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Ice sheets matter for the global carbon cycle
J.L. Wadham1, J.R. Hawkings2,3, L. Tarasov4, L.J. Gregoire 5, R.G.M. Spencer2,

M. Gutjahr 6, A. Ridgwell 7 & K.E. Kohfeld 8

The cycling of carbon on Earth exerts a fundamental influence upon the greenhouse gas

content of the atmosphere, and hence global climate over millennia. Until recently, ice sheets

were viewed as inert components of this cycle and largely disregarded in global models.

Research in the past decade has transformed this view, demonstrating the existence of

uniquely adapted microbial communities, high rates of biogeochemical/physical weathering

in ice sheets and storage and cycling of organic carbon (>104 Pg C) and nutrients. Here we

assess the active role of ice sheets in the global carbon cycle and potential ramifications of

enhanced melt and ice discharge in a warming world.

For a component of the Earth’s system to impact the global carbon cycle, and potentially
influence atmospheric concentrations of carbon dioxide or methane, it must either directly
sequester and/or release carbon, or indirectly influence carbon uptake/release in other parts

of the Earth system. The notion that ice sheets contain significant carbon stores has its roots in
the early 2000s–the great ice sheets were hypothesised to advance over soil and vegetation carbon
during glacial periods, with this fossil carbon being released back to the atmosphere once
exposed by retreating ice during deglaciation1. More recent work has highlighted the capacity of
glacier surfaces to act as sinks for carbon-containing aerosols from anthropogenic or natural
sources2,3. However, both these mechanisms represent passive processes of carbon storage and
release by glaciers. Only in the last 15 years have glacial systems started to be considered as active
cyclers of carbon, arising from the discovery that they include a range of aquatic environments4

which host abundant and diverse populations of microorganisms5 and are hot spots for bio-
geochemical weathering6. These processes create the potential for ice sheets to directly or
indirectly impact the global carbon cycle (Fig. 1). Direct impacts include the release of green-
house gases (carbon dioxide, CO2 and methane, CH4) during the microbial respiration of
organic matter (OM) stored within ice sheets. Examples of indirect impacts include the fertili-
sation of downstream ecosystems, promoted by either the release of nutrient-rich glacial melt-
waters7–9 or by subglacial meltwater-induced upwelling of nutrient replete marine water at
tidewater glacier margins10–14. Ocean fertilisation by glaciers may be accompanied by significant
CO2 drawdown by phytoplankton, intensifying the biological pump15,16.

The size of the carbon stores entombed in ice sheets1,17,18 and magnitude of nutrient supply to
surface ocean waters by meltwaters and icebergs8,19 make it crucial to evaluate the role of ice
sheets as open systems in regulating the global carbon cycle via the direct and indirect
mechanisms identified in Fig. 1. Here, we draw upon advances over the last two decades to
address the hypothesis that ice sheets have important direct and indirect impacts on the global
carbon cycle (Fig. 1) at the present day, which are accentuated during periods of enhanced melt
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or ice discharge. In this Review, we first identify the key bio-
geochemical processes in ice sheets, and then go on to highlight in
further discussions important indirect and direct impacts. We
conclude this synthesis by evaluating the suggestion that ice
sheets play a role in regulating the global carbon cycle with a
novel analysis of the geological record over the last glacial-
interglacial transition.

A paradigm shift in ice sheet biogeochemical cycling
In 1999, the first communities of microorganisms were dis-
covered beneath a valley glacier in the Swiss Alps20 driving a
major shift in our world-view of glaciers and ice sheets as abiotic
systems to extensive icy biomes5. Microbial communities have
since been found ubiquitously in glacial systems5, ranging from
sub-micron diameter liquid ice veins between ice crystals21 to
large subglacial water bodies, such as Subglacial Lake Whillans
situated 800 m beneath the West Antarctic Ice Sheet22. The sur-
vival of these seemingly diverse communities is due to their
adaptation to a unique combination of physical and geochemical
conditions that are not encountered anywhere else on Earth.

First, liquid water is abundant in ice sheets, generated by the
melting of surface ice and snow and by geothermal/frictional
heating and pressure melting of ice at the glacier bed. Surface melt
is often widespread on the Greenland Ice Sheet and supplies melt
to well-developed drainage systems at the ice sheet bed (where ice
is at the pressure melting point)23. These drainage systems evolve
seasonally from slow-inefficient distributed drainage to fast-
efficient drainage (e.g., channels), with residence times shifting
from months to <1 day23. In contrast, surface melt is largely
absent in Antarctica, apart from in marginal locations24,25.
Nonetheless, the bed of the Antarctic Ice Sheet is hydrologically
active, with subglacial lakes, swamps, channels and groundwater
aquifers fed by the melting of basal ice layers4. Water flowing in
such long residence time drainage systems here may take years to
decades to emerge at the ice margin26.

Second, the sliding of glaciers over their bedrock generates very
fine, highly reactive rock flour by glacial crushing and grinding.

This is the source of a potent mixture of electron acceptors (e.g.,
oxidised forms of sulphur and iron such as sulphate and Fe(III)),
electron donors (e.g., OM, hydrogen27, as well as reduced ele-
mental species such as Fe(II) in iron sulphide minerals), micro-
nutrients and macro-nutrients, liberated by chemical dissolution.
In the deep, dark and cold ecosystems beneath ice sheets, these
rock-sourced redox pairs and nutrients promote the metabolism
of a diverse mix of chemolithotrophic and chemoorganotrophic
microorganisms, able to fix and supply autochthonous carbon to
the wider subglacial ecosystem. In Antarctic Subglacial Lake
Whillans, a large proportion of phylotypes in sediments were
related to chemolithoautotrophic species that use reduced forms
of sulphur, nitrogen and iron as energy sources22.

Third, as glaciers and ice sheets expand, they bury OM asso-
ciated with soil, vegetation, lake and marine sediments. Further-
more, OM is deposited by aeolian processes onto the ice surface,
originating from distant sources or from proximal surfaces sur-
rounding the ice. This allochthonous material is supplemented by
organic carbon fixed in situ by abundant autotrophic micro-
organisms in melting zones of ice sheet surfaces22, and thus,
influences rates of ice melting by surface darkening (see Box 1)28.

Diverse oxidising and reducing conditions evolve in response
to patterns of water flow beneath ice sheets, from fast flowing oxic
channels to slower drainage through anoxic or hypoxic sediments
and subglacial lakes. These hydrogeochemical environments
create niches for microbial colonisation and permit a diverse
range of biogeochemical processes to be supported across the
redox spectrum, including sulphide oxidation29,
denitrification30,31, sulphate32, and iron reduction33,34 and
methanogenesis35,36. Well-developed hydrological systems, toge-
ther with the release of icebergs via calving, create the potential
for OM and nutrient transport out of the ice sheet and into
downstream aquatic ecosystems (e.g., lakes, rivers, oceans). The
release of fresh, buoyant subglacial meltwaters often some 100 s of
m below the ocean surface at the margins of marine-terminating
outlet glaciers also stimulates the upwelling of marine water and
transport of associated nutrients to the ocean surface10–14. It is
this combination of in situ microbial activity, dynamic processes
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Fig. 1 Conceptual diagram of ice sheets in the global carbon cycle. The diagram indicates the potential direct and indirect impacts of ice sheets. (1) direct
sequestration or emission of CO2/CH4 by microbial activity in ice sheets, (2) burial of terrestrial OM exported from ice sheets by rivers, (3) emission of
CO2 by respiration or uptake by primary production in the oceans (4) export production–OM produced by primary production which is not recycled before
it sinks to the ocean floor
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of meltwater export and glacial advance/retreat cycles that creates
an active connection between ice sheets, the ocean and the
atmosphere (Fig. 1) and which we explore in subsequent sections.

Ice sheets as nutrient factories
A unique combination of intense physical erosion, active bio-
geochemical cycling and high meltwater fluxes from glacier sys-
tems, as described in the previous section, point towards the
importance of ice sheets as direct or indirect sources and pro-
cessors of a wide range of life-essential elements. There are three
potential impacts of this glacially exported nutrient within the
marine environment. First, direct fertilisation by the glacially
exported nutrients themselves, including inorganic forms of N
(e.g., NH4

+, NO3
−, NO2

−) and P (PO4
3−), organic forms of N

and P, Si and micronutrients such as Fe (Box 2, Supplementary
Tables 1 and 2)30. Second, indirect fertilisation by buoyant
meltwater plumes entraining nutrient-rich marine waters as they
rise up from depth11,13,14,37,38. Finally, indirect impacts via
benthic recycling and liberation of nutrients from glaci-marine
sediments39, which will in turn imprint upon upwelling oceanic
waters. The release of nutrients to the surface ocean via these
mechanisms has the potential to fertilise marine waters, stimulate
changes in the plankton community composition40 and enhance
primary production, export production and CO2 drawdown via
the biological pump–an indirect impact on the carbon cycle. Deep
ocean water and subglacial meltwaters tend to be enriched in
different nutrient species, for example, subglacial meltwaters are
enriched in crustal species such as Si and Fe but depleted in
nitrate and phosphate, while deep marine waters are often enri-
ched in nitrate and phosphate. Thus, the impacts of these two
different mechanisms of nutrient release will be shaped by which
nutrient they supply relative to that which is most limiting to
phytoplankton.

By far the largest source of nutrients released directly via ice
sheet meltwaters is the subglacial environment8, derived from
bedrock by physical and biogeochemical weathering or from
sequestered OM by biological activity41 (Box 2). Long flow paths
(10 s to 1000 of km) result in enhanced meltwater residence times
beneath ice sheets, which together with seasonally high meltwater
pH (often > 8.542), promote the chemical dissolution and altera-
tion of nutrient-rich minerals such as aluminosilicates and P-
bearing apatite. Thus, meltwaters and icebergs exported from ice
sheets are also often enriched in bioavailable forms of dissolved
and particulate phosphorous and silicon42–44. For example, yields
of soluble reactive P generated in large ice sheet catchments are
among the highest in the literature (17–27 kg P m−2 a−1)42, and
an order of magnitude higher than from small valley glaciers45,46.

Total P fluxes are an order of magnitude higher than those for
other world rivers, largely sourced from minerals such as fluor-
apatite42. This suggests that high physical and chemical erosion
rates in ice sheets47 are important in enhancing total P fluxes.
Traditional notions of depressed silicate mineral weathering
beneath small valley glaciers, inferred from low concentrations of
dissolved Si in glacial runoff48, may also not hold for large ice
sheets43. Recent work has shown significant concentrations of
amorphous silicon (ASi) associated with suspended particulate
matter in Greenland Ice Sheet runoff (~1% by mass). When this
particulate component is included in total Greenland Ice Sheet Si
fluxes via bulk runoff, the total flux rises by an order of magni-
tude to 50% of the total Arctic riverine Si flux43. Potential for-
mation mechanisms include either production of ASi during rock
grinding, a chemically leached surface layer or a precipitated
weathering crust arising from dissolution/re-precipitation on
freshly ground and leached particles43. Inclusion of ASi in total
glacial Si fluxes has the potential to increase Si fluxes by an order
of magnitude43. Glacially sourced ASi is highly soluble in sea-
water and its export, together with DSi, has the potential to
change the oceanic Si isotopic signature and inventory on glacial-
interglacial timescales49 and stimulate the productivity of diatoms
and other siliceous organisms43,44,50.

Perhaps one of the most well studied nutrients released from
glaciers and ice sheets is iron (Fe). The liberation of bioavailable Fe
from bedrock via biogeochemical weathering (see Box 2) is
thought to be important in fertilising ocean basins where phyto-
plankton are limited by Fe availability (e.g., the Southern Ocean,
NW Pacific Ocean)51,52. A suite of microbially -mediated pro-
cesses including silicate dissolution, sulphide oxidation53 and
dissimilatory iron reduction33,34 generate ice sheet runoff enriched
in filterable (operationally defined here as Fe which passes through
a 0.2 or 0.45 μm filter) and highly reactive particulate forms of
iron54–56,57 that contain bioavailable Fe(II)58,59. Icebergs are
particularly important Fe exporters, containing enhanced con-
centrations of bioavailable (ascorbic acid extractable) iron (oxy)
hydroxides (e.g., ferrihydrite) in iceberg rafted debris (IRD)19.
There are likely important interactions between iron and other
chemical species which are critical to consider within the context
of wider ice sheet nutrient cycles, for example, the sorption of
soluble reactive P (SRP) onto highly reactive Fe (oxy)hydroxide
nanoparticles or colloids42.

In contrast to P, Si and Fe, concentrations of dissolved inor-
ganic nitrogen in ice and snowmelt are low (nM to low μM)42,44

compared to deep ocean water (Supplementary Tables 1 and 2).
While further NO3

− and NH4
+ may be acquired by meltwaters in

the subglacial environment by microbial activity, concentrations
of dissolved N in glacial runoff are still in the low micromolar

Box 1 | Microbial activity on ice sheet surfaces and the bioalbedo effect

The bioalbedo effect refers to the darkening effect of biological impurities on snow and ice177. The melt zones of ice sheets are host to diverse
communities of microorganisms that thrive during the summer months across a range of aqueous ecosystems including surface lakes, wet bare ice,
snow and cryoconite holes (small cylindrical water-filled depressions, created by the solar heating of surface aggregates of mineral and organic particles
and microbial cells, known as cryoconite)178. Bare ice surfaces are dominated by ice algae179, which are commonly green algae on the Greenland Ice
Sheet179–181. In cryoconite holes, the dominant active taxa are cyanobacteria and alpha-proteobacteria and/or beta-proteobacteria182. The activity of
these microorganisms has recently drawn attention via the hypothesis that the biologically driven accumulation of OM accelerates ice melting, via its
effect upon ice surface darkening28,183. Net bioaccumulation depends upon the balance of CO2 fixed from the atmosphere by phototrophs and CO2

returned to the atmosphere by respiration, and is influenced by a wide range of physical and biogeochemical processes. Recent work on the Greenland
Ice Sheet suggests that carbon fixation exceeds carbon consumption, making the ice sheet surface net autotrophic (i.e., a CO2 sink113,183,184) and
enabling the accumulation of OM and pigmented algae179. Autochthonous OM is supplemented by wind-blown material, which becomes biologically
altered on the ice sheet surface by the release of exopolymeric substances which bind particles185. The direct impact of the bioalbedo effect has yet to
be fully quantified. However, initial investigations indicate that algal abundance on Greenland ice surfaces explains 70% of the variation ice reflectance,
suggesting a significant impact of ice algae on ice surface albedo28. The resultant early exposure of underlying dark (low albedo) glacial ice following
snowmelt has the potential to further enhance glacier melting186.
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range7,31. The low N content of most bedrock types60 also means
that the concentrations of N associated with suspended particu-
late material in ice sheet runoff are often below detection limit of
analytical methods.

Organic phases of key nutrients are important in some contexts
within ice sheets, resulting from the cycling of allochthonous OM
and production of autochthonous OM. The organic phases of
particulate P and N are measurable in ice sheet runoff, but

comprise a much smaller proportion of the total N and P fluxes
compared with those from Arctic rivers31,42. In comparison, the
dissolved organic components of N and P in ice sheet meltwaters
can be significant, acquired via the activity of micro-organisms on
the glacier surface and at the bed. For example, dissolved organic
N (DON) comprised 50% of the total dissolved N load of
Greenland Ice Sheet runoff31. Dissolved organic matter (DOM)
may also act as an important stabiliser for key redox-sensitive or

Box 2 | Sources and cycling of nutrients

Atmospheric-derived nutrients
The annual deposition of snow and subsequent transformation to ice locks up atmospheric-derived nutrients, such as nitrate187. Liberation of this ice-
entombed nutrient is controlled by ice sheet hydrology and differs between ice sheets. On the Greenland Ice Sheet, atmospheric nutrients in snow and
ice are released to surface meltwater streams in summer melt in the ablation zone31,187. In zones of ice sheets where surface air temperatures are well
below 0 °C (e.g., most of the Antarctic Ice Sheet), zero surface melting means that this atmospheric nutrient release does not occur until the ice is
advected to melting zones of the ice sheet bed. An exception is found in marginal regions, such as the McMurdo Dry Valleys, where solar radiation-
driven melting of debris entombed in surface glacier ice causes localised melting and meltwater release to streams24.

Ice sheet surfaces
A wide range of ecosystems, such as cryoconite holes (see photo) on melting ice sheet surfaces, harbour productive microbiota with active nutrient
cycling, including nitrogen fixation and nitrification7,188–190. These microbial processes further enhance the nutrient content of meltwaters prior to their
discharge either to the ice sheet bed via moulins or at the margin. While nitrate concentrations can be several μM, surface meltwaters generally have
much lower concentrations of crustally derived species such as P, Si and Fe8.
Ice sheet beds
Physical processes are vital in promoting cycling of nutrients at ice sheet beds via: (1) production of fresh mineral surfaces by glacial grinding; and (2)
OM cycling, including that of ancient overridden OM. The immense capacity of glaciers to erode their underlying bedrocks via a combination of plucking
and abrasion, generates an abundant supply of very fine rock flour. This gives glacial meltwater rivers a distinctive milky appearance, visible as turbid
plumes when they enter downstream fjord and coastal waters191. Such flour is highly geochemically reactive, due to its large surface area: volume ratio
and the exposure of reactive minerals such as iron sulphides and carbonates48. Traditionally, chemical weathering beneath ice sheets was assumed to
be low to negligible192, but contemporary field studies in glacierised catchments indicate chemical weathering rates that exceed or are similar to the
global mean48. Marine-based work using paleo-proxies also indicates that sub-ice sheet chemical dissolution of rock material is enhanced during
deglaciation (21–7 kyr B.P) when large expanses of glacial sediments become exposed as the ice retreats193,194. The chemical weathering of glacial
sediments is an important process driving the release of crustal nutrients, such as Si, P, Fe and other micronutrients in dissolved or bioavailable
particulate forms. The first reaction to occur upon wetting of glacial flour is carbonate hydrolysis (e.g. hydrolysis of calcite, Eq. 1).

CaCO3 sð Þ þ H2O lð Þ , Ca2þ aqð Þ þ HCO�
3 aqð Þ þ OH� aqð Þ ð1Þ

Further chemical dissolution, including that of silicate minerals, is fuelled by carbonation reactions (including via microbial CO2 in some cases6,195), by
protons released during the (microbial) oxidation of sulphide minerals (e.g. coupled calcite dissolution/sulphide oxidation via oxic or
anoxic mechanisms, Eqs. 2 and 3 respectively)29,53 or via other forms of microbial weathering (e.g., release of metabolites such as organic acids).

16CaCO3 sð Þ þ 4FeS2 sð Þ þ 15O2 aqð Þ þ 14H2O lð Þ , 16Ca2þ aqð Þ þ 16HCO�
3 aqð Þ þ 8SO2�

4 aqð Þ þ 4Fe OHð Þ3 sð Þ ferric oxyhydroxidesð Þ ð2Þ
16CaCO3 sð Þ þ FeS2 sð Þ þ 14Fe3þ aqð Þ þ 8H2O lð Þþ , 16Ca2þ aqð Þ þ 16HCO�

3 aqð Þ þ 15Fe2þ aqð Þ þ 2SO2�
4 aqð Þ ð3Þ

Silicate mineral dissolution generates dissolved Si in meltwaters, an important nutrient required by siliceous organisms such as diatoms and sponges.
This process is thought to be enhanced beneath ice sheets relative to small valley glaciers, since long flow paths and prolonged meltwater residence
times lead to the exhaustion of carbonate minerals in sediments or attainment of saturation with respect to calcite in meltwaters6,196. Iron cycling is
also important in glacial systems, via sulphide oxidation (oxic and anoxic)53 and dissimilatory iron reduction33 (Eqs. 2, 3 and 4, respectively).

Acetateþ 8Fe3þ aqð Þ þ 4H2OðlÞ , 2HCO�
3 aqð Þ þ 8Fe2þ aqð Þ þ 9Hþ aqð Þ ð4Þ

OM buried beneath ice sheets during their formation, supplemented by new carbon production via chemolithoautotrophy197, provides another
important substrate for microbial nutrient cycling in wet-based zones of ice sheet beds. Ammonium is thought to be acquired by microbial
mineralisation of OM, subsequently fuelling populations of nitrifiers22,198. Heterotrophic respiration of subglacial OM utilising the full spectrum of
electron acceptors along the redox continuum has been reported, including denitrification198, iron reduction33 (Eq. 4), sulphate reduction32 and
methanogenesis35,36.
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phase-sensitive trace elements such as iron. A direct relationship
between dissolved organic carbon (DOC) and dissolved iron
observed in sub-Antarctic meltwaters was attributed to the sta-
bilisation of filterable Fe (<0.45 μm) by complexation with
DOM56, although further investigation is needed to determine if
DOM-Fe linkage is important in glacial meltwaters.

Drawing upon previously published work we have generated
the first global assessment of potential nutrient fluxes released
directly from both ice sheets at the present day, also with
indicative peak fluxes from northern hemisphere ice sheets
during past periods of high melt rates, in this case, during
Meltwater Pulse 1a at 14.5 kyr B.P. (see Supplementary Meth-
ods) (Fig. 2). The pattern that is immediately apparent from
Fig. 2 is the important role of meltwater export in the northern
hemisphere and of iceberg discharge in the south in delivering
nutrients to the ocean–a reflection of the dominant water flux
terms. Icebergs account for >95% of freshwater discharge from
the Antarctic Ice Sheet and subglacial discharge dominates
freshwater fluxes in the northern hemisphere, especially if most
Greenland icebergs do not escape the extensive fjord systems61.
High contemporary fluxes of bioavailable Fe and Si from ice
sheets are observed (1.8 Tg a−1 Fe and 9.4 Tg a−1 Si), where
>60% of these estimated Si and Fe fluxes are sourced from the
Greenland Ice Sheet (Fig. 2, Supplementary Table 3). Present-
day fluxes of Fe from the Greenland Ice Sheet are on a par with
those associated with atmospheric dust to the North Atlantic54

and Fe associated with Antarctic icebergs exceeds fluxes via
aeolian dust to the Southern Ocean by three orders of magni-
tude61. Particulate material is the dominant flux term (>95% of
Si and Fe) for these nutrient species8,62 (Fig. 2). Bioavailable P
and N fluxes from ice sheets are generally an order of magni-
tude (Gg a−1) lower than those for Fe, Si and organic carbon
(OC, Tg a−1). However, these estimates exclude the more
refractory mineral forms of P associated with particles (e.g.,
fluorapatite), which display fluxes orders of magnitude higher
than the traditionally ascribed bioavailable P flux (taken to
include soluble reactive and loosely bound P and P associated
with Al-Fe minerals P)42. Fluxes of bioavailable P from ice
sheets at the present day are of a similar order of magnitude
(25 Gg a−1) to other riverine sources such as Arctic rivers (70
Gg a−1 bioavailable P)42. Present day N fluxes from ice sheets
are moderate (100 Gg a−1 N, with 30 Gg a−1 from Greenland,
70 Gg a−1 from Antarctica) and exceed those from a major
Arctic river (20 Gg a−1 for the Mackenzie River63) (Supple-
mentary Table 3). Fluxes of nutrients associated with glacially
driven upwelling of marine water at ice sheet margins are still
poorly known. Studies of single fjords and marine terminating
systems suggest that they could be highly significant for N and
P “pumping”, and moderately significant for Si10. For example,
in Sermilik and Illulisat Fjords (E Greenland), P fluxes via
upwelling are 2–9 Gg N a−1 and those of N are 12–40 Gg P a−1,
compared with estimates of 15 Gg P a−1 and 30 Gg N a−1 via

Present day ice sheet fluxes Peak ice sheet flux (last 25 kyr B.P.)
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Fig. 2 Fluxes of nutrients and organic carbon. Fluxes of bioavailable nutrients and organic carbon associated with subglacial meltwater and ice discharge from
(a) northern and (b) southern hemisphere ice sheets at the present day and (c) northern hemisphere ice sheets during Meltwater Pulse 1a (14.5 kyr B.P.).
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P), Fe=DFe (<0.02 μm)+ CNFe (colloidal/nanoparticulate Fe, 0.02–0.45 μm)+ SSFe (sediment-bound ascorbic acid extractable nanoparticulate Fe, e.g.,
ferrihydrite), Si=DSi+ASi and OC= POC+DOC. All fluxes include minimum, maximum and mid-range estimates calculated from published estimates
of the range of nutrient concentrations and freshwater fluxes. Please see Supplementary Methods for flux calculations, error bars and the full dataset (note
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meltwater and ice discharge from the entire Greenland Ice
Sheet (Supplementary Table 3)14. For Si, upwelling fluxes are
14–66 Gg Si a−1 for these fjords, compared with 6300 Gg a−1

for the entire ice sheet (Supplementary Table 3)14.
Figure 2 indicates that nutrient fluxes from ice sheets were

likely much higher during peak melt periods in the past, for
example, during Meltwater Pulse 1a (MP1a at 14.5 ky B.P), when
freshwater fluxes were c. 20× higher for meltwater and 3× higher
for icebergs in the northern hemisphere–reflecting high meltwater
export during rapid disintegration of ice sheets over Northern
Europe and America. Thus, the potential export of Si and Fe at
this time was likely very high (126 Tg a−1 and 21 Tg a−1,
respectively). This flux of Si is almost equivalent to the total
global river discharge of Si during the same time interval, which is
notable given that the primary source of Si in the oceans is riv-
erine inputs43. The impact of these boosted nutrient inputs on
primary productivity in oceans bordering ice sheets during the
last glaciation and glacial termination has been hinted at
refs. 52,64,65, but is poorly constrained and requires a compre-
hensive modelling study in its own right. What is known about
the fate of glacially exported nutrients at the present day is
examined in the following section.

Fate of glacially cycled nutrients
The fate of glacially exported or cycled nutrients and their impact
on marine ecosystems depends upon a complex interplay of phy-
sical and biological processes, including proglacial/lake/fjord/
estuarine filter effects (e.g., burial of reactive phases, benthic recy-
cling, desorption/adsorption from particulates39), advection by
ocean currents66, phytoplankton utilisation pathways67–69 and
spatial patterns of phytoplankton nutrient limitation51. Observa-
tions of heightened biological activity in marine waters surrounding
glaciers has been noted as early as 1938, when brown zones
(representing turbid melt plumes) in front of tidewater glaciers
were noted to be particularly productive regions for biota70,71, with
more recent research reinforcing this connection10,72.

There is now compelling evidence for direct glacial nutrient
fertilisation of marine ecosystems around the Antarctic Ice Sheet.
Here, iron associated with subglacial meltwaters and icebergs is
thought to stimulate enhanced marine primary productivity in
the iron-limited Southern Ocean. Some of the highest con-
centrations of dissolved Fe in the Southern Ocean have been
reported adjacent to Pine Island Glacier in the Amundsen Sea73,
and in the western Antarctic Peninsula74, both inferred to derive
from a glacier source. Modelling studies show that Southern
Ocean primary productivity may be enhanced by up to 40% and
export production by up to 30% by subglacial iron inputs15,75,76.
Satellite remote sensing studies also suggest that Antarctic melt-
water may be an important source of iron to coastal polynyas77

and that icebergs enhance primary productivity in the open and
coastal Southern Ocean78,79, confirming previous field observa-
tions of bioavailable iron in iceberg rafted sediments61.

In contrast, runoff from northern hemisphere ice sheets often
enters fjords and complex estuarine environments, modulating
total fluxes to the ocean via flocculation and scavenging38,80–82.
Recent studies suggest that direct inputs of nutrients from
Greenlandic glaciers have a relatively small impact in stimulating
fjord and coastal productivity because they do not supply large
fluxes of nutrients (e.g., N and P) which limit phytoplankton in
these waters and turbid melt plumes supress productivity in the
summer months10. Here, the most important influence of the
ice sheet is heralded to be the pumping of N-replete and P-replete
deep ocean water to the surface during the upwelling of
buoyant subglacial meltwater at marine-terminating glacier
margins10,13,14,37,44. This indirect supply of nutrients has been

linked to spring and summer phytoplankton blooms, and sup-
ports fisheries in the coastal zone10. An exception may be the
direct export of silicon (both dissolved and amorphous particulate
phases) in glacial meltwaters83, which has been demonstrated to
support diatom blooms in Greenlandic fjords11, corroborating
previous studies suggesting high silica concentrations and high
diatom abundance in glacially fed fjords and coastal waters84.

While the impacts of glacially exported nutrients upon fjord and
coastal productivity around Greenland may be limited, there is
mounting evidence that there is a net export of glacial nutrients
from land to the open ocean. For example, the concentrations of
filterable and particulate iron in the surface waters at the mouths of
Greenland fjords and in near coastal regions downstream of glacial
meltwater inputs can be orders of magnitude higher than that in
the open ocean38,81,85,86. Radium isotopes measured on surface
ocean waters off the coast of Greenland strongly suggest the rapid
offshore transport of glacial particles into shelf waters and into the
open ocean83. Taking these inferences a step further, remote
sensing and numerical modelling have showed a strong correlation
between the timing and spatial extent of summer phytoplankton
blooms in the Labrador Sea and the arrival of Greenland meltwater
and subsequent patterns of advection via ocean currents16. The
inferred driver for these summer (August, September) blooms is
the advection of ice sheet derived Fe, which must be transported
some 500 km offshore16. These summer/autumn blooms account
for 40% of the annual net primary production for the region,
indicating a process of regional significance16.

Increasing ice sheet freshwater discharge and glacier retreat87 in
the 21st century are predicted to be accompanied by rising nutrient
and organic carbon export from ice sheets8,9. However, this
increase in glacially sourced nutrient fluxes may not be a simple
linear function of the freshwater flux. For example, seasonal
records of nutrient fluxes from a large Greenland outlet glacier in
extreme melt years demonstrated that a doubling of glacial runoff
was accompanied by a similar increase in dissolved nutrient
loading8, but sediment-bound fluxes declined due to the intricate
(supply-limited) relationship of particulate loading and bulk
meltwater discharge8. Decreased glacier size, and hence erosion
rates, may in fact also reduce sediment-bound nutrient export to
the ocean, as seen for P export from two Greenland catchments of
contrasting size42. In addition, expansion of the proglacial zone in
land-terminating systems may drive fundamental shifts in micro-
bial community size and composition and additional nutrient
cycling steps may occur in proglacial aquatic ecosystems (e.g.,
lakes) prior to nutrient export to the ocean88,89. In regions where
marine ice retreats to land, changes in the mechanisms of fresh-
water (and nutrient) input to ocean waters may occur. Thus, there
may be a shift from sub-surface to surface (turbid) meltwater
flows10 at the land-ocean margin, and cessation of the entrainment
of nutrient-replete ocean water by rising buoyant melt plumes
from depth at marine margins. These changes are likely to lead to
light limitation and reduced macronutrient (N and P) supply,
respectively, in surface waters90. They may explain the high bio-
logical productivity and fish catches found in the vicinity of fjords
headed by marine terminating glaciers in Greenland compared
with fjords dominated by land terminating glacier inputs10.

The above discussion highlights the importance of the fate of
inorganic nutrients, supplied directly or indirectly via ice sheet
meltwaters. However, ice sheets also act as significant stores of
OM, which is either fixed by autotrophic microbial activity
in situ22 or imported to the glacier system via wind-blown
material (e.g., aeolian dust)3 or from biomes buried by ice during
periods of glacial advance17,18. The cycling of this OM within
glaciers and ice sheets creates the potential for a series of more
direct impacts on the global carbon cycle (Fig. 1), which are
discussed in the next section.
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Ice sheets as dynamic carbon stores
Pre-existing soil, vegetation, lake and marine sediments, and
associated OM, are overridden and incorporated into sediments
beneath ice sheets as they form17,18. Ice sheet surfaces may also
act as extensive sinks for OM derived originally from terrestrial
and anthropogenic sources3,91–93 or fixed via autotrophic biolo-
gical activity94 (see Box 1). Some carbon reservoirs in ice sheets
are thought to be vast. For example the estimated mass of par-
ticulate organic carbon (POC) held in sediments beneath the
Antarctic Ice Sheet (6000–21,000 Pg C)95 is up to an order of
magnitude greater than that associated with northern hemisphere
permafrost96 and 1–2 orders of magnitude greater than estimates
for the former Laurentide Ice Sheet (514 Pg C)18 (Fig. 3, methods
in caption). This reflects the presence of extensive and thick
subglacial sedimentary basins in Antarctica, thought to contain
fossil OM originating from ancient marine sediments97. Smaller
reserves of carbon are postulated to be present beneath the
Greenland Ice Sheet (estimated at 0.5–27 Pg C, Fig. 3 for meth-
ods), where sediments are thinner but contain remains of ancient
paleosols sequestered by the ice sheet during growth36. Carbon
storage estimates (Fig. 3) have large error bounds, primarily due
to uncertainties in sediment thicknesses and organic carbon
content beneath ice sheets. However, they dwarf estimates of
carbon pools held in englacial ice as dissolved organic carbon
(DOC) or POC (Fig. 3) which are estimated at <10 Pg C for both
present day ice sheets9. Evidence for the presence of sedimentary
OM beneath ice sheets is found in the preservation of ancient
paleosols in basal sediments and bulk meltwaters of the Green-
land Ice Sheet98,99 and the presence of marine sediments and
their geochemical influences beneath the West Antarctic Ice Sheet
and in the McMurdo Dry Valleys34,100.

The fate of legacy OM beneath ice sheets is poorly known
because of the inaccessibility of the subglacial environment. It is
likely to include erosion and export of sedimentary OM (e.g.,
from soil, marine and lake sediments) from the ice sheet, storage
in subglacial basins and frozen bed zones, and active respiration

via microbial activity to CO2 or CH4. These greenhouse gases
may be consumed by further microbial activity, transported in the
dissolved/gas phases within a subglacial hydrological system or
stored as gas hydrate in sediments (for CH4). Such processes of
active carbon cycling create a direct link between ice sheets and
carbon cycles of the atmosphere and oceans (Fig. 1) and are
explored in the following sections.

Erosion of sedimentary organic matter and fluxes downstream.
Glacial erosion may lead to some OM removal or re-distribution
over time beneath ice sheets. Indeed, where ice is warm at the bed
and exhibits high rates of flow (e.g., close to the ice sheet margins),
erosion rates could be considerable. For example, erosion rates of
up to 0.6mm a−1 have been plausibly modelled for Antarctic ice
stream tributaries101 and rates of up to 5mm a−1 are inferred at the
margins of the Greenland Ice Sheet47. However, erosion rates in
inland regions of ice sheets must be much smaller to be compatible
with the preservation of sedimentary basins, such as those found in
Antarctica even after 30Ma of glaciation102. Consistent with this
are calculated erosion rates in East Antarctica of 0.04mm a−1

(Slessor Glacier102) and 0.001mm a−1 (Lambert Basin103). The
erosion and export of organic carbon from the polar ice sheets has
recently become pertinent to the global carbon cycle, because of the
potential for this material to become buried in long term geological
carbon sinks104, such as the dark, oxygen-starved bottom waters of
fjords105. The global rate of carbon burial in fjords is estimated to
be 18 Tg a−1105,, but at many sites the proportions of old vs. newly
produced OM are unknown. It is notable that the percentage
organic carbon contents reported in Greenland fjord sediments
(1.6%)105 are orders of magnitude higher than those recorded in
suspended particulate material exported in runoff from large
Greenland outlet glaciers (<0.1%)106.

The annual flux of DOC and POC in ice sheet meltwater and
ice discharge is relatively small (present day total flux ~6 Tg C a−1,
including ice-rafted debris (IRD)) compared to the total reserve
held in ice or sediments (Fig. 3) and is equivalent to approximately
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10% of the DOC and POC export from Arctic rivers63,107. Since
erosion rates beneath ice sheets are generally low, material
remaining under the ice is often old36,99. For example, if we
assume a subglacial POC store in Greenland of 27 Pg C (Fig. 3), it
would take some tens of thousands of years to export all of this
organic carbon via runoff (assuming meltwater export of POC and
DOC at <1 Tg a−1106,). This is consistent with the observation that
the 14C radiocarbon ages of bulk POC associated with suspended
particulate material in Greenland runoff are old (5–9 kyr) and
become progressively older through a melt season as the snowline
retreats inland99. We estimate that the amount of OC liberated via
Antarctic subglacial meltwater discharge, is 0.17 Tg C a−1 as DOC
and 0.33 Tg C a−1 as POC (using new data from Subglacial Lake
Whillans for Antarctic DOC concentrations), which is comparable
to previous estimates9 (see Supplementary Methods). DOC/POC
release via Antarctic ice discharge is an order of magnitude higher
at 4 Tg a−1.

Although fluxes of DOC and POC are relatively small on a
global scale (<1% global land-ocean fluxes), a growing number
of studies have observed that glacier derived DOC and POC are
highly bioavailable2,106, and thus could be important in fuelling
bacterial respiration in receiving aquatic ecosystems2. Observa-
tion of radiocarbon depleted (i.e., pre-aged) organic carbon on
glacier surfaces and in glacial runoff also suggests that glacially
exported DOC is also paradoxically ancient3,92,93,108. The
source of this ancient DOC has been debated, as has the reason
for its high bioavailability in comparison with non-glacial
sources of DOC. Ice core data demonstrate a significant
contribution of anthropogenic-derived carbon in glacier ice,
concurrent with the onset of the industrial era109,110. The
molecular composition of OM within Alaskan and Tibetan
glaciers indicates high relative contributions of condensed
aromatics, which is consistent with the presence of combustion
derived OM (i.e., black carbon)3,92,93. Other studies have
suggested an alternative explanation for aged DOC in glacial
runoff (but not the glacier surface), arguing that it reflects
cycling of overridden subglacial material (e.g., paleosols)108 or
glacial erosion and associated reactivation of ancient OM in
bedrock111. The high bioavailability of DOC emanating from
glacial surfaces (and hence runoff) has been hypothesised to
reflect OM sourced from the incomplete combustion of fossil
fuels enriched in high abundances of nitrogen-rich aliphatic
compounds3. However, more recent work also shows the
potential role of microorganisms in cycling organic carbon to
more bioavailable forms, giving rise to bioavailable DOC both
on the glacier surface112,113 and at the glacier bed114. Future
projections indicate that the total magnitude of DOC exported
in glacier runoff between now and 2050 will be approximately
48 Tg C as annual glacier mass loss increases, particularly from
mountain glaciers9. This increasing flux of glacier DOC
provides a subsidy of bioavailable carbon to receiving streams,
rivers, estuaries and coastal systems and will be disproportion-
ally impactful in heavily glaciated coastal systems (e.g., Green-
land, Gulf of Alaska, Patagonia) that are home to commercially
important fisheries.

Microbial conversion of organic matter to greenhouse gases.
Sedimentary OM beneath ice sheets which is not eroded and
exported from the glacier system is available as a substrate for
subglacial microbial metabolism. An important fate for sedi-
mentary OM buried beneath the ice is microbial respiration to
greenhouse gases, and specifically CH4, under the anaerobic
conditions that are inferred from a small number of data points
recovered from ice sheet beds22,115–117. This may be supple-
mented by CH4 generated during erosion of underlying bedrock

or from deep thermogenic sources in geothermically active
zones95, such as West Antarctica118. Supersaturated CH4 con-
centrations of microbial origin have been reported recently in
subglacial runoff draining from a small and much larger Green-
landic catchment115,117, Antarctic Subglacial Lake Whillans116

and in low temperature (1–10 °C) anaerobic incubation experi-
ments of subglacial sediment sampled from a range of
glaciers36,95. Concentrations of CH4 > 15 times greater than
atmospheric values have also been recorded in air expelled with
meltwater via subglacial channels at the margins of a large glacier
in SW Greenland119. However, there is high uncertainty regard-
ing the magnitude of sinks for the CH4 produced, and how much
CH4 is oxidised to CO2 before being released to the subglacial
drainage system. This would reduce the positive radiative forcing
associated with CH4 emissions from ice sheets by approximately a
factor of 20. In very long residence time (i.e., years) subglacial
hydrological systems, such as Subglacial Lake Whillans, results
suggest that most CH4 generated in lake sediments is oxidised to
CO2 before reaching the lake water116. However, observations
from the Greenland Ice Sheet indicate that if subglacial melt-
waters/sediments are transported rapidly via efficient channels to
the margin during summer melt, this oxidative sink is much
reduced and lateral fluxes of CH4 at the ice margin are high117,119

and rival those from other world rivers117. This suggests that
subglacial hydrology is key in determining how much subglacial
CH4 is released to the atmosphere. This uncertainty regarding
CH4 export calls for wider study of CH4 production and export
from large glacier catchments draining ice sheets.

Fluxes of CH4 in ice sheet runoff at the present day are poorly
quantified. Conservative estimates via this manuscript suggest
potential fluxes of <1 Tg a−1, employing modelled meltwater
discharge from both ice sheets120,121 and concentrations of CH4

measured in runoff from two end member estimates for subglacial
meltwaters (min concentrations= 0.024 μM116 and maximum
concentrations of 83 μM115). However, high pressure/low tempera-
ture conditions that typify the beds of thick ice sheets should favour
methane hydrate formation17,95,122, once saturation with respect to
CH4 is attained in sediment porewaters95 (Box 3). Methane hydrate
has yet to be directly detected beneath ice sheets, but numerical
modelling suggests conditions conducive to its formation in
Antarctic sedimentary basins and within the Greenland Ice Sheet
interior, where ice and sediment thicknesses are >1 km95,117. There
are numerous reports from marine sediments around the Antarctic
Ice Sheet margin of high concentrations of CH4 in sediment
porewaters123–125 and active and relict cold seeps have been found
off the Antarctic Peninsula and South Georgia126,127. Recent
drilling to marine sediments offshore from the Wilkes Land
subglacial basin (via IODP cruise 318) showed extremely high
concentrations of CH4 in sediment cores (up to 43,000 ppm)128.
Such high concentrations were not found in cores further offshore.
It is probable that these processes also prevail beneath the ice sheet,
as indicated by the supersaturated CH4 concentrations in Subglacial
Lake Whillans, West Antarctica116 (0.024 μM in lake waters to up
to 300 µM in sediments).

There are substantial uncertainties regarding the magnitude
of present day sub-ice sheet CH4 hydrate reserves because of the
difficulties of accessing sediments in subglacial sedimentary
basins. Global subglacial methane hydrate stocks at the present
day are likely to be dominated by those in Antarctic
sedimentary basins (estimated at up to 300 Pg C as methane
hydrate and free gas95). At the LGM, the global sub-ice sheet
hydrate reserve could have been much larger (>500 Pg C, 20%
of the present day marine hydrate stocks), with hydrate also
present beneath former northern hemisphere ice sheets17,18,122

(see Fig. 4 for details and calculation methods). The vulner-
ability of Antarctic subglacial CH4 hydrate reserves to

REVIEW ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11394-4

8 NATURE COMMUNICATIONS |         (2019) 10:3567 | https://doi.org/10.1038/s41467-019-11394-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


destabilisation is high because of their predicted location
around the continent’s periphery in sedimentary basins where
ice thinning in a warming climate is probable. A priority for
future ice sheet research is to establish the presence of methane
hydrate beneath the Antarctic Ice Sheet, and to assess its
vulnerability to destabilisation in a warming climate. Clues to
this may be found in the paleo-record and are discussed below.

Back to the future
Global glacier volumes are predicted to decrease over the 21st
century129. The fastest present day relative net mass losses are
apparent on mountain glaciers, but non-linear changes and high
gross losses are expected for the Greenland and Antarctic ice
sheets due to the collapse of floating ice tongues and marine ice
sheet instability129. The potential impacts of ice sheet melting

Box 3 | Subglacial methane hydrate

Methane hydrate (see inset image) is one of the three phases in which CH4 may be present, the other two being dissolved methane and free gas. Two
critical conditions are required for methane hydrate to form in sediments. First, saturation with respect to methane must be attained in sediment
porewaters. Second, pressure and temperature conditions must be suitable for hydrate formation—where low temperatures and high pressures favour
hydrate over free gas for the saturated phase. These temperature and ice thickness pre-requisites are easily attained beneath thick ice sheets, and
recent work shows in situ microbial methane production in subglacial sediments35,36,115,116,168. Methane hydrate itself comprises a methane molecule
surrounded by a cage of water molecules, creating an ice-like structure. In marine sediments, methane hydrate may occupy up to a few percent of the
sediment porosity. There are three additional factors that favour methane hydrate formation beneath ice sheets: a small and finite sulphate pool in
subglacial sediments (via oxidation of sulphide minerals and/or overridden marine sediments) that reduces the potential for methane loss via
Anaerobic Oxidation of Methane (AOM), frozen conditions creating a seal over the ice sheet bed, and finally glaciation periods of 105–106 years which
promotes CH4 accumulation in sediment porewaters.
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upon global sea level are well studied129, but the impacts of
thinning ice and enhanced freshwater fluxes upon local, regional
and global carbon cycles (Fig. 1) are poorly constrained. Disen-
tangling the complex set of interactions between these future
changes in ice sheet mass balance and the carbon cycle is a
challenging task—measurement programmes typically cover
short time periods (years) relative to changes in warming climate
(decades) and there is a dearth of mechanistic models capable of
simulating biogeochemical processes within ice sheets and their
wider ramifications. In the final section of this paper, we draw
upon the geological record to explore possible biogeochemical
impacts of melting ice sheets in the past in order to provide clues
to potential impacts in a future warming world. In doing so, we
introduce potential indirect (ocean fertilisation) and direct (e.g.,
CH4 release from subglacial sedimentary basins) impacts of ice
sheets on the global carbon cycle during past phases of ice sheet
growth and retreat during the Quaternary (Fig. 1), which might
form a strong focal point for future study.

Fertilisation impacts of ice sheets. Climate warming over the last
glacial-interglacial transition was accompanied by the dis-
appearance of ice sheets over much of northern Europe and
America130 and marginal retreat of the Antarctic Ice Sheet131. If
indeed ice sheet freshwater export is a key source of nutrients for
the world’s oceans, then the geological record should hint at shifts
in the productivity of ocean basins bordering ice sheets syn-
chronous with changes in ice sheet freshwater inputs (e.g.,
meltwater, icebergs). To introduce this idea and to provide some
testable hypotheses for future work, we turn our attention to the
Fe-limited51 Southern Ocean over the last glacial-interglacial
transition. Here, the productivity of phytoplankton is limited
primarily by the availability of Fe in surface ocean waters, and
variations in the Fe supply over glacial-interglacial cycles has been
argued as a plausible driver for CO2 drawdown132, via its influ-
ence upon the strength of the biological pump which controls
carbon export to the deep ocean133. Specifically, enhanced Fe
supply to the Sub-Antarctic zone of the Southern Ocean, and
associated changes in export production, has been linked to the
step decreases in atmospheric CO2 recorded in ice cores during
the last glacial period, particularly during Marine Isotope Stages
(MIS) 4/5 transition (c. 70 kyr B.P.) and around the LGM134–137.

There are a number of potential Fe sources in the
Southern Ocean fertilisation game, all with their own spatial and
temporal complexities. These include aeolian dust132, coastal
sediments138–141, hydrothermal inputs142 and more recently,
iceberg rafted debris (IRD)143 and meltwater from the Antarctic
Ice Sheet56,97,144. Inferring the precise mechanism(s) driving
Southern Ocean fertilisation at key periods of Earth’s history is
challenging, in part due to the overlapping geographical impacts of
different Fe sources. For example, inputs of Fe from dust, coastal
sediments or icebergs are often concentrated in the Atlantic Sector
of the Southern Ocean, via transport off Patagonia (dust145,
including remobilised fine glacial sediments from Patagonian
glaciers58,146) and via ocean currents along the so called iceberg
alley adjacent to the Antarctic Peninsula. In general, discerning the
importance of each of these potential Fe sources involves correlating
past CO2 variations to reconstructions of iron/nutrient supply via
elevated Fe inputs (the iron hypothesis132) and associated proxies
for export production (e.g., opal accumulation)147.

Variation in aeolian dust supply to the Southern Ocean has
attracted perhaps the greatest historical interest as an explanation
for Fe fertilisation-driven changes in Southern Ocean productivity
during the last glacial period, when enhanced inputs of wind-blown
dust reflected changes in source area, as well as the strength and
position of southern hemisphere westerlies148. Supporting the dust

hypothesis for Southern Ocean fertilisation is the existence of
excellent temporal records of past lithogenic fluxes (inferred to
reflect dust inputs) to both the ice sheet149 and to marine
sediments136,150–152, which lend themselves well to correlation with
palaeo records of export production and atmospheric CO2

149

(Fig. 5, Supplementary Fig. 2). For example, the EPICA Dome C
ice core dust flux149 record highlights the last glacial period as a
period of enhanced dust transport (14mgm−2), and therefore, of
potential Fe fertilisation of the Southern Ocean149. The fertilisation
impacts of this Fe-bearing dust have been inferred in the SE Pacific
and Atlantic (sub-Antarctic) sectors of the Southern Ocean at the
LGM and have been linked to elevated rates of opal accumulation
and overall export production136,137,148,150,153,154 (Fig. 5, Supple-
mentary Fig. 2). They indicate Fe fertilisation of a northerly
displaced opal belt–a zone of siliceous oozes and muds located
between the Polar Front and the northern limit of seasonal sea ice
which is associated with the upwelling of silica and nutrient-rich
waters and relief of light limitation along the Antarctic Circumpolar
Current (ACC) frontal system. In contrast, the Antarctic Zone of
the Southern Ocean shows decreased opal export around the
LGM137,155. A dusty source for core-bound lithogenic material in
marine cores is implied by presence of terrestrial n-alkanes in the
same cores, ascribed to the input of plant leaf waxes associated with
terrestrial inputs of dust156.

A new player on the field of Southern Ocean Fe fertilisation is
the Antarctic Ice Sheet. Early work on ice sheet contributions
focussed upon iceberg rafted debris, which contains bioavailable
Fe (oxy)hydroxide nanoparticles61,86 which are released from
melting bergs as they drift often far offshore from the Antarctic
continent19,143. Estimates of the potential bioavailable (ascorbic
acid extractable) Fe fluxes associated with Antarctic IRD at the
present day (Fig. 5, Supplementary Fig. 2) are c. 600 Gg Fe a−1

(range: 100– 2900Gg Fe a−1) (Fig. 2, Supplementary Table 3).
These compare with Antarctic bioavailable Fe fluxes associated
with dust which are several orders of magnitude lower at 0.56
Gg Fe a−1 for the present day61. More recently, ice shelf basal
melt73,157, surface melt56, and subglacial meltwaters15,74,144

from the ice sheet have been proposed as potential sources of
Fe to the Southern Ocean, but these melt (and Fe) inputs are
likely limited to the coastal zone15.

Examination of records of IRD in several sub-Antarctic marine
cores over the last glacial-interglacial transition158–160 (Fig. 5)
suggest that Fe delivered by icebergs to the Southern Ocean could
be an important segment of the deglacial Southern Ocean
fertilisation, export production and CO2 story. In particular,
elevated IRD deposition is recorded in sub-Antarctic cores between
22 kyr and 17 kyr B.P. when Antarctic ice volume was at its
highest161 (Fig. 5). There is insufficient confidence in past iceberg
flux estimates from the Antarctic Ice Sheet to calculate LGM fluxes
of iceberg hosted Fe. However, we know from marine cores that
IRD fluxes to the Atlantic sector of the sub-Antarctic Southern
Ocean around the LGM were x10–20 present day fluxes, which is
consistent with more intense IRD fertilisation of sub-Antarctic
waters at this time (Fig. 5). Together, these findings suggest that a
combination of high ice discharge and slower iceberg melting due
to colder sea surface temperatures158 increased the supply of Fe-
rich terrigenous material to sub-Antarctic waters during this
interval, incidentally in a similar time frame to peak dust fluxes
(Fig. 5). Later during deglaciation, we hypothesise that warmer
ocean waters reduced iceberg transport offshore, such that Fe
fertilisation of the sub-Antarctic zone substantially decreased and
that of the Antarctic zone likely increased (Fig. 5).

It is difficult with the current data available to conclusively
evaluate the role of iceberg-associated Fe in fertilising the
Southern Ocean during the last glacial period alongside the more
widely acclaimed dust. Certainly, the magnitude of present day
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IRD–Fe fluxes, when combined with the similarity in temporal
and spatial patterns of IRD export and those for dust (Fig. 5),
suggest that IRD may play a role in the Southern Ocean
fertilisation story and warrants investigation. Unequivocally
solving this mystery, however, requires a multi-pronged
approach. First, it requires parallel study of a range of marine
cores over a wide geographical area of the Southern Ocean to
tease out the temporally variable contributions of both dust and
IRD to the lithogenic flux record. Traditionally, IRD is assumed
to account for the coarser fraction of lithogenic material in
marine cores, which is variably defined (e.g., 250 μm−2 mm158,
>1 mm162, >125 μm160). However, research on the grain size
distribution of debris of glacial sediments, including those
entombed in icebergs, often have an important fine (i.e., silt/
clay) fraction61,163. Thus, while the presence of larger particles

(e.g., sand) in marine cores might point towards IRD rather than
dust inputs, the presence of silt/clays could reflect inputs from
either IRD or dust. Geochemical provenance studies may help
elucidate the precise origin of the lithogenic fraction in marine
cores150, as may the use of biomarkers. The presence of n-alkanes
derived from leaf waxes in the lithogenic material in marine cores
is often interpreted as indicative of a dusty source156. While it
seems unlikely that leaf waxes are present in sediments beneath
the Antarctic Ice Sheet, the presence of these biomarkers in
Antarctic IRD has not been evaluated. Finally, biogeochemical
models have strong potential to reveal the magnitude of
fertilisation impacts that could be possible in a glacial ocean via
various Fe inputs, including dust and IRD. Model simulation of
dust and ice sheet-sourced Fe impacts on Southern Ocean
fertilisation and thus, productivity, have been attempted for a
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modern ocean and suggest strong influences by ice sheet Fe
inputs15,75,76. However, these simulations have not been
conducted for an LGM ocean. Part of the challenge of conducting
such model studies is the grave uncertainty regarding potential Fe
fluxes from the ice sheet to the ocean, which need to be better
constrained. In summary, determining the role of iceberg-borne
Fe in fertilising the Southern Ocean is no simple task, but has the
potential to reveal powerful insights regarding the relationship
between Fe export from the ice sheet (via melt and icebergs) and
export production in the Southern Ocean, which may become
more pertinent in a future warming world.

Hydrate stability. Turning our attention to potential direct effects
of ice sheets upon the global carbon cycle, we examine the geolo-
gical record for past periods of methane hydrate destabilisation
beneath ice sheets, and associated CH4 release. Ice sheet thinning or
retreat has the potential to dramatically alter in situ temperature
and pressure conditions in sub-ice sheet sediments, triggering
methane hydrate destabilisation and release of the resultant CH4 gas
to the atmosphere (Fig. 6). Non-linear changes in Greenland and
Antarctic Ice Sheet extent and thickness, due to marine ice sheet
instability have the potential to trigger such a response, but are
difficult to predict129. There is some evidence in marine sediments

located close to the former margin of former Eurasian Ice Sheets
that past phases of ice sheet retreat have been associated with
methane hydrate destabilisation in subglacial sediments. Abundant
pockmarks and authigenic carbonate crusts aligned to the position
of the former LGM Scandinavian Ice Sheet margin are observed
both in the Barents Sea and off the coast of Norway122,164. The
former were interpreted to reflect fluid escape at the seafloor during
(thermogenic) methane hydrate dissociation at depth, and the latter
arise from AOM-driven saturation of sediment porewaters with
respect to calcite. These features are contended to reflect CH4

release as the ice overburden was removed during the last
deglaciation122,164 and provide compelling evidence that hydrate
forms beneath ice sheets and is destabilised as the ice thins and
retreats, in this case over a period of ~10 kyr164. Similar evidence
has yet to be uncovered from the Antarctic Ice Sheet, where hydrate
reservoirs are predicted at the present day95. Ice thickness reduc-
tions in marginal areas of the Antarctic Ice Sheet during the last
deglaciation were significant (e.g., 300–800m in East Antarctica165)
and sufficient to destabilise potential subglacial hydrate reserves in
these areas95. The potential impacts of such release events on
atmospheric CH4 concentrations are unclear, and are complicated
by the uncertainty regarding the fate of CH4 in marine waters (e.g.,
oxidation to the less potent greenhouse gas, CO2). For example,
recent work off the coast of Svalbard has indicated that high CH4

gas fluxes from the seafloor instead stimulate enhanced marine
productivity, likely due to indirect transportation of nutrient-rich
water and CO2 (from dissociated CH4) from depth. In this case, the
negative radiative forcing exceeded positive radiative forcing asso-
ciated with CH4 release166. Resolving the influence of these
opposing influences is important in determining the net impact of
subglacial CH4 hydrate destabilisation on atmospheric CO2. If the
CH4 is released to the atmosphere during non-linear ice retreat, it
could impact the effectiveness of the UN Framework Convention
on Climate Change emissions-based agreements to keep climate
warming to a minimum of 2 °C by 2100.

Challenges and next steps. The balance of evidence presented in
the previous sections supports our opening hypothesis that ice
sheets have an important impact on local, regional and global
carbon cycles via a suite of direct and indirect effects. The esti-
mated magnitude of these effects is summarised in Fig. 7. Sub-
Antarctic sedimentary basins represent by far the largest single
store of POC within ice sheets (6000–21,000 Pg C), and ice
sheets may also contain significant reserves of climatically sen-
sitive methane hydrate (500 Pg C at the LGM). Export terms
(POC and DOC in runoff/icebergs) are comparatively small (<10
Tg a−1) but have potential regional importance for marine and
lacustrine food webs due to the high lability of this material. The
important indirect effect of meltwater and iceberg nutrient export
upon the carbon cycle, via impacts on marine productivity, is
illustrated by modelled 100 s Tg C a−1 of export production in
the Southern Ocean associated with iron export from the ice sheet
which reduces outgassing from the Southern Ocean by 30%76.

Scrutiny of the geological record also hints that these impacts
were greater during periods of rapid ice sheet change over the last
glacial-interglacial cycle. For example, a reduction in iceberg
fluxes (and therefore, Fe) to the sub-Antarctic sector of the
Southern Ocean from 20 to 11 kyr B.P. correlates in timing with
the increase in atmospheric CO2 recorded in the EPICA Dome C
ice core (Figure 5). On the other side of the world, the observation
of pock marks aligned to the position of former ice sheets are
consistent with the release of CH4 gas flares as the northern
hemisphere deglaciated122. Despite these clues from the past, the
impact of future climate warming in the Polar regions on the
feedbacks between ice sheets and the global carbon cycle is highly
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Fig. 6 Model of ice sheet ice sheet impacts on hydrate reserves. A
conceptual model illustrates the impact of ice sheet retreat and thinning on
hydrate reserves beneath ice sheets, via their impact on the Gas Hydrate
Stability Zone (GHSZ). (a) Conditions at peak glaciation, and (b) conditions
after substantial ice sheet retreat. Following ice sheet retreat, relict features
of hydrate destabilisation (e.g., authigenic carbonates, pock marks and
relict cold seeps) may be evident on the formerly glaciated continental shelf
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uncertain. Predictions suggest that there may be increased fluxes
of bioavailable nutrients to the ocean with rising freshwater
discharge8 and destabilisation of hydrate reserves beneath ice
sheets as ice thins17,95. These two processes have opposing
potential impacts upon atmospheric CO2 concentrations, the
former (nutrient fluxes to the ocean) acting as a negative feedback
on warming and the latter (hydrate destabilisation) as a positive
feedback. Discerning the relative importance of these impacts is
hampered by a currently poor representation of ice sheet
biogeochemical processes in global biogeochemical models due
to gaps in data and understanding.

Thus, high uncertainty surrounds the estimates in Fig. 7, and
future research must address several notable gaps in our current
understanding, and hence predictive capabilities, of ice mass
biogeochemical response to future warming. First, the basal
regions of ice sheets are remote and challenging to access, and all
predictions to date concerning the subglacial methane hydrate
reserves or nutrient fertilisation potential, rely upon models
calibrated to observations either in the laboratory or on smaller,
more accessible valley glaciers. Direct access and sampling of deep
subglacial aquatic environments such as subglacial lakes and
sedimentary basins is essential, complemented by geophysical
methods from which sub-ice conditions (e.g., hydrate) can be
inferred. This requires a technological leap167. Second, a shift in
focus towards the downstream impact of ice sheets will help drive
new understanding. This should encompass research spanning
the full land-to-ocean continuum, together with paleo-
environmental studies that seek to detect past changes in the
ocean and/or atmosphere systems in response to biogeochemical
perturbations related to ice sheets. Large-scale uncertainty,
however, still centres upon the fate of nutrients in fjords, beneath
ice shelves and in nearshore coastal environments and in
constraining changes to nutrient fluxes from glacial runoff,
icebergs and via meltwater induced upwelling as the freshwater
flux increases. Last, coupled biogeochemical models, including
feedbacks between the glacial cryosphere, atmosphere and oceans
are required to test the sensitivity of carbon sinks or sources to

changes in the terrestrial cryosphere. From a field where life was
thought absent until two decades ago, the possibility for new
discovery is immense, but demands creativity, tenacity and
technological investment in order to narrow current uncertainties
and to reveal the true role of ice sheets in the global carbon cycle.
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