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Abstract:

1. Biodiversity provides support for life, vital provisions, regulating 

services and has positive cultural impacts. It is therefore important to 

have accurate methods to measure biodiversity, in order to safeguard it 

when we discover it to be threatened. For practical reasons, biodiversity 

is usually measured at fine scales whereas diversity issues (e.g. 

conservation) interest regional or global scales. Moreover, biodiversity 

may change across spatial scales. It is therefore a key challenge to be 

able to translate local information on biodiversity into global patterns. 

2. Many databases give no information about the abundances of a 

species within an area, but only its occurrence in each of the surveyed 

plots. In this paper, we introduce an analytical framework to infer 

species richness and abundances at large spatial scales in biodiversity-

rich ecosystems when species presence/absence information is available 

on various scattered samples (i.e. upscaling). 

3. This framework is based on the scale-invariance property of the 

negative binomial. Our approach allows to infer and link within a unique 

framework important and well-known biodiversity patterns of ecological 

theory, such as the Species Accumulation Curve (SAC) and the Relative 

Species Abundance (RSA) as well as a new emergent pattern, which is 

the Relative Species Occupancy (RSO). 

4. Our estimates are robust and accurate, as confirmed by tests 

performed on both in silico-generated and real forests. We demonstrate 

the accuracy of our predictions using data from two well-studied forest 

stands. Moreover, we compared our results with other popular methods 

proposed in the literature to infer species richness from presence-

absence data and we showed that our framework gives better estimates. 

It has thus important applications to biodiversity research and 

conservation practice.
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Biodiversity provides support for life, vital provisions, regulating services and has posi-
tive cultural impacts. It is therefore important to have accurate methods to measure 
biodiversity, in order to safeguard it when we discover it to be threatened. For practical 
reasons, biodiversity is usually measured at ine scales whereas diversity issues (e.g. con-
servation) interest regional or global scales. Moreover, biodiversity may change across 
spatial scales. It is therefore a key challenge to be able to translate local information on 
biodiversity into global patterns.

Many databases give no information about the abundances of a species within an 
area, but only its occurrence in each of the surveyed plots. In this paper, we introduce 
an analytical framework (implemented in a ready-to-use R code) to infer species rich-
ness and abundances at large spatial scales in biodiversity-rich ecosystems when species 
presence/absence information is available on various scattered samples (i.e. upscaling).

his framework is based on the scale-invariance property of the negative binomial. 
Our approach allows to infer and link within a unique framework important and 
well-known biodiversity patterns of ecological theory, such as the species accumula-
tion curve (SAC) and the relative species abundance (RSA) as well as a new emergent 
pattern, which is the relative species occupancy (RSO).

Our estimates are robust and accurate, as conirmed by tests performed on both 
in silico-generated and real forests. We demonstrate the accuracy of our predictions 
using data from two well-studied forest stands. Moreover, we compared our results 
with other popular methods proposed in the literature to infer species richness from 
presence to absence data and we showed that our framework gives better estimates. 
It has thus important applications to biodiversity research and conservation practice.

Keywords: biodiversity patterns, spatial ecology, species–abundance distribution, 
species–accumulation curve, upscaling biodiversity patterns

Introduction

he problem of inferring total biodiversity when only scattered samples are observed 
is a long-standing problem. In the 1940s, the British chemist and naturalist A. S. 
Corbet spent two years in Malaya to trap butterlies (Corbet 1941). For every species 
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he saw, he noted down how many individuals of that species 
he trapped. When Corbet returned to England, he showed 
the table to its colleague R. A. Fisher and asked him how 
many new species he would trap if he returned to Malaya for 
another couple of years. he father of statistics was only the 
irst to tackle the problem of species estimation (Fisher et al. 
1943), which since then has found large applications in dif-
ferent scientiic ields, from ecology (Bunge and Fitzpatrick 
1993, Colwell and Coddington 1994, Chao and Bunge 
2002) to bioscience (Hughes et  al. 2001, Ionita-Laza et  al. 
2009, Locey and Lennon 2016), leading to the development 
of a myriad of estimators (Good and Toulmin 1956, Chao 
and Chiu 2016, Orlitsky et al. 2016).

Indeed, although ecological drivers crucial for conserva-
tions act at large scales, biodiversity is typically monitored 
at limited spatial scales (Alonso et al. 2008, Bertuzzo et al. 
2016). Extrapolating species richness from the local to the 
whole ecosystem scale is not straightforward, because it is 
not additive as a function of the area. As a result, a huge 
number of biodiversity estimators have been proposed in 
ecological literature (Bunge and Fitzpatrick 1993, Brose et al. 
2003, Colwell  et  al. 2004, Mao and Colwell 2005, Ulrich 
and Ollik 2005, Wang and Lindsay 2005, Shen and He 
2008, Bunge et al. 2012, Kunin et al. 2018). heir common-
est limitation is to have a limited application range (local/
regional-scale extrapolations), and to be sensitive to the trees’ 
spatial distribution (Plotkin et al. 2000, Carrara et al. 2012, 
Azaele et al. 2016), sample coverage and sampling methods 
(Chao et al. 2009).

Many analytical methods have been proposed to upscale 
species richness using as input the local relative species abun-
dance distribution (RSA) (Harte et al. 2009, Ter Steege et al. 
2013, Slik et al. 2015, Tovo et al. 2017), i.e. the list of the 
species present at the sampled scale along with the propor-
tion of individuals belonging to each of them. For example, 
estimates of biodiversity at large scales have been performed 
using log-series as the RSA (Fisher et al. 1943). he log-series 
distribution is often used to describe RSA patterns in many 
diferent ecological communities, characterised by high bio-
diversity (Azaele et al. 2016). hanks to the availability and 
reliability of the species abundance data in forests (given by 
systematic and periodic ield campaigns and high detect-
ability of species), this method has been typically applied to 
tropical forests. In particular, it has been used to estimate the 

species richness of the Amazonia (Ter Steege et al. 2013) and 
the global tropical tree species richness (Slik et al. 2015).

hese methods have been proved to typically perform 
better than non-parametric estimators of biodiversity 
(Chao 2005). In contrast with the former, non-parametric 
approaches do not assume a speciic family of probability 
distributions. In particular, non-parametric methods do not 
make any assumption on the RSA distribution and they thus 
perform no it of empirical patterns, rather they only take 
into account rare species, which are intuitively assumed to 
carry all the needed information on the undetected species 
in a sample.

Nevertheless, all the aforementioned methods need 
abundance data in order to infer biodiversity at larger scale. 
However, in many open-access databases (e.g. species abun-
dance data obtained from metagenomics (hompson  et  al. 
2017)) this information is highly imprecise, if available at all. 
Indeed, there are lots of datasets which give only informa-
tion about the presence or absence of a species in diferent 
surveyed plots, without specifying the number of individu-
als within them. Some non-parametric approaches have been 
generalized to infer species richness from this presence to 
absence data (Chao 2005, Chao and Chiu 2016). Table 2 
summarizes the most popular estimators and for each one 
details the predicted biodiversity as a function of the input 
data. However, most of them have the strong limitation that 
they do not have an explicit dependence of the observation 
scale, leading to poor estimates of the number of species at 
the global scales. he only estimator which takes into account 
the ratio between the surveyed area and the global one is the 
one introduced by Chao (Chao 2005, Chao et al. 2009, Chao 
and Chiu 2016) and denoted here as Chaowor (Table 2). his 
method takes into account the number of species detected in 
one sample only and those detected in exactly two samples 
observed at the sample scale to infer the total species richness 
at the whole forest scale. However, it has been shown that 
Chao’s method, although giving reliable species estimates, it 
does not properly capture the empirical species accumula-
tion curve (SAC) (Tovo et al. 2017), which describes how the 
number of species changes across spatial scales. In absence of 
spatial correlation, it is equivalent to another macro-ecologi-
cal pattern of interest which is the species area relation (SAR).

Moreover, both parametric and non-parametric methods 
proposed in the literature do not give any insights on the 

Table 1. Predictive error for three generated forest (characterized by a log-normal and a negative binomial RSA) having individuals distrib-
uted according to a high clustering Thomas process and at random. Tests were performed by sampling a fraction p = 0.05 of each forest and 
by applying our framework (P/A columns) and the abundance-based method (RSA columns) to predict the true number of species S (5000 
for the LN forest and 4974 for the NB forest). For each estimated Spred, the average relative percentage error (Spred − S)/S × 100 between the 
true number of species and the predicted one is shown together with the corresponding standard deviation. Results are relative to 100 
iterations.

Forest RSA

Spatial distribution

Random Thomas

P/A RSA P/A RSA

Log-normal 3.1 ± 0.51 7.6 ± 0.52 2.5 ± 1.8 7.2 ± 3.1
Negative binomial −0.50 ± 0.34 −0.52 ± 0.28 −0.81 ± 1.6 −0.60 ± 1.7
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species abundance at both local or larger scales. Indeed the 
problem of relating occupancy data with information on 
species abundance is a relevant issue in theoretical ecology 
(He and Gaston 2000, Royle and Nichols 2003, Elith et al. 
2006). In particular, given the information on the presence 
or absence of a species in diferent scattered plots, one would 
like to infer its population size or, more generally, the RSA 
distribution of the forest.

In this paper, we present a general analytical framework 
to extrapolate species richness and other relevant biodiversity 
patterns (e.g. RSA, SAC) at the whole forest scale from local 
information on species presence/absence. Our framework 
exploits the form-invariance property of the negative bino-
mial (NB) distribution. Such a distribution emerges as the 
long time behavior distribution of a birth and death stochastic 
dynamics, accounting for efective immigration and/or intra-
speciic interactions (Volkov et al. 2007, Azaele et al. 2016, 
Tovo et al. 2017). Crucially, the functional form of a negative 
binomial does not change when sampling diferent fractions 

of areas. his property allows for an analytical expression 
for how parameters of the distribution change across scales. 
Form-invariance under diferent sampling eforts is at the 
core of our approach, however our method can be applied 
any time the dependence of the distribution on the size of the 
sampled area can be calculated exactly.

We will ind an analytical relation between the NB RSA 
at a given spatial scale and the SAC. hanks to this function, 
starting from the empirical SAC constructed at the sample 
scale from the local presence to absence data (Eq. 13), we will 
be able to:

1. infer species richness at larger scales, thus the SAC up to 
the whole forest scale;

2. obtain information on species abundances in order to 
construct the RSA at both local and global scales;

3. introduce and infer the relative species occupancy (RSO), 
i.e. the distribution of the occurrences (number of occu-
pied cells) across species, at both local and global scales. 
his biodiversity pattern is a prediction of our modelling 

Table 2. Summary table of the most popular biodiversity estimators for presence/absence data. In formulas, M* is the total number of sam-
pled cells. See Chao (2005), Chao and Chiu (2016) for more details about non-parametric methods.
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framework, can be measured empirically and may be of 
ecological relevance as it proxies the distribution of species 
ranges (the area where a particular species can be found) 
in the ecosystem.

We tested our framework on in-silico generated forests and 
on the two well-studied tropical forests of Barro Colorado 
Island and Pasoh. We inally compared the global estimates 
with the abundance-based method proposed in Tovo  et  al. 
(2017).

Before illustrating the details of our approach, we want 
to highlight diferences and similarities between the present 
work and Tovo et al. (2017). Both papers are based on the 
form-invariance property of the negative binomial distribu-
tion but, instead of using population estimates at local scales 
(Tovo  et  al. 2017), here we require only the knowledge of 
species’ occurrences at multiple local scales. In other words, 
the loss of information at one local scale (i.e. for each sample 
we know if a species is present, but not the number of its 
individuals) is balanced by the presence–absence information 
on multiple local scales. Such a generalization of Tovo et al. 
(2017) is useful when empirical datasets provide information 
only on the presence/absence of species. We will show that 
this will be enough to infer population’s distribution as well.

Material and methods

Theoretical framework

We denote as P(n|1) the relative species abundance, – i.e. the 
probability that a species has exactly n individuals – at the 
whole forest scale (here 1 refers to the whole forest). Note 
that P(n|1) should be deined only for n ≥ 1, because S is the 
total number of species actually present in the forest, assum-
ing that the area was exhaustively surveyed with no missing 
species.

Here the RSA at the scale p = 1, is postulated to be pro-
portional to a negative binomial distribution (NB) (He and 
Gaston 2003, He and Hubbell 2003, Tovo  et  al. 2017), 
P( , )n r| ξ  with parameters r > 0 and 0 ≤ ξ < 1:

P n c r n r n( |1) ( , ) ( | , ), 1= ≥ξ ξP for   (1)

with

P( | , )
1

(1 ) , ( , )
1

1 (1 )
n r

n r

n
c rn r

r
ξ ξ ξ ξ

ξ
=

+ −





− =
− −

  

where c(r, ξ) is the normalisation constant. Notice that 
since n ≥ 1, the sum 

n
n r

≥∑ <
1

( | , ) 1P ξ  and that is why we 
need a normalizing factor, taking into account only species 
with non-zero abundance, which is diferent from the usual 
NB normalization. It may be worth to mention here that 
classically, for a NB distribution, one has r ∈N  whereas in 
our framework r ∈ +

R . Such a distribution can be derived 

as the steady-state RSA of a simple birth and death stochas-
tic dynamics (He and Gaston 2003, He and Hubbell 2003, 
Tovo  et  al. 2017), where r, known as the clustering coei-
cient, models the efects due to immigration events and/or 
intraspeciic interactions, and ξ is the ratio between the birth 
and death rate of a species.

Let us now consider a sub-sample of area a of the whole 
forest and deine p = a/A the sample scale. Assuming that the 
local RSA is not afected by spatial correlations and/or strong 
environmental gradients, the conditional probability that a 
species has k individuals in the smaller area a = pA, given that 
it has total abundance n in the whole forest of area A is given 
by the binomial distribution

P k n p
n

k
p p k nk n k

binom( | , ) (1 ) , 0, ,=






− =−
…   

It is worth highlighting that this is where we use the ‘well-
mixed’ (or mean-ield) hypothesis. his assumption can be 
tested in the data by looking at the beta-diversity and RSA 
patterns. If correlation lengths are of the same scale as the 
system linear size, and the RSA of sub-samples displays the 
same functional shape, then we can assume that no strong 
spatial constraints afect the abundance species distribution.

With this information in hand, it can be proved  
(Tovo et al. 2017, Supplementary material Appendix 1) that, 
under the hypothesis that the RSA has a negative binomial 
form, the RSA at scale p, P(k|p), is again proportional to a 
negative binomial, for k ≥ 1, with rescaled parameter ξp and 
the same r:

P k p
c r k r k

c r c r k

p

p

( | )
( , ) ( | , ) 1

1 ( , ) / ( , ) 0
=

× ≥

− =






ξ ξ

ξ ξ

P
  (2)

with

ξ
ξ

ξp

p

p
=

− −1 (1 )
  (3)

A RSA with the property of having the same functional 
form at diferent scales is said to be form-invariant.

he form-invariant property allows for simple formula 
describing how birth and death ratios at two diferent spatial 
scales are related. Indeed, given the parameters r and ξp* of 
the RSA at the sampling scale p*, we can get the value of ξ by 
inverting Eq. 3:

ξ
ξ

ξ
=

+ −
p

p
p p

*

*

* *(1 )
  (4)

Using (3) to eliminate ξ from the last equation, one gets 
the following relation for the parameter ξ at the two scales p 
and p*
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ξ
ξ

ξp

p

p

p

p p p
=

+ −

*

*

* *( )
  (5)

Let now determine the relation between the total number 
of species at the whole scale p = 1, S, and the total number 
of species surveyed at a local scale p, Sp. For the sampling 
scale p*, in the following, we will use the notation S* ≡ Sp*. 
Note that, denoting with S*(k) the number of species having 
k individuals at the scale p*, one can estimate P(k = 0|p*) and 
P(k|p*) as follows

P k p S S S( 0 | ) ( ) /= −* *
≃   (6)

P k p S k S( | ) ( ) /**
≃   (7)

hus, the total number of species in the whole forest, in 
terms of the data on the surveyed sub-plot is given by

S
S

P k p

S
r

p

r

≃

eq.(6)

eq.(2)

*
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*

*

1 ( 0 | )

1 (1 )

1 (1 )

− =

=
− −

− −
ξ

ξ

  (8)

where ξ is given by Eq. 4.
In general, given two scales p and p*, one has the following 

relation between the number of species at the scale p, the one 
at p* and the RSA parameters (r, ξp*) at the scale p*:

S S
U p p
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def

  

he proposed method is, under the ‘well mixed’ hypoth-
esis, general and not limited to tropical forests.

In the sequel we illustrate how, within the theoretical 
framework developed so far, it is possible to use presence–
absence information on various samples to infer r, ξ and then 
S. To start with, let us suppose we surveyed M* cells of the 
same area a. his assumption is not essential to our approach 
to species estimation at the global scale. It simpliies compu-
tations and its implementation but can be removed. Suppose 
we have presence–absence information on each of M* cells. 
his implies we know S pk

 (i.e. the number of species at scale 
pk) for pk = ka/A, k = 1, …, M*. From Eq. 9 we obtain
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Figure 1. Schematic presentation of our theoretical upscaling framework. It consists of three steps. (A) We start from a dataset in the form 
of a binary matrix giving information on the presence or absence of S* species within each of the M* surveyed plots. (B) We perform the 
best it of the empirically SAC computed via Eq. 13. (C) Using the best-it parameters obtained in (B) and using our upscaling Eq. 8, 9 and 
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where ɶp p p k Mk k= =/ /* *  is the fraction of sub-
sampled cells. In the last equality of Eq. 10 we use that 

U p p U
p

pp p
( | , ) |1,*

* * *ξ ξ=






 which is obtained from Eq. 

5 factorizing p*.
he latter equation states that the function of p on the 

righthand side of Eq. 9 takes the value S pk
 at pk for k = 1, 

…, M*. For M* >> 1, these information allow for a robust 
estimate of the two unknown parameters ξp* and r. herefore 
from the empirical values of S pk

 one can get the parameters 
r and ξp* shaping the RSA at the sample scale p*. From these, 
one can estimate the ξ parameter by using Eq. 4 to predict 
both the number of species at the global scale S via Eq. 8, the 
RSA through Eq. 1 and the SAC by using Eq. 9.

Another important pattern which we can predict with our 
framework is the relative species occurrence (RSO) distribu-
tion, Q(v|M, 1), which gives the probability that a species 
occupies v cells at the global scale, given that the forest can 
be tiled in M equal-sized cells of area a. he latter assumption 
is essential to our derivation of RSO formulae (Eq. 11, 12). 
Also notice the diference between M and M*: in our nota-
tion M is the number of cells at the global scale whereas M* 
refers to the fraction p*.

RSO pattern is of ecological relevance as it gives informa-
tion on the fraction of species that occupy the same amount 
of area of the ecosystem. For example, if the RSO distribu-
tion displayed a small variance unimodal shape, then it means 
that most of species have similar species ranges. On the other 
hand if Q(v|M, 1) follows a power law behaviour it indicates 
a strong heterogeneities in the species ranges.

In order to ind an expression for it, we irstly need the 
probability, Qocc(v|n, M, 1), that a species occupies v over M 
cells at the global scale, given that is has abundance n. Under 
the hypothesis of absence of spatial correlation, this is given 

by an hyper-geometric distribution. Indeed there are 
M
v





  

possibilities to choose the v illed cells, 
n
v

−
−







1
1  possibilities 

to distribute n species among v cells so that no cell is empty, 

and 
n M

M
+ −

−






1
1  ways to distribute n species in M cells 

allowing empty bins. See for example W. Feller, Introduction 
to probability theory and its applications, Chapter 2. hus 
we compute

Q v n M

M

v

n

v

n M

M

occ( | , ,1)

1

1

1

1

=





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−
−





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


  (11)

he RSO distribution Q(v|M, 1) can thus be obtained by 
marginalizing with respect to the abundance n:

Q v M Q v n M P n
n v

( | ,1) ( | , ,1) ( |1)=
=

∞

∑ occ   (12)

where P(n|1) is the global RSA given by Eq. 1. his series 
cannot be calculated analytically for arbitrary values of the 
parameters; nevertheless, it has some regimes which are 
physically important and can be investigated in more detail. 
For instance, when ξ ≃1, P(n|1) can be approximated by a 
gamma distribution and, for 0 < r < 1 and v, M >> 1 such 
that v/M << 1, one can show that Q(v|M, 1) ∝ vr−1. Since for 
most forest plots r << 1, when M and v are suiciently large 
we expect Q(v|M, 1) ∝ cv−1, where c depends on M, r and ξ. 
his prediction is supported by the empirical data we have 
studied as shown in Fig. 3.

Implementation of the framework

Our analytical framework has been implemented into a 
ready-to-use R-code (see Data availability section) and con-
sists of the following steps (Fig. 1).

 • First, given a set of scattered samples, list the species in it.

 In formulae, sample C = {c1, …, cM*}, M* ≥ 2, 
cells covering a fraction p* of the whole for-
est in which S* species are observed. To each cell 
ci, associate a vector Ω( ) , ,1 *ci

i

S

i= { }ω ω… , with 

ω s
i s S i M∈ ∈ ∈{0,1} {1, , } {1, , }* *, ,… … . he entry ω s

i  
of vector Ω(ci) gives information on the presence/
absence of the species s in the cell ci – i.e. ω s

i = 1  if spe-
cies s is present in cell ci, ω s

i = 0  otherwise.
 • Compute the empirical species–accumulation curve as 

follows. From now on, let us suppose that all the M* 
cells are of equal size a. his assumption does not afect 
the general framework but it simpliies the computation 
of the SAC. Call A the area of the whole forest, so that 
p* = M*a/A. At each sub-sampling scale pk = ka/A, with 
k ∈ {1, …, M*}, compute the average number of observed 
species as

S p
M
k

k

I M
I k

s

S

i I

s
i

emp( )
1

1 1
*

{1, , * }
| |

=1

*

=






≥






⊆
=

∈
∑ ∑ ∑
…

ω   (13)

 where 1( )E  is the indicator function, which equals 
one when the random event E  happens and it is zero 
otherwise.
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 In words: for every scale pk, one should compute the 
empirical average of the number of the species observed in 
all subsets of k cells. Since computing all subsets of k cells 
among M* is numerically expensive for large M*, in the 
analyses we computed the average among 100 randomly 
chosen subsets. Note that computing the species accumu-
lation curve through the empirical average of the number 
of species in k random selected cells, we are neglecting any 
spatial information. Let us stress once again that null or 
small spatial correlation is required for a rigorous deriva-
tion of our estimates.

 • Fit the empirical species accumulation curve with the 
theoretical equation

S p S
U p

k

k p

r

p

r
( )

1 1 ( |1, )

1 (1 )
*

*

*

=
− −( )

− −

ɶ ξ

ξ
  (14)

 and obtain the parameters (r, ξp*) which best describe the 
empirical curve Semp(pk). hese are the parameters of the 
NB relative species abundance distribution at the sample 
scale p*. his protocol allows us to capture some spatial 
efects in the efective parameters.

 • As showed in Tovo  et  al. (2017), under the hypotheses 
of absence of strong spatial correlations due to both 

inter-speciic or intra-speciic interactions, strong envi-
ronmental gradients and abundances distributed accord-
ing to a negative binomial at the whole forest scale, the 
RSA distributions at diferent scales have the same func-
tional form of the RSA at the scale p*, and only the values 
of the parameter ξ changes as a function of the scale. hus 
we obtain an analytical form of the upscaled RSA at any 
scale p given we know it at scale p* in term of the equa-
tion ξ(p|ξp*) = U(p|p*,ξp*), relating ξp = ξ(p) to p, p* and 
ξp* = ξ(p*). herefore, using the RSA parameters at scale 
p* and the upscaling equations (see below), we can predict 
the total number of species, S, at the whole forest scale, 
p = 1.

 • he key feature of the method is the possibility, given only 
presence/absence data, to connect and infer diferent bio-
diversity patterns at the global scale. Indeed, we can pre-
dict, in addition to the SAC, the RSO, the cell occupancy 
distribution and the RSA, the abundance proportions of 
the S species present at p = 1.

Data availability

All data are publicly available. he Pasoh and Barro Colorado 
Island datasets are provided by the Center of Tropical 
Research Science of the Smithsonian Tropical Research 
Institute (<https://stri.si.edu/>). R codes are available at 

Figure 2. Test from diferent scales for Pasoh and BCI. For each forest we sub-sample a fraction p of p* of the available spatial cells and apply 
diferent popular upscaling methods based on presence/absence data (Table 2) and our method to predict the true number of species, S* 
(dashed line), observed in our data. While our (P/A NB) and Chaowar methods do converge at Sp* as p goes to p*, all the others have a mono-
tonically increasing behaviour due to the independence, in their predictions, of the scale p*. We can see that for both rainforests, our method 
outperforms all the others. Bottom panels show the relative percentage error (Spred − S*)/S* × 100 obtained with our framework between the 
predicted number of species Spred and S*. We ind that the method underestimated the true number of species of at most 5%. he larger the 
sample area, the smaller the relative error.
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<https://github.com/annatovo/Inferring-macro-ecological-
patterns-from-local-species-occurrences>.

Results

Tests on in-silico databases

We test our presence/absence upscaling method on four com-
puter generated forests without and with spatial correlations. 
Indeed, we expect that in the irst case our framework will 
give more accurate estimates, and we wish to test how the 
introduction of correlations afect the reliability of our results.

Figure 3. Test on ecological macro-patterns for Pasoh and BCI. For each forest we sub-sample a fraction p = 0.1 of the available spatial cells 
and apply our framework to predict three important ecological pattern at the largest scale at which we have information, p*. In the irst row 
we see the prediction for the SAC curve, which describes how the number of observed species increases with the sampled area, from p = 0.1 
to 1, corresponding to p* in these tests. In the second row we plot the cumulative empirical RSA, the distribution of abundances across 
species against the framework prediction in logarithmic scale. Finally, in the third and fourth rows we test the ability of the model to capture 
the empirical RSO, i.e. the distribution of the occurrences (number of occupied cells) across species in logarithmic scale (third row panel 
shows the cumulative distribution). In igures, predicted patterns are in the form of conidence intervals obtained from the SAC itting 
errors on the r and ξp* parameters. For both forests, all the three patterns result to be well described by our framework.
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As RSA we choose a negative binomial (NB forest) of 
parameters r = 0.8 and ξ = 0.999 and a log-normal (LN forest) 
with parameters µ = 5 and σ = 1. Once generated the abun-
dance of every species (S = 4974 for the NB forest and 5000 
for the LN forest), we distribute the individuals within the 
forest area, here set equal to a square of 4900 × 4900 units, 
according to two diferent processes: at random or according 
to a modiied homas process (Tovo et al. 2016, 2017, Tovo 
and Favretti 2017) with a clustering radius of 15 units.

We then divide each forest generated as described above 
into M = 98 × 98 units cells and compute the M × S presence/
absence matrix, thus forgetting the information about the 
species distribution. Finally, we sub-sample the 5% of the 
cells (corresponding to a fraction p = 0.05 of the total forest 
area) and apply our method to infer the total number of spe-
cies in each of the four in-silico forests.

We also compared our results to those obtained by 
accounting for the data on species populations with an 
abundance-based upscaling framework developed and tested 
in Tovo et al. (2017). In the case of the NB forest, the two 
methods performed very well for both the random and the 
clumped distribution (i.e. individuals distributed on the 
space according to a homas point process) with an average 
prediction error below 1% in absolute value (Table 1). In 
the homas distributed forests, the error increased, although 
remaining around 3% for the presence/absence method and 
around 7.5% for the abundance-based one (using maxi-
mum likelihood methods. he latter percentage error can be 
improved using calibrated statistical method for the single 
it). hus, with respect to the degree of individuals’ cluster-
ing, the new framework seems to give more robust estimates 
than the second one. his is due to two main reasons: 1) for 
the presence–absence case, we it the empirical SAC, which 
has a very smooth functional shape, and it is easy to describe 
through our analytical SAC. On the other hand, the RSA 
displays a more complex and variable shape and thus itting it 
with the NB is a more delicate task (indeed we ind sensible 
diferences on the accuracy using diferent statistical methods 
for the it); 2) binary data on which the empirical SAC is 
based are less sensitive to sampling luctuations.

Tests on real databases

We inally test our method on sub-samples taken from two 
empirical forest data for which we have informations on both 
species occurrence and abundances. In particular we extract 
abundances of tree species observed in 50 ha of rainforests 
from Pasoh (Malaysia) and Barro Colorado Island (Panama) 
together with the spatial locations of each of their individual.

Firstly, we divide both forest data into a grid consisting 
of M = 800 equal-sized cells of area 625 m2 and we derive the 
M × S* presence/absence matrix for the S* observed species 
(S* = 927 for Pasoh forest and 301 for BCI). We then sub-
sample species occurrence for diferent fractions 0 < p < p* of 
the cells and apply our framework to infer the number of 
species and other biodiversity patterns (RSA, RSO and SAC) 

at the corresponding largest empirically-observable scale p*, 
for which we know the ground truth.

We compared our results on species richness obtained only 
from presence to absence data with the most popular non-
parametric indicators proposed in the literature (Chao 2005, 
Chao and Chiu 2016), which are summarized in Table 2. 
We found that our method outperforms all the others for 
both BCI and Pasoh forests. We also remark that all these 
methods have the further limitation that they can only infer 
the total species richness, without allowing for an estimate of 
the abundances’ and occurrences’ distributions, i.e the shape 
of the RSA and the RSO.

Indeed, as shown in Fig. 3, from the local presence to 
absence data, we can reconstruct, among the SAC, the RSA 
at the whole tropical forest scale, thus relating species occur-
rence data with information on the abundances. In particular 
we can see that the inferred RSA are statistically comparable 
with the empirical ones obtained by using all the information 
on species’ abundances which we deleted before applying our 
method.

Another biodiversity pattern that we can infer from our 
framework is the RSO. As shown in Fig. 3, we ind that, 
as for the RSA, this pattern seems to have a universal form 
which can be well described and correctly inferred through 
our neutral approach. Also, our inding suggests that, when 
spatial efects are negligible, the RSO distribution has a wide 
range of values in which it is well approximated by a universal 
power law, regardless of the details of the populations’ dynam-
ics. One may assume that this latter is driven by a simple sto-
chastic process with constant per capita birth and death rates. 
Such a slow decay of Q(v|M, 1) indicates that species in real 
systems exhibit huge variations in their occurrences, which 
may be weakly correlated to species’ habitat preferences or 
environmental heterogeneities. We should expect strong 
asymmetries among their occurrences: for instance, if we tile 
up a landscape into M = 1000 elementary cells, then about 
a third of all species should live in less than 1% of them; 
whereas about 1.5% of the species should be found in more 
than 90% of the total cells (Fig. 3).

We highlight that the SAC (green line), the cumulative 
RSA (red line) and cumulative RSO (blue line) predicted pat-
terns in Fig. 3 have not been obtained through the it of some 
parameters, but they have been analytically predicted through 
our upscaling Eq. 1, 9 and 12. he only itting occurs at the 
scale p = 0.1p* using the empirical SAC to parametrize Eq. 
13. In other words, by itting species occurrence data at the 
sample scale, our framework allows to estimate: 1) the RSA at 
the sample scale; 2) the SAC, the RSA and the RSO at larger 
scales. We provide an open source R code that performs the 
above estimates giving as input only the presence–absence 
matrix data.

After testing our model on controlled computer generated 
data and real forest sub-samples, we apply our framework 
to predict the species richness of the two tropical forests. 
Moreover, we compare our results to those obtained with the 
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upscaling framework based on RSA pattern previously devel-
oped and tested in Tovo et al. (2017) by our group.

We therefore predict, through the presence/absence 
method, the species richness at the whole forest scale (p = 1) 
for BCI and Pasoh tropical forests. Figure 4 shows the pre-
diction of the overall (and unknown) SAC for a scale rang-
ing from 50 to 14 000 hectares for the Pasoh (p* ≈ 0.0036) 
and to 1560 for the BCI (p* ≈ 0.032). he blue curves rep-
resent the prediction obtained only using presence–absence 
data whereas red curves are the SAC inferred by exploiting 
also the information about species’ population through the 
abundance-based method (Tovo et al. 2017).

We ind that the two methods give comparable results for 
both the databases, a conirm of the robustness of the theo-
retical framework.

Discussion

In this work we proposed and tested a novel rigorous sta-
tistical framework to upscale ecological biodiversity patterns 
from local information on species occurrence data. Diferent 
upscaling approaches have been proposed in ecological litera-
ture (Good and Toulmin 1956, Bunge and Fitzpatrick 1993, 
Wang and Lindsay 2005, Harte et al. 2009, Azaele et al. 2015, 
Slik et al. 2015, Chao and Chiu 2016, Orlitsky et al. 2016, 
Ter Steege et al. 2017, Ter Steege et al. 2017). However, to the 
best of our knowledge, they have not been generalized to the 
case of binary data. he present paper provides a generaliza-
tion of the method recently proposed in Tovo et al. (2017) to 
presence–absence information. In Tovo et al. (2017) species 
abundance distributions at one given scale was required to 
make predictions at global scale, whereas the present approach 
allows to extract abundance distributions at any scale from 
species occurrence data in multiple small scale samples. he 
underlying hypotheses that we need in order to perform 
these estimates is that the RSA at a given scale is a nega-
tive binomial distribution, a RSA that arises naturally as the 
steady-state species abundance distributions for ecosystems 
undergoing simple birth and death dynamics (Volkov et al. 
2005, Azaele et al. 2016). he negative binomial is a simple 

and versatile distribution that depending on its parameters 
can display an interior mode or log-series like behaviour, i.e. 
it can accommodate diferent RSA shapes. herefore we can 
use the same RSA function to reproduce diferent ecosystems’ 
RSA, as those typically observed in real ecosystems (Chave 
2004, Magurran 2005, Chave et al. 2006, Chisholm 2007, 
Volkov et al. 2007, Magurran 2013, Matthews and Whittaker 
2014, Kessler et al. 2015, Azaele et al. 2016). Even more gen-
erally, by using mixtures of negative binomials – a case for 
which our framework still works – we can it more complex 
RSA shapes (Tovo et al. 2017).

Furthermore, we introduce a new descriptor/measure 
of biodiversity within an ecological community, the RSO, 
which describes the distribution of species occurrences in 
scattered plots. he RSO distribution displays a fat tail, indi-
cating that many species typically occupies only few scattered 
plots, while only very few species are pervasive and are found 
in most of the plot. Our prediction is that this property is not 
particular for the dataset here considered, rather it is another 
emergent patterns (Suweis  et  al. 2013, Azaele  et  al. 2016) 
pervasive in highly biodiverse ecosystems. Our framework 
gives directly all parameters of the RSO by solely itting the 
SAC curve, through which one can obtain the r and ξ param-
eters, which well describe both the RSA and the RSO distri-
butions at all spatial scales of interest.

Expanding the ability to upscale species richness and obtain 
abundance distributions from presence to absence data is of 
fundamental importance in many contexts, where abundance 
information are not available or trustable. his is particularly 
true for microbial or marine (e.g. plankton) ecological data 
obtained from metagenomics (Menzel et al. 2016) and 16S 
ribosomal gene sequences (Soergel  et  al. 2012). he use of 
sequence-based taxonomic classiication of environmental 
microbes has exploded in recent years (Soergel  et  al. 2012, 
De Vargas et al. 2015, Menzel et al. 2016, hompson et al. 
2017) and these approaches are becoming a standard method 
for characterizing the biodiversity of both prokaryotes and 
eukaryotes (De Vargas  et  al. 2015). hanks to advance in 
high throughput sequencing we begin to be able quantifying 
the vast number of microbes in our environments, expand-
ing our knowledge on microbial diversity (hompson et al. 

Figure 4. SAC predicted for Pasoh and BCI using abundance method versus presence/absence method. Using all the available data for both 
tropical forests, we compare the prediction for the SAC curve obtained by the abundance method (Tovo et  al. 2017) with the results 
obtained with the presence/absence framework presented here. At the whole forests’ scale p = 1, the two predictions are 3σ compatible 
( SPasoh

abund = ±1193 36 , SPasoh
p/a = ±1260 22 , SBCI

abund = ±366 15 , SBCI
p/a = ±359 2 ).
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2017). However, large fractions of the sequence reads remain 
unclassiied (Menzel et al. 2016) and also species abundance 
estimated have a very high uncertainty (hompson  et  al. 
2017). hus, being able to estimated species richness and 
abundance distributions from species occurrence data may 
lead to a big step-forward in the taxonomic classiication of 
microbial ecosystems.

To summarize, this lexible analytical method provides, 
from local presence/absence information, robust estimates 
of species richness and important macro-ecological patterns 
of biodiversity (SAC, RSA, RSO), as tested in both in-silico 
generated and two rainforests. he method may be applied to 
any database in the form of a binary matrix, where presence/
absence features (tree species in our case) are detected across 
diferent samples.
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