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KNOWLEDGE-BASED SELF-RECONFIGURATION AND

SELF-AWARE DEMONSTRATION FOR MODULAR SATELLITE

ASSEMBLY

Mark Post∗ and Jim Austin†

In this research, we aim to develop a knowledge-based self-reconfiguring labora-
tory demonstrator made up of cubic modules for validating self-reconfiguration
strategies for modular satellites. Modular satellite technologies have the poten-
tial to reduce the costs and complexity of on-orbit assembly and servicing oper-
ations, as well as reducing waste for end-of-life satellites and required mass to
orbit. Modules are sized to be 10cm cubes comparable to the 1U CubeSat form
factor, and can connect and communicate at will to form larger structures. Each
module can carry different payloads and perform different functions, while re-
taining common abilities to execute software and store information. Laboratory
testing of self-reconfiguration strategies for a modular structure focuses on a key
challenge essential to reconfigurable satellites: the ability to autonomously deter-
mine and achieve appropriate configurations of structures in orbit without human
input. We apply knowledge-based inference methods to determining a suitable
configuration of modules for a modular satellite and reasoning methods for plan-
ning the sequence of actions required to implement this configuration. In addition
to satellites and space structures, self-assembling hardware represents a platform
that could potentially be used to build many kinds of terrestrial robots and au-
tonomous systems.

INTRODUCTION

The assembly and reconfiguration of the International Space Station uses a robotic arm and au-

tomated docking with human oversight, but most satellites must be operated and repaired as single

entities at great cost by human intervention. In a modular satellite architecture, smaller parts of

spacecraft can be delivered using multiple launches or as needed for maintenance and upgrading

activities, and assembled robotically into a flexible geometry that is not required to fit into a launch

vehicle. Telescopes, communications satellites, and exploration spacecraft can all be assembled

from self-contained component parts in space rather than being limited by single large payload ca-

pacities and complex deployment systems, and can also repair themselves by changing the mod

ules used. The overlapping core robotics technologies needed to address the challenges of modular

satellites include sensing and perception, GNC, microgravity mobility and mobile manipulation,

autonomy and intelligence.1 Autonomous self-assembly of free-flying modules is a very difficult

dynamic problem in addition to adding mass and control overheads to each module, and at present

the use of a robotic manipulators assumed for physical placement of the modules. Modular space-

craft configuration must use autonomous reasoning as communication delays and eclipses prevent

reliable communication with humans.2 The self-configuration process is driven by requirements
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for positioning specific modules on the satellite, the dynamics and structure, module power and

communication equirements, and self-healing from faults. Machine learning can adjust the control

parameters to compensate for the space environment. We apply a semantic reasoning process to

the self-configuration problem as it allows the system to easily adapt itself to the addition of new

hardware and software that was not originally programmed or designed for. Internal knowledge is

provided by Ontology Web Language (OWL) files in XML format, which is parsed and reasoned

over by a reasoning engine. The optimal configuration of modules is determined based on both

module-level and system-wide information, and a plan is constructed as to how to move modules

to their final positions. The reasoning and planning methods are considered together because there

are elements of planning that affect reasoning (e.g. the necessity of moving hard-to-reach modules

versus easier-to-reach ones).

BACKGROUND

Fractionation and Autonomic Computing for Robotics

One of the first steps toward fractionated architectures in general computing was made with the

definition of Autonomic Computing. The concept of Autonomic Computing is central to dealing

with complexity in large-scale systems and has been conceptually present for over 15 years, mainly

focused on self-management of complex Information Technology systems such as corporate net-

works as addressed in IBM papers3.4 As envisioned, an autonomic system must “know itself”

sufficiently well to embody four characteristics:

• Self-configuration: systems can install functions and set parameters following high-level rules

• Self-optimization: parameters can be tuned and performance improved autonomously over

time

• Self-healing: localized software and hardware problems can be detected and repaired/bypassed

• Self-protection: large cascade failures or malicious attacks can be quickly identified and de-

fended against

Being features of multiple, networked components, these aspects drive the design and behaviour

of so-called Autonomic Elements, which function as fractionated components capable of managing

themselves and their tasks within the system. Funabashi et al. predicts that by 2025, systems will

need to learn and self modify in an automated fashion.5 Other visions of how self-managing systems

have been similarly formulated to address complexity and reliability such as that of Organic Com-

puting, which focuses on the effects of emergent behaviours in massively connected self-organizing

systems.6 Another concept of computing related by the goals of system fractionability and com-

plexity minimization is that of Wide Computing, in which concurrent tasks are spread horizontally

across a network of visible, connected elements in a peer-to-peer fashion.7 In the broad context of

autonomic systems, four additional characteristics are often cited:8

• Self-awareness: the system is aware of its state, capabilities, and topology

• Context-awareness: the system is aware of its configuration, its goals, and its environment

• Open: localized software and hardware problems can be detected and repaired/bypassed
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• Anticipatory: large cascade failures or malicious attacks can be quickly identified and de-

fended against

These basic characteristics are used to define how a fractionated system should be designed. In

order to provide self-awareness in its various forms such that the the other “self-*” characteristics

are possible, it is necessary to make available all relevant information about the system in some sort

of organized, machine-parseable format that can be used to perform autonomic tasks. This is where

the need for semantic ontologies becomes central to autonomic systems. This paper focuses on the

characteristics of self-configuration and self-healing as well as self-awareness.

Software and hardware architectures for robotics have gradually experienced a trend toward de-

centralization and fractionation. This is exemplified by the design of robotic middleware in recent

years, which began with monolithic robotic software stacks and has evolved from server-based sys-

tems such as Player9 through networked systems such as ROS10 and now is focused on entirely

decentralized software networks such as YARP11 and ROCK.12 The frequent interfacing and port-

ing of software between these systems is testament to the value of being able to build heterogeneous

systems that can interact seamlessly. Autonomic computing has been applied to the design of robots

primarily as a means of fault tolerance but with the fractionation benefits of better modularity and

flexibility as well.13 Autonomic computing has been proposed for use in underwater vehicles as

a means of applying a bio-inspired methodology of robotic self-management based on the human

autonomic nervous system.14 This work has been focused entirely on designing autonomic be-

haviours for robots, and does not address the problems of fractionation or reconfiguration at the

system level. Other experimental improvements in autonomic-style self-management such as the

ROS-based RoSHA multi-robot self-healing architecture15 have been developed. However, these

self-management features are implemented as add-ons such as failure diagnosis, coordination, and

reconfiguration to the basic middleware and do not address the fractionation challenges in terms of

underlying system design, which is ultimately necessary to failures in the underlying middleware

and communications strategy.

In the field of aerospace robotics, similar trends are very evident as the use of fractionated archi-

tecture has become a subject of great interest. To increase reliability while minimizing complexity

and retaining the advantages of a distributed architecture, Integrated Modular Avionics (IMA) ar-

chitectures focus on the networking of standardized Line-Replaceable Units (LRUs) to perform a

wide range of tasks in many different locations on a vehicle.16 While static IMA networks designed

and configured manually have already been successful in reducing complexity, power and mass,

they do not realize the full potential of a fractionated system. The use of configuration-free “Plug

& Fly” avionics17 requires a common description of what each component’s capabilities and con-

nections are so that the system is sufficiently “self-aware” to perform this design and configuration

autonomously given a set of basic rules. Fractionated architectures have a similar role in space

robotic systems, promising improved responsiveness and tolerance to uncertainty, though qualifi-

cation and use of fractionated systems in space is even more difficult due to the field being costly

and highly risk-averse.18 Autonomic computing concepts have been proposed as valuable for use

in space19 but largely for reasons of risk and complexity, no large-scale missions have yet made full

use of them.
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Ontologies for Robotics and Autonomous Systems

A logical and consistent way to define meanings within a system is a prerequisite for any kind

of self-managing infrastructure. Traditionally, meanings in a system were programmed implicitly,

such that variables and functions either did the same thing constantly or could be defined with

internal meanings only relevant to that system. However, with the advent of the internet and highly-

connected data infrastructures that must process a wide range of information, some way to define

external meanings explicitly for machines to process has become vital, and this applies in equal

measure to fractionated systems which must to some degree be able to handle any type of data or

function within the system in any specific part.

In modern robotics engineering, the greatest challenge is currently autonomy and optimization,

and the most common approach is to specify the task on a semantic level. Robotics ontologies

are mostly task-based ontologies such as those used in KnowRob and CORA.20 A comparison of

ontologies related to robotics is given in,21 which introduces an ontology for the robot programming

domain. To extend the capabilities of ontological robotics, the IEEE “Ontologies for Robotics and

Automation” working group studies industrial robotics, service robotics and autonomous robotics.

In,22 the authors focus on an ontology consisting of specific concepts and axioms with a systematic

approach specifically for autonomous robotics. The awareness of each agent in the cooperation

of multiple agents will increase the performance of autonomy, resolve task complexity, increase

reliability and simplify in design.

The research into ontology-based implementation solutions for autonomous mobile robot systems

are rare due to their diversity. The complexity of information exchange between robotic devices us-

ing different programming languages, operating systems, and data management standards restricts

their ability to interact with each other. The OntAPIbot ontology23 has been proposed for defin-

ing the formal specification of concepts to reduce the heterogeneity of robotic terms and facilitate

the use of reasoning tools to correct knowledge interpretation and reuse. Reference24 developed

a domain ontology and ontology-based methodology to support the conceptual modelling of au-

tonomous systems. The OASys and related methodologies have been applied to a robot control

testbed and a process control testbed.

As semantic descriptions of objects must provide a means of reasoning with respect to related

objects, the use of description logic has long been considered the basis of a reasoning system as

a subset of first order logic that provides reasoning support.25 By far the most popular means of

defining semantics is by applying the Web Ontology Language (known as OWL), which is based

on description logic and envisioned as a means of expressing ontologies in internet resources, the

so-called “Semantic Web”. OWL was created by synthesis of concepts from many previous efforts

to characterize and perform inference from classes of objects, primarily the DAML+OIL language

that was itself a synthesis of DAML-ONT and OIL.26

By applying OWL semantics to both data and functions, very flexible descriptions of resources in

the fractionated system are possible. Semantic characterization of functions is related to the process

of service description for internet services, and the Ontology Web Language for Services (OWL-S)

has been developed to provide semantic specification for these kind of services. OWL-S is intended

to provide semantic descriptions for use with the Web Services Description Language (WSDL) as

such IDLs do not contain sufficient semantic information for an autonomous agent to find and utilize

the interfaces in an automated manner.27 While the interfaces in a fractionated system should be

far more straightforward and automated than web interfaces, the requirement for clear semantic
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description of the inputs and outputs of a service are similar, and OWL-S is used to inspire the

organization of semantic functional identification.

The actual structure and format of data within Semantic Web resources is traditionally defined by

the Resource Description Framework (RDF), which is based on the concept of a triple of Subject-

Predicate-Object to define semantic descriptors. RDF defines a schema (a set of accepted uses)

of classes for defining subjects, objects, and predicates within resources. However, RDF is also

schema-limited in the sense that set operations and logical combinations of classes are not sup-

ported and does not explicitly provide a means for the inference processes used in OWL, as many

constructs within OWL cannot be represented using triples. This also restricts class resolution to

the specific terms within the schema (as there is no easy way to resolve synonyms). As the expres-

sive design of RDF is not a one-to-one fit with OWL, which itself has evolved into a language with

nearly intractable scope, three “species” of OWL were developed (Full, DL, and Lite) in increas-

ing restruction of expressivity to both increase compatibility (OWL-to-RDF but not the reverse).26

These subsets of OWL are reformulated as EL (for efficient reasoning), QL (for large database

queries), and RL (for scaleable reasoning) in the newer OWL2 language which extends OWL with

additional features, built-in datatypes, and other constructs to facilitate practical development using

the language.28 Additionally, OWL languages have been extended beyond two-valued logic with

fuzzy logic29 and probabilistic30 extensions.

SELF-AWARE FRACTIONATED ARCHITECTURE

Rather than technological limitations, the capabilities of next-generation autonomous systems

will be for the most part limited by the designer’s ability and the ability of the system itself to cope

with complexity. As the complexity and need for reliability in robots and autonomous systems in-

creases to meet ever greater functional requirements, there is great interest in the use of fractionated

architectures for autonomous applications, in which software tasks can be split up into simpler units

and spread arbitrarily across a distributed network of similar hardware processors for parallelism

and redundancy. At the same time, these distributed systems can have a vast number of potential

configurations and interactions between components, and explicitly planning and predicting for all

potential future uses and configurations quickly becomes impractically difficult. Modern robots and

autonomous vehicles can contain tens to hundreds of algorithms running in parallel, each operat-

ing as part of a larger task on different data types and using different hardware requirements. In

cases where unforeseen additional functionality must be added or the system must be re-configured

quickly and reliably in response to problems or changed goals, a system designer can be easily

overwhelmed with the number of changes that can be made.

Semantic information provides one important piece of the solution to this problem of complex-

ity. By providing machine-parseable context to each part of the system in the form of ontologies,

and applying logical reasoning rules to determine what each part contributes and how it operates,

machines can be made “self-aware” at least within the fixed boundaries of an ontology. Inference

algorithms can then be used to remove the responsibility of thinking ahead and planning for all

possibilities from the designer, as semantic inference provides a means by which to make logical

decisions on-the-fly regarding system configuration and data management. Widespread use of on-

tologies in Big Data analytics has already made the Internet a revolutionary resource for information

gathering that now pervades all aspects of modern society, and the widespread use of ontologies in

autonomous systems and robots is key to revolutionizing their capabilities to operate without human

supervision.
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To fulfil the requirements for successes of real-time self-configuration and self-monitoring of

fractionated systems in the fields like information technology infrastructure, semantic data charac-

terization, and robotics, a new semantic organization method is proposed in this paper. While many

problem-specific ontologies have been created to define and classify systems, very few have actually

been used to create and configure systems via inference and reasoning. No previous architecture for

real-time autonomous robotic and aerospace systems has considered the use of general semantic

self-awareness for self-configuration, and yet this is a vital part of many autonomous reasoning pro-

cesses that would be carried out within such a system. Such a method allows a fractionated system

to be fully self-aware and incorporate its own configuration into learning and reasoning processes

performed during autonomous operation.

Using semantic reasoning to organize modules following Autonomic Computing principles at a

low level within the system is particularly valuable in robotics applications in domains that are sub-

ject to more challenging constraints than the majority of electronic and computing systems, specif-

ically regarding environmental tolerances, real-time response, and resiliency to faults and failures.

In these domains, the capacity to self-organize based on general available information is a vital

part of the tolerance to unexpected situations in which case obtaining general functionality is more

important than adherence to a specific structure.

The flow of semantic information and instructions within the proposed conceptual architecture

is shown in Fig. 1. For a fractionated autonomous system, it is necessary for a human to provide

the functions within the system that perform key tasks, the classifications of data required for these

functions, and the goals of the system in terms of these functions and data, which in this case is

primarily the end result as defined as a function. The system itself is then able to arrange the func-

tions into a complete chain of processes to accomplish the high-level goal, and place the functions

dynamically on appropriate autonomic elements with data transferred between them. The key to

accomplishing this is appropriate semantic association of functions, data, and system elements with

common concepts that connect them logically. A logical reasoning process is then used to determine

how the system can be organized In upcoming research work, this architecture will be applied to

modular hardware so as to refine the use of “self-*” characteristics within a robotic system and to

evaluate the effectiveness of using them in autonomous processes.

UPCOMING EXPERIMENTS

Some successful small satellite assembly demonstrators have been built,31 but they are not assem-

bled autonomously by robotic means. In our work, the scaled lab demonstrator (Fig. 2 and 3) will be

used to test and validate the self-configuration software methods by re-configuring modules using a

robotic manipulator. Sensor fusion software based on that developed in the InFuse project for ESA

PERASPERA will be used for the sensing.32 Frames for these modules will be rapid-prototyped

using additive manufacturing, and will communicate with each other through optical as well as

short-range radio links. The lab demonstrator considers hardware elements to be general processing

nodes with program code and operating system installed, and they are operated in a fully distributed

fashion with no single point of failure. The complexity of knowledge-based self-configuration is de-

rived from the constraints in size and power of modules, the harsh conditions of space, and the need

to consider a wide variety of information transferred, all of which are encapsulated in RDF-style

semantic metadata. Hard-coding many rules for dealing with this complexity makes the system

unnecessarily complicated, while semantic reasoning allows flexibility and robustness in the un-

derlying automation, with system-related complexity moved into the realm of semantic metadata.
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Figure 1. Diagram of the dataflow for a semantic method for self-assembly and self-
reconfiguration of a robotized modular satellite system.

Demonstrating these advantages is the goal of the upcoming laboratory experiments, and will lead

to commercial sustainability of this branch of research.
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