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A challenge faced by individuals and groups of many species is determining how resources and activities should be spatially distrib-
uted: centralized or decentralized. This distribution problem is hard to understand due to the many costs and benefits of each strategy 
in different settings. Ant colonies are faced by this problem and demonstrate two solutions: 1) centralizing resources in a single nest 
(monodomy) and 2) decentralizing by spreading resources across many nests (polydomy). Despite the possibilities for using this system 
to study the centralization/decentralization problem, the trade-offs associated with using either polydomy or monodomy are poorly un-
derstood due to a lack of empirical data and cohesive theory. Here, we present a dynamic network model of a population of ant nests 
which is based on observations of a facultatively polydomous ant species (Formica lugubris). We use the model to test several key hy-
potheses for costs and benefits of polydomy and monodomy and show that decentralization is advantageous when resource acquisi-
tion costs are high, nest size is limited, resources are clustered, and there is a risk of nest destruction, but centralization prevails when 
resource availability fluctuates and nest size is limited. Our model explains the phylogenetic and ecological diversity of polydomous 
ants, demonstrates several trade-offs of decentralization and centralization, and provides testable predictions for empirical work on 
ants and in other systems.

Key words:  collective decision-making, decentralization, dynamic networks, polydomy, social insects, social networks.

INTRODUCTION

Centralization and decentralization are opposing strategies for the 

spatial organization of  resources or workers. In centralized systems, 

the resources are located in a single site, while in decentralized sys-

tems, resources are dispersed across multiple sites. Decentralization 

and centralization have many interacting costs and benefits, making 

it difficult to identify which should be adopted in a given context 

(Robinson 2014; Bernstein and Turban 2018; Ireland and Garnier 

2018). One potential source of  insights for the trade-offs between 

centralization and decentralization are ant colonies (Hölldobler 

and Lumsden 1980; Ireland and Garnier 2018).

The workforce and resources of  most ant colonies are central-

ized in a single nest, which is known as monodomy. However, 

some ant species decentralize their colonies by dividing into sev-

eral semi-autonomous subgroups that inhabit multiple nests, known 

as polydomy (Debout et  al. 2007) (Figure 1). Decentralization 

through polydomy is hypothesized to confer several benefits on col-

onies including: 1) reducing the risk of  colony extinction, through 

spreading risk (Le Breton et  al. 2007; Van Wilgenburg and Elgar 

2007; Robinson 2014); 2) enabling colonies to overcome population 

limits imposed by structural or organizational limitations on nest 

size (Van Wilgenburg and Elgar 2007; Robinson 2014); 3) improves 

colony foraging and defense through nests being well-distributed 

through the foraging area (Hölldobler and Lumsden 1980; 

Davidson 1997; Holway and Case 2001; Schmolke 2009; Lanan 

et al. 2011; Cook et al. 2013; Stroeymeyt et al. 2017); 4) buffering 
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Behavioral Ecology

the effects of  local environmental variability (Schmolke 2009; 

Cook et al. 2013; Robinson 2014); and 5) enabling colonies to ben-

efit from a large colony size, without the associated reductions in 

productivity (Kramer et al. 2014; Stroeymeyt et al. 2017). Despite 

these benefits, most ant colonies are monodomous. The reason for 

the relative abundance of  monodomy may be due to some key costs 

of  spreading across multiple nests, including: 1)  reduced defensive 

abilities, as defenders may be spread too thinly (Robinson 2014); 

2)  impaired information transfer between individuals when they 

are spread across multiple nests (Cook et al. 2013); and 3) costs of  

moving resources between nests due to predation or resource theft 

(Snyder and Herbers 1991; Robinson 2014).

The many inter-related costs and benefits of  decentralization 

of  an ant colony’s workforce make understanding the reasons that 

various ant species have evolved polydomy challenging to test in 

the field or laboratory. Furthermore, the species of  ants that dem-

onstrate polydomy are phylogenetically and ecologically diverse, 

as polydomy has evolved multiple times, seemingly in response to 

different selective pressures (Debout et al. 2007). Consequently, no 

single hypothesis for the adaptive benefits of  polydomy fits with 

the evidence from every case of  polydomy (Robinson 2014). One 

key difficulty is that we lack clear predictions of  how colony spatial 

structure should respond to different environmental pressures. One 

method that has been used, with some success, is mathematical 

models which compare the success of  polydomy and monodomy 

in different situations; however, current models of  nesting or-

ganization have been designed to test a single hypothesis and 

cannot be generalized to most cases of  polydomy (Höfener et  al. 

1996; Schmolke 2009; Cook et  al. 2013; Bottinelli et  al. 2015). 

Consequently, models that provide proof-of-concept tests and ver-

ifiable predictions for experimental and observational research are 

a necessary and relatively unexplored method for research into the 

trade-offs between centralization and decentralization of  ant nests.

Here, using a dynamic network model, we take a novel approach 

which investigates multiple hypotheses for the ecological benefits of  

spatial decentralization of  ant colonies.

METHODS

Model overview

We model the dynamics of  a population of  ant colonies, some 

of  which have a polydomous colony organization and others a 

monodomous colony organization. The model considers ant colo-

nies as networks with nodes representing nests and food sources, 

and connections representing resource exchange between those 

nodes (e.g., Figure 2). Over time, the strategies compete against 

each other (see Supplementary Video for example of  model run-

ning), allowing us to test various hypotheses for ecological bene-

fits of  decentralization and centralization in ant colonies by 

manipulating parameters of  the model. As the model is stochastic, 

we run multiple replicates under each set of  conditions; every rep-

licate is a unique realization of  the model. We use this model to 

formalize five existing hypotheses (Table 1) for the adaptive benefits 

of  polydomy and identify ecological conditions where each is likely 

to be important in driving the evolution of  polydomy.

Here, we present an overview of  how the model works; a 

fully detailed model description can be found in Supplementary 

Appendix 1. The model processes are based on empirical observa-

tions of  the facultatively polydomous wood ant Formica lugubris (Ellis 

and Robinson 2014). Empirically measured values for several of  

the model parameters are unavailable, but the model results are not 

highly sensitive to these parameters (Supplementary Appendix 9). 

The model is implemented in R version 3.4.1 (R Core Team 2017). 

Although implemented to investigate polydomous wood ants, our 

general modeling framework describes interactions between dy-

namically varying networks (nests and food sources in our case) and 

is readily adapted; the modular nature of  the processes involved (as 

detailed below) facilitates such adaptation.

Environment and agents

In the model, there are nests and food sources, each of  which 

has a fixed location (e.g., Figure 2). At the start of  each repli-

cate of  the model, nests are randomly distributed in space, 

Figure 1

A polydomous colony of  wood ants foraging on aphids that live in trees. For clarity, nests are marked with brown circles, food sources (trees) are marked with 

green squares, foraging trails are marked with dashed lines, and inter-nest trails are marked with solid lines. 
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Burns et al. • Centralization versus decentralization in ants

while food sources can be either randomly distributed or clus-

tered depending on the condition (see Table 1—Hypotheses and 

Supplementary Appendix 2). Nests contain resources that are im-

plicitly assumed to be ants capable of  foraging. Each nest also 

has a colony organization, which can be either polydomous or 

monodomous. At the start of  each replicate, half  of  the nests 

are polydomous and half  are monodomous. Food sources have 

a fixed location throughout each replicate of  the model. Food 

sources produce food at either a constant rate, or at a rate that 

fluctuates over time (Table 1).

Foraging connections

Nests make foraging connections to food sources. These are repre-

sentative of  foraging trails commonly found in wood ants (Ellis and 

Robinson 2014). Nests use food received from foraging connections 

to increase the quantity of  resources (equal to ants) in the nest. 

However, not all foraging connections are profitable. The profita-

bility of  a connection is determined by the availability of  resources 

at the food source, the number of  ants foraging on it, and its length, 

with longer connections being costlier. Such costs may include fac-

tors such as energy used by foragers, maintenance costs, and time 

costs.

Inter-nest connections

Nests that belong to the same polydomous colony can form con-

nections to each other, allowing them to take food. As with foraging 

connections, each connection can be costly if  it is long or if  there 

are few resources available.

Competition

If  two nests from different colonies make a connection to the same 

food source, they compete through interference competition for 

the food. A sensitivity analysis of  the effect of  competition on the 

model results is detailed in Supplementary Appendix 3.

Nest foundation, growth, and death

Nests are capable of  “parenting” new nests using their resources. 

If  a new nest is created by a nest with a polydomous colony or-

ganization, then it will belong to the same colony as the “parent” 

nest and have a connection allowing it to take resources from 

the “parent” nest. In contrast, nests parented by nests with a 

monodomous colony organization will become a new, independent 

colony. We assume that cooperative nests can occasionally found 

non-cooperative nests and vice versa. This prevents either strategy 

25

13

13

13

13

13

23

31

1

13

4

4

26

17

Figure 2

Graphical representation of  the model. Circles represent nests and squares represent food sources. Nest color indicates whether the nest belongs to a 

polydomous (orange) or a monodomous (blue) colony, and nest number is the colony identity of  that nest. Gray lines indicate foraging connections and black 

lines indicate inter-nest connections.

Table 1 

Hypotheses and factors changed in the model to test logic of  these hypotheses

Hypothesis Change in model Levels

Polydomy is favored when:
(1) the costs of  foraging are high Foraging cost Low, high
(2) nests are limited in size Nest-level carrying capacity Low, high
(3) food sources are clustered Food source distribution Clustered, random
(4) there is a risk of  stochastic nest destruction Probability of  stochastic nest destruction per season None, 1%
(5) food sources vary in availability Food source productivity Constant, fluctuating
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Behavioral Ecology

from becoming extinct. Polydomy appears to be a fairly flexible 

strategy in many ant species, which are facultatively polydomous 

(e.g., Ellis and Robinson 2014). Consequently, cooperative strategies 

among groups may often arise in response to local environmental 

conditions, rather than being inflexible.

Nests grow in size at a rate that depends on the quantity of  re-

sources that they receive from their connections. They also suffer a 

constant death rate and are limited in size by a “nest-level carrying 

capacity” (Table 1).

Nests can “die” if  the nest population (resources contained in the 

nest) reaches below a certain threshold. Nests can also “die” ran-

domly, which is included to represent processes such as predation, 

parasitism, or other stochastic causes of  nest “death” (Table 1).

Timescales

The model cycles over a set number of  seasons (Supplementary 

Table A1.1). Seasons in our model are simply used to index time 

and, as such, there is no variation in conditions between seasons. 

In each seasonal cycle, nests grow at a rate determined by the con-

nections that they have to food sources and other nests. At the end 

of  each season, nests can change their connections, depending 

on profitability, and produce new nests. We run the simulations 

for multiple independent replicates, each represented by a single 

complete run of  the model for a fixed number of  seasons. A video 

showing a graphical representation of  the model running can be 

found at Supplementary Video 1.

Experimental design and hypotheses

At the end of  every season, the locations, sizes, foraging connec-

tions, and inter-nest connections of  every nest that is currently ac-

tive are recorded. We use these data to test five different hypotheses 

(Table 1) by changing factors in the model in a full factorial design 

(i.e., all two-, three-, four-, and five-way interactions between fac-

tors are also tested). We ran 30 replicates of  each unique condition 

(30 replicates × 32 conditions = 960 total replicates). The hypoth-

eses and changes to the model are detailed in Table 1.

Statistical analyses

We used a general linear model (GLM) with a binomial error distri-

bution and a logit link as a framework to quantify how each of  the 

factors that we change in the model affects the proportion of  ants 

that belong to polydomous nests. Details of  model selection are de-

scribed in Supplementary Appendix 5. We do not report P values 

as they do not represent “statistical significance” (James et al. 2013; 

Wasserstein and Lazar 2016). Rather, for the fixed number of  rep-

licates under consideration, the odds ratio and confidence intervals 

are used to indicate factors with a clear effect. We calculate odds 

ratios for each of  the covariates of  the model to show the effect 

of  changing them on the frequency of  polydomy. The odds ratio 

values for each effect indicate the increase in probability that a ran-

domly selected ant in a replicate under a certain condition belongs 

to a polydomous nest by changing the factor of  interest (e.g., an 

odds ratio of  4 indicates that there is four times the probability that 

a randomly selected ant is from a polydomous nest when compared 

to replicates in which the factor of  interest is set to the alternative 

value). As such, the odds ratio values indicate whether differences 

between conditions are expected to be biologically meaningful but 

should not be used to compare relative importance of  each effect 

as an adaptive benefit of  polydomy or monodomy, because factor 

levels (Table 1) cannot be standardized across factors.

RESULTS

Of  the 960 model replicates, the population survived until the 

final season in 91.5% of  replicates. Replicates in which the pop-

ulation died before the final season were excluded from further 

analyses. Population survival under different conditions is shown in 

Supplementary Figure A6.1. We present multiple sensitivity ana-

lyses for model parameters in Supplementary Appendices 3 and 9.

Foraging costs

Our results support the hypothesis that polydomy is favored when 

foraging is costly. There is a clear effect of  foraging cost on the fre-

quency of  polydomy (Table 2), with polydomy being more frequent 

when foraging costs are high, compared with when they are low 

(Figure 3; effect sizes are detailed in Table 2). There are no impor-

tant interaction terms between foraging cost and any of  the other 

factors in the model.

Nest size limitations

Our results support the hypothesis that polydomy is favored when 

nest populations are limited in size. There is a clear effect of  nest-

level carrying capacity on the frequency of  polydomy (Table 2), 

with polydomy being found more frequently when nest-level car-

rying capacity is low, compared to when it is high (Figure 3). We 

also find two-way interactions between nest-level carrying capacity 

Table 2 

Factors included in the final GLM

Factor z Odds ratio 2.5% CI 97.5% CI 

Intercept −9.08 N/A N/A N/A
Foraging trail cost (high) 4.99 2.15 1.59 2.91
Nest-level carrying capacity (low) 3.87 3.75 1.94 7.43
Food source distribution (clustered) 7.20 5.78 3.61 9.41
Stochastic nest destruction (high) 5.20 4.61 2.62 8.31
Food source stochasticity (constant) 1.12 1.39 0.78 2.48
Food source stochasticity (constant) and nest-level carrying capacity (low) 2.43 2.11 1.16 3.87
Food source stochasticity (constant) and food source distribution (clustered) −0.66 0.82 0.45 1.48
Nest-level carrying capacity (low) and stochastic nest destruction (high) −4.68 0.23 0.13 0.43
Nest-level carrying capacity (low) and food source distribution (clustered) −3.71 0.31 0.17 0.58

Odds ratio indicates the increase in probability of  randomly selecting an ant from a polydomous nest when the factor (or factors) is set to the value given in 
parentheses in Factor; 2.5% and 97.5% CIs indicate 95% confidence intervals for each effect size. Factors with odds ratio (CIs) that do not overlap 1.00 (i.e., no 
effect) are highlighted in bold.
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Burns et al. • Centralization versus decentralization in ants

and stochastic nest destruction, food source distribution, and food 

source stochasticity on the frequency of  polydomy (details are in 

Table 2; descriptions of  each interaction are given in the sections 

of  “Food source distribution,” “Stochastic nest destruction,” and 

“Fluctuating food source availability”).

Food source distribution

Our results support the hypothesis that polydomy is favored when 

food sources are clustered. In the final GLM, we find an effect 

of  food source distribution on the frequency of  polydomy (Table 

2), with clustered food sources resulting in higher frequencies of  

polydomy than when food sources are randomly distributed (Figure 

3). However, there is also an interaction between food source dis-

tribution and nest-level carrying capacity (Table 2), with clustered 

food sources promoting polydomy less strongly when nest-level car-

rying capacity is low than when nest-level carrying capacity is high.

Stochastic nest destruction

Our data support the hypothesis that polydomy is favored when 

nests are at risk of  stochastic nest destruction. In the final model, 

the frequency of  polydomy is affected by stochastic nest destruc-

tion (Table 2), with stochastic nest destruction resulting in higher 

frequencies of  polydomy (Figure 3). However, there is also an inter-

action between stochastic nest destruction and nest-level carrying 

capacity (Table 2): the increase in polydomy caused by stochastic 

nest destruction is smaller when nest-level carrying capacity is low 

than when nest-level carrying capacity is high.

Fluctuating food source availability

Our model results support the hypothesis that polydomy is influ-

enced by fluctuations in food source availability, but only when 

nest-level carrying capacity is low (Table 2). However, the direction 

of  the effect is opposite to that hypothesized, with fluctuating food 

sources resulting in a lower frequency of  polydomy (Figure 3). The 

overall effect (without interactions) of  fluctuations in food source 

availability is not found to be important.

DISCUSSION

Our results show that polydomous colonies perform better when 

resource acquisition costs are high, nest size is limited, resources are 

clustered, and there is a risk of  nest destruction, but monodomy 

performs better when resource availability fluctuates temporally. 

Taken together, these results explain why species of  ants that have 

polydomous colonies are phylogenetically and ecologically diverse.

Our model supports the hypothesis that decentralizing across 

multiple nests may be favored when acquisition of  resources from 

the environment is costlier than resource sharing, and there is a ben-

efit to groups that donate resources to others, for example through 

inclusive fitness or reciprocation. Foraging costs in our model repre-

sent energetic costs, time costs, and forager loss through predation 

costs. Polydomy appears to allow colonies to reduce these costs, for 

example by limiting the time it takes for each individual to travel 

to a food source. Reducing foraging costs is likely to be important 

in many species, including the polydomous desert ant Cataglyphis 

iberica, whose workers forage in the middle of  the day when tem-

peratures are highest and longer foraging trips may result in death 

(Cerda et al. 2002).

Another important determinant of  the cost of  foraging is re-

cruitment, which allows colonies to quickly exploit food sources 

that are far from the nest without each forager having to find the 

food source independently. When recruitment is possible and food 
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Figure 3

The proportion of  the population in polydomous nests at the end of  500 seasons in each condition when food sources are either constant (A) or fluctuating 

(B) in availability. Middle lines represent median values, lower and upper hinges represent 25th and 75th percentiles, respectively, and whiskers reach to the 

lowest (lower whisker) or highest (higher whisker) value, with a maximum reach of  1.5 × IQR from the hinge. Values outside of  this range are plotted as 

outliers.
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sources are large, then being spread across multiple nests may ac-

tually be costly, because mobilization of  enough workers to exploit 

a food source may be not be possible from small nests (Cook et al. 

2013). Here, we model the behavior of  the population of  individual 

nests, rather than individual ants. Consequently, we do not model 

recruitment explicitly, but instead assume that ants are able to effec-

tively recruit to form trails to food sources.

Nest size limitation is one of  the clearest causes for a colony 

spreading across multiple nests and is supported by the model. It 

is most apparent in cavity-dwelling species, and is commonly asso-

ciated with seasonal polydomy, when colonies temporarily outgrow 

their nest (Cao 2013). Although the pressure of  nest size limitations 

on colony size is most clear in cavity-dwelling ants, similar processes 

may be at work in species with high nest-size-dependent mortality 

or organizational constraints on nest size (Le Breton et  al. 2007; 

Van Wilgenburg and Elgar 2007; Kramer et al. 2014).

The effect of  resource distribution on success of  polydomy in our 

model may be because polydomous colonies can monopolize clus-

ters of  permanent food sources and become difficult to displace. In 

contrast, monodomous colonies may be unable to monopolize large 

clusters of  food sources due to the foraging range of  individual 

nests being limited and may be easily invaded. Monopolization of  

food sources and subsequent absence of  interference competition 

appears to be an important factor in the success of  many inva-

sive species, such as the Argentine ant (Holway and Case 2001), 

and of  species that forage on large stable food sources, such as ant 

species that have mutualistic relationships with trophobionts (Ellis 

and Robinson 2014; Lanan 2014). This interpretation is also sup-

ported, as when competition is removed from our model, the fre-

quency of  polydomy decreases (Supplementary Appendix 3). The 

effect of  food source distribution on the frequency of  polydomy 

found by our model may be because when nest size is limited, being 

close to several food sources is less beneficial, as nests are restricted 

in the number of  foraging and inter-nest trails they can form. 

Consequently, food source distribution may be less influential in de-

termining social organization strategy when nests are only able to 

forage on a few food sources, or in a small area.

Our findings contrast with Cook et  al. (2013) who found that 

monodomy performs better than polydomy when food sources 

are clustered. We suggest this is because Cook et  al. model a 

single colony and do not consider inter-colony competition. In 

our model, polydomous colonies are often able to be more nu-

merically dominant than monodomous colonies as they can grow 

larger. Consequently, when food sources are clustered, polydomous 

colonies in our model can monopolize clusters more easily making 

it difficult for competitors to invade, which may be an important 

mechanism in ant species that forage on large, consistent food 

sources, such as populations of  aphids (Ellis and Robinson 2014). 

When interference competition is removed from our model then, 

like Cook et al., we find that polydomy is less prevalent when food 

is clustered (Supplementary Appendix 3).

Our model supports the hypothesis that polydomy allows colo-

nies to spread the risk of  nest destruction. Decentralization may 

allow the wider group to spread the risk of  damage from external 

processes across multiple nests: if  one nest is destroyed, the colony 

can still persist, provided there are multiple queens in the colony 

(Robinson 2014; Van Wilgenburg and Elgar 2007). Pressure from 

stochastic nest destruction is likely to be important in species 

where nests are targeted by predators (Le Breton et al. 2007; Van 

Wilgenburg and Elgar 2007), but could also represent other pro-

cesses through which random nest destruction occurs, for example 

social parasitism, which may be important in many ant species 

(Czechowski and Godzińska 2015), or environmental damage. 

Some of  the effect of  stochastic nest destruction on the success of  

polydomy is lost when nest size is very limited. When nests are lim-

ited to being small, there are likely to be more of  them, because 

individual nests use less food than when nests can grow very large, 

meaning that the maximum number of  nests that an environment 

can support is higher. When this is the case, stochastic destruc-

tion of  a single nest is likely to be a less detrimental event for a 

polydomous colony.

In our model, stochastic nest destruction is a completely random 

process that occurs independently for each nest. However, ecolog-

ical and environmental processes that lead to nest destruction are 

often non-random: factors such as nest size, physical location, and 

network location are likely to be important in determining the 

likelihood that a nest is predated (e.g., Van Wilgenburg and Elgar 

2007).

In polydomous ants, there is good evidence that sharing be-

tween nests occurs when one nest has excess resources and an-

other nest has a resource deficit (Ellis et  al. 2014). Consequently, 

polydomous colonies may have an advantage over monodomous 

colonies through being able to cover a larger area and absorb 

stochasticity in local environmental conditions (Holway and Case 

2001), for example food production. However, we do not find sup-

port for this hypothesis. Instead, we find that polydomy is actu-

ally costly when food sources fluctuate in quality. The difference 

between the hypothesized result and the outcome of  our model 

may be a consequence of  small nests, common in polydomous col-

onies in our model, being more vulnerable to local reduction in 

food availability. Small nests may also be unable to grow quickly 

enough to fully exploit food sources that become very productive, 

an effect that has previously been found in models of  polydomy 

(Cook et al. 2013). We demonstrate the logic of  this hypothesized 

explanation using a simple model in Supplementary Appendix 7. 

Furthermore, there may be other situations not covered by our 

model, in which resource fluctuations result in higher frequencies 

of  polydomy. For example, polydomous colonies may be better 

suited to surviving seasonal changes or spatial variation in resource 

availability than monodomous colonies, due to the ability of  nests 

to share resources.

While our model shows increased foraging costs are associated 

with higher frequency of  polydomy, we have not investigated the 

effect of  altering resource sharing costs. Costs of  resource sharing 

are likely to comprise a combination of  time and energetic costs, 

and increased risk of  predation and theft of  transported resources 

while outside of  the nest (Robinson 2014). We expect the relative 

costs of  foraging and sharing are likely to be important to the prof-

itability of  polydomy in many different ant species. However, fu-

ture work is necessary to determine the direction and effect of  this 

interaction.

In this study, we focus on the adaptive benefits of  either central-

ization of  decentralization in ant colonies but have not considered 

the effects of  genetic structure. Future work could adapt the model 

to include relatedness, which may provide important insights into 

the emergence of  polydomous colonies. This is likely to be particu-

larly important with respect to invasive supercolonies where popu-

lation bottlenecks appear to be important (Giraud et al. 2002; Van 

Wilgenburg et al. 2010). We also do not look at how differences in 

the numbers of  queens in each colony influence each of  the hy-

potheses. The number of  queens in polydomous colonies varies, 

with colonies of  some species having many queens (polygynous) 
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and colonies of  other species having a single queen (monogynous) 

(Robinson 2014). This dichotomy is likely to have consequence for 

the risk spreading benefit of  polydomy: if  a nest in a monogynous 

colony containing the queen is predated, the colony will not survive 

if  it is not able to rear a queen from existing brood. However, the 

influence of  different numbers of  queens per colony on the benefits 

of  polydomy are likely to be less important for the other hypotheses 

because processes such as foraging are unlikely to be influenced by 

queen distribution. Future work could adapt our model to look at 

how each of  the hypotheses we investigated are influenced by the 

number of  queens in each colony.

Our research adds to a growing collection of  studies that have 

used generative approaches—that is, process-based predictive 

models—to model biological networks (Seyfarth 1977; Cantor et al. 

2015; Pinter-Wollman 2015; Ilany and Akçay 2016); the predictions 

of  such models can then be tested empirically (Ilany and Akçay 

2016). The advantage of  using such models is that it is possible to 

test the logic of  existing hypotheses and generate novel predictions 

about the way that different biological networks behave. The find-

ings can then be used to inform the design of  experiments. Our 

model highlights several key adaptive benefits to both centraliza-

tion and decentralization in ecological systems, demonstrating how 

there may be multiple drivers of  this trait and also helping to form 

testable hypotheses.
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