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In this paper, we describe a direct normal form

decomposition for systems of coupled nonlinear oscillators.

We demonstrate how the order of the system can be reduced

during this type of normal form transformation process.

Two specific examples are considered to demonstrate

particular challenges that can occur in this type of analysis.

The first is a two-degree-of-freedom system with both

quadratic and cubic nonlinearities, where there is no internal

resonance, but the nonlinear terms are not necessarily ε1-

order small. To obtain an accurate solution, the direct

normal form expansion is extended to ε2-order to capture

the nonlinear dynamic behaviour, whilst simultaneously

reducing the order of the system from two- to one-degree-

of-freedom. The second example is a thin plate with

nonlinearities that are ε1-order small, but with an internal

resonance in the set of ordinary differential equations

used to model the low-frequency vibration response of the

system. In this case, we show how a direct normal form

transformation can be applied to further reduce the order

of the system whilst simultaneously obtaining the normal

form, which is used as a model for the internal resonance.

The results are verified by comparison with numerically

computed results using a continuation software.

1. Introduction

The idea of a normal form transformation was first introduced

by Poincaré as a method for reducing a system of equations

to their simplest or ‘normal’ form [1]. This method was

subsequently developed by other researchers throughout the

early 20th Century, and the interested reader can find details

of the historical background and analytical development of the

c© The Author(s) Published by the Royal Society. All rights reserved.
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theory of normal form transformations in a number of comprehensive texts including [2–7]. A crucial part

of the transform process is the identification of ‘resonant’ terms in the sense of terms that can grow without

bound when the system has eigenvalues at (or very close to) integer, 1, 2, 3... or fractional 1
2 ,

1
3 ... multiples.

These resonant terms cannot be removed during the transformation, and therefore represent an irreducible

component of the system. However, using the Poincaré-Dulac theorem it is typically possible to remove all

other non-resonant terms during the normal form transformation [3].

Normal form transformations have been used extensively to treat a range of practical applications in

physics and engineering, particularly single-degree-of-freedom nonlinear oscillators, and systems of two or

more coupled oscillators [4,6]. Relevant to the type of applications considered here, Jezequel & Lamarque

[8] proposed a normal form decomposition for a system of two coupled oscillators with cubic nonlinearities

and both forcing and damping. Following this, the relationship between the normal form transformation

and nonlinear normal modes was established by Touzé and co-workers [9,10], using examples of coupled

oscillator systems that included both quadratic and cubic nonlinear terms. In addition to establishing this

connection, Touzé’s method had the important advantage that it maintained the final result in the form of

second-order oscillator equations, and in the process kept the system eigenvalues in a real form — as a

result this is sometimes called the ‘real normal form’.

Retaining the form of second-order oscillator equations is very useful for vibration based applications

where there are systems of multiple oscillator equations, as for example, in modal analysis [11]. Also

following this approach, Neild & Wagg proposed a normal form transform applied directly to second-order

oscillator equations [12] which is sometimes called the ‘direct normal form’ in that it is applied directly to

second-order oscillator equations without having to transform the equations into an equivalent set of first-

order differential equations. Neild and co-workers subsequently used this approach to analyse the resonant

behaviour of mechanical systems [13–17] using the established idea of backbone curves [4,18,19] that also

provided a link to nonlinear normal modes [9,10,20,21]. This enabled phenomena such as out-of-unison

nonlinear normal modes [22] to be captured and recast as bifurcations of the backbone curves [23].

More recently, numerical approximations to the spectral sub-manifolds associated with backbone curves

have been developed by Haller and co-workers — see [24] and references therein — which can be used to

model the dynamics in the non-internally-resonant case. Of particular interest, in a recent study Breunung &

Haller [24] carried out a comparison between their spectral sub-manifold method and the methods of Touzé

& Amabili [10] and Neild & Wagg [12]. This comparison considered the system we will discuss in Sect. 4,

and it showed that the ε1-order direct normal form gave the incorrect approximations for this example. In

fact, as we will show in Sect. 4, the ε2 terms are required to give the correct solutions for systems of this

type — a fact that has been previously pointed out in [10]. In addition, a useful study of the upper limit of

normal form validity was carried out by Lamarque et al. [25], which clarifies the parameter region within

which any normal form decomposition can be considered valid.

In terms of reduction of the system order (i.e. size in terms of numbers of degrees-of-freedom), there is a

large body of literature spanning several different domains. From a physical applications perspective there

has been much work in the area of reducing high dimensional systems such as models of solids and fluids, a

few examples from the very large literature on this topic can be found in [26–33], and in some cases explicit

mention of reduction as part of a normal form procedure is discussed [28]. The concept of nonlinear normal

modes has been strongly motivated by reducing the size of the system, once again the literature on this

topic is large and a selection of examples are given in [20,21,34–36]. For example, Touzé and coworkers

demonstrated how the application of the real normal form in this context can be used to reduce the system

dimension of shell structures [37,38].

In this paper, we present a modification to the direct normal form transformation for systems of

nonlinearly coupled oscillators, based on the method of [12], which also includes systematic model order

reduction as part of the process. The paper is structured as follows. In Sect. 2, we first describe the normal

form transform directly applied to the general forced and damped systems governed by N nonlinearly

coupled second-order ordinary differential equations. Following this a variant of the method is introduced

which includes the ability to reduce the order of the model. Then in Sect. 4, the proposed technique is

used to transform and reduce a two-degree-of-freedom discrete example system of quadratic and cubic

nonlinearities to an equivalent single-degree-of-freedom normal form model. The resonant curves and
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backbone curves of the example system are then found and compared with numerically computed results,

in order to validate the proposed technique up to order ε2 and also resolve the issues raised by [24]. Then

in Sect. 5, the application of the new method to a thin plate system is considered in order to demonstrate

the ability of this method to work for (i) systems with many degrees-of-freedom, and (ii) systems that have

internal resonance. Conclusions are drawn in Sect. 6.

2. Direct normal form method

The direct normal form method uses the same philosophy as the classical Poincaré-Dulac theorem [3],

but without initially transforming the system of N second-order differential equations into a system of

2N equivalent first-order differential equations, (thereby avoiding doubling the size of the system being

considered). Instead, the formulation is carried out directly on the second-order differential equations, and

incorporates the benefits of (i) not increasing the system dimension to 2N, and (ii) keeping the eigenvalues

analysis real instead of complex, as for the method of Touzé & Amabili [10].

There are several other differences with these existing methods that are notable. First to enable a compact

formulation, a ε parameter, which can be assumed to be small, is used so that order εγ , for γ > 1, terms

can be neglected as required. However, the method is entirely consistent with the classical method derived

without ε and using a power series approach [3], and the interested reader can find this formulation of

the direct normal form in [15]. Note also that, as a result of the compact formulation the ε order does not

correspond directly to the order of the nonlinear term. This is because for a wide class of coupled oscillator

systems including just the ε1 terms will provide sufficient levels of accuracy, although a counter example

to this is given in Sect. 4.

Furthermore, the type of detuning used in the direct normal form is different from that typically used in

either classical normal form methods or multiple scales methods — see for example [4] for the traditional

application of detuning. In fact, the detuning used in the direct normal form can be interpreted as giving

an increased accuracy at a lower ε order than the traditional detuning, because the ε orders are different,

although we note that the same accuracy can be achieved in all methods if sufficient terms in the expansion

are used. A detailed explanation of how this mechanism works is given in [39], for both the direct normal

form and multiple scales method. Note also that, rather than using this type of detuning approach, it is

possible to use the direct normal form with the detuning parameter treated as a (small) unfolding parameter

— as shown in [15] — where additional unfolding parameters representing damping and forcing were also

included.

Here we consider the nonlinear oscillating system, whose dynamic behaviour could be described using

the equations of motion given by

Mẍ+Kx+ εNx(x, ẋ, r) =Pxr, (2.1)

where x is the {N × 1} vector of physical displacements, i.e. x= [x1, · · · , xN ]⊺, M and K are the

{N ×N} mass and stiffness matrices respectively, Nx is an {N × 1} vector of linear damping terms

and nonlinear terms related to stiffness, damping and external forcing, ε is a dimensionless book-keeping

parameter that indicates which terms are small, N is the number of degrees-of-freedom of the system,

and an over-dot represents the differentiation with respect to time t. The external force is expressed as the

product of an {N × 2} forcing amplitude matrix Px and a {2× 1} forcing frequency related vector r,

written as

Px =















P1

2

P1

2
...

...

PN

2

PN

2















, and r=

(

rp
rm

)

=

(

e+iΩt

e−iΩt

)

, (2.2)

where Ω is the frequency of the external excitation and i is the imaginary unit. Here the analysis is restricted

to the case where the nonlinear terms in Nx(x) are polynomial functions of x only, other cases are detailed

in [46].
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The first step in dealing with the problem is to carry out a transform which can decouple the linear part

of Eq. (2.1). To do this, the vibration modes obtained from the underlying unforced and undamped linear

system defined by setting the damping, forcing and nonlinear terms in Eq. (2.1) to zero, i.e. Mẍ+Kx= 0,

are used. Then the linear transform can be achieved by transforming Eq. (2.1) using the substitution x=Φq,

where q is an {N × 1} vector of modal coordinates, i.e. q= [q1, · · · , qN ]⊺, and Φ is the {N ×N} matrix

of linear modeshapes found from the eigenvalue problem ΦΛ=M−1KΦ, and Λ is a {N ×N} diagonal

matrix containing the square of the natural frequencies of the vibration modes, i.e. ω2
ni for i= 1, 2, ...., N .

The linear modes are scaled so that the largest element in each mode vector is ||1||.

Making the substitution x=Φq into Eq. (2.1) and pre-multiplying by Φ⊺ gives

(Φ⊺
MΦ)q̈+ (Φ⊺

KΦ)q+ εΦ⊺
Nx(Φq, Φq̇, r) =Φ⊺

Pxr. (2.3)

Eq. (2.3) is then multiplied by (Φ⊺MΦ)−1 and, rearranged using M−1KΦ=ΦΛ, leading to

q̈+ Λq+ εNq(q, q̇, r) =Pqr, (2.4)

where Nq(q) is the {N × 1} vector of nonlinear terms in modal coordinates, derived from

Nq(q, q̇, r) = (Φ⊺
MΦ)−1Φ⊺

Nx(Φq, Φq̇, r),

Pq = (Φ⊺
MΦ)−1Φ⊺

Px.
(2.5)

The next step is to remove non-resonant forcing terms via a transform written as

q= v + er, (2.6)

where e is an {N × 2} force transform matrix. Full details of this forcing transformation process can be

found in [40], but for completeness, the main steps are outlined here. Substituting Eq. (2.6) into Eq. (2.4)

gives

v̈ + eWWr+ Λv + Λer+ εNq(v + er, v̇ + eWr, r) =Pqr, (2.7)

where W is a {2× 2} diagonal matrix with leading elements +iΩ and −iΩ. After the forcing transform,

Eq. (2.7) is expected to be arranged as

v̈ + Λv + εNv(v, v̇, r) =Pvr, (2.8)

where Nv is an {N × 1} vector of nonlinear and damping terms in v and Pv is an {N × 2} matrix of

near-resonant forcing amplitudes in which the near-resonant one may be retained and non-resonant one has

been removed. Combining Eq. (2.7) and Eq. (2.8) leads to

εNv(v, v̇, r) = εNq(v + er, v̇ + eWr, r), (2.9)

Pv =Pq − eWW− Λe. (2.10)

For a nonlinear system, when the forcing frequency is commensurably close to one of the system natural

frequencies, a significant response would be occurred related to the corresponding mode, regarded as near-

resonant. Therefore, the matrix of the near-resonant forcing amplitudes may be set as

Pv,i =







Pq,i if: Ω ≈ωni,

[0, 0] if: Ω 6≈ωni,
(2.11)

where Pv,i and Pq,i denote the ith row of Pv and Pq , respectively. Now making use of Eq. (2.11) and

Eq. (2.10), the terms in the force transform matrix, e, can be determined using,

ei =











[0, 0] if: Ω ≈ ωni,

Pq,i

ω2
ni −Ω2

if: Ω 6≈ ωni,
(2.12)

where ei is the ith row of e. The detailed derivation process is given in [40]. Once the matrix e

is determined, the transformed linear damping and nonlinear terms vector Nv can be computed using

Eq. (2.9).
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Now a nonlinear transform is applied to simplify Eq. (2.8) by cancelling the non-resonant terms, which

then leads to the normal form of the system. This nonlinear transform is often referred to as a near-identity

transform [40] and may be expressed as

v=u+ εH(u, u̇, r), (2.13)

where u and H(u, u̇, r) are the {N × 1} vectors of fundamental (resonant) and non-resonant components

of v respectively. Here, the non-resonant components are assumed to be small as compared to the resonant

responses, thus H(u, u̇, r) is denoted to be of order ε1. The resulting normal form after the near-identity

transform has been applied may be expressed as

ü+ Λu+ εNu(u, u̇, r) = 0, (2.14)

which includes only the resonant terms, such that the ith state, ui where i= 1, · · · , N , responds at its

corresponding resonant response frequency, ωri, where ωri is close to, but not equal to ωni in general.

Here, the H(u, u̇, r) vector in Eq. (2.13) and the Nu(u, u̇, r) vector in Eq. (2.14) are approximated by

a series of functions of reducing levels of significance, i.e.

εH(u, u̇, r) = εh(1)(u, u̇, r) + ε2h(2)(u, u̇, r) +O(ε3). (2.15a)

εNu(u, u̇, r) = εnu(1)(u, u̇, r) + ε2nu(2)(u, u̇, r) +O(ε3), (2.15b)

where h(i)(u, u̇, r) and nu(i)(u, u̇, r) are {N × 1} vectors in the same form as H(u, u̇, r) and

Nu(u, u̇, r), respectively. Additionally, a Taylor series expansion is applied to the nonlinear term vector

in Eq. (2.8), such that after the substitution of Eq. (2.13), about the equilibrium point [v, v̇] = [u, u̇], we

obtain

εNv(u+ εH, u̇+ εḢ, r) = εNv(u, u̇, r) + ε2
∂Nv(v, v̇, r)

∂v

∣

∣

∣

∣

u,u̇

H(u, u̇, r)

+ε2
∂Nv(v, v̇, r)

∂v̇

∣

∣

∣

∣

u,u̇

Ḣ(u, u̇, r) +O(ε3).

(2.16)

Furthermore, in recognition of the fact that the ωri values are close to, but not equal to ωni in general, a

frequency detuning is introduced, to define this relationship

Λ= Υ + ε∆, (2.17)

where Υ is a {N ×N} diagonal matrix of the square of the response frequencies, ω2
ri, and ∆= (Λ− Υ )/ε

represents the frequency detuning values which are assumed to be small, i.e. of order ε1. The purpose of

this detuning parameter is to represent the amplitude dependent nature of the response frequencies, ωri, of

the system.

Now making the substitution of Eqs. (2.13), (2.15a) and (2.16) into Eq. (2.8) and eliminating the similar

terms using Eq. (2.14) with the substitution of Eq. (2.15b) gives

εḧ(1)(u, u̇, r) + ε2ḧ(2)(u, u̇, r) + εΥh(1)(u, u̇, r) + ε2∆h(1)(u, u̇, r)

+ε2Υh(2)(u, u̇, r) + εNv(u, u̇, r) + ε2
∂Nv(v, v̇, r)

∂v

∣

∣

∣

∣

u,u̇

h(1)(u, u̇, r)

+ε2
∂Nv(v, v̇, r)

∂v̇

∣

∣

∣

∣

u,u̇

ḣ(1)(u, u̇, r)−Pvr

= εnu(1)(u, u̇, r) + ε2nu(2)(u, u̇, r)−Pur+O(ε3).

(2.18)

Note that only the terms of up to order ε2 are included. Although in principle higher order ε may also be

derived, typically it is assumed that these terms are vanishingly small. Balancing the terms associated to
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different orders ε in Eq. (2.18) gives a set of homological equations, written as

ε0 : Pvr=Pur, (2.19a)

ε1 : ḧ(1)(u, u̇, r) + Υh(1)(u, u̇, r) + n(1)(u, u̇, r) = nu(1)(u, u̇, r), (2.19b)

ε2 : ḧ(2)(u, u̇, r) + Υh(2)(u, u̇, r) + n(2)(u, u̇, r) = nu(2)(u, u̇, r), (2.19c)

where

n(1)(u, u̇, r) =Nv(u, u̇, r), (2.20a)

n(2)(u, u̇, r) =∆h(1) +
∂Nv(v, v̇, r)

∂v

∣

∣

∣

∣

u,u̇

h(1) +
∂Nv(v, v̇, r)

∂v̇

∣

∣

∣

∣

u,u̇

ḣ(1). (2.20b)

Note that the sequential calculations, typical of the normal form approach is represented in Eq. (2.20b)

because n(2) is dependent on h(1) which in turn is determined by n(1).

To satisfy Eq. (2.19a), it can be obtained that

Pu =Pv . (2.21)

Then, following the approach of [4], we consider that the response of each of the individual states in u, i.e.

ui, responds at a single response frequency ωri, and its trial solution may be assumed to be

ui = uip + uim =

(

Ui

2
e−iφi

)

eiωrit +

(

Ui

2
eiφi

)

e−ωrit (2.22)

where Ui, φi and ωri are the displacement amplitude, phase lag and response frequency of ui, respectively.

Using the left hand side of Eq. (2.22), a vector u∗
(j) (of length Lj) containing all the polynomial

combinations of uip and uim present in n(j) may be defined, and then n(j), h(j) and nu(j) are expressed

as,

n(j) = [n(j)]u
∗
(j), h(j) = [h(j)]u

∗
(j), nu(j) = [nu(j)]u

∗
(j), (2.23)

where [n(j)], [h(j)] and [nu(j)] are
{

N × Lj

}

matrices of corresponding coefficients. Substituting

Eqs. (2.23) into the jth homological equation gives

[h(j)]
d2u∗

(j)

dt2
+ Υ [h(j)]u

∗
(j) = [n(j)]u

∗
(j) − [nu(j)]u

∗
(j). (2.24)

Note that the individual terms of u∗
(j) are functions of uip and uim, which may be written as

u∗(j)ℓ = r
mpj,ℓ
p r

mmj,ℓ
m

N
∏

i=1

u
spj,ℓ,i
ip u

smj,ℓ,i

im , (2.25)

where ℓ=1, · · · ,Lj , and spj,ℓ,i, smj,ℓ,i, mpj,ℓ and mmj,ℓ are exponents of uip, uim, rp and rm in the

ℓth element of u∗
(j), respectively. Using the right hand side of Eq. (2.22) and Eq. (2.25), the second time

derivative of u∗(j)ℓ can be derived to be

∂2u∗(j)ℓ

∂t2
=−ω∗2

(j)ℓu
∗
(j)ℓ, (2.26)

where ω∗
(j)ℓ is the response frequency of u∗(j)ℓ, i.e.

ω∗
(j)ℓ =

(

mpj,ℓ −mmj,ℓ

)

Ω +

N
∑

i=1

(

spj,ℓ,i − smj,ℓ,i

)

ωri. (2.27)

Therefore, the second time derivative of the vector u∗
(j) may be written as

d2u∗
(j)

dt2
=−Ῠu∗

(j), (2.28)
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where Ῠ is a
{

Lj × Lj

}

diagonal matrix of ω2
(j)ℓ. So, finally Eq. (2.28) is substituted into Eq. (2.24) to

obtain

[nu(j)]− [n(j)] = [h(j)]Ῠ − Υ [h(j)],

=βββ(j) ◦ [h(j)],
(2.29)

where ◦ denotes the Hadamard product operator and βββ(j) is a
{

N × Lj

}

coefficients matrix, whose

{i, ℓ} th element is

β(j)i,ℓ = ω∗2
(j)ℓ − ω2

ri. (2.30)

As nu(j) is expected to be as simple as possible, all terms in it are set to zero, except where there is a

zero in βββ(j), for which case [nu(j)]i,ℓ = [n(j)]i,ℓ in order for Eq. (2.29) to be satisfied. The criteria for the

determination of the resonant terms and the computation of the coefficients of the non-resonant terms is

given as
[

nu(j)

]

i,ℓ
=
[

nv(j)

]

i,ℓ
and

[

h(j)

]

i,ℓ
= 0, if: β(j)i,ℓ =0, (2.31a)

[

nu(j)

]

i,ℓ
=0 and

[

h(j)

]

i,ℓ
=

[

nu(j)

]

i,ℓ

β(j)i,ℓ
, if: β(j)i,ℓ 6=0. (2.31b)

More details on this process including the different types of resonance obtained are given in [40].

Once the coefficient matrices [nu(j)] are determined to a specific level of accuracy, i.e. εj , the vector

of resonant nonlinear terms can be formed using Eq. (2.15b). Then Eq. (2.14) can be rearranged, with the

substitution of the trial solution Eq. (2.22), to give

χie
iωrit + χ̃ie

−iωrit =0, (2.32)

where χn and χ̃n are time-independent complex conjugates. By inspection of Eq. (2.32), a solution can be

found by setting χi =0 (or equivalently χ̃i = 0) which then finally leads to the expressions describing the

relationship between the fundamental response amplitudes and frequencies.

3. An order-reduced variant of the nonlinear transform

As described in §1, previous authors have considered reduction of system size via a transform — for

example [37,38]. For the direct normal form method, an essential step within the nonlinear transform is

to construct the vector containing all relevant combinations of polynomial nonlinear terms, u∗
(j), and its

corresponding coefficient matrices, [n(j)]. The elements in u∗
(j) are defined by the structure of the nonlinear

terms in the original problem, e.g. the number of states originally in Nx, but then transformed into Nq , Nv

and n(j). In fact, the number of polynomial terms in u∗
(j) will be exponentially increasing with the degrees-

of-freedom of the considered systems. For example, considering nonlinear systems of quadratic and cubic

nonlinearities, L1 = C1
2N+2 + (C1

2N+2 + C1
2N+2) + (C1

2N+2 + C2
2N+2C1

2 + C3
2N+2) for an N-degree-

of-freedom system. Correspondingly, the growth of the system size would significantly complicate the

determination of the nonlinear coefficient matrices, [n(j)], the resonance criteria coefficient matrices, βββ(j)

and the non-resonant coefficient matrices, [h(j)]. This issue will be compounded when a higher-level of

accuracy, e.g. ε2, is required to be considered. For example, to find n(2), large matrix manipulations may

need to be performed if Lj is large, which is typically the case via Eq. (2.20b).

One approach is to use symbolic manipulation methods to solve such problems, but here we consider

another natural solution which is to reduce the size of u∗
(j) without significantly compromising the accuracy.

This is based on the observation that for many applications, the majority of the u∗
(j) are non-responding and

their associated coefficients are zero. For example, for nonlinear systems under a harmonic excitation, only a

small number of eigenmodes of nearly commensurable natural frequencies to the external forcing frequency

would respond significantly. Based on this, a sparse resonant state vector usp is introduced whose entries

are set to be zero except for R specifically selected terms where R<N . These selected non-zero-response

states will be either the externally-resonant ones for the external forcing situation or the internally-resonant

ones for the free vibration.
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When making the substitution of usp, Eq. (2.20) becomes

n(1)(û,
˙̂u, r) =Nv(usp, u̇sp, r), (3.1a)

n(2)(û,
˙̂u, r) =∆h(1)(û,

˙̂u, r) +
∂Nv(v, v̇, r)

∂v

∣

∣

∣

∣

usp,u̇sp

h(1)(û,
˙̂u, r) (3.1b)

+
∂Nv(v, v̇, r)

∂v̇

∣

∣

∣

∣

usp,u̇sp

ḣ(1)(û,
˙̂u, r),

where û is a {R × 1} vector containing the response of the R dominant states only. Now due to the

reduction of the number of terms in û relative to that of the original state vector, u, the basis vector, u∗
(j),

and coefficients matrices, [n(j)], [nu,(j)], [h(j)] will be simplified significantly.

Furthermore, as a number of the states are now set to zero in advance, the final normal form of,

Eq. (2.14), will become

¨̂u+ Λrdû+ εNu(û) = 0, (3.2)

which only has R resonant equations and, then the number of time-independent equations related to

response amplitudes and frequencies also shrinks to R. Therefore, this variant of the nonlinear transform

also performs a model order reduction.

4. Example 1: a two-degree-of-freedom discrete mass-spring

system

x1

x2

k
1

m

k
2

L

L

Figure 1. The example two-degree-of-freedom system. For previous discussions of this example see [9,24,41].

The first example system considered is shown in Fig. 1. This system has been previously studied in

[9,24,41], and for the purpose of making a comparison we follow the format introduced by these previous

authors. The system consists of a mass supported by a vertical and a horizontal spring. The equation of

motion of this example system, with L= 1 , is given by

ẍ1 + 2ζ1ω1ẋ1 + ω2
1x1 + a1x

2
1 + a2x1x2 + a3x

2
2 + a4x

3
1 + a5x1x

2
2 = f1 cos(Ωt),

ẍ2 + 2ζ2ω2ẋ2 + ω2
2x2 + b1x

2
1 + b2x1x2 + b3x

2
2 + b4x

2
1x2 + b5x

3
2 = f2 cos(Ωt),

(4.1)
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where the coefficients of the nonlinear terms are























a1 b1

a2 b2

a3 b3

a4 b4

a5 b5























=























3
2ω

2
1

1
2ω

2
2

ω2
2 ω2

1

1
2ω

2
1

3
2ω

2
2

1
2 (ω

2
1 + ω2

2)
1
2 (ω

2
1 + ω2

2)

1
2 (ω

2
1 + ω2

2)
1
2 (ω

2
1 + ω2

2)























, (4.2)

and the damping terms 2ζiωiẋi and forcing terms fi cos(Ωt), for i= 1, 2 have been added after the

conservative equations (i.e. with ζi = fi =0) are derived from Fig. 1, [9]. For the purpose of applying

the direct normal form methods, the terms in Eq. (4.2) are assumed to be the order ε1 terms. Is should be

noted that increasing the ζi damping values can lead to increased complexity in the dynamic behaviour, as

shown by [10].

As the conservative form of Eq. (4.1) is naturally linearly decoupled, it can be described in the matrix

form of Eq. (2.4) by setting q= [q1, q2]
⊺ = [x1, x2]

⊺, where

Λ=

[

ω2
1 0

0 ω2
2

]

, (4.3a)

Nq(q) =

(

2ζ1ω1q̇1 + a1q
2
1 + a2q1q2 + a3q

2
2 + a4q

3
1 + a5q1q

2
2

2ζ2ω2q̇2 + b1q
2
1 + b2q1q2 + b3q

2
2 + b4q

2
1q2 + b5q

3
2

)

. (4.3b)

Here a non-internal-resonant case is considered, i.e. ωr1 6= nωr2 and ωr2 6= nωr1, where n= 1, 2, · · · .

We assume that the system is only forced in the horizontal direction, i.e. f2 =0, thus only the horizontal

response is significant. Therefore, the vector of reduced state vector is û= [u1]. Substituting q=

[q1, q2]
⊺ = [u1p + u1m, 0]⊺ into Eq. (4.3b), we obtain the the vector of nonlinear terms of ε1 significance

as

n(1)(û)

=









a1(u
2
1p + u21m + 2u1pu1m) + a4(u

3
1p + u31m + 3u21pu1m + 3u1pu

2
1m)

+i2ζ1ω1ωr1(u1p − u1m)

b1(u
2
1p + u21m + 2u1pu1m)









.
(4.4)

Expressing n(1)(û) in the matrix form, i.e. n(1) = [n(1)]u
∗
(1), gives

u
∗
(1) =



















































u1p

u1m

u21p

u21m

u1pu1m

u31p

u31m

u21pu1m

u1pu
2
1m



















































, [n(1)]
⊺ =

























































i2ζ1ω1ωr1 0

−i2ζ1ω1ωr1 0

a1 b1

a1 b1

2a1 2b1

a4 0

a4 0

3a4 0

3a4 0

























































. (4.5)
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Here because of introducing û, the size of u∗
(1) has reduced significantly. Based on Eq. (4.5), βββ(1) and

[h(1)] are found, using Eqs. (2.30) and (2.31), to be

βββ⊺

(1)
=



























































0 −ω2
2

0 −ω2
2

3ω2
r1 4ω2

r1 − ω2
2

3ω2
r1 4ω2

r1 − ω2
2

−ω2
r1 −ω2

2

8ω2
r1 9ω2

r1 − ω2
2

8ω2
r1 9ω2

r1 − ω2
2

0 ω2
r1 − ω2

2

0 ω2
r1 − ω2

2



























































, [h(1)]
⊺ =

























































0 0

0 0

1

3ω2
r1

a1
1

4ω2
r1 − ω2

2

b1

1

3ω2
r1

a1
1

4ω2
r1 − ω2

2

b1

−
2

ω2
r1

a1 −
2

ω2
2

b1

1

8ω2
r1

a4 0

1

8ω2
r1

a4 0

0 0

0 0

























































, (4.6)

where ωr2 = ω2 is used as u2 = 0 is assumed. Note that the coefficients of resonant terms are identified by

having boxes around them in [n(1)], Eq. (4.5). Using Eqs. (2.23), the vectors of resonant and non-resonant

terms of ε1 significance are obtained as

nu(1)(û) =

(

i2ζ1ω1ωr1(u1p − u1m) + 3a4(u
2
1pu1m + u1pu

2
1m)

0

)

, (4.7a)

h(1)(û) =









1

3ω2
r1

a1(u
2
1p + u21m)−

2

ω2
r1

a1u1pu1m +
1

8ω2
r1

a4(u
3
1p + u31m)

1

4ω2
r1 − ω2

2

b1(u
2
1p + u21m)−

2

ω2
2

b1u1pu1m









. (4.7b)

As the example system has quadratic nonlinearity, the level of accuracy ε2 must be considered for capturing

the nonlinear behaviour, as will be explained below.

Therefore, the nonlinear terms of ε2 significance for this example are now determined. Considering

Eq. (3.1b), ∆, ḣ(1)(û),
∂Nv

∂v

∣

∣

∣

∣

usp,u̇sp

, and ∂Nv

∂v̇

∣

∣

∣

∣

usp,u̇sp

are required to be derived first, which in this

example gives

∆=

[

δ1 0

0 0

]

=

[

ω2
n1 − ω2

r1 0

0 ω2
n2 − ω2

r2

]

, (4.8a)

ḣ(1)(û,
˙̂u) =









2

3ω2
r1

a1(u1pu̇1p + u1mu̇1m) +
3

8ω2
r1

a4(u
2
1pu̇1p + u21mu̇1m)

2

4ω2
r1 − ω2

2

b1(u1pu̇1p + u1mu̇1m)









, (4.8b)

∂Nv

∂v

∣

∣

∣

∣

usp,u̇sp

=

[

2a1(u1p + u1m) a2(u1p + u1m)

2b1(u1p + u1m) b2(u1p + u1m)

]

+O(û2). (4.8c)

∂Nv

∂v̇

∣

∣

∣

∣

usp,u̇sp

=

[

2ζ1ω1 0

0 2ζ2ω2

]

. (4.8d)

Note that in Eq. (4.8b) derivatives of terms containing uipuim will go to zero when the assumed solution

Eq. (2.22) is substituted, and so to maintain the simplest form of the equations, we eliminate them at this
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stage. Now it can be determined that,

∂Nv

∂v

∣

∣

∣

∣

usp,u̇sp

h(1)(û,
˙̂u)

=











(
2

3ω2
r1

a21 +
1

4ω2
r1 − ω2

2

a2b1)(u
3
1p + u31m)

(
2

3ω2
r1

a1b1 +
1

4ω2
r1 − ω2

2

b1b2)(u
3
1p + u31m)

+(−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

r1

a2b1)(u
2
1pu1m + u1pu

2
1m)

+(−
10

3ω2
r1

a1b1 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

r1

b1b2)(u
2
1pu1m + u1pu

2
1m)











+O(û4),

(4.9a)

∂Nv

∂v̇

∣

∣

∣

∣

usp,u̇sp

ḣ(1)(û,
˙̂u)

=











4ζ1ω1

3ω2
r1

a1(u1pu̇1p + u1mu̇1m) +
3ζ1ω1

4ω2
r1

(u21pu̇1p + u21mu̇1m)

4ζ2ω2

4ω2
r1 − ω2

2

b1(u1pu̇1p + u1mu̇1m)











.

(4.9b)

It is noteworthy that including up to cubic nonlinear terms should provide an accurate solution for this

example, thus the nonlinear terms vector n(2) is truncated at O(û4). This assumption will be verified by the

simulation results shown below. By comparing Eqs. (4.7b) and (4.9a), it can be determined that u∗
(2) = u∗

(1).

Now, projecting n(2) =∆h(1) +
∂Nv

∂v

∣

∣

∣

∣

u,u̇

h(1) +
∂Nv

∂v̇

∣

∣

∣

∣

u,u̇

ḣ(1) in terms of u∗
(2), the coefficient matrix

[n(2)] is found to be,

[n(2)]
⊺

1 =







































































0
0

δ1
3ω2

r1

a1 + i
4ζ1ω1

3ωr1
a1

δ1
3ω2

r1

a1 − i
4ζ1ω1

3ωr1
a1

−
2δ1
ω2
r1

a1

δ1
8ω2

r1

a4 +
2

3ω2
r1

a21 +
1

4ω2
r1 − ω2

2

a2b1 + i
3ζ1ω1

4ωr1
a4

δ1
8ω2

r1

a4 +
2

3ω2
r1

a21 +
1

4ω2
r1 − ω2

2

a2b1 − i
3ζ1ω1

4ωr1
a4

−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

a2b1

−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

a2b1







































































, (4.10a)
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where resonant terms have boxes around them, and

[n(2)]
⊺

2 =

















































0
0
0
0
0

2

3ω2
r1

a1b1 +
1

4ω2
r1 − ω2

2

b1b2 + i
4ζ2ω2ωr1

4ω2
r1 − ω2

2

b1

2

3ω2
r1

a1b1 +
1

4ω2
r1 − ω2

2

b1b2 − i
4ζ2ω2ωr1

4ω2
r1 − ω2

2

b1

−
10

3ω2
r1

a1b1 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

b1b2

−
10

3ω2
r1

a1b1 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

b1b2

















































, (4.10b)

where [n(2)]1 and [n(2)]2 are the first and second rows of [n(2)] respectively. Similarly, the coefficients of

non-resonant terms of ε2 significance are computed, leading to

[h(2)]
⊺

1 =



















































0
0

δ1
9ω4

r1

a1 + i
4ζ1ω1

9ω3
r1

a1

δ1
9ω4

r1

a1 − i
4ζ1ω1

9ω3
r1

a1

2δ1
ω4
r1

a1

δ1
64ω4

r1

a4 +
1

12ω4
r1

a21 +
1

8ω2
r1(4ω

2
r1 − ω2

2)
a2b1 + i

3ζ1ω1

32ω3
r1

a4

δ1
64ω4

r1

a4 +
1

12ω4
r1

a21 +
1

8ω2
r1(4ω

2
r1 − ω2

2)
a2b1 − i

3ζ1ω1

32ω3
r1

a4

0
0



















































,

and,

[h(2)]
⊺

2 =

















































0
0
0
0
0

2

3ω2
r1(9ω

2
r1 − ω2

2)
a1b1 +

1

(4ω2
r1 − ω2

2)(9ω
2
r1 − ω2

2)
b1b2 + i

4ζ2ω2ωr1

(4ω2
r1 − ω2

2)(9ω
2
r1 − ω2

2)
b1

2

3ω2
r1(9ω

2
r1 − ω2

2)
a1b1 +

1

(4ω2
r1 − ω2

2)(9ω
2
r1 − ω2

2)
b1b2 − i

4ζ2ω2ωr1

(4ω2
r1 − ω2

2)(9ω
2
r1 − ω2

2)
b1

−
10

3ω2
r1(ω

2
r1 − ω2

2)
a1b1 +

3ω2
2 − 8ω2

r1

(ω2
r1 − ω2

2)(4ω
2
r1 − ω2

2)ω
2
2

b1b2

−
10

3ω2
r1(ω

2
r1 − ω2

2)
a1b1 +

3ω2
2 − 8ω2

r1

(ω2
r1 − ω2

2)(4ω
4
r1 − ω2

2)ω
2
2

b1b2

















































,

where [h(2)]1 and [h(2)]2 are the first and second rows of [h(2)] respectively. Then, the vector representing

the ε2 contribution is found to be

nu(2) =





(−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

a2b1)(u
2
1pu1m + u1pu

2
1m)

0



 , (4.12)
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and the vector of non-resonant terms for the order ε2 part is,

h(2) =











δ1
9ω4

r1

a1(u
2
1p + u21m) + i

4ζ1ω1

9ω3
r1

a1(u
2
1p − u21m) +

2δ1
ω4
r1

a1u1pu1m

(
2

3ω2
r1(9ω

2
r1 − ω2

2)
a1b1 +

1

(9ω2
r1 − ω2

2)(4ω
2
r1 − ω2

2)
b1b2)(u

3
1p + u31m)

+ (
δ1

64ω4
r1

a4 +
1

12ω4
r1

a21 +
1

8ω2
r1(4ω

2
r1 − ω2

2)
a2b1](u

3
1p + u31m)

+ (−
10

3ω2
r1(ω

2
r1 − ω2

2)
a1b1 +

3ω2
2 − 8ω2

r1

(ω2
r1 − ω2

2)(4ω
2
r1 − ω2

2)ω
2
2

b1b2)(u
2
1pu1m + u1pu

2
1m)

+i
3ζ1ω1

32ω3
r1

a4(u
3
1p − u31m)

+i
4ζ2ω2ωr1

(4ω2
r1 − ω2

2)(9ω
2
r1 − ω2

2)
b1(u

3
1p − u31m)











.

(4.13)

Now using Nu =nu(1) + nu(2), the reduced resonant equation of motion of the first resonance is

ü1 + ω2
1u1 + i2ζ1ω1ωr1(u1p − u1m)

+

[

3a4 +
1

ω2
r1

(−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

a2b1)

]

(u21pu1m + u1pu
2
1m) =Pu,1r.

(4.14)

Substituting u1p = (U1

2 e−iφ1)eiωr1t and u1m = (U1

2 eiφ1)e−iωr1t into Eq. (4.14) and arranging the result

as Eq. (2.32) gives

χ1 =

{

ω2
1 − ω2

r1 + i2ζ1ω1ωr1

+

[

3a4 +
1

ω2
r1

(−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

a2b1)

]

U2
1

4

}

U1

2
e−iφ1 −

f1
2
.

(4.15)

Setting χ1 = 0 and eliminating the phase related term gives

{

ω2
1 − ω2

r1 +

[

3a4 +
1

ω2
r1

(−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

a2b1)

]

U2
1

4

}2

+(2ζ1ω1ωr1)
2 =

f21
U2
1

,

(4.16)

which describes the forced response curve. Furthermore, substituting the forcing and damping related terms

to zero, i.e. ζi =0 and f1 =0, gives the backbone curve expression of the system first mode to be

ω2
r1 = ω2

1 +

[

3a4 +
1

ω2
r1

(−
10

3ω2
r1

a21 +
3ω2

2 − 8ω2
r1

4ω2
r1ω

2
2 − ω4

2

a2b1)

]

U2
1

4
. (4.17)

Note, that expressions analogous to this have been previously obtained, for example by [9]. Once the

fundamental response amplitudes and frequencies are obtained by solving Eq. (4.16) or Eq. (4.17), the

physical displacement response may be computed using the corresponding reverse transform described in

Sect. 2, so that

x1 = u1 + h(1)1(u1) + h(2)2(u1),

x2 = h(2)1(u1) + h(2)2(u1).
(4.18)

The reason for needing the ε2 terms in the direct normal form, is based on the following. First, the

quadratic terms of the type found in this example generate cubic terms in the nonlinear normal mode
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decomposition, as pointed out by [10]. However, in the direct normal form method, these terms are captured

in the ε2 expansion not the ε1, and most previous applications of the method were restricted to the ε1

version. So for example, when the comparison was carried out by [24], the ε1-order approximation was

used, and as a result the softening nonlinear effects were not captured appropriately. As we show in the

results below, (and for the full system in [44]) this is corrected by the addition of the ε2 terms. It should be

noted that the direct normal form method relies on the nonlinear terms being small in the sense that they

should be significantly smaller than the ω2
ni values. However, in this example the nonlinear coefficients are

of the same order as the ω2
ni values, and yet despite this, it is not the determining factor for the discrepancy

observed by [24] — see [44] for further details.

Now specific values are chosen to compute the analytical forced response curves defined by, Eq. (4.16),

and backbone curves, Eq. (4.17), of the example mass-spring system. In order to verify the analytical results,

both the backbone curves and the resonant response curves are computed using the continuation Matlab

toolbox, COCO [42,43].

The simulation uses the same undamped parameters as [9,24], while the forcing and damping parameters

are slightly different — as will be explained below. Specifically, two sets of damping and forcing parameters

are employed, i.e. ζ1 = ζ2 = 0.001, f1 = [0.001, 0.002], f2 = 0 and ζ1 = ζ2 = 0.01, f1 = [0.01, 0.02],

f2 = 0 and the results are shown in Fig. 2. The plots are presented in the projection of the response amplitude

of the physical coordinates, |xi|, against the external forcing frequency, Ω. In Fig. 2, panels (a) and (c) show

the |x1| response, and panels (b) and (d) show the |x2|. In each panel there are two forcing cases shown,

and the small damping (ζ1 = ζ2 = 0.001) case is shown in panels (a) and (b) with the higher damping case

(ζ1 = ζ2 = 0.01) shown in panels (c) and (d). It can be seen that the order ε2 (reduced-order) backbone

curves correctly predict the softening dynamics of the example system which is consistent with the findings

in [9,10] and [24]. Furthermore, the backbone curves and forced-damped response curves computed using

COCO are also shown in Fig. 2. It can be seen that the analytical and numerical curves are in very close

agreement, particularly for the smaller forcing cases. As would be expected, the level of agreement is less

good for the higher forcing curves, and in general, agreement is better when amplitudes of excitation are

smaller. Specifically, it can be seen that as amplitude increases, there is the increasing difference between

the analytically computed curves and the numerically computed curves. This is due to the truncation of the

analytical approximation at order ε2.

It is noteworthy that as the horizontal mode is assumed to be the dominant one here, and as a result,

the vertical response, |x2|, is only made up of contributions from the non-resonant terms (see Eq. (4.18)).

This implies that the reduced-order normal form technique is also able to correctly estimate the response

amplitudes of the non-resonant terms of the forced response of the system. The forcing parameters were

chosen to be similar to those used by [9], except here we are primarily interested in how accurate the

undamped backbone curves are. Therefore we have reduced ζ2 to the same (small) level as ζ1, whereas

in [10] the authors discussed the coupling effect of when ζ2 was at a range of different levels.

It is important to remember this type of model order reduction will be limited by the fact that a specific

part of the system has been neglected. One instance, in this example, is that the backbone curve expression

in Eq. (4.17) is an implicit function of ωr1, but with both modes included, it would be an implicit function

of both ωr1 and ωr2. Given that we would expect ωr2 to vary with amplitude, using the assumption that

ωr2 = ω2 (as in Eq. (4.17)) is an obvious limitation of the reduced-order approach.

5. Example 2: a continuous plate system

A pinned-pinned rectangular thin plate of large-amplitude vibration is now considered, as shown

schematically in Fig. 3. Unlike the previous example, in this case we focus on the fact that the system

has an internal resonance. As a result we have selected the example to have only cubic nonlinear terms

and hence it only requires the ε1 order normal to find the backbone curves. In fact, the case of 1:1 internal

resonance with both quadratic and cubic nonlinearity, has previously been investigated by [10,37,38].

This example has already been studied in detail in [45], and here it is used to consider the application

of the reduced-order-direct normal form technique for a system with internal resonance. Following the

approach in [45], the nonlinear partial differential equations governing the dynamic behaviour of the plate

of large-amplitude responses can be projected onto an orthogonal set of linear eigenmodes, from which a
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1.8 1.9 2
0
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1|

(a)

1.8 1.9 2
0

0.05

0.1

|x
2|

(b)

1.8 1.9 2
0

0.1

0.2

0.3

|x
1|

(c)

1.8 1.9 2
0

0.05

0.1

|x
2
|

(d)

Figure 2. The backbone curves and resonance curves of the two-degree-of-freedom example system described in

Eq. (4.1) for the case where its horizontal mode is dominant. The solid-black and blue lines denote the analytically

approximated backbone curves and forced response curves respectively. The dashed-green and dashed-red lines

represent the numerically computed backbone curves and forced response curves (from COCO), respectively. The

black dots indicate branch points, where the backbone curves start. Parameters: ω1 = 2, ω2 = 4.5, Panel (a) and (b):

ζ1 = ζ2 = 0.001, f1 = [0.001, 0.002] and f2 =0; Panel (c) and (d): ζ1 = ζ2 =0.01, f1 = [0.01, 0.02] and f2 = 0.

The stability of the solution curves is not indicated on this figure.

O

z

x

y

Figure 3. The plate system example. For further details, see the discussion by [45].

set of ordinary differential equations can be obtained of the form

q̈i + 2ζiωniq̇i + ω2
niqi +

N
∑

l,m,n

α
[i]
lmn

qlqmqn = fi cos(Ωt), (5.1)
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for i= 1, 2, ..., N . The detailed model derivation process is given, for example, in [40]. Due to the geometry

and boundary conditions of the plate, only cubic nonlinearity terms appear in Eq. (5.1). In this paper, we

consider the same plate investigated in [45]. The geometrical and material properties of the plate and the

values of the natural frequencies and nonlinear terms coefficients are given in Appendix A.

For this example plate, only its backbone curves are investigated, and also, it is assumed that the system

is excited at a frequency in the vicinity of its second (and third) natural frequency. Considering just the first

four eigenfrequencies (N = 4), there may exist a 1 : 1 resonant interaction between the second and third

mode of the plate system because ωn2 ≈ ωn3. Therefore, it may not be possible to discern which of these

two modes will be the dominant one, in order to construct the sparse vector of resonant states. Here, we

may set u2 6= 0 and u3 6= 0 to represent the situation that an initial motion is initiated in either the second

or third mode.

Following the approach in [45], and using û= [u2, u3]
⊺, which reduces the system from a four-mode

to a two-mode approximation, the vector of nonlinear terms is found to be

n(1)(û)[2;3] =

(

α
[2]
222(u

3
2p + u32m + 3u22pu2m + 3u2pu

2
2m)

α
[3]
333(u

3
3p + u33m + 3u23pu3m + 3u3pu

2
3m)

+α
[2]
233(u2pu

2
3p + u2mu23m + u2mu23p + u2pu

2
3m + u2pu3pu3m + u2mu3pu3m)

+α
[3]
223(u

2
2pu3p + u22mu3m + u22pu3m + u22mu3m + u2pu2mu3p + u2pu2mu3m)

)

,

(5.2)

where the subscript [2; 3] indicates the nonlinear terms in n(1) associated with the second and third modes.

Note that due to the specific value of the nonlinear coefficients, see Table 2, n(1)(û)[1] = n(1)(û)[4] =0

thus they are omitted. From Eq. (5.2), the vector of polynomials terms can be defined and its associated βββ
matrix is computed as

u
∗
(1) =















































































u32p
u32m

u22pu2m
u2pu

2
2m

u2pu
2
3p

u2mu23m
u2mu23p
u2pu

2
3m

u2pu3pu3m
u2mu3pu3m

u22pu3p
u22mu3m
u22pu3m
u22mu3m

u2pu2mu3p
u2pu2mu3m

u33p
u33m

3u23pu3m
3u3pu

2
3m















































































, βββ⊺

(1)[2;3]
= ω2

r













































































8 8

8 8

0 0

0 0

8 8

8 8

0 0

0 0

0 0

0 0

8 8

8 8

0 0

0 0

0 0

0 0

8 8

8 8

0 0

0 0













































































, (5.3)

where ωr = ωr2 = ωr3 is used as the 1 : 1 internal resonance is assumed. The coefficient matrix of n(1)

is found in which the terms corresponding to the resonant ones are identified with boxes and then the
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coefficients of non-resonant terms are computed, as

[n(1)]
⊺

[2;3]
=









































































































































α
[2]
222 0

α
[2]
222 0

3α
[2]
222 0

3α
[2]
222 0

α
[2]
233 0

α
[2]
233 0

α
[2]
233 0

α
[2]
233 0

2α
[2]
233 0

2α
[2]
233 0

0 α
[3]
223

0 α
[3]
223

0 α
[3]
223

0 α
[3
223

0 2α
[3
223

0 2α
[3]
223

0 α
[3]
333

0 α
[3]
333

0 3α
[3]
333

0 3α
[3]
333









































































































































, [h(1)]
⊺

[2;3]
=

1

8ω2
r





















































































































α
[2]
222 0

α
[2]
222 0

0 0

0 0

α
[2]
233 0

α
[2]
233 0

0 0

0 0

0 0

0 0
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. (5.4)

Using Eqs. (5.3) and (5.4), the vector of resonant and non-resonant nonlinear terms are determined as

nu(1)[2;3]
=

(

3α
[2]
222(u

2
2pu2m + u2pu

2
2m)

3α
[3]
333(u

2
3pu3m + u3pu

2
3m)

+α
[2]
233(u2mu23p + u2pu

2
3m + 2u2pu3pu3m + 2u2mu3pu3m)

+α
[3]
223(u

2
2pu3m + u22mu3p + 2u2pu2mu3p + 2u2pu2mu3m)

)

,

(5.5)

h(1)[2;3]
=

1

8ω2
r

(

α
[2]
222(u

3
2p + u32m) + α

[2]
233(u2pu

2
3p + u2pu

2
3p)

α
[3]
333(u

3
3p + u33m) + α

[3]
223(u

2
2pu3p + u22mu3m)

)

. (5.6)

Finally, the time-invariant equations governing the response frequencies and amplitudes of the second and

third modes are found to be,
[

ω2
n2 − ω2

r +
3

4
α
[2]
222U

2
2 +

2 + ei(φ3−φ2)

4
α
[2]
233U

2
3

]

U2

2
= 0, (5.7a)

[

ω2
n3 − ω2

r +
3

4
α
[23
333U

2
3 +

2 + ei(φ2−φ3)

4
α
[3]
223U

2
2

]

U3

2
= 0. (5.7b)
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Successively setting U3 = 0 and U2 = 0 results in the expressions of two single-mode (i.e. non-internally-

resonant) backbone curves given by

S2 : ω2
r = ω2

n2 +
3

4
α
[2]
222U

2
2 , (5.8a)

S3 : ω2
r = ω2

n3 +
3

4
α
[3]
333U

2
3 . (5.8b)

Combining the bracketed contents in Eqs. (5.7) and rearranging gives the expression of the double-mode

(i.e. internally-resonant) backbone curves, written as

D
±
23

:



























U2
3 =

4

3

ω2
n3 − ω2

n2

α
[2]
233 − α

[3]
333

+
α
[3]
223 − α

[2]
222

α
[2]
233 − α

[3]
333

U2
2

ω2
r =

α
[2]
233ω

2
n3 − α

[3]
333ω

2
n2

α
[2]
233 − α

[3]
333

+
3

4

α
[2]
233α

[3]
223 − α

[2]
222α

[3]
333

α
[2]
233 − α

[3]
333

U2
2

, (5.9)

where, for balancing the complex terms, ei(|φ3−φ2)| = 1, the phase relationships φ3 − φ2 = 0 or π, are

assumed, which means there are two double-mode backbone curves with identical response frequencies

and amplitudes but of different modal phase differences denoted by the superscript of D±
23

. See also [22]

for a comparison of these results.

Fig. 4 shows the analytically approximated backbone curve results of the example plate using the

coefficient values in Table 2. Again, the results from numerical continuation serve as the benchmark

solution. The plate is assumed to be forced in the third (linear) mode-shape only. The frequency is set

to be close to the second/third eigenfrequency, and the forcing amplitude is specifically chosen to make

the resonant amplitude close to the thickness of the plate, i.e. f3 = 0.02, which will ensure that the

large-amplitude response assumption is satisfied.

Fig. 4 shows that the double-mode backbone curves, D23± , bifurcate from the single-mode backbone

curve, S3. Note that as the results are projected in the modal coordinates, the two double-mode backbone

curves overlap (as opposed to being in the u2, u3 coordinate space). As we are forcing the system only in

mode 3, the q3 responses are driven by the external forcing, and has a hardening response curve (Fig. 4(b))

as would be expected for a system with cubic nonlinearity. The q2 response (Fig. 4(a)) is only triggered

after the D
±
23

curves bifurcate from the S3 curve at an amplitude of approximately q3 =2.9 × 10−4. In

contrast with the previous example, here the amplitudes are 10−3 smaller, and as a result the analytically

computed backbone curve matches very accurately with the numerical solution, for both the single- and

double-mode responses.

6. Conclusion

In this paper, we introduced a technique with the ability to perform a simultaneous direct normal

form transform and model order reduction for nonlinear dynamic problems. This method is derived via

its application to a general N -degree-of-freedom system of coupled oscillators with polynomial type

nonlinearities. The main advantages of this new method are that (i) it is directly applicable to systems of

second-order ordinary differential equations which are the natural description form of mechanical structures

and (ii) it significantly simplifies the derivation process of the normal form transformation when applied to

larger-scale systems. However, it should also be noted that model order reduction methods of this type will,

by definition, neglect part of the system behaviour (often called the residual), and therefore care should be

exercised to ensure that all the required dynamic behaviour is appropriately captured by the reduced order

model. In our case, this was done by verifying the model using numerical continuation simulations of the

forced damped system.

Following on from the general derivations, we demonstrated the performance of the proposed technique

using two examples. The first example was a two-degree-of-freedom system that has both quadratic and

cubic nonlinearities, but no resonant interactions. Due to the fact that the direct normal form method

captures cubic terms generated by the presence of quadratic nonlinearities at order ε2, the application

of the normal form transformation has to be performed at least order ε2 in order to capture the key
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Figure 4. The backbone curves and resonance curves of the example plate system. The solid-red and green lines

denote the analytically approximated backbone curves S3 and D
±

23
respectively. The solid-black and blue lines are

the numerically computed backbone curves and forced responses (using COCO), respectively. The red and green dots

denote the branch points. Note that the information on the stability of the solution curves is not indicated on this figure.

Also note that the unit of the response amplitude, |qi|, is metres and the plate thickness is 5× 10−4m. The units of ωr

is radians/second.

dynamic behaviour. However, as we demonstrated, this can be done whilst simultaneously reducing the

system from two- to one-degrees-of-freedom. As a result, all the intermediate matrices constructed during

the nonlinear transform and the final resulting equation of motion were significantly simplified without

sacrificing the accuracy of the solution. The approximated backbone curves results were then shown to be

able to accurately predict the softening behaviour and the resonant response of the example system when

harmonically forced, by comparison with numerical continuation simulations of the forced damped system.

Finally, the application of the new method to the example of a thin, rectangular, simply-supported plate

was investigated. Due to the specific geometry and boundary conditions of the plate, there exists a 1:1

internal resonance between the second and third modes of the system. In previous work, a four-mode

reduced order model was used to explain this behaviour. However, by using the reduced-order-direct normal

form, only the two interacting modes were required to capture the key dynamic behaviour. Accordingly,

the dynamics of the plate system were reduced to a system of two resonantly interacting oscillators. The

associated numerical continuation results show a high degree of consistency with the analytically obtained

backbone curve solutions for both single-mode and resonant double-mode responses.
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A. The parameters of the example plate

The geometrical and material properties of the example plate considered in Sect. 5 are shown in Table 1.

Note that SI units are used throughout this example. The natural frequencies and coefficients of nonlinear

terms related to the first four mode of the example plate are shown Table 2.
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Table 1. The properties of the example plate.

Length Width Thickness Density Young’s modulus Poisson’s ratio

0.38 m 0.48 m 0.0005 m 2700 kg/m3 70 GPa 0.31

Table 2. The values of coefficients for the lowest four modes of the example plate.

ωn1 =58.9

ζ1 =0.01

α
[1]
111 = 5.45× 109

ωn2 = 143.9

ζ2 = 0.01

α
[2]
112 = 2.36× 1010

α
[1]
122 = 2.36 × 1010 α

[2]
222 = 3.14× 1010

α
[1]
133 = 2.27 × 1010 α

[2]
233 = 6.51× 1010

α
[1]
144 = 2.44 × 1010 α

[2]
244 = 1.24× 1011

α
[1]
234 = 7.43 × 1010 α

[2]
134 = 7.43× 1010

ωn3 =150.8

ζ3 = 0.01

α
[3]
113 = 2.27 × 1010

ωn4 = 235.8

ζ4 = 0.01

α
[4]
114 = 2.44× 1010

α
[3]
223 = 6.51 × 1010 α

[4]
224 = 1.24× 1011

α
[3]
333 = 3.14 × 1010 α

[4]
334 = 1.32× 1011

α
[3]
344 = 1.32 × 1012 α

[4]
444 = 5.58× 1010

α
[3]
124 = 7.43 × 1010 α

[4]
123 = 7.43× 1010
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