to

maintain ion energies below the 35 eV etching threshold of the mirror.

3.3. Frequency variation

It is known that increasing the driving voltage frequency of a discharge will increase the

plasma density, and ion current, while maintaining the maximum ion energy (assuming

the geometry, pressure, and voltage remain constant) [35]. Simulations were run at

various harmonics of 13.56 MHz in geometry 1 at 130 V; the ion energy and flux as

a function of electrode radius are shown in figure 8. With the increasing frequency

the width of the ion energy distribution reduces with the sheath width. This is useful

for etching as the finer band of energetic ions can lead to better tuning of the system,

especially to fit the main band of ions between the threshold energy of the deposits at

25 eV and that of the mirror at 35 eV. The number of low energy ions also decreases

with the sheath width due to the reduced distance within which collisions can occur.

Figure 9(a) shows the increase in frequency causes the flux to grow more at the

centre of the electrode than at the edge which is due to an overall increase in plasma

density shown in figure 11(a). This can be viewed as a multiplication that increases the

areas of high density more than it increases in the areas where it is low. The greater
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Figure 8. Geometry 1 total ion flux and energy as a function of electrode radius for

various harmonics of 13.56 MHz.

number of ions in the high density areas gives rise to higher flux. This will give a less

uniform etch with higher frequencies, which is not ideal when the threshold energies of

the deposits and the mirrors are so close. The range of energies is thinnest at 60 MHz

and is between ∼ 58 eV and ∼ 65 eV. Reducing the voltage could bring the maximum

energy below the 35 eV threshold while maintaining the majority of the flux above the

assumed 25 eV BeO etching threshold. This removes the necessity to have a uniform etch

as damage to the mirror is not possible below the threshold energy. When attempting

this the lowest voltage at which a 60 MHz plasma would sustain within this geometry

was 75 V. At these parameters the ion energies were seen to be between ∼ 38 eV and

∼ 47 eV over the majority of the electrode which would still etch the underlying mirror

and require homogeneity. Lowering the frequency to 40 MHz allowed the plasma to exist

with 50 V and give a band of ions within the assumed optimum range. This result is

shown in figure 10. It should be stressed that these optimal parameters depend strongly

on the geometry and will differ between experimental geometries.

The flux increase with frequency is different from that seen with voltage, as shown

in figures 7(b) and 9(b). The increase is very slightly sub-linear with frequency but
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Modelling radio-frequency plasma cleaning of fusion optics 13

Figure 9. (a) Total ion flux vs electrode radius with varying frequencies, and (b)

average ion flux as a function of frequency.

Figure 10. Geometry 1 total ion flux and energy as a function of electrode radius at

40 MHz and 50 V.

super-linear with voltage, which is expected. Figure 11 shows that as both the voltage

and frequency increase, the plasma density increases and, that being so, there are more

ions in the plasma in general. With the increase in frequency the bias voltage decreases

only by a few volts but with voltage the bias increases significantly.

3.4. Influence of a magnetic field

Something that has been left out of the work so far, but something that will be a

principal challenge on ITER, is the influence of a magnetic field on the removal process.

It has not been included in the previous work for simplicity, and also as the majority of

the experimental work done in this area has also been without a magnetic field present.

As a small indication of the potential issues that may be faced, a simulation was run

in geometry 1, at 13.56 MHz, 130 V, 10 mTorr, and with a 100 G vertical magnetic
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Figure 11. Plasma density as a function of (a) frequency and (b) voltage.

Figure 12. (a) Total ion flux and energy as a function of radial distance from the

centre of the electrode in geometry 1 at 13.56 MHz, 130 V, 10 mTorr, and with a 100 G

vertical magnetic field. (b) The total ion flux on the lower electrode with and without

the magnetic field. (c) Total ion flux and energy as a function of radial distance for

the same parameters but with no magnetic field.

field. Details on how external magnetic fields are implemented in HPEM can be found

in [22,36]. The magnetic field strength is two orders of magnitude lower than would be

found in ITER, however, as the cyclotron motion requires small time steps the strength

was kept low to keep simulation times pragmatic. This small magnitude homogeneous

field still shows significant induced changes.

Figure 12 (a) shows the reduction in energy of ∼ 20 eV for the ions across the

electrode but the spread of energies remains almost the same as without the magnetic

field in figure 12 (c). The ion flux is completely different with the magnetic field, as

shown in figure 12 (b). Overall it is reduced to less than half of its non-magnetic field

value with the lowest flux value of the magnetic case of 1.5×1014 cm−3 s−1 corresponding

to a non-magnetic value of 4.5 × 1014 cm−3 s−1, and the peak in the magnetic case of

2.1 × 1014 cm−3 s−1 corresponding to 4.3 × 1014 cm−3 s−1 for the non-magnetic case.

The shape is also different as the peak in the centre of the electrode no longer exists

and only the edge effects appear to remain. This is a consequence of a complete change
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Figure 13. Ion densities in geometry 1 at 13.56 MHz, 130 V, at 10 mTorr. (a) Shows

the densities with an applied 100 G vertical magnetic field and (b) shows the same

simulation without the applied magnetic field.

in the distribution of the plasma, as shown in figure 13. A proposed explanation for

this is that the electrons cannot spread throughout the volume away from the areas

of high density, as a result of being constrained to the magnetic field lines. The ions

are still able to move, albeit through strong impedance, and move outwards away from

the higher densities. This has been shown to be possible in field strengths of up to

2.3×104 G [37].

In high fields and low pressures the formation of filamentary structures within the

plasma is reported [37–39]. These are not seen in these simulations as they have not

been encountered at low field strengths (< 0.9 T), but the cited works are significantly

below the field strength within which the deposition removal process will be required to

work. Moser et al. have also shown a single filamentary structure in the B-field chamber

which brought about a massive peak in etch rate at the location of the filament [17]. A

further important factor to consider is the direction of the field. Although not analysed

in this work the angle of the field to the mirror will also change the plasma dynamics.

This is important for ITER as the field orientation will be different for each first mirror.

Clearly a small vertical static B-field is able to cause significant changes in the plasma

which are detrimental to etching. There are also indications that higher field strengths

will induce filamentary structures which have been shown to cause localised etching. A

detailed model is therefore needed to understand the effect of high magnetic fields in

these low-temperature plasmas.

4. Conclusion

It has been shown that the geometry, set by the ITER design, will significantly

influence the self bias of the created plasma and therefore the IEDF and etch behaviour.
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Furthermore, significant inhomogeneities across the electrode were observed, especially

those induced by edge effects. These will cause any etching achieved to also be

inhomogeneous resulting in potential surface profile changes to the mirrors. Voltage and

frequency remain as variables which can tailor the IEDF to ideal values between 35 eV

(threshold for Mo) and 25 eV (the estimated threshold for BeO), with the frequency

being most significant due to narrower IEDFs at higher frequencies. However there is

the consideration that metals, such as Mo, have been shown to have order of magnitude

higher sputtering yields than oxides, such as BeO, when compared at higher energies [40].

With sputtering being a complicated process it is also known that threshold energies have

an angular dependence which can cause sputtering below the threshold energy (usually

measured with perpendicular ions) [41]. Therefore it is entirely possible that there is no

energy at which the inhomogeneity of the IEDF can be ignored when using this method

for deposition removal if the mirror is to retain its shape and remain functional. It is

also clear that the addition of magnetic fields cause significant changes to the plasma,

even at relatively low magnitudes. Considering the complicated structure of ITER, and

thus the many orientations that field lines may intersect with these mirrors, this area

requires future investigation.

The recommendation is that further work is required for a full understanding of

this method of deposition removal from fusion optics. It is clear that with the set

geometries of ITER, and the impact that each geometry has on the plasma, there needs

to be an assessment of each individual layout. In our opinion this is infeasible with

an experimental campaign alone, owing to the large number of geometries, not only

spatially varying but also within varying B field layouts and strengths. Through a

combined effort of experiment and modelling an optimum set of parameters may be

realised for individual cases.
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