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Abstract: This work focuses on Distributed Secondary Control (DSC) technique, for frequency regulation and Economic Load 

Dispatch (ELD) of Microgrid (MG). The fluctuating nature and large quantity of Distributed Energy Resources (DER) in 

autonomous MG result in complex control requirements, demanding fast and robust response. The contemporary DSC 

schemes are mostly based on Distributed Averaging Integration technique, owing slow response. The paper proposes, 

Distributed Model Predictive based Secondary Control (DMPSC) which effectively comply with the control requirements of 

MG. DMPSC requires each DER-node to solve a local optimization problem with the cost function penalizing the deviation 

of states from their desired values and difference between the assumed and predicted values. The desired-states for non-

linear dynamics of DER-nodes, are based on local intermediate-optimum values, computed using local and neighbouring 

information. Equality based terminal constraints are introduced to ensure the stability, where each node is forced to reach 

the desired-state value at the end of prediction horizon. The terminal-consensus of the network affirms convergence of 

desired-states to a global optimal point of the network. The asymptotic stability of proposed control is proved by using the 

sum of local cost-functions as Lyapunov candidate function. Simulation results validate the effectiveness of the proposed 

control scheme. 

 

1. Introduction 
Expanding fraction of power generation by Distributed 

Energy Resources (DER) has given significant research 

importance to Microgrid (MG) [1]. MG is an accumulation of 

heterogenous sources (preferably DERs), storage device and 

load, beside possess the capability to operate in grid-

connected and islanded mode. This flexibility of MG comes 

at the expense of control complexity. Small capacity, 

physically widely-distributed, large number and fluctuating 

output of DERs has resulted in several control challenges in 

MG, particularly related to the stability of the system [2]. 

Proportional-Integral based control solutions have been 

proposed in contemporary research to address the 

requirements of MG. Growing penetration of DERs with 

distinctive fluctuating nature is continuously demanding fast 

and robust control, especially for maintaining frequency (and 

voltage) stabilization and cost-efficient operation. This 

research work proposes a Distributed Model Predictive 

Control (DMPC) based solution, effectively complying with 

the control demands. 

The power produced by DERs is in the form of DC 

(photovoltaic, fuel cells) or variable AC (wind turbine, 

microturbine) requiring a DC to AC inverter to inject the 

power in AC gird. Unlike synchronous generators, these 

inverter-interfaced DERs have inadequacy of fundamental 

synchronization mechanism due to absence of rotational 

inertial [3], [4]. It is clear from growing dependence on DERs 

that various control operations are to be achieved through 

control of inverters. The control objectives of MG consist of; 

balance of power, voltage and frequency regulation, sharing 

of load among the inverters, minimization of cost of 

production [5], [6], [7], [8] and phase synchronous with wide 

area gird [9], [10], [11]. 

The control required to achieve the above-mentioned 

control objectives is organized in hierarchical form, with each 

layer serving specific control objectives [12]. The Primary 

Control (first layer), uses decentralized droop control 

technique for active and reactive power sharing among the 

inverters. The proportional technique used in primary control 

causes deviation, from nominal values, in frequency and 

voltage. The Secondary Control (SC) (second layer) is used 

to keep the frequency and voltage at their nominal values. The 

Tertiary Control (third layer) provides the Economic Load 

Dispatch (ELD) to minimize the cost of production. However, 

the recent research has merged the Tertiary Control within the 

SC, providing the frequency regulation and ELD at the same 

level (SC level) [5], [6], [7], [8], [13]. The SC can be 

centralized [14], [15] as in conventional system, 

decentralized [16], [17], [18] as well as distributed [5], [19], 

[20], [21]. However, DSC has gained a lot of interest recently 

providing eased plug and play to expanding number of DERs. 

In Centralized Secondary Control the central control unit is 

connected with all the generating units through 

communication links. Conventionally, centralized control 

contains PI based Automatic Generation Control that makes 

use of Area Control Error to regulate the frequency and power 

flow between different Areas [22]. Similarly, at MG level, 

Microgrid Central Control (MGCC) is used that makes use of 

low bandwidth communication channels with DERs [14], 

[15]. The centralized control architecture, however, is not a 

preferred choice, specifically in the presence of a large 

quantity of small-scale DERs [23], also the communication 

link failure with DER node/nodes, may intimidate the 

frequency regulation of the system. The Decentralized 

Secondary Control uses local control at each DER node [13] 

without any coordination with central control or peers. The 

integral based decentralized control may possess additional 
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equilibrium point and may fail to provide the optimum power 

injection profiles [5] and also, under adverse conditions may 

even fail to achieve the frequency regulation [24]. 

The DSC on the other hand, offers flexibility of eased plug 

and play, requiring only the communication with 

neighbouring DER node/nodes. DSC is unaffected by single 

link failure as long as DER nodes form a connected 

communication graph. Distributed Averaging Integrator 

based DSCs have been proposed in [24], [25], [26], where the 

control input of each node is based on neighbouring 

information and local frequency deviation. However, DAI 

based DSC possesses slow convergence, which is often 

compensated with larger gains, resulting in overshoot and 

oscillation problem. In the presence of fluctuating nature of 

DERs, fast convergence of SC is critical [6]. Other DSC 

schemes include, MPC and Smith Predictor based SC [27], 

provides the frequency regulation, but fails to assign optimum 

power injections to each node. A mixture of centralized and 

distributed control is used in [6] and [23]. The author, in [6] 

proposed Power Imbalance Allocation Control (PIAC), uses 

a PI based local control for frequency regulation and a 

centralized control within the Area to solve the optimization 

problem for ELD and Inter-Area power exchange. While, an 

integral based centralized control is proposed in [23] that 

aggregates the measured frequencies and broadcasts a control 

message to individual nodes, which uniquely interprets it 

based on local parameters. 

Another control challenge of MG, switching between 

islanded and grid-connected mode is the phase 

synchronization. MG while operating in islanded mode, may 

deviate in phase angle from the main utility grid. The 

prerequisite of MG switching, from islanded to grid-

connected mode, is the phase synchronization. The phase 

difference between MG and wide area grid should be within 

the acceptable limits at Point of Common Coupling (PCC) 

[11]. The phase synchronization issue has been dealt 

separately and has not been addressed in presented control 

hierarchy. 

This paper focuses on the implementation of MPC 

technique at SC level. Traditionally, MPC is designed for a 

single agent system, where optimum control is achieved by 

solving the finite horizon optimal control problem. MPC has 

practically been utilized as centralized control, where all the 

states are known. However, in multiagent systems the 

centralized implementation is not suitable because of 

difficulties in collecting the information from physically 

distributed nodes and computation of large-scale 

optimization problem. DMPC has been introduced in [28], 

[29] for multiagent systems, relaxing the requirement of 

centralized control. Here, each node solves local optimal 

control problem based on information from its neighbouring 

peer nodes, so the size of the network does not affect the 

computational efficiency and performance of the control. 

A Distributed Model Predictive based Secondary Control 

(DMPSC) is introduced in this paper for frequency regulation 

and ELD. DMPC with its inherent constraint handling 

capability, provides fast convergence as compared with 

integral based SC schemes. DMPSC efficiently provides the 

frequency regulation while maintaining the optimum power 

injection profile at each node. Based on local and 

neighbouring information, each DER node computes an 

intermediate-optimum phase angle and tracks the local phase 

towards that optimum phase direction, in each iteration. The 

significant contributions of the paper are highlighted below 

 A model predictive based SC is proposed in this paper. 

The control is implemented in a distributed manner, each 

node communicates its information with neighbouring 

nodes, solves a local optimization problem and achieves 

the consensus asymptotically. 

 Provides frequency regulation by maintaining the real 

power balance in the network and ELD, using identical 

cost criteria [5]. 

 Phase synchronization with wide-area is achieved by 

forcing a single node to follow the reference 

instantaneous phase. This is the foremost attempt to 

provide the phase synchronization in DSC. 

 The sufficient condition for convergence of proposed 

control is derived and used the total cost of network as a 

Lyapunov candidate function to prove the Asymptotic 

stability of the system.  

 Effectiveness of proposed control schemes is 

demonstrated with the help of MATLAB model and the 

results are compared with the DAI based control scheme. 

The rest of the paper is organized as follows; Section 2, 

contains modelling of MG system and the control objects. 

The Section starts with introduction of notations used in the 

paper and graph theory, followed by dynamics of power 

network, explanation of control objectives and introduction 

of DAI control scheme. Section 3, introduces the proposed 

DMPSC algorithm, used as local control at each power-node. 

The stability analysis is presented in Section 4, consisting of 

convergence of desired-states to global optimum and 

convergence of the cost function. Lastly, Section 5, contains 

MATLAB based simulation results and comparison with DAI 

control. 

2. Microgrid Modelling and Control Objectives  

2.1 Notations 

Let, the set of all real numbers be represented by Թ, ԧ 

represents the set of complex numbers and ॹ represents the 

null set. Թவ denotes the set ሼݔ א Թȁݔ  Ͳሽ, Թஹ denotes the 

set ሼݔ א Թȁݔ  Ͳሽ, Թழ  denotes the set ሼݔ א Թȁݔ ൏ Ͳሽ and Թஸ denotes the set ሼݔ א Թȁݔ  Ͳሽ. If ܵ represents a set, then ȁܵȁ  represents the cardinality of set ܵ ݔ . ؔ ሺܵሻǡ݈݉ܿ ݔ Թȁௌȁൈଵא , represents a column vector of length ȁܵȁ  and ܺ ؔुሺݔሻ א Թȁௌȁൈȁௌȁ, represents a diagonal matrix containing all 

zeros except the diagonal entries containing ݔ .  א Թൈଵ , 

denotes a column vector of ones with length ݊ and identity 

matrix is denoted by ܫ א Թൈ . For sets ଵܵ  and ܵଶ , ଵܵתଶ 

denotes ଵܵ ת ܵଶ and ଵܵିଶ denotes ଵܵ െ ܵଶ. The operator ̶ ל ̶, 

represents Hadamard product (elementwise multiplication) of 

matrices of same dimensions. 

2.2 Graph Theory 

Let ॳ, be a static, connected and undirected graph of ݊ nodes, represented by the set ܰ ൌ ሼͳǡ ǥ ݊ሽ. The nodes of ॳ, 

are connected through the edges, represented by ܧ ك ܰ ൈ ܰ 
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and ܣ א Թൈ  is the associated adjacency matrix (ܣ ൌ  (்ܣ

with elements ܽ ൌ ͳ ,  ݅ǡ ݆ א ܰǡ  if the nodes ݅  and ݆  are 

connected by an edge and ܽ ൌ Ͳ, otherwise. The degree 

matrix of ܣ , is denoted by Է ؔ  ुሺ݀ሻ א  Թൈ , where ݀ , is the ݅௧ row-sum of ܣ. The set of neighbouring nodes 

of ݅௧  node is represented by ܰ ؔ ሼ ݊ሽ, such that ܽ ൌ ͳ, ݅ǡ ݆ א ܰ , ( ݀ ൌ ȁ ܰȁ ). Let ࣦ ؔ Է െ ǡܣ א Թൈ , 

represented the associated Laplacian matrix of ॳ. 

2.3 Power Network 

Consider a power network consisting of a set of nodes; ܰ (݊ ൌ ȁܰȁ) and represented by graph ॳ. The nodes in ॳǡ are 

categorized as power-nodes and load-nodes. Power-nodes 

have a (renewable) power source and may contain a localized 

load as well. While, load-node are the ones that (only) 

consume the real power. Both types of nodes are respectively 

represented by ܰ ൌ  ሼͳǡ ǥ ݊ } and ܰ ൌ  ሼ݊  ͳǡ ǥ ݊ ݊}, such that ݊ ൌ ݊  ݊  (N ൌ  ܰ  ܰ). 

The power consumption by ݅௧  load-node is 

represented by ǡ . The power network forms a connected 

graph in terms of power lines, that is, there exist a path (of 

power-lines) between all possible pairs of nodes in ܰ. For 

simplicity, the power lines are assumed to be lossless (pure 

inductive lines). The set ܰǡ , represents the neighbouring 

power-nodes, while ܰǡ, represents the neighbouring load-

nodes, of ݅௧ node. The matrix ܤ א Թುൈು, (with elements; ܾǡ) represents the susceptance matrix between the power-

nodes, while ܤ א Թൈಽ , (with elements; ܾǡ) represents 

the susceptance matrix between power and load nodes. The 

adjacency matrices corresponding to ܤ  is represented by ܣǡ א  Թುൈು. The power-nodes also form a connected sub-

graph in terms of communication links. The set of 

neighbouring communication nodes of ݅௧  node is 

represented by ܰǡ  with corresponding adjacency matrix 

represented by ܣ ǡ א Թುൈು . The degree matrices of ܤ ܤ , , ்ܤ   and ܣ  are denoted by Է ǡ א  Թುൈು , Է ǡ Թುൈು א ,  Էୄ ǡ א  Թಽൈಽ   and Է ǡ א  Թುൈು , ( Է ൌु൫ܤಽ൯ and Էୄ ൌ ु൫ܤ் ು൯).  The instantaneous phase 

angle and voltage magnitude of each power node is 

represented by ߠ , and ݒ , respectively. For simplicity the 

voltage magnitude at each node is considered as 1p.u. 

Emulating the behaviour of synchronous generator 

[26], the discretised dynamics of power-node is given in (1). 

Where, οݐ  is the sampling time, ݐ  represents the 

discrete time, ߠሺݐሻ  and ߱ሺݐሻ  represent the phase and 

angular frequency of ݅௧  inverter. ݀ א Թவ  is the damping 

coefficient, ݉ א Թவ is the virtual inertia of inverter [16], 

[17]. ߱ௗ א Թவ  is the desired angular frequency of the 

system. ݂ א Թ  is the additional state, represents the 

integrated control effort, while ߬ א Թவ  represents the 

inertial lag and ݑ א Թ  is the control input.   is the total 

power production of ݅௧ node, contains of power flow to the 

neighbouring power-nodes and load, ሺݐሻ ൌ σ ቀܾǡݒݒ sin ቀߠሺݐሻ െ ே್ುǡאሻቁቁݐሺߠ  ሺݐሻ, (2)   denotes the power delivered to the load; ሺݐሻ ൌǡ  ሻݐǡሺ , where ǡ  represents the local power 

consumption of power-node, while ǡሺݐሻ  represents the 

power delivered to load-nodes 

ǡ    ൌ ȁ௩ȁమோಽಽ ǡ     ݅ א ܰ ሻݐǡሺ (3)               , ൌ σ ቀܾǡݒݒ sin ቀߠሺݐሻ െ ሻቁቁݐሺߠ ǡ     ݅ א ܰאே್ಽǡ , 

             (4) 

Where, ܴǡ  is the resistance of local load. To 

translate the dynamic equations in terms of deviation variable, 

let ο߱ሺݐሻ ൌ ߱ሺݐሻ െ ߱ௗ  and οߠሺݐሻ ൌ ሻݐሺߠ െ ሻݐௗሺߠ , 

where ߠௗሺݐሻ ൌ ਜ਼߱ௗοݐ  and discrete variable ਜ਼ ൌ ݐ οݐൗ ൌͲǡ ͳǡ ʹǡ ǥ . (or ݐ ൌ ਜ਼οݐ ). For above translation, οߠሺݐሻ െοߠሺݐሻ ൌ ሻݐሺߠ െ ሻ, also subtracting ߱ௗݐሺߠ  from both side 

of (1) results in; ο ݂ሺݐሻ ൌ ݂ሺݐሻ. So (1) can be rewritten as (5). 

Let, the states of the system be represented by ߯ ൌሾοߠ           ο߱       ο ݂ሿ் א Թଷൈଵ , and ݕ ൌ ሾοߠ           ο߱ሿ்  Թଶൈଵ denote the output vectorǤ Further (5) can be compactlyא

represented as, ߯ሺݐ  ͳሻ ൌ  ࣠ ቀ߯ሺݐሻǡ οߠሺݐሻǡ ݅ ,ሻቁݐሺݑ א ܰ ǡ ݆ א ܰǡ  ܰǡ, 
ሻݐሺݕ                 ൌ ȣ߯ሺݐሻǡ          ݅ א ܰ, 

the ȣ and ࣠ሺǤ ሻ are defined in (6) and (7).  

ݐሺߠ   ͳሻ ൌ ሻݐሺߠ    ߱ሺݐሻοݐ, ߱ሺݐ  ͳሻ ൌ  ߱ሺݐሻ  ο௧ ሾെ݀ሺ߱ሺݐሻ െ ߱ௗሻ െ ሻݐሺ  ݂ሺݐሻሿ, 
 ݂ሺݐ  ͳሻ ൌ ݂ሺݐሻ െ ο௧ఛ ݂ሺݐሻ  ο௧ఛ ݐሺߠሻ,  οݐሺݑ  ͳሻ ൌ  οߠሺݐሻ   ο߱ሺݐሻοݐ, ο߱ሺݐ  ͳሻ ൌ  ο߱ሺݐሻ  ο௧ ቂെ݀ο߱ሺݐሻ െ σ ቀܾǡݒݒ sin ቀοߠሺݐሻ െ οߠሺݐሻቁቁאே್ುǡ െσ ቀܾǡݒݒ sin ቀοߠሺݐሻ െ οߠሺݐሻቁቁאே್ಽǡ െ ȁ௩ȁమோಽಽ  ο ݂ሺݐሻቃ,  ο ݂ሺݐ  ͳሻ ൌ ο ݂ሺݐሻ െ ο௧ఛ ο ݂ሺݐሻ  ο௧ఛ   ,ሻݐሺݑ

                                    ȣ ൌ ቂͳ Ͳ ͲͲ ͳ Ͳቃ א Թଶൈଷ, 

࣠ ቀ߯ሺݐሻǡ οߠሺݐሻǡ ሻቁݐሺݑ ൌ ߯ሺݐሻ  οݐ ێێۏ
ۍ ο߱ሺݐሻଵ ሾെ݀ο߱ሺݐሻ െ ሻݐሺ  ο ݂ሺݐሻሿെ ଵఛ ο ݂ሺݐሻ  ଵఛ ሻݐሺݑ ۑۑے

ې
, 

 

(1) 

 

 

 

 

 

(5) 

 

 

 

 

 

(6) 

 

 

(7) 
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Assumption 1: We relax the condition of identical 

power and communication neighbours; ܰ ൌ ܰ. Instead, 

we assume that ܰ ת ܰ ് ॹǡ ݅ א ܰ. 

2.4 Objectives of Secondary Control 

The objective of secondary control is to regulate the 

frequency to nominal values and minimize the cost of 

production. For cost minimization, optimum power 

production for each node is obtained from identical cost 

criteria introduced in [5]. So, the control objectives are; 

                                        ο߱ሺݐሻ ൌ Ͳǡ         ݅ א ܰǤ       (8) σ ቀܿሺݐሻ െ ܿሺݐሻቁ ൌ Ͳǡאேು           ݅ א ܰ .        (9) 

Where, ܿ  represents the incremental cost of power-

nodes. Frequency regulation, the primary objective of SC is 

represented in (8), while (9) represents ELD objective and is 

based on identical marginal cost criteria for all power-nodes. 

2.5 Distributed Averaging Integrator 

The DAI control scheme is based on integration of 

errors in (8) and (9). The control law for DAI is represented 

in discrete form in (10). 

Where, ݇௪  and ݇  are the tuning variables. The 

frequency deviation (ο߱ሺݐሻ) can be locally measured, in fact 

its value can be easily extracted from Primary Control of the 

inverter. Since, an ݅௧ node cannot obtain the value of ሺݐሻ 

from all the nodes in the network, it uses its communication 

neighbouring set ൫ ܰǡ൯ to form the error in (9). The control 

rapidly regulates the frequency to its nominal values but 

possesses slow converges to identical cost. Also, increasing ݇  to improve ELD, adversely affects the frequency 

regulation, indicating its troublesome tuning.  

 

3. Design of Distributed Model Predictive 
Secondary Control  

Let ߯כ ൌ ሾοߠכሺݐሻ ο߱כሺݐሻ ο ݂כሺݐሻሿ , be the 

equilibrium point that globally satisfies the control objective 

(8) and (9). From (8), the equilibrium point for frequency 

deviation is; ο߱כ ൌ Ͳ . Now, using the nearest neighbor 

communication approach of (10), (9) can be rewritten in 

matrix form as, ࣦܲܥ ൌ Ͳ.               (11) 

Where ܥ ൌ ुሺܿሻ א  Թುൈು , ܲ ൌ ሻǡሺ݈݉ܿ Թುൈଵ and ࣦא ൌ Է െ ܣ א  Թುൈು is the Laplacian matrix 

with rank equal to ݊ െ ͳ. So, the equilibrium points for οߠ 
and ο ݂ cannot be obtained using (11). Since the equilibrium 

point is not known exactly, we adopt iterative method and 

find the desired-states (߯ௗሺݐሻ) in each iteration and force the 

state ߯ሺݐሻ to track the desired-state. The desired values are 

calculated based on local and neighbouring information and 

updated after each iteration, such that, ߯ௗሺݐሻ asymptotically 

converges to ߯כ as ݐ ՜ λ. The desired-states are defined as, ߯ௗሺݐሻ ൌ ሾοߠௗሺݐሻ ο߱ௗሺݐሻ ο ݂ௗሺݐሻሿ்  ൌ ȩ ቀ߯ሺݐሻ  ൫ߙ ߯כሺݐሻ െ ߯ሺݐሻ൯ቁ ǡ     ݅ א ܰ 

Where, ߯כሺݐሻ is the local intermediate-optimum point 

that satisfies (8) and (9) at every discrete time ݐ ߙ , ؔሼߙ א ԹȁͲ ൏ ߙ ൏ ͳሽ  is the step size and ȩ ൌ ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ ͳ൩ , 

implying that ο߱ௗሺݐሻ ൌ Ͳ  (also ο߱ௗሺݐሻ ൌ ο ߱כሺݐሻ ൌ Ͳ ). 

Now using ο߱ሺݐሻ ൌ Ͳ, in (5) results in; ሺݐሻ ൌ ο ݂ሺݐሻ, (and 

during steady state; ሺݐሻ ൌ ο ݂ሺݐሻ ൌ  ሻ ). Following theݐሺݑ

same approach of (10) and writing (9) using communication 

neighbouring set ൫ ܰǡ൯  provides; σ ቀܿሺݐሻ െאேǡܿሺݐሻቁ ൌ ͲǤ So the value of intermediate-optimum power is,  ο ሚ݂כሺݐሻ ൌ ሻݐሺכ ൌ σ ೕೕሺ௧ሻೕאಿǡหேǡห ǡ     ݅ א ܰ      (12) 

Note, that the value ο ሚ݂כሺݐሻ  is based entirely on 

neighbouring information and represents the intermediate-

optimum power injection of local node. Now, to derive the 

value of οߠ෨כሺݐሻ, we evaluate (5) using (2), (8) and (12), and 

using Assumption 1, resulting in (13), (14) and (15). 

Where ƴሺݐሻ ൌ  σ ቀܾǡݒݒ sin ቀοߠሺݐሻ െאே್ುషǡοߠሺݐሻቁቁ. The first two terms on right hand side, in (15), can 

be measured locally, while the last term is obtained using peer 

communication. We use the non-empty set ܰתǡ 
(Assumption 1) in (15) to find the intermediate phase 

equilibrium value. 

Remark 1: The MG may shift from islanded to gird-

connected mode, requiring a prior phase synchronization 

between MG and main grid [9], [10]. For that reason, the 

phase of a power-node near PCC (let it be node 1; ݊ଵ) is made 

to follow a reference value, such that phase difference at PCC 

is kept within the acceptable limits [12].  

Without loss of generality, let the reference phase be ߠௗሺݐሻ ൌ ਜ਼߱ௗοݐ (used in (5)). So, from (15) we can obtain the 

value of οߠ෨כሺݐሻ as presented in (16). 

ݐሺݑ  ͳሻ ൌ ሻݐሺݑ െ ݇௪൫ο߱ሺݐሻ൯οݐ െ ݇ σ ሺܿݑሺݐሻ െ ܿݑሺݐሻሻοݐאேǡ , σ ቀܾǡݒݒ sin ቀοߠ෨כሺݐሻ െ οߠሺݐሻቁቁאே್ುǡ  ሻݐሺ ൌ ο ሚ݂כሺݐሻ, σ ቀܾǡݒݒ sin ቀοߠ෨כሺݐሻ െ οߠሺݐሻቁቁאே್ುתǡ ൌ െ σ ቀܾǡݒݒ sin ቀοߠሺݐሻ െ οߠሺݐሻቁቁאே್ುషǡ െ ሻݐሺ  ο ሚ݂כሺݐሻ, σ ቀܾǡݒݒ sin ቀοߠ෨כሺݐሻ െ οߠሺݐሻቁቁאே್ುתǡ ൌ െపሺݐሻሖ െ ሻݐሺ  ο ሚ݂כሺݐሻ, 

οߠ෨כሺݐሻ ൌ ൝ Ͳǡ                                                                   ݅ ൌ ͳǡି݊݅ݏଵ ൜ഢƴ ሺ௧ሻିಽሺ௧ሻାሺ௧ሻඥሺ௧ሻమାԵሺ௧ሻమ ൠ െ ଵି݊ܽݐ ቀԵሺ௧ሻሺ௧ሻቁ ǡ     ݅ ൌ ʹ ǥ ݊Ǥ  

(10) 

(13) 

(14) 

(15) 

(16) 
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Where, ȯሺݐሻ ൌ σ ܾǡݒݒ cos ቀοߠሺݐሻቁאே್ುתǡ  and  Եሺݐሻ ൌ σ ܾǡݒݒsin ቀοߠሺݐሻቁאே್ುתǡ . From (12) and 

(16), ߯ௗሺݐሻ ൌ ȩሺͳ െ ሻݐሻ߯ሺߙ  ȩߙሾοߠ෨כሺݐሻ ο ߱כሺݐሻ ο ሚ݂כሺݐሻሿ, ݕௗሺݐሻ ൌ ȣ߯ௗሺݐሻ          (17)                                                                  

 

3.1 Local Control of Power-Nodes 

The local control of each node is designed to track the 

desired-state ߯ௗሺݐሻ . The desired-state is calculated for 

compete length of prediction horizon (ࣨऀ ), with the help of 

local measurement and information from neighbouring nodes 

( ܰǡ). The length of prediction horizon (ࣨऀ ), is same for all 

the individual power-nodes. Following [28][29], we define 

three different types of state trajectories over prediction 

horizon; ߯ሺ݇ȁݐሻ , the predicted trajectories, ߯ሺ݇ȁݐሻ , the 

optimal trajectories and  ߯ሺ݇ȁݐሻ, the assumed trajectories. 

The state trajectories ߯ሺ݇ȁݐሻ are used in the optimization 

problem, ߯ሺ݇ȁݐሻ is the optimal state trajectories obtained 

after solving the local optimization problem, while ߯ሺ݇ȁݐሻ 

is obtained from optimal trajectories by shifting one step in 

time. The assumed state trajectories are communicated 

between the neighbouring nodes to form the local control 

problem. Similarly, ݑሺ݇ȁݐሻ denotes predicted control-input 

used in optimization problem while, ݑሺ݇ȁݐሻ and ݑሺ݇ȁݐሻ 

are the optimal control and assumed control input, 

respectively.  

3.2 Optimization Problem ॲ 
The local open-loop optimal control problem for ݅௧ 

node is given below. The cost function penalizes the deviation 

of output from desired and assumed value. ݉݅݊ሺ௨ሻ  ܬ൫ݕሺ݇ȁݐሻǡ ሻǡݐሺ݇ȁݑ ሻǡݐሺ݇ȁݕ ௗሺǣݕ ȁݐሻ൯, ݐ ݆ܾݑݏ. 

          ߯ሺͲȁݐሻ ൌ ߯ሺͲȁݐሻ, 

          ߯ሺ݇  ͳȁݐሻ ൌ ࣠ ቀݔሺ݇ȁݐሻǡ ሻǡݐሺ݇ȁߠ  ,ሻቁݐሺ݇ȁݑ

ሻݐሺ݇ȁݕ                  ൌ ȣ߯ሺ݇ȁݐሻ, 

ሻݐሺ݇ȁݑ                  א ܷ, 
൫ࣨऀݕ              หݐ൯ ൌ ௗ൫ࣨऀݕ หݐ൯,       (18) 

             ݂൫ࣨऀ ȁݐ൯ ൌ ο ݂ௗ൫ࣨऀ ȁݐ൯.           (19) 

The cost function ܬሺǤ ሻ is defined in (20). The terminal 

constraints (18) and (19), are used to force the state to reach 

the desired value; ߯ௗ൫ࣨऀ หݐ൯, at the end of prediction horizon. ܴ א Թவଶൈଶ and ܵ א Թவଶൈଶ represents the symmetric weighting 

matrices. R penalizes the deviation of trajectories from 

desired values, while ܵ penalizes the deviation between the 

assumed and predictive trajectories. 

Remark 2: Tracking the desired value is actually 

tracking the local intermediate-optimum values at any given 

(discrete) time instant ݇Ǥ The desired value defined in (17) do 

not necessarily converge to a global optimum point and 

requires a careful selection of step size ߙ . The sufficient 

condition for selection of ߙ is discussed in Section 4. 

3.3 DMPC Algorithm 

The DMPSC algorithm consists of the following steps; 

I. Initialization 

 ߯ሺͲȁͲሻ ൌ ߯ሺͲሻ ൌ߯ǡ,
  

ሺǣݑ  ȁͲሻ ൌ  ,ǡݑ
Communicate the initial state; ߯ǡ to neighbouring nodes 

and construct the initial assumed values (߯ሺǣ ȁͲሻ), ߯ሺ݇  ͳȁͲሻ ൌ  ࣠ ቀ߯ሺ݇ȁͲሻǡ οߠሺͲȁͲሻǡ  ,ሺ݇ȁͲሻቁݑ

ሺ݇ȁͲሻݕ        ൌ ȣ߯ሺ݇ȁͲሻ,      ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ͳ, 

II. DMPSC Iterations 

1) Calculate the desired-states phase ቀ߯ௗሺǣ ȁݐሻቁ,  

2) Solve the optimization problem ॲ, for optimum 

control input ݑሺǣ ȁݐሻ, 

3) Compute the optimal trajectories, 

 ߯ሺͲሻ ൌ ߯ሺݐሻ, ߯ሺ݇  ͳȁݐሻ ൌ  ࣠൫߯ሺ݇ȁݐሻǡ οߠሺ݇ȁݐሻǡ       ,ሻ൯ݐሺ݇ȁݑ

                    ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ͳ, 

4) Assumed values are obtained by one step shifting the 

optimum values, ݑሺ݇ȁݐ  ͳሻ ൌ ሺ݇ݑ  ͳȁݐሻ,      ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ʹ, ߯ሺ݇ȁݐ  ͳሻ ൌ ߯ሺ݇  ͳȁݐሻ        ݇ ൌ Ͳǡͳǡ ǥ ǡ ࣨऀ െ ͳ, 

      (21) 

5) The last value of assumed input maintains the desired-

states as shown in (22) while, (23) represents the last 

value of assumed states. 

1) Implement the first value of control law, ߯ሺݐ  ͳሻ ൌ  ࣠൫߯ሺݐሻǡ οߠሺͲȁݐሻǡ  ,ሻ൯ݐሺͲȁݑ

2) Increment the time ݐ ൌ ݐ  ͳ, 

3) Communicate the assumed values (߯ሺǣ ȁݐሻ, power 

injection ൫ሺݐሻ൯ and incremental cost ൫ܿሺǣ ȁݐሻ൯ to 

neighbouring nodes,  

4) Go to step ͳ. 

Where, ߯ǡ  and ݑǡ  represent the initial values of 

states and input respectively. The state trajectories are forced 

to reach the desired values at the end of prediction horizon. 

Also, the last values of assumed input in (22) maintains the 

desired-state values achieved in (18) and (19). Step No. 6 

ሻǡݐሺ݇ȁݕ൫ܬ ሻǡݐሺ݇ȁݑ ሻǡݐሺ݇ȁݕ ሻ൯ݐௗሺ݇ȁݕ ൌ σ ঌ൫ݕሺ݇ȁݐሻǡ ሻǡݐሺ݇ȁݑ ሻǡݐሺ݇ȁݕ ሻ൯ࣨऀݐௗሺ݇ȁݕ ିଵୀ ,                                                                         ൌ σ ȁȁݕሺ݇ȁݐሻ െ ሻȁȁோݐௗሺ݇ȁݕ  ȁȁݕሺ݇ȁݐሻ െ ሻȁȁௌࣨऀݐሺ݇ȁݕ ିଵୀ ൫ࣨऀݑ  , െ ͳหݐ  ͳ൯ ൌ ο ݂ௗ൫ࣨऀ ȁݐ൯,    

       ߯൫ࣨऀ ȁݐ  ͳ൯ ൌ  ࣠ ቀ߯൫ࣨऀ െ ͳȁݐ  ͳ൯ǡ οߠ൫ࣨऀ െ ͳȁݐ൯ǡ ൫ࣨऀݑ െ ͳหݐ  ͳ൯ቁ, 

ݐሺ݇ȁݕ            ͳሻ ൌ ȣ߯ሺ݇ȁݐ  ͳሻ, 

 

 

(20) 

 

(22) 

(23) 
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implements the first value of control input to update the actual 

states. In Step No. 1, the desired values are calculated using 

the (local and neighbouring) assumed states trajectories, over 

the complete length of prediction horizon. Equation (17) 

involves intermediate-optimum state trajectories ሺ ߯כሺǣ ȁݐሻሻ , 

for which ο ሚ݂כሺǣ ȁݐሻ is calculated using (12) ቀο ሚ݂כሺǣ ȁݐሻ ൌο ሚ݂כሺݐሻቁ  and οߠ෨כሺǣ ȁݐሻ  is obtained using (16) (employing οߠሺǣ ȁݐሻ, పሺݐሻሖ  and ሺݐሻ ). Note that the value of  ο ሚ݂כሺǣ ȁݐሻ, పሺݐሻሖ  and ሺݐሻ do not change over prediction horizon. 

 

4. Stability Analysis 

This Section discusses the stability of DMPSC 

algorithm. The stability is discussed in two portions, first the 

convergence of desired-states to global optimum is discussed 

with the help of terminal constraints, followed by Lyapunov 

stability of the cost function.  

4.1 Terminal Constraints and Convergence of 
Desired-State 

The value of desired-state (߯ௗ) in (17), is based on 

intermediate-optimum state value ( ߯כ ) in (15). For 

convergence proof, we linearize (15), assuming that the phase 

difference between the nodes in MG scenario is quite small. 

DMPSC algorithm employs assumed state (߯) in (17) for the 

desired-states, over the complete length of prediction horizon. 

So, (15) can be written as (24). 

To writing (24), in matrix form, representing the 

complete network, we start with (12),  ܨ෨כሺ݇ȁݐሻ ൌ Էି ଵିܥଵܣܲܥሺݐሻ.        

(25) 

Where, ܨ෨כ ൌ ൫ο݈݉ܿ ሚ݂כ൯ א  Թುൈଵǡ ܥ ൌ ुሺܿሻ ܲ Թುൈು andא  ൌ ሻሺ݈݉ܿ א Թುൈଵ. Now, (24) in matrix 

form is presented in (26). 

Were, ሖܲ ൌ ݈݉ܿ ቄσ ቀܾǡݒݒ sin ቀοߠሺ݇ሻ െאே್ುషǡοߠሺ݇ሻቁቁቅ א Թುൈଵ ,  ܲ ൌ ሻሺ݈݉ܿ א Թುൈଵ ,  ܸ ൌ ुሺݒሻ א Թುൈು ܨ  , ൌ ሺ݈݉ܿ ݂ሻ א Թುൈଵ ,  οߠ ൌ݈ܿ݉ሺοߠሻ א Թುൈଵ. 

Let, ܭ ൌ Էି ଵିܥଵܣܥ  and assuming the voltage at 

each node to be one per-unit (ܸ ൌ  .ሻ, (26) results in (27)ܫ

Remark 3: Hadamard product is used in (27) to divide 

the neighbouring set ܰ. Where, ሺܣ ת ሻܣ ל   representsܤ

the neighbouring nodes with power and communication links 

while, ܲሺݐሻሖ  is composed of neighbouring nodes with power 

link but no communication (ሺܣ െ ሻܣ ל   .(ܤ

Remark 4: For a matrix ܺ א Թൈ, ܺ  contains the 

row sum of ܺ. So, the degree matrix of ܺ can be written as Է ൌ  ुሺܺሻ.  

Now, let ी ൌ ሺܣ ת ሻܣ ל ܤ א Թುൈು , with 

degree matrix of ी ; Էी ൌ ुሺीುሻ א Թುൈು . So, (27) 

becomes, οߠ෨כሺ݇ȁݐሻ ൌ Էीିଵ൛ीοߠሺ݇ȁݐሻ  ሻݐሺܲܭ െ ܲሺݐሻ െ ሖܲ ሺݐሻൟ  (28) 

Now, we represent ܲሺݐሻ, ሖܲ ሺݐሻ and ܲሺݐሻ in terms of 

assumed phase deviation ሺοߠሻ. From (2) we have,   ܲሺݐሻ ൌ ु൫οߠሺݐሻ൯ܤು െ ሻݐሺߠοܤ  ܲሺݐሻ, ܲሺݐሻ ൌ ሺԷ െ ሻݐሺߠሻοܤ  ܲሺݐሻ,       (29) 

from (24) and (26) we represent ሖܲ ሺݐሻ as in (30).  

Now, let ी ൌ ሺܣ െ ሻܣ ל ܤ  and Է  ൌ ी ು  so, 

(30) becomes, ሖܲ ሺݐሻ ൌ ൫Է  െ ी ൯οߠሺݐሻ,        (31) 

now, ܲሺݐሻ ൌ ቀԷ െ ்ܤԷୄିଵܤ ቁ οߠሺݐሻ  ܮԷୄିଵܤ  ܲ, 

(32) 

using (29), (31) and (32) in (28) results in (33). 

Where, ܮ ൌ ǡ൯൫݈݉ܿ א  Թಽൈଵ  represents the 

power consumption by load-nodes. The complete derivation 

of (32) is available in Appendix I. Note that, (33) is the 

linearized-matrixed form of (16), represents the intermediate-

equilibrium point at a given time instant.  

Now, the following lemma defines the equilibrium 

point of the network in terms of phase deviations. 

Lemma 1: For the dynamic system defined in (5), with 

control objectives (8) and (9), the following is sufficient 

condition for global optimum point in DMPSC algorithm. οߠሺݐ  ͳሻ ൌ οߠௗሺݐ  ͳሻ ൌ οߠሺݐሻ ൌ οߠௗሺݐሻ.     (34) 

Proof: Considering (17), (34) implies that οߠሺݐሻ ൌοߠௗሺݐሻ ൌ οߠ෨כሺݐሻ  and ο߱ሺݐሻ ൌ Ͳ  (for all power-nodes). 

Now, following the derivation of οߠ෨כሺݐሻ, it means that all 

power nodes are injecting optimum power and achieved the 

ELD, at nominal frequency, hence ߯ሺݐሻ ൌ  ז         .ሻݐሺכ߯

Following lemmas, together with Lemma 1, would be 

useful for convergence proof. 

Lemma 2: (Gersgorin Disk Criteria) Let ܺ ൌ ൧ݔൣ  of ܺ will lie in union (ߪ) Թൈ be a matrix, then eigen valuesא

of circles (ࣝ) defined by, ࣝ ൌ ڂ ൛ߪ א ԧȁȁߪ െ ȁݔ  σ ୀଵǡஷݔ ൟୀଵ . σ ቀܾǡݒݒ ቀοߠ෨כሺ݇ȁݐሻ െ οߠሺ݇ȁݐሻቁቁאே್ುתǡ ൌ െ σ ൬ܾǡݒݒ ቀοߠሺ݇ሻ െ οߠሺ݇ሻቁ൰אே್ುషǡ െ ሻݐሺ  ο ሚ݂כሺݐሻ, ु ቀοߠ෨כሺ݇ȁݐሻቁ ൛ሺܣ ת ሻܣ ל ܸುൟܤܸ െ ሺܣ ת ሻܣ ל ሻݐሺ݇ȁߠοܸܤܸ  ሖܲ ሺݐሻ  ܲሺݐሻ ൌ Էି ଵିܥଵܣܲܥሺݐሻ. ु ቀοߠ෨כሺ݇ȁݐሻቁ ൛ሺܣ ת ሻܣ ל ುൟܤ െ ሼሺܣ ת ሻܣ ל ሻݐሺ݇ȁߠሽοܤ ൌ ሻݐሺܲܭ െ ܲሺݐሻሖ െ ܲሺݐሻ, ሖܲ ሺݐሻ ൌ ु൫οߠሺݐሻ൯ሺܣ െ ሻܣ ל ುܤ െ ሺܣ െ ሻܣ ל ሻݐሺ݇ȁכ෨ߠሻ, οݐሺߠοܤ ൌ Էीିଵ ቄीοߠሺ݇ȁݐሻ  ቄܭሺԷ െ ሻܤ  ൫ܭ െ ು൯ܫ ቀԷ െ ்ܤԷୄିଵܤ ቁ െ ൫Է  െ ी ൯ቅ οߠሺݐሻ                                ൫ܭ െ ܮԷୄିଵܤು൯ܫ  ൫ܭ െ ು൯ܫ ܲቅ. 

(24) 

(26) 

(27) 

(30) 

(33) 
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Lemma 3: The matrix, ሚࣦ = ൣκ א Թ ȁκ  Ͳǡ ݆ ്݅ Ƭ σ หκหୀଵǡஷ ൌ κ൧ǡ א Թൈ , is an altered Laplacian 

matrix and  ܺ ൌ ुሺݔሻ א Թൈ, with ݔ א Թஹ, then ሚࣦ  ܺ 

is invertible if at least one ݔ  Ͳ. 

Proof: The proof of the lemma is similar to the one 

used for sum of Laplacian and pinning matrix in [30].  

 ז                        

Theorem 1: If ॳ satisfies Assumption 1, then terminal 

state of problem ॲ converges asymptotically to equilibrium 

state, satisfying the objectives (8) and (9). 

Proof: Constrained by (18) and (19), the ߯, reaches ߯ௗ at the end of prediction horizon. Considering (21), the  

assumed value of output can be written as, ݕ൫ࣨऀ െ ͳหݐ  ͳ൯ ൌ ൫ࣨऀݕ หݐ൯ ൌ ௗ൫ࣨऀݕ หݐ൯.        (35) 

Since, ο߱൫ࣨऀ െ ͳหݐ  ͳ൯ ൌ ο ߱൫ࣨऀ หݐ൯ ൌ Ͳ , so οߠ൫ࣨऀ หݐ  ͳ൯ ൌ οߠௗ൫ࣨऀ หݐ൯. Now, the terminal value of 

desired phase deviation for next iteration is given by (36). 

Using (33) in (36) results in (37). 

Let, ܼଵ ൌ Էीିଵ ीǡߙ א Թುൈು , Ժଵ ൌ ሺͳ െ ುܫሻߙ ܼଵǡ א Թುൈು , Ժଶ ൌ Էीିଵ ൬ܭሺԷ െ ሻܤ  ൫ܭ െܫು൯ ቀԷ െ ்ܤԷୄିଵܤ ቁ െ ൫Է  െ ी ൯൰ ǡ א Թುൈು  and Ժଷ ൌ ܭԷीିଵ൫ߙ െ ು൯ܫ ቀܤԷୄିଵܮ  ܲቁ ǡ א Թುൈଵ. So, (37) 

becomes (38). 

From (16), we have οߠ෨ଵכሺ݇ሻ ൌ Ͳ, so we replace the first 

rows of ܼଵ  in (38) with zero. Let Ժഥ ൌ ुሺሾͲ ͳ ͳ ǥ ͳሿ்ሻ Թುൈುא . Now, let Ժഥଵ ൌ ሺͳ െ ሻIುߙ  Ժഥܼଵǡ א Թುൈು , Ժഥଶ ൌԺഥԺଶǡ א Թುൈು  and Ժഥଷ ൌ ԺഥԺଷǡ א Թುൈଵ . So, (38) results in 

(39). 

Lemma 4: The eigen values (ߣଵǡ) of Ժഥଵ lies within the 

unit circle for all values of ߙ א ሺͲǡͳሻ. 

Proof: All the diagonal values of Ժഥଵ  are equal to ሺͳ െ  except the ,ߙ ሻ, while the row sum of Ժഥଵ is equal toߙ

first row. So according to lemma 2, all the eigen values of Ժഥଵ 

lies within the union of following disks, ൛หߣଵǡ െ ሺͳ െ ሻหߙ Ͳൟ  ൛หߣଵǡ െ ሺͳ െ ሻหߙ  ൟ or ൛ͳߙ െ ߙʹ  ଵǡߣ  ͳൟ, for ݅ ൌͳǡ ǥ, ݊. 

Now, we prove using contradiction that eigen values 

of Ժഥଵ does not lies on boundary of unit circle. Let, some eigen 

values of Ժഥଵ lie on boundary of unit circle (ߣଵǡ=1) and let, ߩ 

be the corresponding eigen vector, then we can write,  Ժഥଵ ߩ ൌ ቀሺͳ ,ߩ െ ುܫሻߙ  ԺഥԷीିଵ ीቁߙ ߩ ൌ  ,ߩ

ುܫ൫ߙ                െ ԺഥԷीିଵ ी൯ ߩ ൌ Ͳ. 

Since, ߙ ് Ͳ , now it remains to prove that, Ȟು ൌܫು െ ԺഥԷीିଵ ी א Թುൈು  is positive definite. Since, the top 

row of Ȟು contains zeros except the first element which is ͳ, 

we can remove the top row and first column of Ȟು without 

effecting its determinant. Now, we can represent the 

remaining matrix Ȟುିଵ ൌ ൫ܫುିଵ െ Էीିଵ ी൯ א Թುିଵൈುିଵ, 

by modified Laplacian matrix ሚࣦ א Թሺುିଵሻൈሺುିଵሻ.  Ȟುିଵ ൌ ൫ܫುିଵ െ Էीିଵ ी െ Ȳ൯  Ȳ ൌ  ሚࣦ  Ȳ. 

Where, ሚࣦ ൌ ൫ܫು െ Էीିଵ ी െ Ȳ൯ , Ȳ ൌ ुሺɗଵሻ Թሺುିଵሻൈሺುିଵሻǡא ݆ ൌ ʹǡ ǥ ǡ ݊ and ɗ א Թஹ are the elements 

of  Ȟು . Since, ॳ  forms a connected graph, Ȳ cannot be completely zero and from lemma 3, ሚࣦ  Ȳ is 

positive definite, completing the proof of lemma 4.           ז 

The eigen values ( ଶǡߣ ) of Ժഥଶ  however, may lies 

outside the unit circle. With proper selection of step size ߙ, 

the eigen values can be forced to lie inside the unit circle. Let, 

the maximum eigen value of Ժഥଶ  be ߣଶǡ௫ , and with  ߙ ൏ߣଶǡ௫ିଵ , then eigen values of ߙԺഥଶ will lie within unit circle. 

The eigen values of Ժഥଵ and ߙԺഥଶ show the asymptotic 

converge of (38) to steady state, whereupon satisfies lemma 

1, completing the proof of Theorem 1.            ז 

Remark 5: Smaller values of ߙ will move the eigen 

values of Ժഥଶ  towards the origin. On the other hand, eigen 

values of Ժഥଵ  lies between ሺͳ െ ሻߙʹ ൏ ߣ ൏ ͳ . The small 

values of ߙ  will push the eigen values of Ժഥଵ  towards the 

boundary, resulting in slow convergence. So, the optimum 

value of ߙ does not lie near the boundaries of interval ሺͲǡͳሻ, 

but somewhere in the middle.  

4.2 Convergence of Cost Function 

Assuming, that the system satisfies Theorem 1 at time ݐ ൌ स) ࢚ א Թவ ) then, ݕ൫ࣨऀ ȁस൯ ൌ ൫ࣨऀכݕ ȁस൯, then at any 

time ݐ  स, a feasible solution of problem ॲ is given by [29], ቀݕሺǣ ȁݐሻǡ ሺǣݑ ȁݐሻቁ ൌ ൫ݕሺǣ ȁݐሻǡ ሺǣݑ ȁݐሻ൯.      (40) 

οߠ൫ࣨऀ ȁݐ  ʹ൯ ൌ οߠௗ൫ࣨऀ ȁݐ  ͳ൯ ൌ ሺͳ െ ൫ࣨऀߠሻοߙ ȁݐ  ͳ൯  ൫ࣨऀכ෨ߠοߙ ȁݐ  ͳ൯, οߠ൫ࣨऀ ȁݐ  ʹ൯ ൌ ൛ሺͳ െ ುܫሻߙ  ൫ࣨऀߠԷीିଵीൟοߙ ȁݐ  ͳ൯  Էीିଵߙ ቄܭሺԷ െ ሻܤ  ൫ܭ െ ು൯ܫ ቀԷ െ                                   ܤԷୄିଵܤ் ቁ െ ൫Է  െ ी ൯ቅ οߠሺݐ  ͳሻ  ܭԷीିଵ൫ߙ െ ು൯ܫ ቄܤԷୄିଵܮ  ܲቅ, οߠ൫ࣨऀ ȁݐ  ʹ൯ ൌ Ժଵοߠ൫ࣨऀ ȁݐ  ͳ൯  ݐሺߠԺଶοߙ  ͳሻ  Ժଷ, οߠ൫ࣨऀ ȁݐ  ʹ൯ ൌ Ժഥଵοߠ൫ࣨऀ ȁݐ  ͳ൯  ݐሺߠԺഥଶοߙ  ͳሻ  Ժഥଷ, ܬכሺݐ  ͳሻ െ ሻݐሺכܬ  െ݈ ቀݕሺͲȁݐሻǡ ሻǡݐሺͲȁݑ ሻǡݐሺͲȁݕ ሻቁݐௗሺͲȁݕ െ σ ȁȁݕ െ ȁȁௌࣨऀݕ ିଵୀ ,         ݅ א ܰ. ܬכሺݐ  ͳሻ  ሺǣݕ൫ܬ ȁݐ  ͳሻǡ ሺǣݑ ȁݐ  ͳሻǡ ሺǣݕ ȁݐ  ͳሻǡ ௗሺǣݕ ȁݐ  ͳሻ൯, ܬכሺݐ  ͳሻ  σ ݈൫ݕሺ݇ȁݐ  ͳሻǡ ݐሺ݇ȁݑ  ͳሻǡ ݐሺ݇ȁݕ  ͳሻǡ ݐௗሺ݇ȁݕ  ͳሻ൯ࣨऀ ିଵୀ , 

(36) 

 

(37) 

 

(38) 

(39) 

(41) 

(42) 

(43) 
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(40) provides a feasible but not necessarily an optimal 

solution for ॲ. Now, the optimum value of the cost function 

is given by, ܬכሺݐሻ ൌ ሺǣݕ൫כܬ ȁݐሻǡ ሺǣݑ ȁݐሻǡ ሺǣݕ ȁݐሻǡ ௗሺǣݕ ȁݐሻ൯.  

Theorem 2: If ॳ satisfy Assumption 1 and Theorem 1, 

then local cost function converges asymptotically and 

satisfies (41). 

Proof: We start by comparing a sub-optimal cost 

function using (40), with the optimum cost function (ܬכ), at 

time ݐ  ͳ  स, as shown in (42) and (43). 

Considering, (18), (20) and (40); ݈൫ݕ൫ࣨऀ െ ͳȁݐ ͳ൯ ǡ ൫ࣨऀݑ െ ͳȁݐ  ͳ൯ ǡ ൫ࣨऀݕ െ ͳȁݐ  ͳ൯ ǡ ௗ൫ࣨऀݕ െ ͳȁݐ ͳ൯ ൯ ൌ Ͳ. Now, from (21); ݕሺ݇ȁݐ  ͳሻ ൌ ሺ݇ݕ  ͳȁݐሻ so 

(43) results in (45). 

Now, changing the index of summation in (45) provides 

(46), then subtracting ܬכሺݐሻ from ܬכሺݐ  ͳሻ, results in (47), 

(48) and (49). 

From definition of cost function (20); ቀ݈൫ݕሺͲȁݐሻǡ ሻǡݐሺͲȁݑ ሻǡݐሺͲȁݕ ሻ൯ݐௗሺͲȁݕ  σ ȁȁݕ െࣨऀ ିଵୀݕȁȁௌቁ  Ͳ, satisfying Theorem 2.             ז 

Theorem 3: If ॳ satisfy Assumption 1, Theorem 1&2, 

then total cost of network converges asymptotically and 

satisfies (50). 

Where ॵכሺݐሻ ൌ σ ሻேುୀଵݐሺכܬ . 

Proof: The proof of Theorem 3 is fairly, obvious; by 

summing (49) for all power-nodes gives (50).        ז 

 

5. Performance Validation 

To evaluate the performance of proposed DMPSC, a 

MATLAB based experimental setup is established consists of 

five power-nodes; ܰ ൌ  ሼ݊ଵǡ ǥ ݊ହ}, with local-loads; ܲ ൌ൛Ͳǡ Ͳǡ Ͳǡ ǡସǡ Ͳൟ and two load-node ܰ ൌ  ሼ݊ǡ ݊}, as shown 

in Figure 1. The power lines connecting the nodes are purely 

inductive. The parameters of power-nodes and susceptance 

matrices ܤ  and ܤ  are represented in Appendix II. The 

parameters of DMPSC (and DAI), and adjacency matrix ܣ 

associated with the communication links are also listed in 

Appendix II. For comparative analysis, DAI based SC is also 

tested for same experimental setup. Keeping in view, the slow 

response of DAI, the simulation time is set to “40 seconds”. 

5.1 Test Case 

Two different types of disturbances; abrupt change in 

incremental cost (ܿ) and load (ǡ), are introduced to test the 

performance of DMPSC. The simulation of time “7.5 seconds” 
is assumed to be the start of peak-hour where, the incremental 

cost of four (out of five) nodes is increased abruptly. Then, 

instant load change is introduced at simulation time of “15 
seconds”, resulting in power and frequency fluctuations. The 

change in incremental cost is a planned-disturbance where the 

start of peak hours is known in advance to every node and 

each node communicates its incremental cost in the 

prediction horizon, to its neighbouring nodes. However, 

sudden load change introduced at “15 seconds” is an 
unplanned-disturbance where power-nodes do not have prior 

knowledge of the disturbance. Table A2 and Table A3 in 

Appendix II, lists the values of incremental costs and load 

demands before and after the respective disturbances. 

The simulations are performed at two separate 

sampling times, which corresponds to different 

communication-bandwidths in physical implementation, 

while keeping the rest of the environment identical. First, the 

simulation is performed with sampling time equal to 10ms, 

then sampling time is increased to 100ms, indicating a 

reduction in bandwidth. Figure 2 and Figure 3 represent the 

simulation results of DMPSC and DAI with sampling time 

equal to 10ms, respectively, while Figure 4 and Figure 5 

contain the respective results at 100ms sampling time.  

n1 n2

n6

n5 n4

n3
n7

pl,6

pl,7

PLL,4

n1
n2

n3

n4n5

power line
communication link

Power 
Network

Communication 
Network

 

Figure 1: 7-node MG Model. 

ݐሺכܬ  ͳሻ  σ ݈൫ݕሺ݇  ͳȁݐሻǡ ሺ݇ݑ  ͳȁݐሻǡ ሺ݇ݕ  ͳȁݐሻǡ ௗሺ݇ݕ  ͳȁݐሻ൯ࣨऀ ିଶୀ ݐሺכܬ ,  ͳሻ  σ ݈൫ݕሺ݇ȁݐሻǡ ሻǡݐሺ݇ȁݑ ሻǡݐሺ݇ȁݕ ሻ൯ࣨऀݐௗሺ݇ȁݕ ିଵୀଵ ݐሺכܬ ,  ͳሻ െ ሻݐሺכܬ  σ ݈൫ݕሺ݇ȁݐሻǡ ሻǡݐሺ݇ȁݑ ሻǡݐሺ݇ȁݕ ሻ൯ݐௗሺ݇ȁݕ െࣨऀ ିଵୀଵ                                      σ ݈൫ݕሺ݇ȁݐሻǡ ሻǡݐሺ݇ȁݑ ሻǡݐሺ݇ȁݕ ሻ൯ࣨऀݐௗሺ݇ȁݕ ିଵୀ ,                                    σ ൫ȁȁݕሺ݇ȁݐሻ െ ሻȁȁோݐௗሺ݇ȁݕ  ȁȁݕሺ݇ȁݐሻ െ ሻȁȁௌ൯ࣨऀݐሺ݇ȁݕ ିଵୀଵ െ  

                                  σ ൫ȁȁݕሺ݇ȁݐሻ െ ሻȁȁோݐௗሺ݇ȁݕ  ȁȁݕሺ݇ȁݐሻ െ ሻȁȁௌ൯ࣨऀݐሺ݇ȁݕ ିଵୀ ,                                    െ݈ ቀݕሺͲȁݐሻǡ ሻǡݐሺͲȁݑ ሻቁݐሺͲȁݕ െ σ ȁȁݕ െ ȁȁௌࣨऀݕ ିଵୀ .  ॵכሺݐ  ͳሻ െ ॵכሺݐሻ  െ σ ݈ ቀݕሺͲȁݐሻǡ ሻǡݐሺͲȁݑ ሻǡݐሺͲȁݕ ሻቁேುୀଵݐௗሺͲȁݕ െ σ σ ȁȁݕ െ ȁȁௌࣨऀݕ ିଵୀேುୀଵ , 

(45) 

(46) 

 

(47) 

 

(48) 

 

(49) 

(50) 
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5.2 Simulation Results for DMPSC (Sampling Time: 
10ms) 

The deviation in frequencies in response to the 

induced disturbances is illustrated in Figure 2a. The 

frequency deviation in response to planned-disturbance at 7.5 

seconds, is much smaller as compared to deviation produced 

due to unplanned-disturbance at 15 seconds. In case of 

planned disturbance, each node starts anticipating the 

upcoming change before 7.5 seconds, resulting in relatively 

smooth transition. However, in both the cases the frequency 

 

         (a)      (b) 

 

            (c)      (d) 

 Figure 2: Simulation results of DMPSC (sampling time: 10ms). 

  

            (a)      (b) 

  
                          (c)      (d) 

Figure 3: Simulation results of DAI (sampling time: 10ms). 

 

                                       (a)      (b) 

Figure 4:  Simulation results of DMPSC (sampling time: 100ms). 

 

Figure 5:  Simulation results of DAI (sampling time: 100ms). 
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is restored back to its nominal value within 0.5 seconds. The 

Figure 2b represents the convergence of power-nodes to 

identical cost, to achieve the ELD. Both the disturbances 

result in increased identical cost (ܿ), first due to increase in 

incremental cost, followed by the increase in power demand. 

The Figure 2c represents the phase deviation of individual 

nodes. The phase of the first node is forced to zero, to keep 

minimum phase difference between MG and main grid at 

PCC. In Figure 2d the power injection profiles of each power-

node settle rapidly an optimum value after each disturbance. 

5.3 Simulation Results for DAI (Sampling Time 
10ms) 

The performance of DAI is presented in Figure 3. The 

system fails to converge to identical cost even at simulation 

time of “40 seconds”. The DAI manifests active frequency 
regulation, but possesses sustained small-scale oscillations as 

illustrated in Figure 3a. The convergences of DAI is achieved 

with gain-value; ݇௪ ൌ ͺ ൈ ͳͲସ  and ݇ ൌ , in control law 

equation (10). The values of ݇௪  ͺ ൈ ͳͲସ, may reduce the 

magnitude of oscillations but at the expense of even slower 

convergence to identical cost. The convergence to identical 

cost is shown in Figure 3b. The slow response in Figure 3b 

may be attributed to small value of ݇ however, increasing ݇ drastically affects the frequency regulation. Figure 3c and 

Figure 3d represent the frequency regulation and convergence 

to identical cost for ݇௪  and ݇  equal to ͺ ൈ ͳͲସ  and  

respectively. Figure 3d represents improved convergence rate 

as compared to Figure 3b while on the other hand, Figure 3c 

shows divergent behavior in frequency. The Figure shows 

increased oscillations in frequency, which increases in 

magnitude with time. 

5.4 Simulation Results DMPSC and DAI (Sampling 
Time: 100ms) 

The results of DMPSC in Figure 4 illustrate relatively 

less overshoot but longer convergence time, compared to 

Figure 2. The steady-state is achieved within 2 seconds for 

both the planned and unplanned disturbances. Figure 4a and 

Figure 4b represents the achievement of control objectives (8) 

and (9) respectively. The increased sampling time resulted in 

slightly increased convergence time. DAI on the other hand, 

failed to attain the stability. Figure 5 shows the results for 

DAI (݇௪ ൌ ͺ ൈ ͳͲସ and ݇ ൌ ), illustrating divergence in 

frequency. 

The simulation results affirm that proposed DMPSC 

has fast and robust convergence to steady state after 

subjection to planned and unplanned, abrupt changes. 

Benefiting from inherent capability of MPC to anticipate the 

future disturbances, the results illustrate minimal fluctuations 

in the power and frequency in response to planned 

disturbances. Both DMPSC and DAI demonstrate efficient 

frequency regulation, the magnitude of frequency deviation is 

negligible in response to significant disturbances in system, 

that can be attributed to the absence of physical rotational 

inertia in the system. DAI however, requires a significant 

amount of time to achieve ELD as compared to DMPSC. 

Lastly, DMPSC also has the capability to operate at much 

smaller bandwidth than DAI.  

6. Conclusion 

The paper proposes distributed model predictive based 

secondary control for frequency regulation, economic load 

dispatch and phase synchronization of islanded microgrid. 

The proposed control benefits from inherent capabilities of 

distributed model predictive control including, anticipation of 

upcoming changes/fluctuations in the system and fast 

response. The control algorithm is implemented locally at 

each power-node in the network so, the size of the network 

does not affect the computational complexity in the system. 

Due to absence of physical rotational inertia, the control 

provides active frequency regulation. However, unlike 

contemporary secondary control schemes, the control 

provides rapid convergence to identical-cost, forcing the 

power-nodes to inject optimum power in the system. The 

control also ensures minimum phase difference between 

microgrid and main grid, at point of common coupling. The 

proposed control outperforms the DAI in terms of fast 

convergence to equilibrium point and ability to operate at low 

bandwidth. The paper also presents sufficient condition for 

convergence and proves asymptotic stability of the system 

using sum of cost functions as Lyapunov candidate function. 

The future research openings related to the presented 

work contain; using the more generalized network topology 

and mechanism to cater the variations in network topology 

and parameters. The problems related to communication 

among the nodes is also an important issued that need to be 

addressed. 
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Appendix I 

From (2), (3) and linearization of (4), the power 

supplied by ݅௧ power node to load nodes is given by, ሺݐሻ ൌ σ ൬ܾǡݒݒ ቀοߠሺݐሻ െ οߠሺݐሻቁ൰ אே್ಽǡ                                   ǡ      ݅ א ܰ,         (a1) 

Writing (a1) for whole network and using value of 

voltage to be ͳሺݑሻ, ܲሺݐሻ ൌ ु൫οߠሺݐሻ൯൫ܤಽ൯ െ ሻݐሺሻሺߠοܤ  ܲ , ܲ ൌ Էοߠሺݐሻ െ ሻݐሺሻሺߠοܤ  ܲ ,       (a2) 
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Where, οߠሺሻ ൌ ሻߠሺο݈݉ܿ א  Թಽൈଵ ,  ݆ א ܰ  represents the 

phase deviation of load-node. Now, the power absorbed by ݆௧ load-node is given by, ǡሺݐሻ ൌ σ ൬ܾǡ ቀοߠሺݐሻ െ οߠሺݐሻቁ൰ேುୀଵ ǡ    ݆ א ܰ,      (a3) 

Writing (a3) for complete network, ܮ ൌ ்ܤ οߠሺݐሻ െ ु ቀοߠሺሻሺݐሻቁ ൫ܤ் ು൯, ܮ ൌ ்ܤ οߠሺݐሻ െ Էୄߠሺሻሺݐሻ, ߠሺሻሺݐሻ ൌ Էୄିଵܤ் οߠሺݐሻ െ Էୄିଵܮ,       (a4) 

Using (a4) in (a2) ܲ ൌ Էοߠሺݐሻ െ ܤ ቀԷୄିଵܤ் οߠሺݐሻ െ Էୄିଵܮቁ  ܲ , ܲ ൌ ቀԷ െ ்ܤԷୄିଵܤ ቁ οߠሺݐሻ  ܮԷୄିଵܤ  ܲ ,   (a5) 

Appendix II 

Table A1 Power-nodes parameters 

Power-nodes ݉(pu) ݀ሺݑሻ ݊ଵ ͷǤʹʹ ͳǤͲ ݊ଶ ͵Ǥͻͺ ͳǤʹʹ ݊ଷ ͶǤͶͻ ͳǤ͵ͺ ݊ସ ͶǤʹʹ ͳǤͶʹ ݊ହ ͷǤͶ ͳǤ͵Ͳ 

 

Table A2 Incremental Cost 

Power-nodes Incremental Cost 

(before 1.5 sec), 

(pu) 

Incremental Cost 

(after 1.5 sec), 

(pu) ݊ଵ ͵ ͷ ݊ଶ Ͷ ͷ ݊ଷ ͷ ͷ ݊ସ   ݊ହ  ͻ 

 

Table A3 Load-nodes Power 

Load-nodes Load (pu) 

(Before 3 

seconds) 

Load (pu) 

After 3 

seconds ݊ ͶǤͻͷ Ǥ͵ͷʹ ݊ ͳǤͻͻ ʹǤͻͲ 

Table A4 Initial States 

Power-

nodes 
οߠǡ 
(rad) 

ο߱ǡ 
(rad/sec) 

ο ݂ǡ ൌ  ǡݑ
݊ଵ 0 Ͳ ͳ ݊ଶ ͲǤͲͳͻͳ Ͳ ͳ 

݊ଷ ͲǤͲʹͷͳ Ͳ ͳ ݊ସ ͲǤͲͳͺ͵ Ͳ ͳ ݊ହ ͲǤͲͲͷ͵ Ͳ ͳ 

    

Adjacency Matrix: ܣ ൌ ێێێۏ
ͲͳͲͳͳۍ

ͳͲͳͲͳ
ͲͳͲͳͳ

ͳͲͳͲͲ
ͳͳͳͲͲۑۑۑے

ې
. 

Local load (pu): ܲ ൌ ሼͲ Ͳ Ͳ ͲǤͺ͵͵ Ͳሽ. 

Susceptance Matrices:  

ܤ ൌ ێێێۏ
ۍ Ͳെ͵ʹǤ͵Ͷെ͵ͲǤͲെ͵ͲǤͻͻ

െ͵ʹǤ͵ͶͲെʹͻǤ͵ͺͲͲ
െ͵ͲǤെʹͻǤ͵ͺͲെʹͷǤͺͷͲ

ͲͲെʹͷǤͺͷͲെʹǤ͵Ͷ
െ͵ͲǤͻͻͲͲെʹǤ͵ͶͲ ۑۑۑے

ې
 

ܤ ൌ ێێێۏ
͵െʹͷǤͶͷͲͲͲെʹǤۍ

ͲെʹͺǤͳെͳǤͶ͵ͲͲ ۑۑۑے
ې
. 

DMPSC Parameters: ܴ ൌ ቂͳͲͲ ͲͲ ͳͲቃ, ܵ ൌ ቂͳ ͲͲ ͳቃ, ߙ ൌ ͲǤͺ. 

DAI parameters:݇௪ ൌ ͺ ൈ ͳͲସ,  ݇ ൌ . 

 


