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Abstract 

Oscillations in the Earth’s temperature and the subsequent retreating and advancing of ice-

sheets around the polar regions are thought to have played an important role in shaping the 

distribution and genetic structuring of contemporary high-latitude populations. After the Last 

Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to 

rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing 

genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct 

coastal and pelagic ecotypes, with finer scale genetic structuring observed within each 

ecotype. We reconstruct the post-glacial colonization of the Northeast Atlantic (NEA) by 

bottlenose dolphins using habitat modelling and phylogenetics. The AquaMaps model 

hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the 

Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete 

mitochondrial genomes including 30 generated for this study and created using a multi-

species coalescent model, suggests that the expansion to the available coastal habitat in the 

NEA happened via founder events starting ~15,000 years ago (95% highest posterior density 

interval: 4,900–26,400). The founders of the two distinct coastal NEA populations comprised 

as few as two maternal lineages that originated from the pelagic population. The low 

effective population size and genetic diversity estimated for the shared ancestral coastal 

population subsequent to divergence from the pelagic source population are consistent with 

leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial 

cycles on the genetic structuring and diversity of contemporary populations. 

 
Keywords: Last Glacial Maximum (LGM), multi-species coalescent, time-dependency, 
phylogenetics, genetic diversity, habitat modelling  
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Introduction 

During the Late Quaternary period (1 Ma to present) the Earth’s climate was governed by a 

series of glacial and interglacial events and temperature fluctuations that occurred at 

approximately 100,000-year intervals (Shackleton, 2000). These glacial cycles are thought to 

have played an important role in shaping the current distribution and genetic structuring of 

species and populations. In the Northern Hemisphere, this is more pronounced at high 

latitudes where the presence of ice sheets and Arctic temperatures during cold stadial periods 

restricted the available habitat to warmer refugia for many temperate-adapted species 

(Hewitt, 2000). The distribution of temperate-adapted species at high latitudes is thought to 

have been characterized by cyclical range contractions and expansions throughout the 

Pleistocene (Hewitt, 2000), and present-day populations represent lineages descended from 

relict populations that survived in glacial refugia (Hofreiter & Barnes, 2010). However, the 

capacity to adapt to environmental change varies among species and populations through 

their dispersal ability, genetic diversity and generation time (Stewart et al., 2010; 

Montgomery et al., 2014; Younger et al., 2016) and has likely affected their present-day 

distribution. 

Hewitt (1999, 2000) proposed that colonization of terrestrial species during the warm 

interglacial periods typically occurred via long-range dispersal events, or ‘leading-edge range 

expansions’. During these events a few individuals from the source population, carrying a 

subset of the genetic diversity, first colonized and then expanded their range to fill emerging 

geographic and ecological niches leading to the exclusion of secondary waves of colonizers 

and thereby reducing genetic variability at this leading-edge. Unlike most terrestrial mammal 

species, marine mammals have a relatively low cost of movement (Tucker, 1975; Williams et 

al., 1992; Williams, 1999) and few geographic barriers to dispersal, so the leading-edge 

colonization model may, or may not, be realistic for such highly mobile organisms that are 

able to move thousands of kilometers within a few weeks (Gabriele et al., 1996; Mate et al., 

1997). High mobility certainly makes them capable of undertaking long-distance dispersal 

events, but at the same time, also increases the potential to retain ongoing gene flow and 

migration between the leading-edge and source populations. Compared to terrestrial species, 

little is known about the post-glacial colonization history of Europe’s marine fauna, but 

during recent years a growing number of studies have explored the dynamics of postglacial 

range expansion in marine taxa (e.g. de Bruyn et al., 2009; Fontaine et al., 2010, 2014; 
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Catchen et al., 2013; Foote et al., 2013). Genetic analyses of carbon-dated sub-fossils 

indicate that temperate climate adapted species such as gray whales Eschrichtius robustus 

(Lilljeborg, 1861) and North Atlantic right whales Eubalaena glacialis (Müller, 1776) 

replaced cold-adapted species such as bowhead whales Balaena mysticetus (Linneaus, 1758) 

in mid-latitude European waters during the Late Pleistocene-Early Holocene transition (Foote 

et al., 2013; Alter et al., 2015). However, the refugial distribution during the Last Glacial 

Maximum (LGM) of the source populations for these re-colonizing temperate marine species 

is largely unknown. 

Here, a multi-species coalescent model was used together with information on species and 

population structure to reconstruct the post-glacial colonization in a highly mobile marine 

genus Tursiops. Specifically, the aim was to determine the timing of the colonization into the 

northeastern Atlantic coastal habitats and to investigate whether the colonization occurred via 

leading-edge expansion. The genus Tursiops currently consists of two separate species 

recognized by the International Union for the Conservation of Nature, T. truncatus (Montagu, 

1821; common bottlenose dolphin) and T. aduncus (Ehrenberg, 1833; Indo-Pacific bottlenose 

dolphin), although T. australis (Burrunan dolphin) inhabiting the coastal waters in southern 

Australia has been proposed as a separate species (Charlton-Robb et al., 2011). For 

simplicity, we refer to the latter as T. australis throughout this paper but acknowledge the 

unofficial status of this putative species. Species in the Tursiops genus are found in coastal 

inshore waters, continental shelf regions and open ocean environments (Wells & Scott, 2009) 

in tropical and temperate waters (Leatherwood & Reeves, 1989). Throughout much of their 

range, they exhibit a hierarchical population structure, with the greatest genetic divergence 

found between pelagic and coastal populations (Hersh & Duffield, 1990; Curry & Smith, 

1998; Hoelzel et al., 1998; Natoli et al., 2005; Tezanos-Pinto et al., 2008; Louis et al., 2014b; 

a; Lowther-Thieleking et al., 2015; Nykänen et al., 2018). The broad-scale population 

structuring between coastal and pelagic ecotypes in the Northeast Atlantic (NEA) (Louis et 

al., 2014b) likely reflects colonization of emerging or available inshore habitats after the 

LGM from a pelagic source population followed by divergence in allopatry (Moura et al., 

2013; Louis et al., 2014a).  It has been suggested that the colonization of coastal habitats in 

the NEA was possibly achieved via a founder event by a small number of individuals (Louis 

et al., 2014a). However, the possible role of leading-edge colonization has not been fully 

investigated in this genus by quantifying historic population sizes. Therefore, to better 

understand the climatic, temporal and spatial context of the evolutionary processes that gave 
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rise to the present-day diversity and habitat use of bottlenose dolphins in the NEA, 

mitogenomic data were analyzed in combination with habitat mapping, using newly available 

tools that can robustly infer ancestral effective population sizes and therefore give insights to 

colonization processes. 

Methods 

Models of suitable habitat 

Following the methods in Foote et al. (2013), Alter et al. (2015) and Morin et al. (2015), the 

AquaMaps modelling approach (Ready et al., 2010; Kaschner et al., 2011) was used to 

predict the distribution of suitable habitat for common bottlenose dolphins during the present, 

for the year 2100 (under the Institut Pierre Simon Laplace climate scenario SRES A2), and 

for the LGM (~20,000 ya). AquaMaps is a bioclimatic model that combines large sets of 

occurrence data (e.g. from visual observations) with available expert knowledge on species 

preference and tolerance to different environmental parameters and ultimately generates 

large-scale predictions of the probability of occurrence for different marine species. This way 

the preferred habitat of a species can be estimated based on a predefined set of environmental 

parameters including water depth, sea surface temperature, salinity, primary production, sea 

ice concentration and proximity to land, and projected into geographic space as relative 

probability of occurrence. For the purpose of this study, a slightly modified version of the 

original AquaMaps model (which is available on www.aquamaps.org) was used; specifically, 

primary production was excluded from the model, as there are no available data for this 

parameter for the Pliocene or Pleistocene. Current environmental conditions were assumed to 

be representative of the entire Holocene as the variability in conditions during this time 

period has been small compared to the differences between glacial cycles (Folland et al., 

2002). AquaMaps has been previously used to hindcast suitable habitat predictions for 

bowhead whales, gray whales and killer whales, Orcinus orca (Linnaeus, 1758), during the 

LGM (Foote et al., 2013; Alter et al., 2015; Morin et al., 2015) by using mean annual 

environmental conditions during the LGM based on the GLAMAP project data set (Schäfer-

Neth & Paul, 2003).  
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Sample collection 

Tissue samples from twelve individuals from T. truncatus were obtained by biopsy sampling 

free-ranging animals (see Krützen et al., 2002) in coastal waters of Ireland and France in 

2005–2012. Additionally, skin samples were collected from 21 individuals that stranded 

along the coast of Ireland, France and the UK in 1991–2010 (Fig. 1). Samples were 

specifically selected for sequencing based on previous genetic assignment to distinct 

ecotypes/populations using microsatellites, supported by significant FST values (Islas-

Villanueva, 2010; Mirimin et al., 2011; Louis et al., 2014b) and the lack of evidence for 

recent migration between the populations (Louis et al., 2014b).  For consistency, we refer to 

individuals not assigned to a coastal population as belonging to a ‘pelagic’ ecotype. However, 

we acknowledge that little is known about the ecology of these individuals, and they may 

inhabit both neritic and oceanic waters. In addition to the 30 samples successfully sequenced 

for the study, 57 mitochondrial haplotypes from the genus Tursiops from other regions of the 

world, along with 17 delphinid sequences, were downloaded from GenBank (Appendix S1, 

Electronic Supplementary Material). 

DNA extraction, amplification and sequencing 

DNA was extracted from 33 tissue samples using the Qiagen DNeasy (Qiagen DNeasy, 

Valencia, CA, USA) kit following the manufacturer’s guidelines. DNA yield was quantified 

using a Qubit (Life Technologies) and ranged between 10 and 300 ng⁄μL for all samples. The 

DNA samples were then sheared to fragments of ~150-200 bp using a Diagenode Bioruptor 

NGS run with 20 cycles of 30 seconds on, and 30 seconds off.  

To generate mitochondrial genome sequences we employed a simple shotgun sequencing 

method (see Tilak et al., 2015). Illumina sequencing libraries were built on the sheared DNA 

extracts using NEBNext (Ipswich, MA, USA) DNA Sample Prep Master Mix Set 1 following 

Meyer and Kircher (2010). Libraries were subsequently index amplified for 15 cycles using 

Phusion High-Fidelity Master Mix (Finnzymes) in 50-μL reactions following the 

manufacturer guidelines. The libraries were then purified using a MinElute PCR purification 

kit (Qiagen, Hilden, Germany). Concentrations of amplified libraries were initially checked 

using a Qubit (Life Technologies) and fragment size distribution was visualized on agarose 

gel, before a 1/10 diluted aliquot was run on Agilent Bioanalyser 2100 (Palo Alto, CA, USA) 

to determine molarity and concentration and facilitate equimolar pooling of index amplified 

libraries. The index amplified libraries were then sequenced in sub-partitions of single 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jh
e
re

d
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/jh

e
re

d
/e

s
z
0
3
9
/5

5
2
0
1
3
2
 b

y
 U

n
iv

e
rs

ity
 C

o
lle

g
e
 C

o
rk

 u
s
e
r o

n
 2

7
 J

u
n
e
 2

0
1
9



Acc
ep

te
d 

M
an

us
cr

ip
t

 

 7 

channels on an Illumina HiSeq 2500 ultra-high-throughput sequencing platform using single 

read (SR) 100-bp chemistry. 

Conversion of Illumina's *.bcl files to fastq, and demultiplexing were performed using 

Illumina’s CASAVA (version 1.8.2) software allowing for no mismatch in the 6-nucleotide 

indices used for barcoding. Sequencing reads within the generated fastq files were processed 

with ADAPTER-REMOVAL (Lindgreen 2012) to trim residual adapter sequence 

contamination and to remove adapter dimer sequences as well as low-quality stretches at 3’ 

ends (i.e. consecutive stretches of N’s and of bases with a quality score of 2 or lower). Reads 

that were ≤30 bp following trimming were discarded. Filtered reads with average phred-

scores ≥30 were then mapped to a reference T. truncatus mitogenome sequence 

(KF570351.1) using BWA version 0.5.9 (Li & Durbin, 2009), requiring a mapping quality of 

Q ≥30 for all bases. The reference mitochondrial sequence was modified as per Morin et al. 

(2015) to improve assembly coverage at the ‘ends’ of the linearized mitogenome by adding 

40-bp from each end to the opposite end (so that reads could map across the artificial break 

point of the linearized sequence). The influence of potential NUMTs was excluded given the 

absence of stop codons or frame shifts in the aligned protein encoding genes, and the lack of 

regions of excessive coverage due to the mapping of both mt and nuDNA. Clonal reads were 

collapsed using the rmdup program of the SAMTOOLS (version 0.1.18) suite (Li et al., 

2009). Consensus mitogenome sequences were then reconstructed using bam files, which 

were assembled and visualised in GENEIOUS (Biomatters Ltd.), allowing indels and unique 

variants to be visually verified in the BAM files, and only including nucleotide positions with 

a read depth of ≥3× coverage; ambiguous bases were assigned as Ns. 

Time-calibrated phylogeny of delphinids and the genus Tursiops 

There were insufficient data for the reconstruction of complete mitochondrial genomes for 

three sequenced samples, which were therefore excluded from further analyses. The 

remaining 30 whole mitochondrial T. truncatus genomes were used in the subsequent 

analyses. The inference of time-calibrated phylogenies followed a two-step methodology 

following Morin et al. (2015) with the purpose of the first step (delphinid phylogeny) to 

estimate a calibration point (divergence of the two most evolutionarily distant Tursiops spp. 

haplotypes) for the second step (Tursiops spp. phylogeny). 

The 30 whole mitochondrial T. truncatus genomes sequenced for this study were first aligned 

with 56 sequences from the genus Tursiops and a rough-toothed dolphin (Steno bredanensis) 
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sequence downloaded from GenBank (see Appendix S1 for sequence accession numbers) that 

was used as an outgroup using the MUSCLE algorithm in MEGA 6 (Tamura et al., 2007). A 

topology tree in MRBAYES (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 

2003) was then built with these sequences after initial model selection for the best 

substitution scheme in JMODELTEST2 (Posada, 2008; Darriba et al., 2012), and the 

resulting consensus tree was inspected to find the two most divergent Tursiops haplotypes 

(SABD1, representing a haplotype of T. australis obtained from South Australia, and SA99 

representing a haplotype of T. aduncus collected from South Africa (see Moura et al., 2013). 

The thirteen protein coding genes of the mitochondrial genome from these two most 

divergent Tursiops sequences were then aligned with the additional 18 delphinid sequences 

downloaded from GenBank (Appendix S1). We used the package ClockstaR (Duchêne et al., 

2014) in R 3.3.3 (R Core Team, 2016) to investigate whether the different mitochondrial 

genes had different mutation rates or whether a single rate could be applied in further time-

calibrated models. 

The ‘greedy’ search in PARTITIONFINDER (v1.1.0) (Lanfear et al., 2012) was used to find 

the best partitioning scheme for each gene, and a time-calibrated phylogenetic tree was built 

in BEAST2 (Drummond et al., 2012) with three different data partitions for nucleotide 

substitution models (Appendix S2). We used a single clock model based on the ClockstaR 

results and estimated a single tree due to the non-recombining properties of mtDNA to find 

the time to most recent common ancestor (TMRCA) between the two most divergent 

Tursiops haplotypes. The TMRCA of Delphinidae (mean = 10.08 Myr, SD = 1.413, 

(McGowen et al., 2009) was used to calibrate the root of the tree and a Calibrated Yule prior 

was used for the branching rate. Both uncorrelated log-normal relaxed clock (Drummond et 

al., 2006) and strict clock models were tested with 40,000,000 Markov Chain Monte Carlo 

(MCMC) steps, 25% pre-burn-in, and a sampling frequency of 4,000. Each model was run 

twice and the convergence of chains and the Effective Sample Size (ESS) values relating to 

the model parameters were checked in TRACER (Rambaut et al., 2014). After verifying 

convergence, LOGCOMBINER and TREEANNOTATOR (Drummond et al., 2012) were 

used to combine and summarize the trees, respectively. Model selection between the two 

clock models was done by inspecting the ucldStdev parameter in the relaxed clock model; a 

standard deviation close to zero (<0.1) in this parameter indicates negligible variation in the 

substitution rates across branches and a better fit of the strict clock model (Drummond & 

Bouckaert, 2015). 
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We tested for potential saturation (multiple substitutions) of the third codon positions by 

plotting the uncorrected pairwise genetic distances and model-corrected (Tamura-Nei 

substitution model, Tamura & Nei, 1993) genetic distances in R. To investigate the potential 

effect of incomplete purifying selection, we compared the node TMRCA estimates and clock 

rates derived using all codon positions (as described above) to a time-calibrated phylogeny 

created using only the third codon positions, as most mutations that occur in third codon 

positions are silent and therefore code for the same amino acid (Lagerkvist, 1978). This 

makes them less likely to be directly targeted by purifying selection (but does not account for 

purifying selection upon a linked site), thereby maintaining a more constant substitution rate 

over evolutionary time. The approach of using only the third codon positions has been 

recently used in a study resolving killer whale (Orcinus orca) mitochondrial lineages (Morin 

et al., 2015). 

The best nucleotide partitioning scheme for the coalescent analysis of the genus Tursiops was 

determined for the data set, consisting of thirteen protein coding gene regions of the 30 

mitochondrial genomes sequenced for this study supplemented by 56 Tursiops haplotypes 

downloaded from GenBank (Appendix S1, Electronic Supplementary Material), using 

PARTITIONFINDER (v1.1.0) (Lanfear et al., 2012) (Appendix S2, Electronic Supplementary 

Material). These samples/haplotypes from T. truncatus, T. aduncus and T. australis had been 

determined to have originated from coastal or pelagic regions in different parts of the world 

in previous studies and had been delineated into separate populations or ecotypes (Fig. 1; 

Appendix S1, Electronic Supplementary Material). This information on population structure 

was used in this study together with mitochondrial gene regions to create a time-calibrated 

phylogeny for the genus Tursiops and to estimate the divergence times for the different 

populations of T. truncatus in the North Atlantic. 

As the multi-species coalescent (MSC) model has been found not only to delimit species but 

to identify genetic structuring between putative populations (Sukumaran & Knowles, 2017), 

this approach was chosen to construct the time-calibrated phylogeny using StarBEAST2 

(Ogilvie et al., 2017), an extension of BEAST2 (Drummond et al., 2012). This method is 

thought to provide accurate inferences of species tree topologies, divergence times, and 

substitution rates even in the presence of incomplete lineage sorting, i.e., when individual 

gene trees do not correspond well with the species tree (Ogilvie et al., 2017). For this reason, 

information on population structure obtained from previous studies on nuclear microsatellite 

markers were included in the MSC model. In order to estimate historical effective population 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jh
e
re

d
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/jh

e
re

d
/e

s
z
0
3
9
/5

5
2
0
1
3
2
 b

y
 U

n
iv

e
rs

ity
 C

o
lle

g
e
 C

o
rk

 u
s
e
r o

n
 2

7
 J

u
n
e
 2

0
1
9



Acc
ep

te
d 

M
an

us
cr

ip
t

 

 10 

sizes (Ne) for the populations sequenced for this study, the MSC model was run with the 

population model ‘Linear with Constant Root Populations’ assuming that population sizes 

change over time but keeping the size of the root (the ancestor of all species/populations) 

constant. The scaled population sizes for pelagic Northeast Atlantic, Coastal North and 

Coastal South produced by the StarBEAST2 models were adjusted by the average generation 

time of 21 years estimated for T. truncatus and T. aduncus (Taylor et al., 2007) to convert the 

estimates to population sizes. As with the delphinid phylogeny, to investigate the possible 

effect of incomplete purifying selection, StarBEAST2 was run with two different models; a 

model including all codon positions and a second model including only the third codon 

positions. Both models were run with an uncorrelated log-normal relaxed clock (Drummond 

et al., 2006) and a strict clock and with 200,000,000 MCMC steps, 10% burn-in and a 

sampling frequency of 20,000. Based on the results of ClockstaR analysis (Duchêne et al., 

2014) on delphinids, a single clock model was used for all the data partitions. We applied a 

constraint on the root age obtained in the delphinid phylogeny (split of the two most 

divergent Tursiops haplotypes; 3.662Myr (95% highest posterior density interval, HPDI: 

2.567–4.725) with the all codon model, 3.692 Myr (95% HPDI: 2.567–4.153) with the third 

codon model) to calibrate the trees. The convergence of chains and model performance was 

inspected in TRACER (Rambaut et al., 2014) after running each model twice, and 

LOGCOMBINER and TREEANNOTATOR (Drummond et al., 2012) were used to combine the 

log- and tree-files and summarize the trees, respectively. The resulting summary trees were 

plotted using phytools (Revell, 2012) in R. 

Using DnaSP 5.0 (Librado & Rozas, 2009), we calculated the number of segregating sites (k) 

and four different indices of historical population demographic changes (bottlenecks or 

expansions); Tajima's D (Tajima, 1989) , Fu and Li’s D* and F* (Fu & Li, 1993) and Ramos-

Onsins & Rozas’ R2 (Ramos-Onsins & Rozas, 2002), for the pelagic, the Coastal North and 

the Coastal South populations. The examination of deviation from the neutral theory model at 

equilibrium between mutation and genetic drift by these indices was based on 10,000 

coalescent simulations. Expectations of these statistics are ~zero in a constant-size 

population, whereas significant negative or positive values can indicate a sudden expansion 

or a recent population bottleneck, respectively. In addition, differences in nucleotide and 

haplotype diversity (πnuc and πhap, respectively) were compared between pelagic and the 

Coastal North and Coastal South populations with the “genetic_diversity_diffs” function 

(Alexander et al., 2016) implemented in R and using 10,000 re-sampling permutations, in 
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order to test whether the observed differences in diversity between the populations were 

greater than expected by chance. A haplotype network of the whole mtDNA sequences 

(16,390 bp) and including all the North Atlantic T. Tursiops samples was created in popART 

(Leigh & Bryant, 2015) using the median-joining network (Bandelt et al., 1999). 

Results 

Models of suitable habitat 

According to the AquaMaps model, the core suitable habitat for common bottlenose dolphins 

during the LGM ranged from ~42°N (approximately the latitude of the state of Connecticut) 

in the Northwest Atlantic southwards along the coast to lower latitudes (Fig. 2, Appendix 

S3). In the Northeast Atlantic, their coastal range was restricted to approximately 40°N, 

corresponding to the south of the Iberian Peninsula, and to an area around the Alboran Sea in 

the Mediterranean. In addition, suitable habitat was hindcasted to cover an area in the pelagic 

North Atlantic around the Mid-Atlantic ridge and around the islands on both sides of the 

Atlantic. Note that AquaMaps hindcasted suitable habitat also in the Black Sea, however, this 

remained closed and thus inaccessible for the dolphins until after 10 kya (Kerey et al., 2004). 

DNA sequencing 

A total of 292×106 sequencing reads were generated from the samples; >1 million reads per 

individual for 28 of the 33 individuals included on the sequencing lane. Following QC 

filtering, removal of duplicate reads, mapping and only including nucleotide positions with a 

read depth of  3× coverage, complete mitochondrial genomes were assembled for 30 

individuals with a mean sequence coverage ranging from 10× to >100×. Control region 

sequences were compared with those generated for the same individuals by Sanger 

sequencing  in previously published studies (Islas-Villanueva, 2010; Mirimin et al., 2011; 

Louis et al., 2014b), in some cases the same individual had been previously sequenced 

independently by all three studies. In all cases our high-throughput sequencing generated data 

agreed 100% with the Sanger sequence data. Twenty new haplotypes from the samples 

sequenced for this study were identified (Appendix S1), which are deposited in GenBank 

(KT601188-KT601207). 
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Time-calibrated delphinid phylogeny 

The approximately linear relationship between the uncorrected and model-corrected genetic 

distances indicated no evidence of saturation of the third codon position of the protein coding 

genes (Appendix S4). Low standard deviation (<0.1) of the clock rate parameter (ucldStdev) 

in both delphinid models, the all codon model and the third codon model, run with an 

uncorrelated log-normal relaxed clock indicated low variation in substitution rates between 

lineages; therefore, the models run with a strict clock were considered to be a better fit to the 

data. Average substitution rate for the strict clock all codon model was estimated as 6.663   

10-3 substitutions/site/Myr (95% HPDI: 4.872   10-3 – 8.865   10-3), and for the third codon 

model as 0.017 substitutions/site/Myr (95% HPDI: 0.012 – 0.022). Both models produced 

similar topology and node age estimates for the clade including the Tursiops and Stenella 

species, Sousa chinensis, Steno bredanensis and Delphinus capensis (Appendix S5). 

However, Lagenorhynchus albirostris and Cephalorhynchus heavisidii were placed in 

different clades in the trees depending on the model used and the models also estimated the 

divergence of killer whales (Orcinus orca) differently. The placement of these species has 

been uncertain in previous studies (LeDuc et al., 1999; Caballero et al., 2008; McGowen et 

al., 2009; Steeman et al., 2009; Vilstrup et al., 2011) and is thought to reflect rapid radiation 

in the Delphinidae family (Vilstrup et al., 2011). We compared the time to most recent 

common ancestor (TMRCA) estimates for the common nodes derived using the two models 

and found them to be significantly correlated (Pearson’s r2 = 0.99, P < 0.001, Appendix S6) 

with a slope of 1.01, implying that incomplete purifying selection was not an issue in the 

delphinid phylogeny. The TMRCA of the two most divergent Tursiops samples was 

estimated as 3.662 Myr (95% HPDI: 2.567 – 4.725) with the all codon model and as 3.692 

Myr (95% HPDI: 2.567 – 4.772) with the third codon only model. The Effective Sample Size 

(ESS) values for the different parameters were all >500 in the third codon only model (most 

of them >2000), whereas in the all codon model they were >200 (most of them >2000), 

except for one parameter for the gamma shape and one parameter for the proportion of 

invariant sites, which were both >150 (Appendix S7). 

Time-calibrated Tursiops phylogeny 

Very low standard deviation (<0.01 in both all codon and third codon only models) in the 

substitution rates estimated with the uncorrelated log-normal relaxed clock indicated 

negligible variation in substitution rates between lineages; therefore, in StarBEAST2, a strict 
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clock was used to estimate the time-calibrated phylogeny of the genus Tursiops. The ESS 

values for the parameters in both models were all >300 (most of them >6000), indicating no 

sign of autocorrelation between samples and a good convergence of chains (Appendix S8, 

Electronic Supplementary Material). Both models resulted in identical species/population 

topologies and similar node age estimates and posterior probabilities (Appendix S9, 

Electronic Supplementary Material). Similar to the Delphinid phylogeny, the node ages were 

significantly correlated with a slope of 1.01 (Pearson’s r2 > 0.99, P < 0.001, Appendix S10), 

indicating no evidence of incomplete purifying selection affecting the Tursiops tree.  

The summary consensus species tree, inferred using the third codon only model and showing 

only the NEA and Mediterranean and Black Sea T. truncatus populations (Fig. 3), indicates 

that the branch including haplotypes from the Mediterranean and Black Seas split from the 

NEA branch ~ 35,900 years ago (95% HPDI: 11,200–60,500). The coastal NEA populations, 

on the other hand, diverged from the pelagic population around 14,800 years ago (95% 

HPDI: 4,900–26,400) with a further more recent divergence of the northernmost coastal 

population (Coastal North) occurring ~7,200 years ago (95% HPDI: 0–14,200). However, the 

node posterior probabilities of the pelagic and coastal NEA populations are quite low (Fig. 3), 

likely due to incomplete lineage sorting. Indeed, incomplete lineage sorting, especially of the 

coastal North Atlantic T. truncatus sequences, is evident in the consensus gene tree consisting 

of all samples from the genus Tursiops (green tips in the tree, Appendix S12, Electronic 

Supplementary Material), and is accompanied by older node coalescence times compared to 

the time-calibrated species tree (Fig. 3). The consensus gene tree also indicates that the 

coastal bottlenose dolphin population currently occupying the northern parts of the NEA (i.e. 

Coastal North) originates from at least two separate mitochondrial lineages. 

The summary consensus species tree depicting the effective population sizes (Ne) through 

Late Pleistocene–Holocene (Fig. 3, Appendix S11) indicates that, unlike the pelagic 

population, which is estimated to have retained a relatively stable effective size throughout 

the Late Pleistocene and Holocene, all of the present-day coastal populations, and especially 

the Black Sea and the Coastal North populations, are inferred to have undergone a genetic 

bottleneck around 7,000–8,000 years ago followed by expansion towards the present day 

(Fig. 3, Appendix S11). The significantly lower nucleotide (πnuc) and haplotype diversities 

(πhap) in the Coastal North population compared to the pelagic population, and the 

significantly lower πnuc in the Coastal South population compared to the Pelagic East Atlantic 

(all P < 0.05, based on 10,000 permutations) are further indications of ancestral population 
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bottlenecks in the coastal populations, as are the reduced number of segregating sites (k) (see 

Table 1). Conversely, the non-significant values of Tajima’s D, Fu and Li’s D* and F* and 

Ramos-Onsins & Rozas’ R2, albeit the first three indicators being negative for the Coastal 

South population (Table 1), fail to provide support for our inference of post-glacial 

demographic expansion from a small founder population and indicate that there is no 

significant excess of low frequency variants in the Coastal North and Coastal South 

populations. This could be an artefact of lack of power to detect significance, or it could be 

due to a violation of the assumption of panmixia inherent in these statistics. For example, the 

Coastal North population consists of demes that are interconnected by limited and varying 

gene flow (Louis et al., 2014b; Nykänen et al., 2018). This could increase the number of rare 

variants, but it could also inflate intermediate variants; for example, variants that are at high 

frequency in one or two demes would be identified as intermediate frequency variants in our 

sample set. The possible unaccounted population structuring, in turn, would inflate the 

effective population sizes, which could help explain the unrealistically high recent time Ne 

values estimated for the coastal populations. Furthermore, the fact that the divergence of the 

coastal populations from the pelagic population was estimated to have occurred already 

~15,000 years ago, could mean that the rare variants expected to arise in a population after a 

bottleneck or founder event have had sufficient time to drift to extinction or intermediate 

frequency. 

The haplotype network shows the two source lineages of the haplotypes shared among 

different NEA coastal populations (Fig. 4). One of the haplotypes is shared between six 

individuals from two different populations, five from the Coastal North and one from the 

Coastal South, and another haplotype is private to the Coastal North population and is shared 

by five individuals. Thus, 71% of the Coastal North individuals sampled in this study shared 

just these two haplotypes; the remainder have haplotypes recently derived from these 

ancestral lineages. This is consistent with the demographic expansion of the Coastal North 

population from just two founding lineages and a probable ancestral origin in the pelagic 

population. Similarly, the Coastal South population may have originated from only one or 

two pelagic founding lineages; however, sequencing more samples from this population will 

be required to determine this with certainty. Nevertheless, it is likely that the pelagic 

population gave rise to coastal lineages with current populations located in the NEA as well 

as in the Mediterranean and Black seas.  
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Discussion 

Our analyses indicate that bottlenose dolphins have colonized the northernmost range of their 

distribution through a leading-edge expansion, in which the early colonists have expanded to 

fill the available coastal niches, to the exclusion of others. Due to its strict maternal 

inheritance the mitochondrial genome tracks only the matrilineal population history, a very 

stochastic coalescent process, and generally has less power to detect ancestral demographic 

changes than estimates based on analyses of multiple nuclear markers (Ho & Shapiro, 2011). 

For this reason, a multi-species coalescent (MSC) model that utilized information on 

population structure from previous studies on biparentally inherited nuclear DNA markers 

(microsatellites) was used to infer divergence times of distinct species and populations of 

bottlenose dolphins. Incomplete lineage sorting and rapid radiation among delphinids (e.g. 

McGowen et al., 2009; Amaral et al., 2012; Moura et al., 2013; Louis et al., 2014b; Morin et 

al., 2015; Foote & Morin, 2016) can complicate the estimation of the timing of speciation 

events and population divergence in the genus Tursiops over phylogenetic time-scales 

(Moura et al., 2013). One advantage of using MSC model, such as StarBEAST2 (Ogilvie et 

al., 2017), compared to traditional methods which assume that evolutionary histories of gene 

trees match the evolutionary history of the species tree, is that the branch lengths and 

divergence times are not overestimated (Ogilvie et al., 2017). Another advantage of 

StarBEAST2 is the possibility to infer historical effective population sizes while accounting 

for population structuring, as this structuring combined with uneven sampling can lead to bias 

in Ne estimates inferred with traditionally used Bayesian Skyline methods (Heller et al., 

2013) that assume panmixia. Additionally, time-dependency of increasing mutation rate 

towards the present caused by incomplete purifying selection – the time lag between the 

appearance of a mutation and its removal due to purifying selection - has the potential to 

further bias divergence time estimates (e.g. Ho et al., 2005; Ho et al., 2011). The use of sites 

under strong selective constraint extends terminal branches potentially leading to 

overestimation of older node ages (Ho et al., 2011; He et al., 2019). In this study, based on 

the comparison of time-calibrated phylogenies inferred using all codon positions and only the 

third codons, we found no evidence of incomplete purifying selection affecting the 

divergence time estimates in the delphinid family or in the phylogeny consisting of Tursiops 

spp. sequences and haplotypes. However, this may have been an artefact of the small number 

of common nodes (N=8) included in the comparison or the relatively young node ages of the 

branches consisting of T. truncatus samples, and the issue of time-dependency in Tursiops 
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phylogenies should be re-examined with more samples collected from various populations. 

Nevertheless, third codon positions are thought to be less constrained by purifying selection 

compared to first and second codon positions, and they are therefore expected to evolve in a 

more clock-like fashion, accumulating mutations at a more constant rate and thus minimizing 

the effect of time-dependence (Ho et al., 2011).  

The average substitution rate for the third codon positions across all branches for the samples 

from the genus Tursiops was estimated as 0.017 substitutions/site/Myr. This estimate 

corresponds well with previously estimated rates of 0.024 for third codon positions for 

cetaceans (Ho & Lanfear, 2010) and 0.021 substitutions/site/Myr for bottlenose dolphin 

mitogenome-wide rates (Moura et al., 2013). Similarly, the estimated divergence date for the 

second youngest node for the genus Tursiops in this study, represented by the divergence 

between Mediterranean and Black Sea bottlenose dolphins (around 7,900 years ago), is 

concordant with that derived previously by Moura et al. (2013), and is consistent with the 

geological timeframe of the opening of the Bosphorus Strait as well as the climatic context 

linking to the LGM. In contrast, the average root age for the genus Tursiops in this study was 

estimated as 3.7 Myr, which is considerably older than 1.1 Myr estimated by Moura et al. 

(2013). Possible reasons for this incongruence may be a result of the different modelling 

strategies applied to different parts of the mitogenome (mtDNA protein coding regions were 

used in this study whilst Moura et al. (2013) used the whole mtDNA sequence). However, a 

more likely reason is the fact that these authors used a relatively narrow prior for their 

biogeographical calibration (Uniform prior of 0.003–0.01, supplementary table S5 in Moura 

et al. (2013) that overpowered the fossil calibrations with much wider priors, and this 

ultimately resulted in poor convergence of the older node age posterior estimates based on 

low (<100) ESS values (supplementary table S6 in Moura et al. (2013)).  

Pleistocene climatic oscillations are thought to have played a major role in shaping species 

distribution and divergence and in promoting speciation (Avise et al., 1998). The divergence 

of the Northwest Atlantic coastal population from other Atlantic T. truncatus populations 

around 600,000 years ago coincides with the end of a cooler period during the mid-

Pleistocene when the SST started to gradually rise again up to ~10°C in the Northern 

Hemisphere (Clark et al., 2006). Consistent with previous studies (Natoli et al., 2005; Moura 

et al., 2013; Louis et al., 2014a), the phylogenetic tree estimated in this study for the genus 

Tursiops (Fig. 3) suggests that the colonization of coastal habitats in the NEA occurred from 
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a pelagic source population. According to our results, this happened via an ancestor that 

occupied lower latitude Atlantic waters. The AquaMaps model also indicated that bottlenose 

dolphins may have inhabited parts of the Mediterranean Sea during the LGM, as some areas 

were highlighted as suitable habitat (Fig. 2b). Even if the northern parts of the Mediterranean 

Sea (e.g. Tyrrhenian Sea) were too cold or otherwise unsuitable for the bottlenose dolphins 

during the LGM, a refugial population may have existed in the areas around the warmer 

Alboran Sea, with models of SST showing consistently warmer annual temperatures above 

10°C for this area throughout the last ice age (Cacho et al., 2001). Similar refugia at lower 

latitudes have been documented, for example, with Atlantic salmon, Salmo salar (Consuegra 

et al., 2002; Finnegan et al., 2013) and European eel, Anguilla anguilla (Kettle et al., 2011). 

Suitable habitat for bottlenose dolphins during the LGM was also hindcasted with AquaMaps 

in the Black Sea. However, the land bridge between the Black Sea and the Mediterranean 

collapsed only ~10,000 years ago (Kerey et al., 2004). Moreover, an accumulation of species 

found in the Black Sea sediment that are indicative of marine, rather than brackish, conditions  

was dated to 7,000–6,400 yr (the Kalamitian transgression (Yanko-Hombach et al., 2007)). 

This makes the Black Sea an unlikely habitat for bottlenose dolphins until ~7,000 years ago 

at the earliest, and the divergence time between the eastern Mediterranean and Black Sea 

populations estimated as ca. 7,900 ya in this study fits quite well within this timeframe. 

Temperature changes after the LGM have likely also played a role in the colonization of the 

northern parts of the NEA. The post-LGM divergence of the coastal populations in the NEA 

from the pelagic ~15,000 years ago coincides with the rising temperatures in the lower 

latitudes of the North Atlantic Ocean. The subsequent recent split of the Coastal North 

population from its southern counterpart currently occupying lower latitude European waters 

was estimated to have occurred around 8,000 years ago, and the timing of the split is 

supported by two T. truncatus subfossils found in the Dutch Southern Bight and radio-carbon 

aged to 7,390 and 8,135 yrs, respectively (Post, 2005). It thus appears that these cladogenetic 

events are correlated with periods of temperature changes, with warmer temperatures leading 

to an increase in sea-level in coastal areas and the subsequent release of available habitat. 

Further, it is also likely that suitable coastal habitat became available gradually in the NEA 

coastal areas after the LGM and the onset of the warmer Holocene leading to sequential 

colonization and divergence. 
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According to Hewitt (1999, 2000), the colonization of suitable niches in high latitudes would 

occur rapidly via long-range dispersal events. Being highly mobile, cetaceans are capable of 

undertaking long distance movements on relatively short time-scales (Forcada, 2009; O’Brien 

et al., 2009; Robinson et al., 2012). Coupled with this potential for long-range dispersal, the 

fact that bottlenose dolphins form small local resident populations in coastal European waters 

(e.g. Ingram & Rogan, 2002; Cheney et al., 2013; Louis et al., 2015), makes post-glacial 

leading-edge colonization of the northern NEA a likely dispersal scenario. The demographic 

contraction and subsequent expansion observed in the coastal populations of this study, as 

well as the significantly reduced nucleotide and haplotype diversities, suggest that bottlenose 

dolphins indeed expanded their range northwards to coastal areas via founder events during 

leading-edge expansion. A similar founder event has recently been suggested to give rise to 

the present-day resident-type killer whale communities in the Russian Pacific (Filatova et al., 

2018), and rapid demographic expansions after the LGM have been documented across other 

marine taxa (e.g. Klimova et al., 2014; Jenkins et al., 2018).  

Our results indicate that the colonization and expansion to fill the available coastal habitat 

around the British Isles happened via serial founder events after the LGM by a small leading-

edge founder group, that comprised as few as two maternal lineages, from the source pelagic 

population. This finding is supported by previous publications of larger datasets of 136 

mitochondrial control region sequences from coastal populations around the British Isles, 

which comprise the same two mitochondrial haplogroups (Mirimin et al., 2011; Louis et al., 

2014b). The inferred process of post-glacial expansion into emerging habitat reflects the 

model inferred by Hoelzel et al., (2007) for colonization of the coastal regions of the North 

Pacific and the formation of structure in killer whales. This process may thus reflect a 

commonality in the demographic history of high latitude social odontocetes. More broadly, 

serial founder events by a small subset of the parent population, leading to sequential loss of 

genetic diversity, have been linked to the phylogeographic history in a number of species, 

including modern humans (Homo sapiens) during the migration out of Africa (DeGiorgio et 

al., 2009; Deshpande et al., 2009; Henn et al., 2012). Still today the greatest nuclear and 

haplotype diversity among modern humans is found in Africa (reviewed in Campbell & 

Tishkoff, 2008), and it is generally accepted that Africa was the source of all current modern 

human populations. Similarly, we identify a loss of genetic diversity in bottlenose dolphins at 

the northern edge of their coastal range relative to that found in the large pelagic population 

(e.g. Quérouil et al., 2007; Mirimin et al., 2011; Louis et al., 2014b). 
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In summary, our results suggest that the present day geographic and genetic structuring of 

bottlenose dolphins in the North Atlantic were shaped by the climatic cycles of the Late 

Quaternary, and the most northerly coastal population represents a leading-edge expansion by 

two founding mitochondrial lineages. We estimate these lineages originated from a diverse 

pelagic source population, and then rapidly spread throughout and retained the available 

coastal territory and associated resources around the British Isles. However, the responses to 

climate change are likely to vary even among mobile species depending on their tolerance to 

environmental conditions and the derived habitat preference (Foote et al., 2013; Sydeman et 

al., 2015). Although it seems likely that the amount of available suitable habitat for 

bottlenose dolphins will increase and expand northwards in the next hundred years with the 

ongoing warming of the oceans (Appendix S13, Electronic Supplementary Material), the 

complexity of ecosystems that bottlenose dolphins live in, combined with a range of social 

behaviors that they exhibit, makes predicting the consequences of the climate change to 

populations an extremely difficult task. 
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Table and figure captions 

Table 1. Summary statistics of genetic diversity and the site frequency spectra used to infer 

recent population expansion/contraction in Northeast Atlantic bottlenose dolphin populations. 

Only the sequences generated for this study (N=30) have been included in the analyses. 

Figure 1. (a) Tursiops spp. haplotypes retrieved from GenBank and the approximate 

sampling location of the species/populations they represent; SABD – T. australis (South 

Australia, N=7), SA – T. aduncus (South Africa, N=10), IPTA – T. aduncus (Southeast 

Australia, N=10), WNAC – T. truncatus (coastal Northwest Atlantic, N=9), EMED – T. 

truncatus (Eastern Mediterranean Sea, N=10), BSEA – T. truncatus ponticus (Black Sea, 

N=10). (b) the biopsy/stranding locations of the 30 new T. truncatus samples sequenced for 

this study with the populations represented by the different symbols; PEA – T. truncatus, 

pelagic (Northeast Atlantic, N=11), CS – T. truncatus, Coastal South (Northeast Atlantic, 

N=5), CN – T. truncatus, Coastal North (Northeast Atlantic, N=14). Note that some of the 

sample locations overlap in map (b). The area in map (b) is marked with the rectangle in map 

(a). See online version for full color.   

Figure 2. AquaMaps suitable habitat map for T. truncatus for (a) the present day, and (b) the 

Last Glacial Maximum in the North Atlantic. White to red colors represent least to most 

suitable habitat, respectively, and land is shown in light gray. Dark green color in Fig. (b) 

represents areas with permanent ice sheet and light green color areas with >50% sea ice 

concentration. The predictions for the entire world are given in Appendix S3. 
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Figure 3. Time-calibrated phylogenetic tree depicting the effective population size (Ne) over 

time, shown only for the Northeast Atlantic T. truncatus populations and estimated with 

StarBEAST2 model ‘Linear with Constant Root Populations’, using only the third codon 

positions from 13 mitochondrial genes. The numbers in rectangles are node posterior 

probabilities, numbers below nodes median node ages, and the bars represent 95% HPDI in 

node TMRCA. The width of the line depicts Ne with the values given in Appendix S11. The 

tips represent current populations/species and their sampling locations, see Fig. 1. The full 

Tursiops species trees are shown in Appendix S9, Electronic Supplementary Material.  

Figure 4. Median-joining haplotype network of North Atlantic (including Mediterranean and 

Black Seas) T. truncatus based on 16,390 bp mtDNA sequence constructed in PopART. 

Haplotypes (circles) have been assigned a color based on population assignment in previous 

studies and their sampling locations (see Fig. 1). The size of the circle represents the 

frequency of occurrence of each haplotype and the number inside it the number of 

individuals. Mutational steps between haplotypes are indicated by hatch marks and small 

black circles are missing haplotypes. See online version for full color. 
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Tables and figures 

Table 1. Summary statistics of genetic diversity and the site frequency spectra used to infer 
recent population expansion/contraction in Northeast Atlantic bottlenose dolphin populations. 
Only the sequences generated for this study (N=30) have been included in the analyses. 

 

 

Population k πnuc πhap Tajima's D 
Fu and 
Li’s D* 

Fu and 
Li’s 
F* 

Ramo
s-
Onsin
s & 
Rozas
’ R2 

Pelagic (PEA, n=11) 247 0.0044† 1.000†† -0.722 -0.325 -0.552 0.111 

Coastal North (CN, n=14) 66 0.0021 0.780 2.641 1.461 2.253 0.245 

Coastal South (CS, n=5) 64 0.0016 0.900 -1.119 -0.321 -0.613 0.330 

 

k = number of segregating sites, i.e. polymorphisms 

πnuc/πhap = nucleotide/haplotype diversity 

* an outgroup (Steno bredanensis) was used in the calculations of the indices 

† = significant difference atα=0.05 level was detected between the pelagic and both of the coastal populations 

†† = significant difference atα=0.05 level was detected between the pelagic and the Coastal North population 
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