
This is a repository copy of A cytoplasmic Slo3 isoform is expressed in somatic tissues.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/148447/

Version: Accepted Version

Article:

Chávez, JC, Vicens, A, Wrighton, DC et al. (5 more authors) (2019) A cytoplasmic Slo3 
isoform is expressed in somatic tissues. Molecular Biology Reports, 46 (5). pp. 5561-5567.
ISSN 0301-4851 

https://doi.org/10.1007/s11033-019-04943-z

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

A cytoplasmic Slo3 isoform is expressed in somatic tissues

Julio C. Chávez1*, Alberto Vicens2*, David C. Wrighton3, Karla Andrade-López1, Carmen Beltrán1,

Rosa M. Gutiérrez4, Jonathan D. Lippiat3 and Claudia L. Treviño1&

1Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología,

Universidad Nacional Autónoma de México, Cuernavaca Morelos, México.
2Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain.
3School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom.
4Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional

Autónoma de México, Cuernavaca Morelos, México

*These authors contributed equally

&Corresponding author

Departamento de Genética del Desarrollo y Fisiología Molecular

Instituto de Biotecnología, Universidad Nacional Autónoma de México,

Avenida Universidad 2001, Col. Chamilpa 62210

Cuernavaca Morelos, México.

E-mail: ctrevino@ibt.unam.mx

Phone number: +52 777 329 1777

Grant sponsors:

Dirección General de Asuntos de Personal Académico/Universidad Nacional Autónoma de México;

Grant number: IN202519 to CT; IN215519 to CB; IA200419 to JCC. DCW was supported by a

BBSRC PhD studentship.

Conflict of interests:
The co-authors of this manuscript declare that they have no conflict of interests



2

ABSTRACT

Slo3 is a pH-sensitive and weakly voltage-sensitive potassium channel that is essential for male

fertility in mouse and whose expression is regarded as sperm-specific. These properties have proposed

Slo3 as a candidate target for male contraceptive drugs. Nonetheless, the tissue distribution of Slo3

expression has not been rigorously studied yet. Applying computational and RT-PCR approaches, we

identified expression of two short Slo3 isoforms in somatic mouse tissues such as brain, kidney and

eye. These isoforms, which seem to result of transcription starting sites between exons 20 and 21,

have an identical open reading frame, both encoding the terminal 381 amino acids of the cytosolic

Slo3 domain. We corroborated the expression of these isoforms in mouse brain and testis by Western-

blot. The complete isoform encoding the Slo3 ion channel was uniquely detected in testis, both at

transcript and protein level. Although the functional role of the cytosolic Slo3 isoforms remains to be

established, we propose that they may have a functional effect by modulating Slo channels trafficking

and/or activity. This study confirms that expression of full-length Slo3 is sperm-specific but warns

against developing contraceptive drugs targeting the C-terminal tail of Slo3 channels.

Abbreviations

cDNA: complementary DNA

EST: Expressed Sequence Tag

K+: Potassium ion

RCK: regulator of K+ conductance

Slo3-CT: Slo3 carboxyl terminal
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Potassium channels, Slo, alternative splicing, sperm.

INTRODUCTION

Potassium (K+) channels of the Slo family exhibit functional properties that differ from those of

classical voltage-gated K+ (Kv) channels [1]. Slo channels possess a large C-terminal cytoplasmic

domain containing two non-identical regulators of K+ conductance (RCK) arranged in tandem, and

which confer ligand-specific gating properties [1,2]. In vertebrates, the Slo family have four members,

namely Slo1, two Slo2 paralogues, and Slo3. Slo1 channels, also referred to as BK, have been

extensively investigated due to their wide expression profile and high unitary conductance (260 pS).

Slo1 channels are activated both by depolarization and by an increase in intracellular Ca2+ [3,4]. The

two Slo2 paralogues, Slo2.1 and Slo2.2, are structurally related channels but are modulated by

different cytosolic factors, including ATP, Na+ and Cl- ions [5,6]. Slo3, on the other hand, is pH- and

voltage-dependent [7,8]. Slo3 channel expression has been claimed to be restricted to mammalian

testis, specifically in developing spermatocytes and mature spermatozoa [9], and is known to have a

pivotal role in male fertility. Genetic ablation of the Slo3 gene in mouse, results in infertile males.
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Sperm cells from these knock out (KO) mouse exhibit several functional defects, such as absence of

hyperactivated motility, lack of capacitation-associated membrane hyperpolarization (a maturational

process needed for fertilization), and reduced acrosomal reaction, among others [10,11].

Recently, we reported that Slo3 expression is in fact not restricted to mammals and is also present in

testis from birds and reptiles, although its function in these species remains unknown [12]. Given its

presumed testis-specific expression, the Slo3 channel has been proposed as an ideal target candidate

to develop pharmacological agents to control fertility in humans. Before embarking in such an

endeavor, it is essential to characterize the expression pattern of Slo3 in adult mammalian males.

Expression of Slo3 is presumed to be restricted to testis, a notion based on polymerase chain reaction

(PCR) and northern blot analyses performed in a variety of mouse tissues, in which the Slo3 transcript

was detected solely in spermatozoa and testis [9]. However, as indicated by the authors of this study,

their techniques could not rule out low Slo3 transcription levels in the tested tissues. Moreover, its

expression cannot be ruled out in tissues not included in their study.

Making use of the growing availability of genomic and expression data, we identified various mouse

Slo3 (mSlo3) expressed sequence tags (ESTs) in several non-reproductive tissues, particularly in

neural tissue. This observation motivated us to confirm using PCR and Western blot (WB), whether

such non-testicular ESTs correspond to non-canonical Slo3 transcripts and are in fact expressed in

tissues other than testis.

MATERIALSANDMETHODS

1.1.Tissue sources

CD1 male mouse (12-20 weeks old) were sacrificed by cervical dislocation, and tissues (testis, brain,

skin, eye, heart, blood serum, kidney, lung, and liver) were dissected from fresh cadavers. All

experimental procedures were approved by the Instituto de Biotecnología (Universidad Nacional

Autónoma de México) Animal Care Committee and were performed in accordance with their Guiding

Principles for the care and use of laboratory animals.

1.2.Rapid Amplification of cDNA Ends, PCR product cloning and cRNA synthesis

Marathon Rapid Amplification of cDNA Ends (RACE) PCR was performed using mouse brain

Marathon-ready® cDNA (Clontech, St-Germain-en-Laye, France) to identify potential neuronal Slo3

isoforms. Gene-specific primers were designed using NCBI primer blast design software

(www.ncbi.nlm.nih.gov/tools/primer-blast/) utilizing the Slo3-related EST sequence identified in a

cDNA library from mouse brain (GenBank entry: CV562866). First round PCR reactions were

performed using Adaptor Primer 1 (AP1) with forward or reverse Slo3-specific primers. The products
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of these reactions were used as templates for a second round of PCR reactions using nested primers.

The RACE-PCR products were separated by agarose gel electrophoresis and bands were purified

using the QIAEX II Gel Extraction Kit (Qiagen) before cloning using the StrataClone Blunt PCR

Cloning Kit (Stratagene) according to the manufacurer’s instructions, and sequencing (GATC Biotech

AG).

1.3.RNA extraction and RT-PCR

Total RNA was purified from each mouse tissue sample using TRIzol® Reagent (Thermo Scientific)

following manufacturer instructions. Reverse transcription was carried out using the RevertAid H

Minus First Strand cDNA synthesis Kit (Thermo Scientific) with 1 ȝg of total RNA, following 

manufacturer protocol. The product of the first strand cDNA synthesis was used directly for RT-PCR

using Taq DNA Polymerase (Thermo Scientific). PCRs were performed using Bio-Rad T100TM

thermal cycler. PCR primers were designed using mouse Slo3 transcript sequence (Ensembl ID

ENSMUST00000098858). PCR products were sequenced by the Sanger method in an automatic

sequencer provided by the Sequencing and Synthesis Unit of Instituto de Biotecnología (Universidad

Nacional Autónoma de México).

1.4.Protein extraction, SDS-PAGE and western blot analysis

Testis and brain from CD1 were dissected and microsomal membranes (membrane fraction, MF) as

well as their 200 000 x g supernatants (cytosolic fraction, CF) were obtained as reported by [13] and

modified as follows. The tissues were mixed with 9 volumes of 0.32 M sucrose, 1mM EDTA, 1 mM

2-mercaptoethanol, cOmplete EDTA-free (Roche REF 05056489001), and 10 mM Tris-HCl, pH 7.4,

and homogenized in a glass-Teflon Potter homogenizer. The suspensions were centrifuged at 12, 000

x g for 15 min at 4 °C and their supernatants at 200,000 x g for 45 min at 4 °C. The membrane

fraction in the pellet, was resuspended in buffer containing 0.1 M sucrose, 1 mM EGTA, 0.2 mM 2-

mercaptoethanol, cOmplete EDTA-free and 10 mM Tris-HC1, pH 7.4. Cytosolic fraction was

concentrated in Centricon YM30 Amicon. The protein samples were resolved in a 10 % SDS-PAGE

and electro-transferred (Semi-Dry Trans-Blot SD, Bio-Rad) to an Immobilon-P membrane. After

blocking with 5% fat-free milk in TBS (50 mM Tris–HCl, 150 mM NaCl pH 7.6) containing 0.5%

Twin-20 (TBS-T) at room temperature (1 hour), the Immobilon-P membranes were incubated at 4 °C,

overnight with two anti-Slo3 antibodies: a mouse monoclonal produced against 1052-1121 amino

acids of mSlo3 (NIH NeuroMab Facility, UC Davis, CA, USA) [10] (1:1000 in blocking buffer), and

a chicken polyclonal produced against 878-892 amino acids of mSlo3 (New England Peptide LLC,

Gardner, MA, USA) [14] (1:10000 in blocking buffer). Membranes were washed in TBS-T, and then

incubated with secondary antibodies conjugated to horseradish peroxidase, either donkey anti-mouse
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IgG (LI-COR Biosciences, Lincoln, NE, USA (1:5000) or goat anti-chicken (Zymed San Francisco,

CA, USA) (1:2500), at room temperature/1 hour. Immobilon-P membranes were washed in TBS-T,

TBS and revealed with the Chemiluminiscent substrate Super Signal West Pico (Thermo Fisher

Scientific, Rockford, IL, USA, No.34080). After the WB, the Immobilon-P membranes were stained

with amido black to visualize the total protein load.

RESULTSAND DISCUSSION

1.5.Identification of mSlo3 splicing isoforms from database mining

Genomic information about the mSlo3 gene was explored using the Ensembl Genome Database

(http://www.ensembl.org/index.html), and three putative mSlo3 isoforms were found (Fig. 1A). The

isoform 1 (Ensembl transcript ID: ENSMUST00000098858) consists of 27 exons and is considered to

be the canonical mSlo3 isoform, and corresponds to the mSlo3 transcript experimentally detected in

mouse testis (AF039213) [9]. Several ESTs from testis libraries provide experimental support of this

isoform’s transcription (Fig. 1A). The isoform 2 (ENSMUST000000120653) contains exons 21-27 of

the full-length mSlo3 isoform with an additional exon downstream the exon 20 (Fig. 1A). This

isoform is supported by a full-length cDNA (AK083174) as well as several ESTs from brain libraries

(Fig. 1A). The third mSlo3 isoform (isoform 3, ENSMUST000000126226) is composed of exons 21-

24, and exhibits an alternative splicing between canonical exons 20-21, resulting in two small 5’

exons (Fig. 1A). This isoform is supported by at least two short ESTs from brain (CV562866,

CX213584), and its 3’ is shown as truncated given that there is no supporting ESTs that includes this

region. To determine the complete sequence of the isoform 3, we used Marathon RACE-PCR on

mouse brain adaptor-ligated cDNA and used primers based on the EST clone CV562866

(Supplementary Figure S1). The first round of RACE-PCR generated smears with faint bands at

1000-1500 bp. The products were used as templates for second round nested PCR. Slo3 3’ RACE-

PCR yielded products of ≈1.5 kb, whereas Slo3 5’ RACE produced only low molecular weight bands,

between 200-600 bp. If the cDNA transcript encoded a full length Į-subunit, the 3’ RACE-PCR 

would be expected to generate a band of ≈3.5 kb, thus the neural cDNA sample contains shorter 

sequences. This finding was further supported by performing PCR of a mouse brain cDNA library

using pore region-specific primers, which failed to amplify any cDNA. We sequenced products from

the Marathon RACE-PCR reactions and observed that this transcript has an identical 3’ sequence to

the second isoform (Fig. 1A, Supplementary Figure S2). Additionally, we identified two ESTs from

eye libraries that map to exons in the terminal 3’ sequence of mSlo3 gene (Fig. 1A).

We examined the putative transcription profile of mSlo3 gene by exploring transcription factor

binding sites (TFBS) and chromatin modification profiles based on mouse Chromatin immuno

precipitation sequencing (ChIP-seq) data (ENCODE/LICR survey, 8-week adult), retrieved from the
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UCSC genome browser (https://genome.ucsc.edu/). A strong signal of RNA polymerase II (Pol II)

binding sites is observed in the 5’ upstream sequence in testis cDNA (Fig. 1B), supporting the strong

promoter activity in this tissue. Interestingly, a potential binding site of Pol II was observed in

cerebellum and cerebral cortex cDNA upstream the putative 5’ end of shorter Slo3 isoforms. The

histone methylation H3K4me1, which is a mark of active promoters, shows an enriched signal

upstream to the 5’ terminal sequence of mSlo3 for testis cDNA. A remarkable signal was also

observed upstream the putative 5’ end sequence of the short isoforms for both testis and cortex cDNA

libraries (Fig. 1B).

Altogether, these data indicate that mSlo3 gene would not solely encode the Į-subunit of a sperm K+

channel, but it also encodes shorter isoforms that can be expressed in non-reproductive tissues.

1.6.Expression of Slo3 isoforms in mouse tissues

To obtain experimental evidence of the expression of mSlo3 isoforms, we carried out RT-PCR on

cDNA obtained from several mouse tissues. To distinguish between the three Slo3 isoforms, we used

three different forward primers annealing to specific exons of each isoform, whereas a single reverse

primer –mapping to exon 24– was utilized (Fig. 2A, Supplementary Figure S2). RT-PCR

experiments revealed expression of mSlo3 isoforms in different mouse tissues (Fig. 2B). The first

isoform, coding for the Į-subunit of Slo3 channel, was uniquely identified in testis. Isoform 2 was 

detected in a range of tissues such as testis, brain, eye and kidney. Isoform 3 transcripts were found in

testis, kidney and brain. Identification of mSlo3 transcripts in kidney was innovative as we had not

evidence of Slo3 expression in this tissue from genomic databases screening. None of the isoforms

were amplified in liver, lung, heart and skin. Amplification of ȕ actin was used as a positive control 

for all tissues. The PCR products obtained from testis and brain were purified and sequenced.

Since the mSlo3 isoforms described in the present work lack the region spanning the S0-S8

hydrophobic segments, the two PCR primer pairs and the northern blot probe used by Schreiber et al.

[9] would not anneal to these transcripts, which encode most of the S9-S10 segment. On the other

hand, the divergence at the 5’ end of the short mSlo3 transcript variants, resulting from alternative

splicing, would prevent binding of the PCR primer pairs they used to detect segment S9, as the target

sequence is absent in them. This would explain why Schreiber et al. [9], were unable to detect cDNAs

comprising the 3’ end of the mSlo3 sequence.

Both shorter isoforms (2 and 3) contain an identical open reading frame (ORF) whose translation

would yield a protein of 381 amino acids (Supplementary Figure S2). This protein would span a

portion of the cytosolic RCK-2 domain and the C-terminal tail of the Slo3 channel, lacking the

transmembrane region. In addition, this protein also would lack the RCK-1 domain, which contains
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the assembly interface necessary to adopt the tetrameric gating ring structure of Slo channels [14].

These observations suggest that shorter Slo3 isoforms will be expressed as a soluble and monomeric

proteins.

To examine the expression of mSlo3 isoforms at the protein level, testis and brain protein extracts

were separated by SDS-PAGE and analyzed by WB using a mouse monoclonal anti-Slo3 antibody

(from Neuromab) that recognizes an epitope contained in all mSlo3 isoforms (Supplementary Figure

S2). We observed bands (around 50 kDa), the predicted molecular size of cytosolic isoforms (about

47 kDa, UniProt ref: D3Z5P2), in extractions of both testis and brain (not shown). However, the high

molecular size protein (~130 kDa) corresponding to the full-length Slo3 channel was not detected in

the membrane fraction from testis, albeit this protein has been previously identified using this

antibody [10]. Additionally, this antibody also recognizes bands around 50 kDa in samples for Slo3

KO testis, according to the data sheet of the manufacturer. To overcome these technical problems, we

used a custom-made polyclonal chicken anti-Slo3 that also targets epitopes contained in all mSlo3

isoforms (Supplementary Figure S2). This antibody was validated in a previous paper form our

group using the antigenic peptide and the pre-immune serum [15]. Unfortunately, when we tested this

antibody in testis from Slo3 KO mice we also detected non-specific bands in the range of 25-70 kDa

(not shown). However, using this antibody, we did visualize the ~130 kDa band of Slo3 channel in

the membrane fraction from testis but not from brain (Figure 3). A band of ~80 kDa was detected in

the membrane fraction from brain. Several bands (50-70 kDa) were detected in the cytosolic and

membrane fraction of brain and testis. Since this antibody yields nonspecific bands at these molecular

weights samples, we were unable to demonstrate unambiguously the expression of the shorter Slo3

protein by immunodetection procedures in brain and testis.

Unlike Slo3 channels, which are specifically expressed in testis and restricted to spermatocytes and

mature spermatozoa, the soluble Slo3 isoforms are expressed in several tissues. These cytosolic

proteins appear to share similar tissue expression with Slo1 channels, expressed in many different

organs [1]. Interestingly, expression of Slo3 C-terminus was primarily detected in brain, where Slo1

channels have a key role controlling the excitability of neurons [16]. A recent study using a proteomic

approach identified Slo3 as a possible interacting protein of Slo1 in mouse brain [17]. Slo1 gene

products include a large number of alternative isoforms that vary in their gating properties,

susceptibility to modulation, and trafficking to the plasma membrane and through intracellular

organelles [18–21]. Regarding the evolutionary interpretation of this interaction, it is possible that the

expression of soluble Slo3 isoforms in somatic tissues may be favored due to their positive effects on

Slo1 trafficking. The presence of cytosolic Slo3 isoforms in testis could increase the surface

expression of Slo1 in pre-meiotic germ cells [22].
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Although our findings initially challenge the widely-accepted view about the existence of a unique

Slo3 protein specifically expressed in testis/spermatozoa, the full-length Slo3 transcript encoding a

functional K+ channel remains exclusively detected in testis. Our findings thus would not run against

the consideration of the Slo3 channel as a candidate target for male contraceptive drugs but call for

caution for using drugs targeting the C-terminal tail of Slo3 channels.
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FIGURE CAPTIONS

Figure 1. Transcript isoforms and expressed sequence tags (EST) of mouse Slo3. A, Schematic

alignment of mSlo3 isoforms (top) with associated ESTs (bottom). First, second and third isoform are

colored in red, blue and green, respectively. Exons are numbered according to the first isoform,

indicating spliced exons as blank boxes. Arrowed region in isoform 3 represent the portion of

sequence experimentally obtained by RACE-PCR. EST accessions are shown on left arranged by

tissue source. Red, blue and green schemes represent EST unambiguously assigned to first, second

and third Slo3 isoforms respectively. Black schemes represent ESTs unable to be unambiguously

associated to a specific Slo3 isoform. B, Cis-regulatory elements in mSlo3 gene. Transcripts are

displayed as blue schemes on top. Tracks of histone modification H3K4m3 and RNA Polymerase II

(PoI2) binding sites are shown as signal intensity bars. Information retrieved from UCSC Genome

Browser (https://genome.ucsc.edu/).

Fig. 2. Examination of mSlo3 transcripts. A, Mapping of primers used for RT amplification of

mSlo3 transcripts. Green and red arrows indicate forward and reverse primers, respectively. Expected

size of amplicons is indicated. B, RT-PCR of mSlo3 transcript isoforms in indicated mouse tissues.

Products were separated on ethidium bromide agarose gels. DNA size markers are shown on the left

side. Is1: isoform 1; Is3: isoform 3; Is2: isoform 2; ȕac: ȕ-actin control (554 bp). (n = 3).

Fig. 3. Immunodetection of Slo3. Immunoblotting of Slo3 in mouse brain (A, left) and testis (A,

right) extracts using polyclonal chicken anti-Slo3. Protein extracts were isolated in membrane and

cytosolic fractions. Proteins were separated by SDS-PAGE on 10% acrylamide gels. Molecular size

ladders are indicated on the left side. (Data are representative of three independent gels). Loading

controls (membranes stained with Amido Black 2X) are shown in B.
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SUPPLEMENTARY MATERIAL

Figure S1. Marathon RACE PCR of CV562866. PCR products were separated on ethidium bromide

agarose gels. In first round of Marathon RACE-PCR were used two CV specific primers (CvS;CvE)

against the outer adaptor primer (AP1). In the second round of RACE-PCR EST specific internal

primers (F*; R*) against the inner AP2 were applied. DNA size ladders are indicated in each gel

(n=3).

Figure S2. Alignment of mouse Slo3 isoforms. Translation frames are shown under each sequence.

Transmembrane segments (S0-S6) and regulator of K+ conductance (RCK) domains are indicated

above alignment.  The epitope of the antibody Į-Slo3 (chicken Į-Slo3) used for Western-Blot is 

indicated.



Figures Slo3 fragments

Figure 1

Figure 1. Transcript isoforms and expressed sequence tags (EST) of mouse Slo3. A,

Schematic alignment of mSlo3 isoforms (top) with associated ESTs (bottom). First, second

and third isoform are colored in red, blue and green, respectively. Exons are numbered

according to the first isoform, indicating spliced exons as blank boxes. Arrowed region in

isoform 3 represent the portion of sequence experimentally obtained by RACE-PCR. EST

accessions are shown on left arranged by tissue source. Red, blue and green schemes

represent EST unambiguously assigned to first, second and third Slo3 isoforms

respectively. Black schemes represent ESTs unable to be unambiguously associated to a

specific Slo3 isoform. B, Cis-regulatory elements in mSlo3 gene. Transcripts are displayed

as blue schemes on top. Tracks of histone modification H3K4m3 and RNA Polymerase II

(PoI2) binding sites are shown as signal intensity bars. Information retrieved from UCSC

Genome Browser (https://genome.ucsc.edu/).



Figure 2

Fig. 2. Examination of mSlo3 transcripts. A, Mapping of primers used for RT amplification of

mSlo3 transcripts. Green and red arrows indicate forward and reverse oligonucleotides,

respectively. Expected size of amplicons is indicated. B, RT-PCR of mSlo3 transcript isoforms in

indicated mouse tissues. Products were separated on ethidium bromide agarose gels. DNA size

markers are shown on the left side. (C) Oligonucleotides sequence refered in A in green and red

arrows, in addition to the melting temperatura for each of them. Is1: isoform 1; Is3: isoform 3; Is2:

isoform 2; ȕac: ȕ-actin control (554 bp). (n = 3).



Figure 3

Fig. 3. Immunodetection of Slo3. Immunoblotting of Slo3 in mouse brain (A, left) and testis (A,

right) extracts using polyclonal chicken anti-Slo3. Protein extracts were isolated in membrane (MF)

and cytosolic fractions (CF). Proteins were separated by SDS-PAGE on 10% acrylamide gels.

Molecular size ladders are indicated on the left side. (Data are representative of three independent

gels). Loading controls (membranes stained with Amido Black 2X) are shown in B.



SUPPLEMENTARY MATERIAL

Supplementary figure 1

Figure S1. Marathon RACE PCR of CV562866. PCR products were separated on ethidium

bromide agarose gels. In first round of Marathon RACE-PCR were used two CV specific primers

(CvS;CvE) against the outer adaptor primer (AP1). In the second round of RACE-PCR EST

specific internal primers (F*; R*) against the inner AP2 were applied. DNA size ladders are

indicated in each gel (n=3).



Supplementary figure 2



Figure S2. Alignment of mouse Slo3 isoforms. Translation frames are shown under each sequence.

Transmembrane segments (S0-S6) and regulator of K+ conductance (RCK) domains are indicated

above alignment.  The epitope of the antibody Į-Slo3 (chicken Į-Slo3) used for Western-Blot is 
indicated.


