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SUMMARY

The analysis of (dynamic) fracture often requires multiple changes to the discretisation during crack
propagation. The state vector from the previous time step must then be transferred to provide the initial
values of the next time step. A novel methodology based on a least-squares fit is proposed for this mapping.
The energy balance is taken as a constraint in the mapping, which results in a complete energy preservation.
Apart from capturing the physics better, this also has advantages for numerical stability. To further improve
the accuracy, Powell-Sabin B-splines, which are based on triangles, have been used for the discretisation.

Since C1 continuity of the displacement field holds at crack tips for Powell-Sabin B-splines, the stresses
at and around crack tips are captured much more accurately than when using elements with a standard
Lagrangian interpolation, or with NURBS and T-splines. The versatility and accuracy of the approach to
simulate dynamic crack propagation are assessed in two case studies, featuring mode-I and mixed-mode
crack propagation. Copyright c© 2018 John Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

The analysis of dynamic crack propagation remains a challenging problem due to crack initiation,

unstable propagation, branching, multiple crack interaction, coalescence and merging. To well

understand these phenomena, numerical models, which for instance utilise cohesive crack models

and phase field models, have been introduced in attempts to model crack nucleation, tortuous crack

paths and micro-cracking in front of a main crack [1–4]. With dense meshes arbitrary crack paths

can be captured fairly well [5].

The accurate calculation of the stress at the crack tip is a most important issue in the analysis of

dynamic fracture [1, 2]. However, standard finite elements do not produce smooth stress field due

to the C0 inter-element continuity [6]. The stresses are often inaccurate around crack tips unless

extremely fine discretisations are used, and can therefore not be used readily in criteria for crack

initiation and crack propagation. This tends to be even worse when using the extended finite element

method [7–9]. For this reason, stresses are often averaged over finite domains, encompassing several

elements [10]. Also, stress fields can be improved when enriching stress fields with higher-order

terms [11], while crack tracking algorithms can also help to better simulate complex dynamic crack

patterns, such as crack branching [12, 13]. Recently, phase-field models have been introduced to
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2 L. CHEN, B. LI, R. DE BORST

describe brittle fracture [14–16], allowing for a straightforward treatment of crack branching and

merging [17].

Isogeometric analysis has also been introduced in the context of crack propagation analysis [18–

23]. However, isogeometric analysis has some limitations to insert cracks at arbitrary locations

as the initial mesh must be aligned sufficiently closely with the final crack path a priori [24].

Another disadvantage is that the higher-order continuity of the basis functions breaks down near

crack tips and only C0-continuity remains, due to the insertion of C0 lines in order to shield the

discontinuity due to the crack from the rest of the domain [24]. Since the splines basis functions

satisfy the partition-of-unity property, an enrichment in the sense of the eXtended Finite Element

method can also be used within isogeometric analysis, thus allowing for the propagation of discrete

cracks independent from the underlying discretisation [25].

Herein we exploit Powell-Sabin B-splines for cohesive crack modelling [26]. Powell-Sabin B-

splines are based on triangles. Direct crack insertion in the physical domain is possible due to the

flexibility of triangles. Upon crack insertion, there may be elements with an unsuitable aspect ratio.

Remeshing the domain around the crack tip is then required, which can be carried out fairly easy

for triangular elements. After remeshing, new Powell-Sabin B-spline functions are computed on the

new triangles. The state vectors (displacement, velocity and acceleration) must also be transferred

to provide initial values for the next time step. This is done by a novel methodology based on a

least-squares fit. To preserve the energy during the transfer, the energy is taken as a constraint in the

mapping.

It is emphasised that for Powell-Sabin B-splines, different from NURBS and T-splines, the higher-

order (C1) continuity is preserved at the crack tip, leading to continuous stress field around and at

the crack tip [27, 28]. For this reason, the stresses are much more accurate and can directly be used

in the crack initiation criterion. To facilitate the implementation Bézier extraction has been used,

just as with NURBS and T-splines, and standard finite element data structures could therefore be

exploited [29].

In this paper we first give a concise summary of the governing equations for the bulk and the

crack interface. The cohesive zone model, the strong and the weak forms of equilibrium equation as

well as the construction of Powell-Sabin B-splines are reviewed. We revisit the algorithm in [30] to

insert a new crack segment, including the algorithm for remeshing after a crack insertion in Section

3. The state vector update after a crack insertion is discussed in Section 4, where emphasis is placed

on energy conservation in dynamic fracture. Some numerical studies are illustrated in Section 5.

Figure 1. A solid body Ω with an internal discontinuity Γc. Γc is an interface boundary with positive and

negative sides, Γ+
c and Γ

−

c , respectively.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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DYNAMIC CRACK PROPAGATION USING POWELL-SABIN B-SPLINES 3

2. WEAK FORMULATION AND DISCRETISATION

In a discrete model a crack is considered as an interface Γc in the physical domain Ω, see Figure 1.

Tractions on Γc are related to the crack opening and crack sliding. Infinitesimal deformations and

linear elastic material behaviour have been assumed.

2.1. Cohesive zone model

The essence of the cohesive zone model is the relation between the tractions td acting on Γc and the

displacement jump [[v]] across it:

td = td ([[v]]) = {ts, tn}
T , (1)

with td and [[v]] defined in the local coordinate system (s, n), see Figure 1. The tractions and relative

displacements in the local coordinate system are related to the tractions t and the crack opening [[u]]
in the global coordinate system (x1, x2) via a standard transformation:

[[v]] = {[[vn]] , [[vs]]}
T
= R [[u]] = R {[[ux1

]] , [[ux2
]]}

T
, t = R

T
td , (2)

with R as the rotation matrix [19].

In current study, an exponential decohesion formulation has been used to describe the traction–

crack-opening relation [10]: 





tn = tu exp

(

−
tu
Gc

κ

)

ts = dint exp (hsκ) [[vs]]

(3)

where tu is the fracture strength, Gc denotes the fracture energy, dint represents the initial crack shear

stiffness (when κ = 0), and hs = ln (dκ=1.0/dint) governs the degradation of the shear stiffness. To

prevent unphysical healing of the crack, a history parameter κ enters through a loading function

f = f([[vn]] , [[vs]] , κ), subject to the Kuhn-Tucker conditions [18]:

f 6 0, , κ̇ > 0, κ̇f = 0. (4)

In case of unloading (f < 0), the tractions are obtained from a secant relation. To avoid

interpenetration, a penalty stiffness kp = 105 MPa/mm is specified in the normal direction.

2.2. Strong form and weak form

The strong form of linear momentum equation reads:

∇ · σσσ − ρü = 0 on Ω (5)

subject to the boundary conditions:







u = û on Γu

σσσ · n = t̂ on Γt

σσσ · n = t ([[u]]) on Γc

, (6)

in which û and t̂ represent prescribed displacements and tractions, respectively. ρ is the mass

density, ü denotes the acceleration vector, and a superimposed dot denotes a time derivative. n

refers to the normal vector at the boundary. The Cauchy stress tensor σσσ relates to the infinitesimal

strain εεε as

σσσ = D : εεε, (7)

where D is the fourth-order elastic stiffness tensor.

To solve the equilibrium Equation (5), it is cast in a weak form:

δWint + δWcoh + δWkin = δWext, (8)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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4 L. CHEN, B. LI, R. DE BORST

with

δWint =

∫

Ω

δε : σdΩ δWcoh =

∫

Γc

δ [[u]] · t ([[u]]) dΓ

δWkin =

∫

Ω

δu · ρüdΩ δWext =

∫

Γt

δu · t̂dΓ ∀δu ∈ ν0

(9)

where δ denotes the variation of a quantity, Wint designates the internal work, Wcoh represents the

work performed by the cohesive tractions on the crack surface Γc, Wkin is the kinetic energy,

and Wext is the work done by the externally applied loads. δε, δu and δ [[u]] are the virtual

strain, the virtual displacement and the virtual relative displacement fields, respectively, while

ν0 =
{
v : vi ∈ H1 (Ω) , vi|Γu = 0

}
, H1 being the first-order Sobolev space.

To discretise Equation (8), Powell-Sabin B-splines are employed. They describe the geometry

and interpolate the displacement field u in an isoparametric sense:

x =

Nv∑

k=1

3∑

j=1

N j
kX

j
k u =

Nv∑

k=1

3∑

j=1

N j
kU

j
k, (10)

where X
j
k represent the coordinates of the corners Q

j
k of the Powell-Sabin triangles. U

j
k denotes

the degrees of freedom at Q
j
k and Nv is the total number of vertices. The indices j = 1, 2, 3 imply

that three Powell-Sabin B-splines are defined on each vertex k.

Inserting the kinematic small-strain relation into the weak form, Equation (8), yields the usual set

of non-linear equations:

fkin (u) + fint (u) = fext, (11)

with






fkin (u) =
∫

Ω

ρNT
üdΩ

fint (u) =
∫

Ω

B
TσdΩ +

∫

Γc

H
T
t ([[u]]) dΓ

fext =
∫

Γt

N
T
t̂dΓ.

(12)

The matrices N, B and H contain the shape functions, their derivatives, and the relative

displacements, respectively [22]. Substituting the Powell-Sabin approximation, Equation (10), in

Equation (12) yields the global system of equations:

MÜ+KU = fext, (13)

where M and K are the mass matrix and the stiffness matrix, respectively. The stiffness matrix K

is additively decomposed into a contribution due to the bulk elements Kb, and a contribution due to

the cohesive crack interface, Kc. The Newmark-β method is used for the time integration [31]. A

Newton-Raphson method is used to attain equilibrium within each time step.

2.3. Powell-Sabin B-splines

We now give a succinct description of Powell-Sabin B-splines, while an in-depth elaboration can

be found in Ref. [29]. A triangulation T is considered, which is denoted by the thick black lines in

Figure 2(a). There are e = 1, 2, · · · , E triangles andNv vertices defined over T . The triangulation T
can be generated by any package for standard triangular elements, such as Gmsh [32]. To construct

Powell-Sabin B-splines, each triangle e of the triangulation T has to be split into six mini-triangles,

see Figure 2(b). This results in the Powell-Sabin refinement T ∗. For each vertex k Powell-Sabin

points are plotted in green as the vertex itself and points lying at the centre of the edges of T ∗. A

Powell-Sabin triangle (in red), which contains all the Powell-Sabin points, is defined for each vertex

k. Herein, we employ the algorithm of Ref. [33] to find the minimum area triangle which encloses

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
Prepared using nmeauth.cls DOI: 10.1002/nme



DYNAMIC CRACK PROPAGATION USING POWELL-SABIN B-SPLINES 5

Triangulation PS refinement

PS triangles PS points

(a) (b)

(c)

Figure 2. Example of a triangulation T (thick black lines), Powell-Sabin refinement T ∗ (thin black lines) of
T , Powell-Sabin triangles (red) and Powell-Sabin points (green). In (b) each triangle e is subdivided into six

mini-triangles. In (c) each mini-triangle has a barycentric coordinate system τ̄ .

the convex polygon defined by Powell-Sabin points. We further constrain the Powell-Sabin triangles

on the boundary as follows: for an angle of γ < 180◦ two sides of the Powell-Sabin triangle must

be aligned with the two boundary edges, while for an angle of γ = 180◦, one edge of the Powell-

Sabin triangle must lie on the boundary. No restrictions are imposed on Powell-Sabin triangles at an

internal discontinuity (crack interface).

Three Powell-Sabin B-splines N j
k , j = 1, 2, 3, are defined on each vertex k with coordinates

V k =
(
xk1 , x

k
2

)
, i.e. one for each corner of the Powell-Sabin triangle of vertex k. For any vertex

V k 6= V l we have:

N j
k (V l) = 0,

∂

∂x1
N j

k (V l) = 0,
∂

∂x2
N j

k (V l) = 0, (14)

and otherwise

N j
k (V k) = αj

k,
∂

∂x1
N j

k (V k) = βj
k,

∂

∂x2
N j

k (V k) = γjk, (15)

with
3∑

j=1

αj

k = 1,

3∑

j=1

βj

k = 0,

3∑

j=1

γjk = 0. (16)

The coefficients αj
k, βj

k and γjk are subsequently obtained by solving the linear system





α1
k α2

k α3
k

β1
k β2

k β3
k

γ1k γ2k γ3k









xk,11 xk,12 1

xk,21 xk,22 1

xk,31 xk,32 1



 =





xk1 xk2 1
1 0 0
0 1 0



 , (17)

in which Q
j
k =

(

xk,j1 , xk,j2

)

are the coordinates of the corner of the Powell-Sabin triangles which

are associated with vertex k. With the coefficients αj
k, βj

k and γjk, the Bézier ordinates of each mini-

triangle n in element e can be computed. The Bézier ordinates are assembled in the Bézier extraction

operator Ce
n, which allows for an efficient computation of the basis functions and their derivatives.

We denote the Powell-Sabin B-splines associated with mini-triangle n in element e by Ne
n. Then,

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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6 L. CHEN, B. LI, R. DE BORST

Ne
n are computed from:

N e
n = Ce

nB, (18)

with the six Bernstein polynomials, contained in the vector B [29].

Extension to three-dimensional crack propagation is problematic when using Powell-Sabin B-

splines. No procedure is yet available to define them on arbitrary tetrahedral meshes because

of certain constraints with neighbouring tetrahedrons [41, 42], and they currently only work for

structured meshes.

(a) crack propagation (b) element adjustment (c) remeshing

Figure 3. Mesh before and after remeshing. The blue solid curve denotes the crack interface Γc. Point A gives
the old crack tip, while point C denotes the new crack tip. Segment AC represents the new crack interface.

Ωc is the mesh before element adjustment. Ωb
c and Ω

r
c denote the meshes before and after remeshing Ωc.

3. ADAPTIVE ANALYSIS FOR COHESIVE CRACK GROWTH

Due to the C1 continuity of the Powell-Sabin B-splines at the crack tip, e.g. point A in Figure

3(a), crack initiation can be assessed by directly comparing the major principal stress σ1 at A with

the tensile strength tu. If σ1 > tu, the crack is allowed to propagate. The crack is then extended

through the entire element e1, see Figure 3(a). The new crack tip is therefore at C. Due to lack of

information about the possible curvature of the crack, it is introduced as a straight line within the

element [34, 35]. An accurate computation of the normal vector to the crack, n1, is essential for

the proper location of the new crack tip, see Figure 3(a). Indeed, considering the C1-continuity of

the Powell-Sabin B-splines, one can, in principle, directly evaluate n1 from the stress tensor at the

previous location of the crack tip. However, to further improve the quality of the prediction of the

direction of crack propagation we average the stress tensor over a small, but finite domain [10].

Upon insertion of a new crack segment, element e1 is divided into two triangles, see Figure 3(a).

The element next to the new crack tip has four vertices, which is not allowed for Powell-Sabin B-

splines [26]. Thus, remeshing is needed for the domain with the new crack tip. We consider two

cases, depending on the ratio ζ = |BC| / |CD|, where |BC| and |CD| are lengths of line segments

BC and CD, respectively, see Figure 3(a):

Case 1: If ζ is small or is large, ζ < 0.5 or ζ > 2, point C will be too close to either point B or to

point D. To remedy this, we merge point C with the closest point between points B and D. Then,

we remesh the domain with the merged crack tip.

Case 2: If the ratio ζ is moderate, 0.5 ≤ ζ ≤ 2, point C will be in the central part between points

B and D. We retain both triangles after crack insertion and divide the element next to the new crack

tip into two triangles, see Figure 3(b). Afterwards, the domain with the new crack tip is remeshed.

Remeshing is carried out only for elements near the crack tip. For example, only the grey area Ωb
c

inside the red polygon of Figure 3(b) is remeshed, and the vertices on and outside the red polygon

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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DYNAMIC CRACK PROPAGATION USING POWELL-SABIN B-SPLINES 7

and the crack tips will not change location. Here, Ωb
c denotes the mesh after element adjustment

with the crack segment insertion. The area Ωb
c is set as follows: it starts at the element with the

newly inserted crack segment, i.e. the yellow element e1 in Figure 3(a), and then a radial marching

is done until three elements have been crossed in all directions, see Figure 3(b). Next, we exclude

the elements along one side of the crack interface. In Figure 3(b) this applies to the elements along

the lower side of the crack interface.

The remeshing then proceeds by requiring that the minimum interior angle θ1min be maximised of

all triangles inside Ωb
c:

max θ1min

subject to: θik ≥ θ1min

θ1min ≥ π/6

, (19)

where θik is the ith interior angle (i = 1, 2, 3) of triangle k, see Figure 3(b). After obtaining the

minimum interior angle θ1min, we can further remesh the domain by using Equation (19) to maximise

the second minimum interior angle θ2min of all triangles inside Ωb
c. This procedure can be repeated

until all interior angles have attained a maximum value. Figure 3(c) shows the mesh Ωr
c after

remeshing of Ωb
c.

4. STATE VECTOR UPDATE AFTER CRACK INSERTION

During crack propagation new elements and vertices are introduced as a consequence of inserting

new crack segments. Moreover, after crack insertion, remeshing of Ωc is required to enforce

elements with suitable aspect ratio. Accordingly, Powell-Sabin B-spline functions must be computed

on the remeshed area Ωr
c . Here, the mesh before remeshing is denoted as Ωb

c, while the mesh after

remeshing is represented as Ωr
c.

For non-linear problems, remeshing also requires a transfer of the state vectors like the

displacement, the velocity and the acceleration from the previous time t in order to provide the initial

values at the new time t+∆t. We firstly map the discrete displacements t
Ub from the previous time

step t onto t+∆t
0 Ur, which holds at time t+∆t. Next we define Nb and Nr as the Powell-Sabin

B-spline functions associated with the meshes before, i.e. Ωb
c, and after remeshing Ωc, i.e. Ωr

c . Now,

a least-squares fit is employed to carry out the mapping of t
Ub onto t+∆t

0 Ur. This is achieved by

minimising:

ψ =

∫

Ωc

∥
∥t+∆t
0 ur −

t
ub

∥
∥dΩ =

∫

Ωc

∥
∥t+∆t

Nr
t+∆t
0 Ur −

t
Nb

t
Ub

∥
∥dΩ (20)

in which ub and ur are displacement fields before and after remeshing, respectively.

In general, the set up of the Powell-Sabin B-spline functions after crack insertion does not

guarantee energy conservation between the meshes Ωb
c and Ωr

c . To minimise the difference of the

energy between Ωb
c and Ωr

c, the minimisation of ψ in Equation (20) is achieved by enforcing the

energy constraint:

W b
int +W b

coh =W r
int +W r

coh (21)

which can be re-expressed as, cf. Equation (9):

∫

Ωb
c

ε : σdΩ +

∫

sΓb
c

[[u]] · t ([[u]]) dΓ =

∫

Ωr
c

ε : σdΩ +

∫

sΓr
c

[[u]] · t ([[u]]) dΓ (22)

where sΓb
c and sΓr

c are the newly inserted crack segment in Ωb
c and Ωr

c, respectively. In Figure 3(c),
sΓb

c and sΓr
c are the line segment AC.

Before crack insertion, e.g. element e1 in Figure 3(a), there is no crack opening in e1. Thus, we

must prevent crack opening in element e1 after inserting a new crack segment. On the line AC in

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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8 L. CHEN, B. LI, R. DE BORST

Figure 3(c) we must have:

t+∆t
0 ur −

t
ub = 0 on sΓr

c . (23)

This is a general formulation for the crack segment AC. In the computation certain representative

points should be chosen. Here, we have chosen the value at the integration points to satisfy this

equation:

t+∆t
Nr

t+∆t
0 Ur −

t
Nb

t
Ub = 0 at integration points on sΓr

c (24)

Three integration points are chosen along sΓr
c. This guarantees satisfaction of Equation (23) exactly

due to the C1 continuity of Powell-Sabin B-splines.

In sum, for a proper transfer of the displacements t
Ub at time t to t+∆t

0 Ur at time t+∆t, one

must solve the following optimisation problem:

min

∫

Ωc

∥
∥t+∆t

Nr
t+∆t
0 Ur −

t
Nb

t
Ub

∥
∥dΩ, (25a)

subject to: W b
int +W b

coh
︸ ︷︷ ︸

on Ωb
c

=W r
int +W r

coh
︸ ︷︷ ︸

on Ωr
c

t+∆t
Nr

t+∆t
0 Ur −

t
Nb

t
Ub = 0 at integration points on sΓr

c

. (25b)

(a) ”exact” σ1 contour plot (b) error in σ1 without constraint (c) error in σ1 with constraint

Figure 4. The ”exact” major principal stress σ1 and error after remeshing. The ”exact” solution refers to
the stress in the mesh before the crack insertion. The error is given as the difference between the exact
solution and the solution on the mesh after the crack insertion and remeshing. Figure (b) is the result
from optimising Equation (25a) without constraint, Equation (25b); Figure (c) presents the result taking

the constraint, Equation (25b), into account. The results shown here are from the problem in Section 5.2.

In principle, Equation (25a) can be minimised without constraining it by Equation (25b). This is

the usual way to perform state vector transfer in the crack propagation analysis [30, 36]. In Figure

4 we compare the results of minimising Equation (25a) with and without constraint, i.e. Equation

(25b). Qualitatively, the error contours are similar whether the constraint of Equation (25b) is taken

into account or not. However, quantitatively differences arise. To quantify the error we therefore

compute the relative error over the domain, which is defined by the L2 error norm [37, 38]:

ε =
‖σ1 − σ̄1‖L2(Ωr

c
)

√∫

Ωc

σ1 · σ1 dS
=

√∫

Ωr
c

(σ1 − σ̄1) · (σ1 − σ̄1) dS
√∫

Ωc

σ1 · σ1 dS
(26)

where σ1 stands for the exact solution referred to the stress on the meshΩc before the crack insertion,

and σ̄1 denotes the solution after the crack insertion and remeshing.

The relative error ε in Figure 4(b) is 2.44%, while ε in Figure 4(c) is 1.32%, which is just a

moderate difference. However, when checking the energy for both cases, the relative difference

between the energies in Figure 4(a) and Figure 4(b) is 0.31152%, while that between the energies

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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DYNAMIC CRACK PROPAGATION USING POWELL-SABIN B-SPLINES 9

of Figure 4(a) and Figure 4(c) is a computed zero, namely 0.409× 10−18%. This is significant since

energy preservation is of utmost importance for dynamic calculations in general, and for fracture

propagation in particular, and much more important than the error committed in the displacements

or even the stresses.

In the dynamic analysis of fracture, after remeshing Ωb
c, we also need to transfer velocity fields

t
U̇b from the previous time step t to provide initial values t+∆t

0 U̇r at time step t+∆t, which is

achieved by an approach similar to that in Equations (25a) and (25b):

min

∫

Ωc

∥
∥t+∆t

Nr
t+∆t
0 U̇r −

t
Nb

t
U̇b

∥
∥dΩ, (27a)

subject to: W b
kin

︸︷︷︸

on Ωb
c

−W r
kin

︸︷︷︸

on Ωr
c

= 0 =⇒

∫

Ωb
c

ρu̇T · u̇dΩ−

∫

Ωr
c

ρu̇T · u̇dΩ = 0

t+∆t
Nr

t+∆t
0 U̇r −

t
Nb

t
U̇b = 0 at integration points on sΓr

c

, (27b)

where Wkin is the kinetic energy. Here, the first equation in Equation (27b) will guarantee the

conservation of kinetic energy in the velocity transfer. The second equation in Equation (27b)

eliminates the velocity jump after the insertion of the crack segment sΓr
c .

We have again compared the velocities after transfer with and without considering the constraint,

Equation (27b). As expected, Figure 5 shows that the errors in both cases are similar in a qualitative

sense. However, this no longer holds when examining the error quantitatively. For this, we have

employed the relative error of the velocity, which is evaluated using the L2 error norm. It is defined

as in Equation (26), but σ1 is replaced by the velocity in x direction, u̇x. The relative error ε for

the results shown in Figure 5(b) is 1.44%, while ε for Figure 5(c) amounts to 0.68%. However,

when examining the kinetic energy, much larger differences are again found: the relative difference

between the kinetic energies in Figures 5(a) and 5(b) is 0.6953%, while that between Figures 5(a)

and 5(c) is 0.759× 10−16%, which is again a computed zero, so that the algorithm with constraint

also fully preserves the kinetic energy, although it only halves the velocity components.

(a) ”exact” u̇x contour plot (b) error in u̇x without constraint (c) error in u̇x with constraint

Figure 5. ”Exact” velocity component u̇x and error after remeshing. The ”exact” solution refers to the
velocity before the crack insertion. The error is given as the difference between the exact solution and
the solution after crack insertion and remeshing. Figure (b) gives the result when optimising Equation (27a)
without constraint, Equation (27b), while Figure (c) presents the result with constraint, Equation (27b). The

results shown here are from the problem in Section 5.2.

We have done the transfer of the acceleration t
Üb at time t to generate the initial values t+∆t

0 Ür

at time t+∆t in a similar way as in Equations (27a) and (27b):

min

∫

Ωc

∥
∥t+∆t

Nr
t+∆t
0 Ür −

t
Nb

t
Üb

∥
∥dΩ, (28a)

subject to:

∫

Ωb
c

ρüT · üdΩ−

∫

Ωr
c

ρüT · üdΩ = 0

t+∆t
Nr

t+∆t
0 Ür −

t
Nb

t
Üb = 0 at integration points on sΓr

c

. (28b)
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The first equation in Equation (28b) reads similar to the kinetic energy. The second equation in

Equation (27b) excludes the acceleration jump after the insertion of the crack segment sΓr
c . In

Figure 6 we compare the acceleration after transfer with and without constraint. Qualitatively, the

results are again similar, but quantitavely there are differences. To quantify the difference we use

the relative error of the acceleration, which is defined similarly as in Equation (26) by replacing

σ1 by the acceleration in the x direction, üx. The relative error ε without constraint, depicted in

Figure 6(b), is 4.36%, while ε = 2.64% with constraint, see Figure 6(c). Although this difference

is significant, the most important advantage of adding the constraint is the fact that energy is fully

preserved during the mapping.

In addition to the benefit which taking the energy constraint into account has for energy

preservation in analyses of dynamic fracture, it adds to the convergence behaviour of the equilibrium

finding process. Indeed, there can be problems with convergence of the discrete non-linear set of

equations when the constraint equation is not explicitly taken into account. Modest errors may

accumulate, and ultimately lead to divergence of the Newton-Raphson procedure.

(a) “exact” üx contour plot (b) error in üx without constraint (c) error in üx with constraint

Figure 6. The ”exact” acceleration in x-direction, üx and error after remeshing. The ”exact” solution refers
to the acceleration before crack insertion. The error is given as the difference between the exact solution
and the solution after crack insertion and remeshing. Figure (b) is the result for optimising Equation (28a)
without using the constraint, Equation (28b), while Figure (c) shows the result with constraint, Equation

(28b). The results are from the problem in Section 5.2.

5. CASE STUDIES

We will now investigate two cases to assess the performance of the method. The first case concerns

the analysis of model-I crack propagation in a specimen which is loaded at a constant velocity. The

second case deals with a case where the crack shows a sharp kink with the initial notch. In both cases

linear, isotropic elasticity is assumed for the bulk material. Mesh objectivity has been verified and

confirmed for both cases. These results, however, are not included to keep the presentation compact

and focus on the main findings.

5.1. L-shaped specimen test

An L-shaped concrete panel has been considered first. A displacement is progressively applied on

the panel in the vertical upward direction, see Figure 7(a). The velocity v0 = 740mm/s. The loading

area is rectangular with a 30 mm diameter at the right bottom of the specimen, shown in Figure 7(a).

The centre of the load is 30 mm away from the right edge. The left bottom edge is fixed. To impose

the Dirichlet boundary condition for Powell-Sabin triangles, the algorithm of Ref. [30] has been

employed. Test results as well as results from a numerical simulation been reported in [39]. The

material parameters for the concrete are: Youngs modulus E = 32.2 GPa, Poissons ratio ν = 0.18,

density ρ = 2210 kg/m3, tensile strength tu = 3.12 MPa and fracture energy Gc = 58.56 N/m. The

Rayleigh wave speed is 2250 m/s. Here, we only consider mode-I fracture, i.e. dint = 0 in Equation

(3). Plane-stress conditions have been assumed and the thickness of the panel is h = 50 mm. The

time increment is ∆t = 1.0× 10−6s.
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(a) geometry (in mm) and boundary conditions (b) load-time history for vo = 740mm/s

Figure 7. L-shaped beam subjected to a vertical impulsive loading

Figure 8. Experimental (left) and numerical (right) crack path and crack propagation speed. The red line in
the numerical simulation indicates the crack path. The crack propagation speed has been evaluated as the

average speed between two blue points u̇a = ∆l/∆t.

The experimental result on the left of Figure 8 shows that a single crack initiates at the inner

corner and propagates diagonally in an almost straight line. This corresponds to a classical mode-I

crack opening. The computed crack path is presented in the right part of Figure 8. It well matches

the experimental result. Figure 8 also gives the crack propagation speed, which indicates that the

numerical results overestimate the experimentally observed propagation speeds. Unfortunately, Ref.

[39] does not give details on how the crack propagation speed was measured and therefore, firm

conclusions cannot be drawn, and neither can possible explanations be given.

The load-time history is shown in Figure 7(b). There is a similarity between the numerical and

the experimental curves up to the peak load, but in the softening regime the results are different.

This is probably due to the uncertainty in the test and the setup of the boundary condition in the

numerical simulation. In the experiment, the bottom is constrained up to a height of 100 mm, while

in the numerical simulation only the boundary itself is fixed.

Snapshots of the stress distribution and the deformed mesh are shown in Figure 9. The crack

propagates gradually upon an increase of the vertical displacement. In the figure, smooth stress

fields are observed as a consequence of the C1-continuity of the triangular elements. Stress wave

reflections are observed at the boundary of the domain. Around the crack tip, interference and

diffraction of the stress wave can be clearly recognised, see Figure 9.
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(a) mesh at time t = 0.292ms (b) σ1 contour plot at time t = 0.292ms

(c) mesh at time t = 0.424ms (b) σ1 contour plot at time t = 0.424ms

Figure 9. σ1 contours at different times. In (a) and (c), the red lines indicate the crack path. In (b) and (d),
the displacements have been amplified by a factor 200.

5.2. Edge-cracked plate under impulsive loading

An edge-cracked panel is considered next. An impulsive load is applied to the panel [40], see

Figure 10(a). The specimen is 100 mm× 200 mm and has an initial crack with length 50 mm.

Due to symmetry, only half of the specimen has been considered with symmetry-enforcing boundary

conditions, see Figure 10(b). The material properties are as follows: Young’s modulusE = 190GPa,

Poisson’s ratio ν = 0.3, tensile strength tu = 1 GPa, fracture energy Gc = 22 kN/m and density

ρ = 8000 kg/m3. The Rayleigh wave speed is 2800 m/s. In this case mode-II behaviour has

been considered, with dint = 1000 N/mm and hs = 0, Equation (3). Plane-strain conditions have

been assumed. The specimen is loaded by an impact velocity v0 at the bottom left edge, with a

maximum value v0 = 16.5m/s. The rise time is taken as ti = 1.0× 10−7s [4]. The time increment

is ∆t = 1.0× 10−9s.
The computed crack path shown in Figure 11(a) is almost straight. Initially, the crack propagates

at an angle of around 67◦ and the average angle of the crack path is about 62◦, which approximately

8◦ smaller than the angle of 70◦ which has been observed experimentally [40]. The propagation

speed of the crack tip is given in Figure 11(b) and is on average 65% of the Rayleigh wave speed,

noting that in cohesive crack analyses the exact position of the crack tip is somewhat ambiguous.

The findings are not different from results reported using the extended finite element method [4, 8].

Figure 12 gives contour plots of the principal stress σ1 at two different times. Again, smooth

stress fields are obtained due to the C1 continuity of Powell-Sabin B-splines. The crack propagates

smoothly and no stress oscillations are observed. The reflection of the stress wave at the domain
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(a) geometry and boundary conditions (b) symmetrised domain for the analysis

Figure 10. Edge-cracked plate subjected to an impulsive loading

(a) predicted crack path (b) crack propagation speed

Figure 11. Simulated crack path and crack propagation speed. In (a), the red lines indicate the crack path.

boundary nicely comes out and also the interference and the diffraction of the stress wave around

the crack tip are clearly visible.

6. CONCLUSIONS

Powell-Sabin B-splines have been used for the analysis of dynamic crack propagation. Powell-

Sabin B-splines are based on triangles and are C1 continuous with respect to the interpolation of the

displacement field, also across element boundaries. This implies that the stress field is continuous,

again also across element boundaries. For the analysis of crack propagation Powell-Sabin B-splines

have yet another important advantage, namely that the C1 continuity in the displacement field is

preserved at crack tips, unlike for NURBS or T-splines, where the higher-order continuity breaks

down at the crack tip. The preservation of the C1 continuity enables a direct assessment of crack

initiation at the crack tip, and, in principle, by-passes the need for stress averaging over a finite

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2018)
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(a) mesh at time t = 36.27µs (b) σ1 contour plot at time t = 36.27µs

(c) mesh at time t = 41.69µs (b) σ1 contour plot at time t = 41.69µs

Figure 12. Mesh and σ1 contour plot at different times. In Figures (a) and (c), the red lines indicate the crack
path. In Figures (b) and (d), the displacements are amplified by a factor 5.

domain around crack tips [10]. Yet, the use of such an averaging procedure was still found to be

beneficial, in particular with respect to the direction of crack propagation.

Moreover, remeshing is straightforward for (C1-continuous) triangular elements, since standard

meshing procedures can be exploited. In the process of crack propagation, the crack is introduced

directly in the physical domain, which provides flexibility, and is different from procedures used

for NURBS or T-splines [18, 23, 24]. After remeshing the part of the domain around the crack tip

Powell-Sabin B-spline functions are introduced on the new triangles, and state vectors computed

at the previous time step have to be transferred to provide initial values for next time step. The

state vector mapping has been done using a novel approach in a least square setting with energy

conservation acting as a constraint. This approach has been shown to be very accurate, bringing

errors in the energy during the transfer process from several percents down to computed zeros.

In addition, energy conservation improves the convergence behaviour of the equilibrium finding

process. Indeed, due to the accumulated errors, divergence of the Newton-Raphson procedure can

occur when energy conservation is not properly satisfied.

Numerical cases studies for an L-shaped specimen and an edge-cracked plate yielded fair results

in terms of energy transfer, predicted crack paths and crack propagation speeds. The results for the

stress fields are particularly nice, since reflection, interference and diffraction of the stress waves

come out very well by virtue of the continuity of the stress fields.

Crack branching has not been addressed in the current study due to lack of proper bifurcation

criteria in discrete crack models. A possibility for simulating crack branching is to insert interface

elements along the boundaries of each element [3].
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[38] de Borst R, Chen L. The role of Bézier extraction in adaptive isogeometric analysis: Local refinement
and hierarchical refinement. International Journal for Numerical Methods in Engineering 2018;
113:999–1019.
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