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L-equivalence for degree five elliptic curves,
elliptic fibrations and K3 surfaces

Evgeny Shinder and Ziyu Zhang

ABSTRACT

We construct non-trivial L-equivalence between curves of genus one and degree five, and between
elliptic surfaces of multisection index five. These results give the first examples of L-equivalence
for curves (necessarily over non-algebraically closed fields) and provide a new bit of evidence for
the conjectural relationship between L-equivalence and derived equivalence.

The proof of the L-equivalence for curves is based on Kuznetsov’s Homological Projective
Duality for Gr(2,5), and L-equivalence is extended from genus one curves to elliptic surfaces
using the Ogg—Shafarevich theory of twisting for elliptic surfaces.

Finally, we apply our results to K3 surfaces and investigate when the two elliptic L-equivalent
K3 surfaces we construct are isomorphic, using Neron—Severi lattices, moduli spaces of sheaves
and derived equivalence. The most interesting case is that of elliptic K3 surfaces of polarization
degree ten and multisection index five, where the resulting L-equivalence is new.

1. Introduction

1.1. The Grothendieck ring of varieties and L-equivalence

Recall that the Grothendieck ring of varieties Ko(Var/k) is generated as an abelian group by
isomorphism classes [X] of schemes of finite type X/k modulo the scissor relations

(X] = U] +[Z]

for every closed Z C X with open complement U = X \ Z. The product structure on
Ko(Var/k) is induced by product of schemes. We write . € Ko(Var/k) for the class of the
affine line [A!].

The concept of L-equivalence stems from the recently discovered fact that L is a zero-
divisor [4]. Specifically, for Calabi—Yau threefolds X, Y in the so-called Pfaffian-Grassmannian
correspondence, the classes satisfy [X] # [Y] and

L™ ([x] = [¥]) =0, (L.1)

where one can take any n > 6 [4, 24]. Following [22], we say that smooth projective connected
varieties X and Y are L-equivalent if equation (1.1) holds for some n > 1, and we say that
X and Y are non-trivially L-equivalent if in addition [X] # [V]. If X and Y are not covered
by rational curves and X and Y are not birational, then an L-equivalence between them is
automatically non-trivial (see, for example, [22, Proposition 2.2]).

There are at least two important reasons why one would want to study L-equivalence. First,
it seems to be closely related to derived equivalence [17, 20, 22]. As an evidence for this,
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the classes of derived categories of L-equivalent varieties in the Bondal-Larsen—Lunts ring of
triangulated categories [3] are equal, and since for Calabi—Yau varieties the derived categories
are indecomposable, it is very likely that non-trivially L-equivalent Calabi—Yau varieties are
actually derived equivalent (see [17, 22] for an extended discussion of this relationship). In
fact, all currently known examples of pairs of non-trivially L-equivalent varieties are known
to be derived equivalent. These examples include K3 surfaces [14, 17, 19, 22], Calabi-Yau
threefolds [4, 5, 18], Calabi-Yau fivefolds [23] and Hilbert schemes of points on K3 surfaces
[29].

The second reason to study L-equivalence is the relation to rationality problems, specifically
to that of cubic fourfolds. Namely, the approach of [12] can be used to show that very
general cubic fourfolds are not rational as soon as one has sufficient control over the
L-equivalence relation.

In this paper, we study L-equivalence for genus one curves and elliptic surfaces, in particular
for elliptic K3 surfaces.

1.2. Genus one curves

We work over a field of characteristic zero. Let X be a genus one curve with a line bundle of
degree d. For every k coprime to d, we can consider the Jacobian Y = Jack (X)) which is a fine
moduli space parametrizing degree k line bundles on X. Of course, if X has a rational point,
then all Jacobians Jac” (X) are isomorphic to X, however, in general this is not the case, and
X and Y are typically different torsors over the same elliptic curve E = Jac’(X).

THEOREM 1.1 [1]. Ifk and d are coprime, then genus one curves X and Jac” (X) are derived
equivalent, and furthermore, every smooth projective variety Y derived equivalent to X will
be of the form Y = Jack(X) for some k coprime to d.

In light of a conjectural relation between L-equivalence and derived equivalence, we may ask
the following:

QUESTION 1.2. When are genus one curves X and Y = Jack (X) L-equivalent?

Due to the periodicity relations Jac® T (X) ~ Jac®(X), Jac™"(X) ~ Jac®(X) and the iso-
morphism X ~ Jac' (X), the first non-trivial test case is d = 5. Furthermore, in the d = 5 case
the only non-trivial coprime Jacobian is Y = Jac?(X) ~ Jac®(X). Our first main result is the
following:

THEOREM 1.3 (see Theorem 2.9). If X is a genus one curve with a line bundle of degree five
and Y = Jac? (X), then X and Y are L-equivalent, and in general this L-equivalence is non-
trivial.

More precisely, we show that (1.1) holds for X and Y when n > 4 (and does not hold for
n = 0). This is the first existing construction of non-trivial L-equivalence for curves, as all the
previous constructions were for K3 surfaces or Calabi—Yau varieties of higher dimension.

As it is often the case with proving L-equivalence we relate the geometry of X and Y to
Homological Projective Duality of Kuznetsov [21]. Specifically, as one of the steps in the proof
of the theorem above we prove the following:

PROPOSITION 1.4 (see Proposition 2.8 for the precise statement). If X is a genus one curve
with a line bundle of degree five and Y = Jac? (X), then X andY are homologically projectively
dual codimension 5 linear sections of Gr(2,5).
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We note the interplay between the moduli space geometry and the Homological Projective
Duality geometry, in particular either of the two approaches can be used to show derived
equivalence of X and Y = Jac?(X). If one starts with the Y = Jac?(X) description, derived
equivalence follows from Theorem 1.1 and if one starts with the Homological Projective Duality
description of Proposition 1.4, derived equivalence follows from [21].

To generalize our work and to construct L-equivalence of genus one curves in degrees d > 5,
it seems necessary to study explicit geometry of the moduli space of curves of genus one and
degree d. This geometry is well understood for each 2 < d < 5 in terms of double covers of P!
branched in four points, cubics in P2, intersections of two quadrics in P3, and one-dimensional
linear sections of Gr(2,5), respectively, however, no such explicit description seems to be known
for d > 5. We note that the same explicit geometry of genus one curves of degree five as linear
sections of Gr(2,5) that we rely on in this work has been used to study the average size of
5-Selmer groups and the average ranks of elliptic curves [2].

1.3. Elliptic surfaces

Let k& be an algebraically closed field of characteristic zero. We work with elliptic surfaces
without a section; by a multisection index of such a surface we mean the minimal fiber degree
of a multisection. Our second main result is:

THEOREM 1.5 (see Theorem 3.2). If X — C is an elliptic surface of multisection index
five and Y = Jac?*(X/C), then X and Y are L-equivalent, and in general this L-equivalence
is non-trivial.

We note that the derived equivalence of X and Y had been proved by Bridegland [6].

We also investigate the case of elliptic K3 surfaces in detail, and answer the question when
the L-equivalence constructed in Theorem 1.5 is in fact non-trivial. Here we take k = C.

L-equivalence for K3 surfaces is one of the central open questions in the field. As a general
structural result, it is proved by Efimov [9] that every L-equivalence class of K3 surfaces
contains only finitely many isomorphism classes in it. Previously known cases when non-trivial
L-equivalence of derived equivalent K3 surfaces has been constructed are K3 surfaces of degrees
eight and two and Picard rank two [22], K3 surfaces of degree twelve and Picard rank one [14,
17], and K3 surfaces of degree two and Picard rank two [19].

Let X — P! be an elliptic K3 surface of multisection index five, then Y = Jac®(X/P') is also
an elliptic K3 surface (see, for example, [16, Proposition 11.4.5]), and by Theorem 1.5 these K3
surfaces are L-equivalent. The next Propositions explains when X and Y are not isomorphic.

PROPOSITION 1.6 (see Proposition 3.10). Let X — P! be an elliptic K3 surface of Picard

rank two, and multisection index five, with a polarization of degree 2d, and let Y =
Jac® (X /P!

~—

(1)
(2)
3)

(mod 5) or d =3 (mod 5), then X and Y are isomorphic.
(mod 5) or d =4 (mod 5), then X and Y are not isomorphic.

Ifd
Ifd
Ifd (mod 5), and X is very general in moduli, then X and Y are not isomorphic.

e
o~

We note that for every d such K3 surfaces exist and form an 18-dimensional irreducible
subvariety in the moduli space of degree 2d polarized K3 surfaces. Such elliptic K3 surfaces may
have more than one elliptic fibrations (in fact a Picard rank two elliptic K3 has always one or
two elliptic fibrations), and by an isomorphism of elliptic K3 surfaces we mean an isomorphism
of K3 surfaces, regardless of the elliptic fibration structure. The above Proposition is proved
by analyzing lattice theory of the corresponding K3 surfaces, along the lines of [31, 32].
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Explicitly, the case (2) of the Proposition covers ellitpic K3 surfaces of degrees twelve (d = 1
(mod 5)) and eight (d =4 (mod 5)), considered previously in [14, 17] and [22] respectively.

The K3 surfaces in case (3) can be geometrically described as intersections of Gr(2,5), three
hyperplanes and a quadric in P?, and containing an elliptic quintic curve (see Example 3.7).
This is a genuinely new instance of non-trivial L-equivalence between K3 surfaces.

2. Dual elliptic quintics

In this section, we work over a field k of characteristic zero.

2.1. Hyperplane sections of the Grassmannian

We recall some standard facts about the Grassmannian Gr(2,5) and its smooth and singular
hyperplane sections.

Let V' be a five-dimensional vector space; we consider the Pliicker embedding Gr(2,V) C
P(A%(V)) ~ PY and the hyperplane sections Dy := Gr(2,V) N Hy, parametrized by points of
the dual projective space [0] € P(A%(V")), where 8 € A*(VV) is a non-zero two-form.-

By a kernel of a two-form § € A?(V") we mean the subspace

Ker(f) ={veV:0vAu)=0foral ueV}.
For a non-zero form there are two cases.

(1) General case: Ker(f) is one-dimensional. Then 6 can be written as x1 A x2 + 23 A 24 for
some basis in V.

(2) Special case: Ker(#) is three-dimensional. Then 6 is decomposable and can be written
as ¥1 A x3 in some basis. In other words, [0] € Gr(2,V"Y) C P(A2(VY)).

It is well known that the two Grassmannians Gr(2,V) and Gr(2, V") are projectively dual
in their Pliicker embeddings. More precisely, we have the following well-known result:

LEMMA 2.1. Let A C A%2(VY) be a linear subspace, and consider its orthogonal subspace
At ={pe A2(V):0(p) =0 forall € A} C A*(V).
Then [U] € Gr(2,V) is a singular point of X 4 := Gr(2,V)NP(A') if and only if for every
e A 0(U)=0 and for some 0y € A, U C Ker(6)).

In particular, the hyperplane section Dy is singular if and only if € Gr(2,V"), and in this
case the singular locus of Dy is isomorphic to P?.

Proof. The projective tangent space to Gr(2,V) at a point [U] is P(U A V) C P(A%(V)),
and it follows that the hyperplane Hy is tangent to Gr(2,V) if and only if 0]yay = 0, that is
U C Ker(6). Thus, if Ker() is one-dimensional, Dy is smooth, and if § € Gr(2, V") so that the
Ker(f) is three-dimensional, Dy is singular along Gr(2, Ker(6)) ~ P2

More generally, if 61, ...,0; form a basis of A, and [U] € X4 = Gr(2,V) N Hy, N---N Hy,
so that all 6; vanish on U, then the projective tangent space to [U] at X4 is

P(UAV)NHp, N---N Hy, CP(A*(V)),

and this intersection is not transverse if and only if 6q,...,60; are linearly dependent when
restricted to P(U A V), which is equivalent to existence of a non-zero form 6 € A vanishing on
U AV, or equivalently U C Ker(6). O

LEMMA 2.2. The class in the Grothendieck ring of the Grassmannian is
[Gr(2,V)] =1+L+2L2 + 2L° 4 2L* + L% + LS
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and the classes of its smooth and singular hyperplane sections Dy = Gr(2,V) N Hy are given
by

4] 1+L+2L%+2L3 + L4+ L%,  6¢ Gr(2,VY)
T AL 422 4 2L 2L + L5, 0 e Gr(2,VY)

Proof. The computation for Gr(2,5) is standard: it is a variety with an affine cell
decomposition whose cells are parametrized by Young diagrams fitting into a 3 x 2 rectangle,
the codimension of a cell given by the number of blocks in the diagram.

The formula for the classes of Dy is proved as in [5, Lemma 7.2]. The paper [5] is written over
an algebraically closed field of characteristic zero, however, the proof of [5, Lemma 7.2] only
uses the fact that k is algebraically closed when stating that the class of the three-dimensional
quadric in the Grothendieck ring of varieties is 1 + L + L2 4 3.

Without assuming k to be algebraically closed this is not true in general, but a particular
quadric appearing is the Lagrangian Grassmannian LG(2,4) of a non-degenerate symplectic
form. Since symplectic forms over an arbitrary field can be taken into a standard form, an easy
computation shows that LG(2,4) is a split quadric, that is it contains a maximal isotropic
subspace defined over the ground field, hence its class is indeed 1+ L 4+ L2 +1L3, see, for
example, [22, Example 2.8], and the proof of [5, Lemma 2.9] goes through without any further
modification. O

PROPOSITION 2.3. For any locally closed subset S C P(A*(VY)), consider the universal
hyperplane section of Gr(2,V):

Hs :={([U] € Gr(2,V),[0] € S) : [U] € Hyp} C Gr(2,V) x S.
Then we have
[Hs] = [S](1+L+2L% +2L% + L* + L°) + L* - [S N Gr(2,VY)].

Proof. Presenting S as (S\ Gr(2,VV))U (SN Gr(2,VVY)), we see that it suffices to show the
statement when either S C P(A%2(VY))\ Gr(2,VV) or S C Gr(2,V").

Let S C Gr(2,VV). The family of kernels Ker(f), § € S forms a locally free sheaf of rank
three over Hg, and considering the relative position of the fibers of this sheaf with respect
to the fibers of the tautological bundle coming from Gr(2,V) allows to repeat the proof of
Lemma 2.2 and to deduce that

[Hs] = [S](1 + L + 212 4 213 4 2LL* + LP),

which is what we had to prove in this case.
The other case is proved analogously. O

We need one more result regarding incidence rank one sheaves on hyperplane sections of
Grassmannians. Let V' be an n-dimensional space, and let D C Gr(k, n) be the Schubert divisor
01,0,...,0 corresponding to a fixed (n — k)-dimensional linear subspace W C V, that is

D :={[U] € Gr(k,n) : dim(U NW) > 1} C Gr(k,n).

.....

Consider the resolution D — D defined as

D :={([U],[l]) € Gr(k,n) x B((W): 1 CcUNW}. (2.1)
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Then D is a Grassmannian bundle over P(W). We write h for the hyperplane section on
P(W), as well as for its class on D, and we write H for the hyperplane section on Gr(k,V) C
P(A¥(V)) and its class on D.

LEMMA 2.4. The H-degree of the ¢1(O(h)) € Pic(D) is equal to the degree of the Schubert
o on Gr(k,n), that is

Cl(O(h)) . Hk(n—k)—Q = 09.0,..0- Hk(n—lc)—2.

.....

Proof. A codimension one linear subspace W/ C W gives rise to an irreducible divisor
representing ¢1 (O(h)):

Z ={(U],11) EE:ZCUQW’} c D,
and this divisor maps birationally onto its image
{[U] € Gr(k,n) : dim(U NW') > 1} c D C Gr(k,n).

This subvariety represents the class 02, o in the Chow groups of the Grassmannian, and it
follows that H-degree of ¢1(O(h)) is equal to the H-degree of o2, . 0. O

2.2. Elliptic quintics, Jacobians and duality

DEFINITION 2.5. An elliptic quintic is a smooth projective genus one curve which admits a
line bundle of degree five.

By Riemann—Roch theorem a degree five line bundle £ on an elliptic quintic X is very ample
and defines an embedding X C PH'(X, L)Y = P*.

LEMMA 2.6. Let V be a five-dimensional k-vector space, and A C A*>(VV) be a five-
dimensional subspace. If X = Gr(2,V) NP(A') is a transverse intersection, then X is an elliptic
quintic and every elliptic quintic is obtained in this way.

Proof. The first claim follows from the adjunction formula, while the second one is a classical
fact known as existence of a Pfaffian representation for an elliptic quintic, see [10] for a modern
exposition. 0

For any smooth projective curve X and an integer k € Z, we consider the degree k Jacobian
Jack (X), defined as the moduli space of degree & line bundles on X. If X is an elliptic quintic,
then by tensoring with the degree five line bundle and by dualizing we obtain the isomorphisms

Jac" (X)) ~ Jac®(X), Jac F(X) ~ Jack(X).
Thus in this case all Jacobians are isomorphic to one of the
E:=Jac’(X), X =Jac'(X)~Jac*(X), Y =Jac*(X)~Jac*(X).

Here F is an elliptic curve, that is a genus one curve with a rational point and X and Y are
E-torsors. E-torsors are parametrized by the Weil-Chatelet group H'(k, E) [30, X.3]. If [X] €
H'(k, E) is the class of the torsor X, it is well known that for any k € Z, d - [X] = [Jac"(X))]
(see, for example, [16, Remark 11.5.2]).

In particular, we see that since X has degree five, then the order of [X] equals 5 unless X
has a rational point in which case [X] = 0. Let Y = Jac*(X), then X ~ Jac*(Y) ~ Jac*(Y).
We call X and Y the dual elliptic quintics. It is clear that if X has a rational point, which is
always the case when the base field k is algebraically closed, then X and Y are isomorphic.



L-EQUIVALENCE FOR DUAL ELLIPTIC QUINTICS 401

The following result shows what happens when X has no rational points.

LEMMA 2.7. If X has no rational points and the j-invariant satisfies j(F) # 1728, then X
and Y are not isomorphic.

Proof. The dual elliptic quintics X and Y give rise to elements [X],[Y] € H!(k, E) of order
five, and [Y] = 2[X].

The classes [X], [Y] correspond to isomorphic genus one curves if and only if [Y] lies in the
Aut(E)-orbit of [X] in H'(k, E) [30, Exercise 10.4].

If we assume that for an automorphism o € Aut(E), we have o([X]) = [Y] = 2[X], the action
of o on H'(k, E) preserves the subgroup Z/5 generated by [X] and we get a surjective group
homomorphism (¢) — (Z/5)* ~ Z /4. In particular, the order of o should be a multiple of 4. On
the other hand, since j(E) # 1728 and char(k) = 0, we have Aut(E) = Z/2 or Aut(E) = Z/6,
and no such o exists.

Thus, X and Y are not isomorphic. O

We now explain duality between elliptic quintics in terms of projective duality.

PROPOSITION 2.8. Let V be a five-dimensional k-vector space and let A C A*(VV) be a
five-dimensional subspace. We consider the Grassmannian Gr(2,V) C P(A?(V)) and the dual
Grassmannian Gr(2,V") C P(A%2(VY)). For a five-dimensional linear subspace A C A?(V'V),
let

X :=Gr(2,V)NP(A*)
Y :=Gr(2,VY)NP(A).

Assume that X is a smooth transverse intersection, so that X is a genus one curve. Then Y is
also a smooth transverse intersection and X and Y are dual elliptic quintics, that is we have

Y ~ Jac’(X), X =~ Jac*(Y).

Proof. By [7, Proposition 2.24], if X is a smooth transverse intersection, then the same is
true for Y.

We recall the construction of the universal line bundle M on X x Y which is used to prove
derived equivalence of X and Y in [21]. At each point ([U],[f]) € X xY, we consider the
vector space My := U NKer(f). Let us show that this space is one-dimensional. On the
one hand, we have (U) = 0 so that U cannot have trivial intersection with Ker(f), otherwise
dimension of Ker(f) would be greater than 3. On the other hand, U cannot be contained in
Ker(0), otherwise [U] would be a singular point of X by Lemma 2.1.

Thus M, considered as a sheaf given by the kernel of

p1 (mx) @ p3 (K|Y) = V& Oxxy

on X x Y, where p;, p2 are the projections from X x Y on the two factors, U C V @ Og,(2,v)
is the tautological rank two subbundle on Gr(2,V) and L C V ® Ogr(2,vv) is the rank three
subbundle of kernels of 2-forms, is a locally free sheaf of rank one.

We now compute the bidegree of M. For any 6 € Y, since X does not intersect the singular
locus of Dy (otherwise X would have been singular), X is isomorphic to its preimage in the
resolution Dy defined by (2.1).

It follows from the construction of M that the restriction M|xxg is isomorphic to the
restriction of the line bundle O(—h) from Dy to X, and thus by Lemma 2.4 the degree of
M| x 0 is equal up to sign to the degree of 05 in Gr(2,5). The latter degree is equal to 3, as
can be computed using the Pieri formula [11, §14.7; 13, §1.5].
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The vector bundle M determines a morphism f:Y — Jac *(X). We claim that f is an
isomorphism; we first check this over the algebraic closure of k. Over k, the Fourier-Mukai
transform defined by M is a derived equivalence between X and Y by [21, Section 4.1, Section
6.1]. Derived equivalence implies that Ext*(M|xxe, Mxxe) = Ext*(Og,Og) =0 for 6 #£ &',
so that f is injective on k-points. Since the domain of f is projective and the codomain is
irreducible, and both have the same dimension, f is in fact bijective on k-points. Finally, since
char(k) = 0 by assumption and Jac™*(X) is normal, f; is an isomorphism by Zariski’s main
theorem. Galois descent implies that f is an isomorphism too. Thus, we see that

Y ~ Jac (X)) ~ Jac®(X),

where the second isomorphism is dualization.

Finally, X ~ Jac?(Y) follows by symmetry by repeating the last part of the above argument
with the roles of X and Y switched, as the degree of the Schubert cycle o200 on Gr(3,5) is
equal to 2. O

We now deduce L-equivalence of the dual elliptic quintics from their projective duality
construction.

THEOREM 2.9. Let X and Y be smooth projective dual elliptic quintics. Then X and Y are
L-equivalent, more precisely we have

and in general [X] # [Y].
Proof. By Lemma 2.6 and Proposition 2.8, there exists a five-dimensional subspace A C
A?(VV) such that
X ~ Gr(2,V)NP(A*)
Y ~ Gr(2,VY)NP(A).
We consider the universal hyperplane section H C Gr(2,V) x P(A):
H:={Ue€Gr(2,V),0 e P(A): 6(U) =0}

and compute its class in the Grothendieck ring of varieties in two ways.
We apply Proposition 2.3 to S := P(A) C P(A?(V")) to obtain

[H] = [PY](1 + L+ 2L% + 2L3 + L* + L%) + L* - [Y]. (2.2)

On the other hand, the morphism H — Gr(2,V) is Zariski locally trivial over locally closed
subset Gr(2,V) \ X and X with fibers P? and P*, respectively, so that we have

[H] = [Gr(2,5)][P?] + L* - [X]. (2.3)

We compare (2.2) and (2.3). An easy computation shows that both [P4](1 + L + 2IL? + 23 +
L* + L) and [Gr(2,5)][P?] are equal to

L7 +2L°% + 4L7 + 6L° + 71L° 4 7L* + 6L% + 4L* + 2L + 1
(for [Gr(2,5)] see Lemma 2.2). Thus, (2.2) and (2.3) together give
L' (X] - [Y]) = 0.

Finally X and Y are in general not isomorphic by Lemma 2.7, and since X and Y are not
uniruled, the standard argument shows that [X] # [Y] [22, Proposition 2.2]. O
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3. Elliptic surfaces of index five

In this section, k is an algebraically closed field of characteristic zero, and we assume k = C
when discussing Hodge lattices of K3 surfaces.

3.1. L-equivalence of elliptic surfaces

We refer to [8, Chapter 2] for general discussion of elliptic surfaces and their Jacobians. We
recall the basic concepts. By an elliptic surface we mean a smooth projective surface X with
a morphism 7 : X — C to a smooth projective curve C' such that the general fiber of 7 is a
genus one curve. We always assume that X is relatively minimal, that is the fibers of m do not
contain (—1)-curves.

We do not assume that 7 admits a section. By the index of an elliptic surface we mean the
minimal positive degree of a multisection of .

For every k € Z, one can consider the relative Jacobian Y = Jac”(X/C); Y is another elliptic
surface over the same base curve C' defined as the unique minimal regular model with the generic
fiber Jack(X k(c))- As in the genus one curve case, if X admits a section, then all Jacobians

Jac®(X/C) are isomorphic to X over C.

LEMMA 3.1. If X — C is an elliptic surface and Y = Jac”(X/C), then for every point ¢ € C,
the reduced fibers (X.)req and (Ye)ea are isomorphic.

Proof. This follows from [8, Chapter 2, Proposition 1 and 2]. O

We now consider the case when the multisection index of an elliptic surface X — C'is equal
to 5, and analogously to the genus one curve case we call X and Y = Jac?(X/C) ~ Jac*(X/C)
the dual elliptic fibrations.

THEOREM 3.2. Let X — C be an elliptic fibration of index five over an algebraically closed
field of characteristic zero, and let Y = Jac*(X/C). Then X and Y are L-equivalent, more
precisely we have

LY([X] - [Y]) =0.

Proof.  Let Xy, Yi(c) be the generic fibers of X and Y. By Theorem 2.9, we have
L*([Xk(c)] = Yi(ey]) = 0 in Ko(Var/k(C)). Therefore, by [27, Proposition 3.4], there exists a
non-empty open set U C C' such that

LY([Xv] - [u]) =0,

in Ko(Var/k), where Xy, Yy are preimages of U in X and Y, respectively. Let C\ U =
{c1,...,¢cn}, then X, and Y, are isomorphic for each i by Lemma 3.1. In particular, L*([X,,] —
[Y2,]) = 0; summing everything together we obtain the desired L-equivalence statement. O

In the next section, we show that elliptic K3 surfaces of index five and Picard rank two
provide examples when X and Y are not isomorphic, see Proposition 3.10, so that [X] # [Y]
(see, for example, [22, Proposition 2.8]).

3.2. Elliptic K3 surfaces of Picard rank two

We consider elliptic K3 surfaces over k = C. Recall that for a K3 surface NS(X) ~ Pic(X) is
a free finitely generated abelian group whose rank is called the Picard rank of X. Intersection
pairing gives NS(X) a structure of a lattice. See [16, Chapter 14] for an introduction to
lattices. We write U for the hyperbolic plane, and N(X) for the extended Neron—Severi lattice
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N(X)=U @®NS(X) under the Mukai pairing. We say that two indefinite lattices have the
same genus if they have the same rank, signature and discriminant groups.

We only consider projective K3 surfaces, that is the ones admitting a polarization. We think
of polarization as a class of an ample divisor in NS(X). Since by degree reasons the class of a
polarization is linearly independent to the class of the fiber of an elliptic fibration, the minimal
Picard rank of an elliptic K3 surface is equal to 2. Good references about such K3 surfaces are
papers of Stellari [31] and van Geemen [32], and [16, Chapter 11].

LEMMA 3.3 (32, Remark 4.2). Let X be an elliptic K3 surface of index t > 0 and of Picard
rank two. Let F' € NS(X) be the class of the fiber. Then there exists a polarization H such
that H-F =t, and H, F form a basis of NS(X).

Proof. Let us first show that F' € NS(X) is a primitive class. Indeed, if F = mC, form > 1,
then C' will be an effective divisor contained in a fiber. Since we assume that Picard rank of
X is two, all fibers are irreducible, and m = 1.

Since F' is a primitive class, there exists D € NS(X) such that D, F form a basis of NS(X).
Up to replacing D by —D we may assume that D - F =t. A simple computation shows that
the only possible (—2)-classes in NS(X) are given by +(D + 252 D 2=2-F), hence there is at most
one (—2)-curve in X.

We consider H = D + nF. It is clear that

H>=D’+2nt>0
for n > 0. If C'is a (—2)-curve, then
H-C=D-C+nF-C>0

for n > 0 since C' is not in any fiber (otherwise the Picard rank of X would be at least three).
Hence, H is ample for n > 0 by [16, Proposition 2.1.4]. a

For a pair of integers ¢t > 0 and d € Z, we consider a rank two lattice A; 4 with basis H, F
and pairing defined by
2d t
( ; 0_) (3.1)

There always exist projective K3 surfaces with NS(X) ~ A; 4 [16, Corollary 14.3.1]. Any
such K3 surface is elliptic because NS(X) contains a square-zero class [16, Proposition 11.1.3].
Furthermore since the embedding of A; 4 into a K3 lattice is unique up to isomorphism by
[16, Corollary 14.3.1] the locus of these K3 surfaces is an irreducible locally closed subset of
dimension 18 in the moduli space of all degree 2d polarized K3 surfaces.

Note that ¢ is a well-defined invariant of A; 4, as the discriminant of (3.1) is —¢2. The following
result describes the complete set of invariants of A; 4 in the case when ¢ is an odd prime.

PROPOSITION 3.4 (van Geemen, Stellari). Let t > 0 be an odd prime, and let d,d’ € Z.

(1) Ay g4 is isomorphic to Ay g if and only if d =d' (mod t) or dd’ =1 (mod t).

(2) O(Ap,q) ={£1}ifd# £1 (mod t) and O(Ay,q) = Z/2 X /2 = {£1,+J}, where J is the
isometry swapping the two isotropic classes if d = +1 (mod t).

(3) The discriminant group Ay q = A} ;/A¢.q is (Z/t)2 ift divides d, and for ged(d,t) =1, it
is Af d = Z/tz

(4 ) At g, Aya are in the same genus if and only d' = k2d (mod t) for some integer k coprime
to t.
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Proof. (1) is [32, Proposition 3.7]. and (2) is [32, Lemma 4.6]. The result in (3) is easy
for t|d as we can assume d = 0. For ged(d,t) =1, (3) is the computation in the proof of [31,
Lemma 3.2 (ii)]. (4) is [31, Lemma 3.2 (ii)]. O

ExaMPLE 3.5. If ¢t =5, then there are four isomorphism classes of lattices Aj 4:
As 0,51, M52 > As 3, As 4.

The discriminant group A;q = A} ;/Arq for Asg is Z/5 B Z/5, and it is Z/25 in the
other cases. ,

The lattices A5, and A5 4 are in the same genus, whereas the other lattices have only one
isomorphism class in each genus.

Finally, the lattices As 1, As 4, As 5 admit an isometry J permuting the two isotropic classes,
and the isometry group is Z/2 x Z/2 = {£1} x {£J}, whereas the lattice A5 2 ~ A5 3 has the
isometry group Z/2 = {£1}.

Explicitly one can get a K3 surface with NS(X) = A; 4 by taking a general K3 surface
containing a degree ¢ elliptic curve.

EXAMPLE 3.6. A very general degree eight K3 surface X C P® which contains a normal
rational curve C of degree three, has H> =8, C - H = 3, C?> = —2, so that

NS(X) ~ (2 32> .

Such a K3 surface admits an elliptic fibration provided by the pencil F' = H — C, which consists
of the residual elliptic quintics in the hyperplane sections of X through C and it is easy to
compute that we have

NS(X) ~ A5’4.
We note that X admits a unique elliptic fibration [32, 4.7].

ExAMPLE 3.7. A general degree ten K3 surface X is a complete intersection of a
Grassmannian Gr(2,5) C PY with three hyperplanes and a quadric [26, Corollary 0.3].

As soon as X contains a normal elliptic quintic curve F' C P4, it will admit an elliptic fibration
of index five, and generically we have

NS(X) ~ (150 8)

in the basis H, F. In fact, if we write F' = H — F, we see that NS(X) is isomorphic to As g.
We note that F’ gives rise to a second elliptic fibration structure on X, cf. [32, 4.7].

We prepare to address the question when Jack (X/P!) and X are isomorphic.

LemMma 3.8. If X is a K3 surface with NS(X)=A,q, and ged(t,k) =1, then
NS(Jac®(X/P')) = Ay 4.2 for any elliptic fibration on X.

Proof. Let N(X)=U @ NS(X) be the extended Neron—Severi lattice and let e, es be a
basis of U consisting of two isotropic vectors with e; - ea = —1. Then v = F 4 ke € N(X) is
the Mukai vector giving rise to the moduli space Y = Jac®(X/P') [16, Example 16.2.4]. Using
[25, Theorem 1.4] we have

NS(Y) = vt /v.
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Explicitly, we have
vt = (F,ep,kH +tey) = (v, e0, kH + tey),
so that
vt /v = (ey, kH + tey),
and the intersection form on this lattice is isomorpic to Ay g.x2. [l

We need the following result, which describes the group of Hodge isometries of the
transcendental lattice for a sufficiently general K3 surface. This group is important for studying
derived equivalence between K3 surfaces. In particular, it appears in the counting formula for
the number of Fourier-Mukai partners [15, Theorem 2.3]. In the proof, we follow the strategy
of [15, Propositition B.1] (see also [28, Lemma 4.1]).

LEMMA 3.9. If X has Picard rank p < 20 and X is very general in the moduli space of
K3 surfaces polarized by a fixed sublattice NS(X) of the K3 lattice, then the group of Hodge
isometries of the transcendental lattice T'x is {£1}.

Proof. By the Torelli theorem for K3 surfaces, a (marked) K3 surface polarized by NS(X)
is determined by a holomorphic 2-form ox € Tx ® C, considered up to scalar. Since the choice
of the form o is given by the condition

0'?( =0 and oxox >0, (3.2)

and for a very general choice of ox satisfying (3.2), ox in Tx ® C contains no non-trivial
integral class, we conclude that the moduli of (marked) K3 surface polarized by NS(X) has
dimension rk(7Tx) — 2.

Let us fix an isometry g of T'x, and assume that g induces a Hodge isometry of T'x for the
K3 surface X corresponding to ox. We use [15, Proposition B.1]. For any choice of ox, the
group of Hodge isometries of Tx is a finite cyclic group of even order 2m, and without loss of
generality we may assume that g is a generator of this group. Furthermore in this case g acts
on ox via multiplication by a primitive 2m-th root of unity. Finally, Tx ® C decomposes into
a direct sum of eigenspaces of g as

Tx ©C=EPVe, (3.3)
3

where £ runs over all primitive 2m-th roots of unity, and the dimension of each eigenspace
Ve is tk T'x /¢(2m) with ¢(—) being the Euler function (see [15, Steps 4, 5 in the proof of
Proposition B.1]). Since ox is an eigenvector for g, we have ox € V¢ for some &. It follows that
the moduli of such K3 surfaces has dimension at most rk(7T’x)/¢(2m) — 1.

By assumption p < 20, so that we have rk(Tx) > 2. If m > 1, then ¢(2m) > 2 and

tk(Tx)/e(2m) — 1 <1k(Tx)/2 -1 <tk(Tx) — 2,

where the right-hand side is the dimension of the moduli space of K3 surfaces polarized by
NS(X) and the left-hand side is the dimension of the closed subvariety in the moduli where g
becomes the generator for the group of Hodge isometries. This means that unless g = £1, g is
not a Hodge isometry of T'x of a general K3 surface in the moduli.

Since the group of isometries of Tx is countable, very general choices of ox would give K3
surfaces with the group of Hodge isometries of Tx equal to {£1}. O
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We now consider the multisection index five case. According to Lemma 3.3, an elliptic K3
surface with Picard rank two will have Neron—Severi lattice isomorphic to one of the As 4,
where d is considered modulo 5. See Example 3.5 for more details about these lattices.

PrROPOSITION 3.10. Let X be an elliptic K3 surface with NS(X) = A5 4, and let
Y = Jac?(X/P").

(1) Ifd=2 or d =3, then X and Y are isomorphic.
(2) Ifd=1 or d =4, then X and Y are not isomorphic.
(3) If d =0, and X is very general in moduli, then X and Y are not isomorphic.

Proof. (1) It suffices to show that X does not have non-trivial Fourier—Mukai partners. We
note that by Proposition 3.4 (1) and (4), As 2 ~ A5 3 is the only isometry class of a lattice in
its genus. Hence, the counting formula for Fourier-Mukai partners [15, Theorem 2.3] has only
one term and since by Proposition 3.4 (2) the orthogonal group O(As52) consists of +1, this
term is equal to 1.

(2) By Lemma 3.8, taking Jac? interchanges the Neron-Severi lattices A5 and Ajp 4, and
since these lattices are not isomorphic, X and Y are not isomorphic.

(3) If X and Y are isomorphic, then the Fourier-Mukai transform & :D’(X) ~
DP(Jac?*(X/P')) corresponding to the moduli space Jac*(X/C) on X induces a Hodge isometry
of H*(X,Z) taking one Mukai vector to the other [16, Section 16.3].

Consider the extended Neron—Severi lattice N(X) = U & NS(X), where we choose a basis
e1, ez for U consisting of two isotropic vectors satisfying e; - eo = —1. The action of ® takes ey
(Mukai vector for moduli space X on X) to F + 2es (Mukai vector for moduli space Y on X).

We note that one such isometry go € O(N (X)) is

el — 2eq + F

€9 > —261 - H
(3.4)
H—2H + 561

F— —2F — 562
and any other isometry g mapping e; to F' + 2e5 will have the form

g:gO'h,

where h € O(N(X),e;) is an isometry of N(X) fixing e;.

We now consider the action of g on the discriminant group N(X)*/N(X) ~
NS(X)*/NS(X) ~ As,0 = Z/5® Z/5 generated by +H, +F (cf. Proposition 3.4 (3)). Since we
assume that the action of ¢ is induced by a Hodge isometry of H*(X,Z), the action of g on
the discriminant group is the same as the action induced by a Hodge isometry of Tx. By
Lemma 3.9 for general X this action on the discriminant group is +1.

We note that the action of O(N(X),e;) on the discriminant group factors through
O(ef /e1) = O(NS(X)), so by [32, Lemma 4.6] its action is given by one of the matrices

O D66 )G )

On the other hand, we see from (3.4) that the action of £g¢ on As o does not belong to the
subgroup above. Therefore, there is no element g € O(N (X)) which maps e; to F + 2e2 and
is induced by a Hodge isometry of H*(X,Z). O
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