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QUASI-ABELIAN HEARTS OF TWIN COTORSION PAIRS ON

TRIANGULATED CATEGORIES

AMIT SHAH

Abstract. We prove that, under a mild assumption, the heart H of a twin cotorsion

pair ((S, T ), (U ,V)) on a triangulated category C is a quasi-abelian category. If C is

also Krull-Schmidt and T = U , we show that the heart of the cotorsion pair (S, T ) is

equivalent to the Gabriel-Zisman localisation of H at the class of its regular morphisms.

In particular, suppose C is a cluster category with a rigid object R and [XR] the

ideal of morphisms factoring through XR = Ker(HomC(R,−)), then applications of our

results show that C/[XR] is a quasi-abelian category. We also obtain a new proof of an

equivalence between the localisation of this category at its class of regular morphisms

and a certain subfactor category of C.

1. Introduction

Cotorsion pairs were first defined specifically for the category of abelian groups in [34]

as an analogue of the torsion theories introduced in [14], which were themselves used

to generalise the notion of torsion in abelian groups. Torsion theories for triangulated

categories were introduced in [20] and used in the study of rigid Cohen-Macaulay modules

over specific Veronese subrings. Analogously, Nakaoka [29] defined cotorsion pairs for

triangulated categories as follows. Let C be a triangulated category with suspension

functor Σ. A cotorsion pair on C is a pair (U ,V) of full, additive subcategories of C

that are closed under isomorphisms and direct summands, satisfying Ext1C(U ,V) = 0 and

C = U ∗ ΣV (see Definitions 2.14 and 2.15). This allowed Nakaoka to extract an abelian

category, known as the heart of the cotorsion pair [29, Def. 3.7], from the triangulated

category. The key motivating examples for Nakaoka were the following.

(i) A t-structure (C60, C>0) on a triangulated category C, in the sense of [7], can be

interpreted as a cotorsion pair (ΣC60,Σ−1C>0). In this case the heart C60 ∩ C>0 of

the t-structure coincides with the heart of the cotorsion pair.

(ii) Suppose C is a triangulated category, with a tilting subcategory T (see [19, Def. 2.2]).

It was shown in [24] (see also [23] and [11]) that C/[T ] is an abelian category, where

[T ] is the ideal of morphisms factoring through T . The corresponding cotorsion pair

in this setting is (T , T ) and has C/[T ] as its heart.
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In [9], Buan and Marsh generalised the results of [24] and [11] in the following way.

Assume k is a field, and suppose C is a skeletally small, Hom-finite, Krull-Schmidt, tri-

angulated k-category has Serre duality (see Definition 5.1). For a subcategory A of C

that is closed under finite direct sums, let [A] denote the ideal of C consisting of morph-

isms that factor through an object of A. Fix an object R of C that is rigid (see §5).

It was shown [9, Thm. 5.7] that there is an equivalence (C/[XR])R ≃ mod(EndC R)op,

where XR = Ker(HomC(R,−)) and (C/[XR])R is the (Gabriel-Zisman) localisation (see

[16]) of C/[XR] at the class R of regular (see Remark 2.6) morphisms. Beligiannis further

developed these ideas in [6].

Nakaoka was then able to put this into a more general context by introducing the

following concept in [30]. A twin cotorsion pair on C consists of two cotorsion pairs

(S, T ) and (U ,V) on C which satisfy S ⊆ U . As for cotorsion pairs, Nakaoka defined the

heart of a twin cotorsion pair as a certain subfactor category of C (see Definition 2.31).

By setting S = U and T = V , one recovers the original cotorsion pair theory: the heart

of the twin cotorsion pair ((U ,V), (U ,V)) coincides with the heart of the cotorsion pair

(U ,V) (see [30, Exam. 2.10]).

For a twin cotorsion pair, the associated heart H is shown [30, Thm. 5.4] to be semi-

abelian (see Definition 2.5). Furthermore, Nakaoka showed [30, Thm. 6.3] that if U ⊆ S∗T

or T ⊆ U ∗ V , then H is integral (see Definition 2.11), so that localising at the class of

regular morphisms produces an abelian category (see [32]). With C and R as above, and

setting ((S, T ), (U ,V)) = ((addΣR,XR), (XR,XR
⊥1)), where XR

⊥1 = Ker(Ext1C(XR,−)),

one obtains the aforementioned result [9, Thm. 5.7] of Buan and Marsh (see Lemma 5.4).

The main result of this article concerns quasi-abelian categories; a quasi-abelian cat-

egory is an additive category which has kernels and cokernels, and in which kernels are

stable under pushout and cokernels are stable under pullback (see Definition 2.7). Im-

portant examples of such categories include: the category of topological abelian groups;

the category of Λ-lattices for Λ an order over a noetherian integral domain; any abelian

category; and the torsion class and torsion-free class in any torsion theory of an abelian

category (see [32, §2] for more details). In this article, we prove that the heart of a twin

cotorsion pair, satisfying a different mild assumption, is quasi-abelian (see Theorem 3.4).

This assumption is satisfied if U ⊆ T or T ⊆ U , and hence is met in the setting of [9]

discussed above (see Corollary 3.5) where T = U .

Let ((S, T ), (U ,V)) be a twin cotorsion pair with heart H on a Krull-Schmidt, tri-

angulated category. We show in §4 that if T coincides with U , then the heart H (S,T )

of (S, T ) (see [29, Def. 3.7]) is equivalent to the localisation HR of H at the class

R of its regular morphisms (see Theorem 4.8). Since T = U when ((S, T ), (U ,V)) =

((addΣR,XR), (XR,XR
⊥1)), the results of §4 also apply in the setting of Buan and Marsh

as we explain in §5. Our methods are also related to work of Marsh and Palu: in [28], equi-

valences are found from subfactor categories of a Krull-Schmidt, Hom-finite, triangulated

category to localisations of module (and hence abelian) categories, whereas we localise

not necessarily abelian categories. We also note that Theorem 4.8 may be obtained from

results of [6] in a different way (see Remark 4.10).
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In particular, the cluster category CH (see [8], [13]) associated to a hereditary k-algebra

H is an example of a Hom-finite, Krull-Schmidt, triangulated k-category that has Serre

duality, and this is the motivation for our results (see Example 5.10). It is especially

interesting that C/[XR] is quasi-abelian in this case, as many aspects of Auslander-Reiten

theory for abelian categories (developed in [2], [3]) still apply for quasi-abelian categories

(see the forthcoming preprint [36]).

This paper is organised in the following way. We first recall the notion of a quasi-abelian

category in §2.1, then the definition and some properties of twin cotorsion pairs as well

as some new observations in §2.2. In §3 we prove our main result: the case when the

heart of a twin cotorsion pair becomes quasi-abelian. In §4 we relate the heart of a twin

cotorsion pair ((S, T ), (U ,V)) to the heart of the cotorsion pair (S, T ) whenever T = U .

Lastly, we explore our main motivating example in §5, namely the setting of [9].

2. Preliminaries

2.1. Preabelian categories. The main result of this paper concerns a type of category

more general than an abelian category—namely a quasi-abelian category. However, before

giving the definition of such a category, we recall some preliminary definitions. We only

give a quick summary of the theory and for more details we refer the reader to [32].

Definition 2.1. [31, p. 24], [12, §5.4] A preabelian category is an additive category in

which every morphism has a kernel and a cokernel.

Definition 2.2. [31, p. 23] Given a morphism f : A → B in a category A, the coimage

coim f : A→ Coim f , if it exists, is the cokernel coker(ker f) of the kernel of f . Similarly,

the image im f : Im f → B is the kernel ker(coker f) of the cokernel of f .

The following proposition is then easily checked.

Proposition 2.3. [31, p. 24] Let A be a preabelian category and f : A→ B a morphism

in A. Then f decomposes as

A B

Coim f Im f

coim f

f

◦

f̃

im f

Definition 2.4. [31, p. 24] The morphism f̃ in Proposition 2.3 above is called the parallel

of f . Furthermore, if f̃ is an isomorphism then f is said to be strict.

Definition 2.5. [32, p. 167] Let A be a preabelian category. We call A left semi-abelian

if each morphism f : A→ B factorises as f = ip for some monomorphism i and cokernel

p. We call A right semi-abelian if instead each morphism f decomposes as f = ip with

i a kernel and p some epimorphism. If A is both left and right semi-abelian, then it is

simply called semi-abelian.

Remark 2.6. A category is semi-abelian if and only if, for every morphism f , the parallel

f̃ of f is regular, i.e. simultaneously monic and epic (see [32, pp. 167–168]).
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Definition 2.7. Let A be a category, and suppose

A B

C D

a

b c

d

is a commutative diagram in A. Let P be a class of morphisms in A (e.g. the class of all

kernels in A). We say that P is stable under pullback (respectively, stable under pushout)

if, in any diagram above that is a pullback (respectively, pushout) square, d is in P implies

that a is in P (respectively, a is in P implies that d is in P).

Definition 2.8. [32, p. 168] Let A be a preabelian category. We call A left quasi-abelian

if cokernels are stable under pullback in A. If kernels are stable under pushout in A, then

we call A right quasi-abelian. Furthermore, if A is left and right quasi-abelian, then A is

simply called quasi-abelian.

Remark 2.9. The history of the term ‘quasi-abelian’ category is not straightforward. We

use the terminology as in [33], but note that such categories were called ‘almost abelian’

in [32]. We refer the reader to the ‘Historical remark’ in [33] for more details.

Remark 2.10. It is also worth remarking that a category is abelian if and only if it is a

quasi-abelian category in which every morphism is strict.

Definition 2.11. [32, p. 168] Let A be a preabelian category. We call A left integral

if epimorphisms are stable under pullback in A. If monomorphisms are stable under

pushout in A, then we call A right integral. If A is both left and right integral, then A is

called integral.

Lastly in this section, we recall an observation from [32].

Proposition 2.12. [32, p. 169, Cor. 1] Every left (respectively, right) quasi-abelian or

left (respectively, right) integral category is left (respectively, right) semi-abelian.

2.2. Twin cotorsion pairs on triangulated categories. Throughout this section, let

C denote a fixed triangulated category with suspension functor Σ. We use the labelling of

the axioms of a triangulated category as in [18], and its distinguished triangles will just

be called triangles. We follow [29] and [30] in order to recall some of the definitions and

theory concerning twin cotorsion pairs on triangulated categories, but first we need some

notation.

Definition 2.13. Let U ⊆ C be a full, additive subcategory of C that is closed under

isomorphisms and direct summands. By ExtiC(U , X) = 0 (respectively, ExtiC(X,U) = 0)

we mean ExtiC(U,X) = 0 (respectively, ExtiC(X,U) = 0) for all U ∈ U . We define the

following full, additive subcategories of C where i ∈ N:

U⊥i :=
{
X ∈ C | ExtiC(U , X) = 0

}
,

⊥iU :=
{
X ∈ C | ExtiC(X,U) = 0

}
.
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Definition 2.14. [20, p. 122] Let U ,V ⊆ C be full, additive subcategories of C that are

closed under isomorphisms and direct summands. By U ∗V we denote the full subcategory

of C consisting of objects X ∈ C for which there exists a triangle U → X → V → ΣU in

C with U ∈ U , V ∈ V .

Definition 2.15. [29, Def. 2.1] Let U ,V ⊆ C be full, additive subcategories of C that

are closed under isomorphisms and direct summands. We call (the ordered pair) (U ,V) a

cotorsion pair (on C) if Ext1C(U ,V) = 0 and C = U ∗ ΣV .

As pointed out in [29, Rem. 2.2], a pair (U ,V) is a cotorsion pair on a Krull-Schmidt,

Hom-finite, triangulated k-category C ′ (with suspension Σ′) if and only if (Σ′−1U ,V) is a

torsion theory in C ′ as defined in [20]. Recall that a torsion theory in C ′ (in the sense of [20,

Def. 2.2]) is a pair (X ,Y) of full additive subcategories X ,Y of C ′ that are closed under

isomorphisms and direct summands, such that HomC′(X ,Y) = 0 and C ′ = X ∗Y . We note

that in [20] all categories are assumed to be Krull-Schmidt and all triangulated categories

are also assumed to be Hom-finite k-categories (see [20, pp. 121–122]). Therefore, some of

the results from [20] may not translate directly over to the more general setting considered

in [30].

Definition 2.16. [2, §2] Let f : X → Y be a morphism in C. We say that f is right

minimal (respectively, left minimal) if, for any endomorphism g : X → X (respectively,

g : Y → Y ), fg = f (respectively, gf = f) implies g is an automorphism.

Definition 2.17. [4, p. 114] Let X ⊆ C be a full subcategory, closed under isomorphisms

and direct summands.

(i) A right X -approximation of A in C is a morphism X → A in C with X ∈ X , such

that for any object X ′ ∈ X we have an exact sequence

HomA(X
′, X)→ HomA(X

′, A)→ 0.

A right X -approximation is called a minimal right X -approximation if it is also right

minimal.

(ii) A left X -approximation of A in C is a morphism A → X in C with X ∈ X , such

that for any object X ′ ∈ X we have an exact sequence

HomA(X,X ′)→ HomA(A,X
′)→ 0.

A left X -approximation is called a minimal left X -approximation if it is also left

minimal.

The terminology of approximations was introduced in [4], but the same notions were

established independently by Enochs [15] specifically for the subcategories of injective

objects and projective objects in a module category. The term ‘preenvelope’ (respectively,

‘precover’) in [15] corresponds to the notion of left (respectively, right) approximation.

Lemma 2.18 (Triangulated Wakamatsu’s Lemma). [21, Lem. 2.1] Let X be an extension-

closed full subcategory of C that is closed under isomorphisms and direct summands.
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(i) Suppose X
x
−→ A is a minimal right X -approximation of A in C, which completes

to a triangle Σ−1A
w
−→ Y −→ X

x
−→ A. Then w : Σ−1A → Y is a left X⊥1-

approximation of Σ−1A.

(ii) Suppose A
x′

−→ X ′ is a minimal left X -approximation of A in C, which completes to

a triangle A
x′

−→ X ′ −→ Z
z
−→ ΣA. Then z : Z → ΣA is a right X⊥1 -approximation

of ΣA.

Although the notion of a contravariantly (respectively, covariantly) finite subcategory

(see below) is related to the idea of right (respectively, left) approximations, it dates back

to [5, p. 81] in which these concepts were defined in the context of module categories.

Definition 2.19. [4, pp. 114, 142] Let X ⊆ C be a full subcategory, closed under iso-

morphisms and direct summands. We say X is contravariantly (respectively, covariantly)

finite if A has a right (respectively, left) X -approximation for each A ∈ C. If X is both

contravariantly finite and covariantly finite, then X is called functorially finite.

The next proposition collects some elementary properties about cotorsion pairs that

will be very useful in the sequel; see for example [20] or [29]. Recall that if U is a full,

additive subcategory of C, then addU denotes the full, additive subcategory of C that

consists of objects of C which are isomorphic to direct summands of finite direct sums of

objects of U .

Proposition 2.20. Let (U ,V) be a cotorsion pair on C.

(i) [20, p. 123], [29, Rem. 2.3] We have U = V⊥1 and V = U⊥1.

(ii) [20, p. 123], [30, Lem. 2.14] Let X be an object in C. Since (U ,V) is a cotorsion

pair, there is a triangle U
u
−→ X

v
−→ ΣV

w
−→ ΣU , where U ∈ U and V ∈ V.

Then the morphism u : U → X is a right U-approximation of X and the morphism

v : X → ΣV is a left ΣV-approximation of X.

(iii) The subcategory U is contravariantly finite and the subcategory V is covariantly finite.

(iv) [29, Rem. 2.4] The subcategories U and V are extension-closed.

Definition 2.21. [30, Def. 2.7] Let (S, T ) and (U ,V) be two cotorsion pairs on C. The

ordered pair ((S, T ), (U ,V)) is called a twin cotorsion pair (on C) if Ext1C(S,V) = 0.

The following easily verifiable result is often useful.

Proposition 2.22. [30, p. 198] Let (S, T ) and (U ,V) be cotorsion pairs on C. Then

((S, T ), (U ,V)) is a twin cotorsion pair ⇐⇒ S ⊆ U ⇐⇒ V ⊆ T .

Throughout the remainder of this section, let ((S, T ), (U ,V)) be a twin cotorsion pair

on C.

Definition 2.23. [30, Def. 2.8] We define full subcategories of C as follows:

W := T ∩ U , C− := Σ−1S ∗W , C+ :=W ∗ ΣV , H := C− ∩ C+.

From this definition, we immediately see that W is contained in the subcategories C−,

C+ and H; and that W is extension-closed as T and U are extension-closed. It is also

clear that W , C−, C+ and H are additive and closed under isomorphisms.
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Proposition 2.24. The subcategories W, C−, C+ and H are all closed under direct sum-

mands.

Proof. Since T and U are assumed to be closed under direct summands (see Definition

2.15), we immediately see thatW is also closed under direct summands. That H is closed

under direct summands will follow from C− and C+ having this property. We will give the

proof just for C− as the proof for C+ is similar.

Suppose X = X1 ⊕ X2 ∈ C
−, then there is a distinguished triangle Σ−1S

s
−→ X

x
−→

W
t
−→ S with S ∈ S and W ∈ W . Since C = S ∗ ΣT , there exists a triangle

Σ−1S1 X1 T1 S1
a b c where S1 ∈ S and T1 ∈ T . Thus, it suffices to show

that T1 ∈ U as then we will have T1 ∈ T ∩ U =W , and hence T1 ∈ Σ−1S ∗W = C−.

First, we claim that x : X → W is a left T -approximation of X. Indeed, if T ∈ T

then we get an exact sequence HomC(W,T ) → HomC(X, T ) → HomC(Σ
−1S, T ) since

HomC(−, T ) is a cohomological functor (see [17, Prop. I.1.2]), where HomC(Σ
−1S, T ) ∼=

HomC(S,ΣT ) = Ext1C(S, T ) = 0 since (S, T ) is a cotorsion pair. Thus, HomC(W,T ) →

HomC(X, T ) is surjective for T ∈ T and x : X → W is a left T -approximation of X.

In order to show T1 ∈ U , it is enough to show that any v : T1 → ΣV is in fact the

zero map as U = V⊥1 (see Proposition 2.20). Let v : T1 → ΣV be arbitrary. Since

bπ1 : X = X1 ⊕ X2 → T1 is a morphism with codomain in T , where π1 : X → X1 is

the canonical projection, it must factor through the left T -approximation x : X → W .

That is, there exists d : W → T1 such that dx = bπ1. We then have (vb)π1 = vdx = 0,

because vd : W → ΣV vanishes as W ∈ W ⊆ U = V⊥1 . This in turn implies vb = 0

as π1 is an epimorphism. Since Σ−1S1 X1 T1 S1
a b c is a triangle, we see that

v : T1 → ΣV must factor through c : T1 → S1. Thus, v = fc for some f ∈ HomC(S1,ΣV ) =

Ext1C(S1, V ) = 0 by definition of a twin cotorsion pair. Hence, v = 0 and we are done.

We now recall some notions from [30] needed for the remainder of this section.

Definition 2.25. [30, Def. 3.1] For X ∈ C, we define KX ∈ C and a morphism kX : KX →

X as follows. Since S∗ΣT = C = U∗ΣV , we have two triangles Σ−1S X T Sa

(S ∈ S, T ∈ T ) and U T ΣV ΣUb (U ∈ U , V ∈ V). Then we may complete

the composition ba : X → ΣV to a triangle

V KX X ΣV.
kX ba

Definition 2.26. [30, Def. 3.4] For X ∈ C, we define ZX ∈ C and zX : X → ZX as

follows. Since S ∗ ΣT = C = U ∗ ΣV , we have two triangles V U X ΣVc

(U ∈ U , V ∈ V) and Σ−1T Σ−1S U Td (S ∈ S, T ∈ T ). Then we may

complete the composition cd : Σ−1S → X to a triangle

Σ−1S X ZX S.cd zX

Definition 2.27. [30, Def. 4.1] Let f : X → Y be a morphism in C with X ∈ C−.

We define Mf ∈ C and mf : Y → Mf as follows. Since X ∈ C−, there is a triangle

Σ−1S X W Ss (S ∈ S, W ∈ W). Then we may complete fs : Σ−1S → Y
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to a triangle

Σ−1S Y Mf S.
fs mf

Definition 2.28. [30, Rem. 4.3] Let f : X → Y be a morphism in C with Y ∈ C+.

We define Lf ∈ C and lf : Lf → X as follows. Since Y ∈ C+, there is a triangle

W Y ΣV ΣWv (W ∈ W , V ∈ V). Then we may complete vf : X → ΣV to

a triangle

V Lf X ΣV.
lf vf

We now present strengthened versions of [30, Claim 3.2] and [30, Claim 3.5].

Proposition 2.29. Suppose C is an arbitrary object of C. Then

(i) KC ∈ C
−;

(ii) C ∈ C+ ⇐⇒ KC ∈ C
+ ⇐⇒ KC ∈ H;

(iii) ZC ∈ C
+; and

(iv) C ∈ C− ⇐⇒ ZC ∈ C
− ⇐⇒ ZC ∈ H.

Proof. The proofs for (i) and (iii) are [30, Claim 3.2 (1)] and [30, Claim 3.5 (1)], respect-

ively. Since KC ∈ C
−, we immediately see that KC ∈ C

+ if and only if KC ∈ H. For (ii),

the proof that C ∈ C+ implies KC ∈ H is [30, Claim 3.2 (2)]. Thus, we show the converse.

There is a triangle V → KC → C → ΣV where V ∈ V , so if KC ∈ C
+ then C ∈ C+ using

[30, Lem. 2.13 (2)]. The proof of statement (iv) is similar.

The next proposition follows from [30, Prop. 3.6] and [30, Prop. 3.7], but we state it

in the language of approximations.

Proposition 2.30. Suppose C is an arbitrary object of C.

(i) The morphism kC : KC → C is a right C−-approximation of C.

(ii) The morphism zC : C → ZC is a left C+-approximation of C.

For a subcategory A ⊆ C that is closed under finite direct sums, we will denote by

[A] the two-sided ideal of C such that [A](X, Y ) consists of all morphisms X → Y that

factor through an object in A. Note that if A is a full, additive subcategory that is closed

under isomorphisms and direct summands, then [A] coincides with the ideal generated by

identity morphisms 1A such that A ∈ A. With this notation we are in position to recall

the definition of the heart associated to a twin cotorsion pair.

Definition 2.31. [30] Recall that W is a subcategory of C+, C− and H. We define the

following additive quotients C+ := C+/[W ], C− := C−/[W ] and H := H/[W ]. We call the

category H the heart of ((S, T ), (U ,V)) by analogy with [29].

Suppose I an ideal of C. We will denote by f the coset f + I(X, Y ) in HomC/I(X, Y )

of f ∈ HomC(X, Y ). The next result is a combination of [30, Cor. 4.5] and [30, Cor. 4.6],

and most of the proof can be found there. We provide the missing link.

Proposition 2.32. Let f ∈ HomH(A,B) be a morphism in the subcategory H, which

completes to a triangle A B C ΣA
f g

in C. Then the following are equivalent:
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(i) f ∈ HomH(A,B) is an epimorphism;

(ii) ZMf
∈ W, i.e. ZMf

∼= 0 in H;

(iii) Mf ∈ U ; and

(iv) g : B → C factors through U .

Proof. The equivalence of (i) – (iii) is [30, Cor. 4.5], and (iv) implies (i) is [30, Cor. 4.6].

We prove (iii) implies (iv). To this end, suppose Mf ∈ U . From Definition 2.27, there are

triangles Σ−1SA A WA SA
sA wA and Σ−1SA B Mf SA,

fsA mf

where

SA ∈ S, WA ∈ W . Then g(fsA) = 0 as gf = 0, so g factors through mf : B →Mf where

Mf ∈ U by assumption. Hence, g admits a factorisation through U as desired.

To be explicit, we state the dual in full.

Proposition 2.33. Let f ∈ HomH(A,B) be a morphism in the subcategory H, which

completes to a triangle Σ−1C A B Ch f
in C. Then the following are equival-

ent:

(i) f ∈ HomH(A,B) is a monomorphism;

(ii) KLf
∈ W, i.e. KLf

∼= 0 in H;

(iii) Lf ∈ T ; and

(iv) h : Σ−1C → A factors through T .

The last result of this section is an application of these previous two propositions to

the case of a degenerate twin cotorsion pair; that is, a twin cotorsion pair ((S, T ), (U ,V))

where (S, T ) = (U ,V). One may recover results from [29] about cotorsion pairs on

triangulated categories through the theory of twin cotorsion pairs developed in [30] using

such degenerate twin cotorsion pairs (see [30, Exam. 2.10 (1)]). We recall some definitions,

which we will also need later, from [29] for convenience.

Definition 2.34. [29] Given a cotorsion pair (U ,V) on a triangulated category, define

W := U ∩V , C − := Σ−1U ∗W and C + := W ∗ΣV . The heart of the (individual) cotorsion

pair (U ,V) is defined to be H (U ,V) := (C − ∩ C
+)/[W ].

It is easy to see that W =W , C − = C− and C + = C+ for a degenerate twin cotorsion

pair ((U ,V), (U ,V)), and that H (U ,V) coincides with the heart H of the twin cotorsion

pair ((U ,V), (U ,V)).

Corollary 2.35. Suppose we have a degenerate twin cotorsion pair ((U ,V), (U ,V)) on C

and objects X, Y ∈ H. Assume Z X Y ΣZ
f

is a triangle in C.

(i) If f is epic in H, then Z ∈ C−.

(ii) If f is monic in H, then ΣZ ∈ C+.

Proof. We only prove (i) as (ii) is similar. Since f is epic in H, by Proposition 2.32 we

have that Mf ∈ U = S. Recall from Definition 2.27 that Mf is obtained by taking a

triangle Σ−1S
s
→ X → W → S (S ∈ S, W ∈ W), which exists as X ∈ H ⊆ C−, and
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then completing the composition fs to a triangle Σ−1S Y Mf S.
fs mf

Then

applying the octahedral axiom (TR5), we get a commutative diagram

Σ−1S X W S

Σ−1S Y Mf S

X Y ΣZ ΣX

W Mf ΣZ ΣW

s

f

fs mf

f

where the rows are triangles. Therefore, there is a triangle Σ−1Mf → Z → W → Mf

by (TR3), where Σ−1Mf ∈ Σ−1U and W ∈ W , so Z ∈ Σ−1U ∗ W = Σ−1S ∗ W = C− as

U = S for a degenerate twin cotorsion pair.

3. Main result: the case when H is quasi-abelian

Let C be a fixed triangulated category with suspension functor Σ, and suppose ((S, T ), (U ,V))

is a twin cotorsion pair on C. No other assumptions are made on C in this section. We

recall two key results from [30] concerning the factor category H = H/[W ]. First, it is

shown that H is semi-abelian [30, Thm. 5.4], and that, if U ⊆ S ∗ T or T ⊆ U ∗ V , then

H is also integral [30, Thm. 6.3].

In this section we prove our main result: if H is equal to C− or C+, then H = H/[W ]

is quasi-abelian. In order to prove this, we need the following lemma.

Lemma 3.1. Let A be a left semi-abelian category. Suppose

A B

C D

a

b
�

c

d

is a pullback diagram in A. Suppose we also have morphisms xB : X → B and xC : X → C

such that xB is a cokernel and

X B

C D

xB

xC ◦ c

d

commutes. Then a : A→ B is also a cokernel in A.
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Proof. From the assumptions, we obtain the following commutative diagram

X

A B

C D

xB

xC

∃!e

a

b
�

c

d

using the universal property for the pullback because cxB = dxC . Thus, ae = xB is a

cokernel, and hence a is cokernel in the left semi-abelian category A by [32, Prop. 2].

Dually, we also have the following.

Lemma 3.2. Let A be a right semi-abelian category. Suppose

A B

C D

a

b c

d

�

is a pushout diagram in A. Suppose we also have morphisms xB : B → X and xC : C → X

such that xC is a kernel and

A B

C X

a

b ◦ xB

xC

commutes. Then d : C → D is also a kernel in A.

We will also need the following easy lemma in the proof of our main theorem.

Lemma 3.3. [9, Lem. 2.5] In any preadditive category A, we have the following.

(i) A monomorphism that is a weak kernel is a kernel.

(ii) An epimorphism that is a weak cokernel is a cokernel.

We now show that, under the right conditions, H is quasi-abelian. We note that

H = C− ⇐⇒ C− ⊆ C+ ⇐⇒ Σ−1S ∗W ⊆ W ∗ΣV , and dually that H = C+ ⇐⇒ C+ ⊆

C− ⇐⇒ W ∗ ΣV ⊆ Σ−1S ∗W .

Theorem 3.4. Let C be a triangulated category with a twin cotorsion pair ((S, T ), (U ,V)).

If H = C− or H = C+, then H = H/[W ] is quasi-abelian.

Proof. Since H is semi-abelian [30, Thm. 5.4], we have that H is left quasi-abelian if and

only if H is right quasi-abelian [32, Prop. 3]. Therefore, we will show that if H = C− then

H is left quasi-abelian. Showing H is right quasi-abelian whenever H = C+ is similar.

Suppose H = C− and that we have a pullback diagram

A B

C D

a

b
�

c

d
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in H, where d is a cokernel. We need to show that a is also a cokernel.

By [30, Lem. 5.1], we may assume that d ∈ HomH(C,D) is a morphism for which there

is a distinguished triangle Σ−1S C D Sd e in C with S ∈ S. An application of

(TR3) yields a triangle C D S ΣCd e .

We can complete c to a triangle Σ−1E B D Ec f
and complete the com-

position fd : C → E to another triangle C E ΣX ΣC.
fd ΣxC We obtain a

triangle D E ΣB ΣD
f −Σc

using (TR3). Then by the octahedral axiom

(TR5), there is a commutative diagram

C D S ΣC

C E ΣX ΣC

D E ΣB ΣD

S ΣX ΣB ΣS

d e

f −Σg

fd

d

ΣxC

−ΣxB Σd

f

e

−Σc

Σe

−Σg −ΣxB −Σ(ec)

(∗)

in C where the rows are triangles. There is a triangle Σ−1S X B S
g xB ec using

(TR3). Since S ∈ S and B ∈ H = C−, we have X ∈ C− = H by [30, Lem. 2.12 (2)].

Since B ∈ H ⊆ C+ = W ∗ ΣV , there is a triangle W B ΣV ΣWh i with

W ∈ W and V ∈ V . Consider the composition (ec)◦h : W → S and apply the octahedral

axiom (TR5) to get the following commutative diagram

W B ΣV ΣW

W S ΣY ΣW

B S ΣX ΣB

ΣV ΣY ΣX Σ2V

h i

ec −Σl

ech

h

−Σj −Σk

Σy Σh

ec

i

−Σg

−Σj

−ΣxB

Σi

−Σl Σy −Σ(ixB)

(∗∗)

in C with rows as triangles. Then we see that Y X ΣV ΣY
−y ixB −Σl

is

also a triangle using (TR3) on the bottom triangle of (∗∗). Moreover, this implies

that Y X ΣV ΣY
y ixB Σl is a triangle in C, using the triangle isomorphism

(−1Y , 1X , 1ΣV ).

We claim that xB : X → B is a cokernel for y : Y → X in H. The morphism xB ∈

HomH(X,B) embeds in the triangle X B S ΣX
xB ec −Σg

where S ∈ S ⊆ U ,

and hence xB is epic in H by Proposition 2.32 as ec factors through U . Thus, by Lemma

3.3 it suffices to show that xB is a weak cokernel for y. First, from (∗∗) we see that

xBy = hk factors through W as W ∈ W . Thus, in the factor category H we have
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xBy = 0. Now suppose that there is some m : X →M such that my = 0 in H. Then my

factors through W , so there is a commutative diagram

Y X

W0 M

y

n ◦ m

q

in C, where W0 ∈ W . Thus, we have a morphism of triangles

Y X ΣV ΣY

W0 M N ΣW0

y

n

ixB

m

Σl

∃p Σn

q r

where p exists using (TR4). From the commutativity of (∗∗), we have another morphism

Σ−1S X B S

Y X ΣV ΣY

g

j

xB ec

i Σj

y ixB Σl

of triangles, where (−Σl)◦i = (−Σj)◦ec and (Σy)◦(−Σj) = −Σg yield (Σl)◦i = (Σj)◦ec

and yj = g, respectively. Therefore, composing these two morphisms of triangles we get

a commutative diagram

Σ−1S X B S

W0 M N ΣW0

g

nj

xB

m

ec

pi Σ(nj)

q r

where the two rows are triangles. Notice that Σ(nj) ∈ HomC(S,ΣW0) = Ext1C(S,W0) = 0

as W0 ∈ W ⊆ T = S⊥1 . This implies r ◦ pi vanishes, so there exists ϕ1 : X → W0

and ϕ2 : B → M such that m = qϕ1 + ϕ2xB by [9, Lem. 3.2]. Finally, in H we have

m = qϕ1 + ϕ2xB = ϕ2xB as W0 ∈ W so qϕ1 = 0. This says that xB is indeed a weak

cokernel, and hence a cokernel, of y.

In (∗) we see (−Σc)(−ΣxB) = (Σd)(ΣxC), so cxB = dxC in H and cxB = dxC in the

(left) semi-abelian category H. Therefore, since xB is a cokernel, it follows from Lemma

3.1 that a : A→ B must also be a cokernel.

Hence, H is left quasi-abelian and thus quasi-abelian (by [32, Prop. 3]).

Corollary 3.5. Let C be a triangulated category with a twin cotorsion pair ((S, T ), (U ,V)).

If U ⊆ T or T ⊆ U , then H = H/[W ] is quasi-abelian.

Proof. If U ⊆ T then H = C−. Therefore, we may apply Theorem 3.4 to get that H is

quasi-abelian.

Note that in this case H is also integral: this follows from [30, Thm. 6.3] since U ⊆ T

implies U ⊆ S ∗T . We also remark that in [27] there is the corresponding result for exact

categories.
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4. Localisation of an integral heart of a twin cotorsion pair

For this section, we fix a Krull-Schmidt, triangulated category C and a twin cotorsion

pair ((S, T ), (U ,V)) on C with T = U . In this setting, we have that the heart of (S, T )

is H := H (S,T ) = (Σ−1S ∗ S)/[S] and the heart of ((S, T ), (U ,V)) is H = C/[W ], where

W = T = U (see Definitions 2.34 and 2.31, respectively). We will show that there is an

equivalence H ≃ HR (see Theorem 4.8), where HR is the (Gabriel-Zisman) localisation

of H at the class R of regular morphisms in H.

Our line of proof will be as follows: first, we obtain a canonical functor F : H → H;

then, composing with the localisation functor LR : H → HR, we get a functor H → HR

that we show is fully faithful and dense. The proofs in this section are inspired by methods

used in [10], [9] and [28].

For the convenience of the reader, we recall some details of the description of the

localisation of an integral category at its regular morphisms. To this end, suppose A is

an integral category and let RA be the class of regular morphisms in A. In this case,

RA admits a calculus of left fractions (see [16, §I.2]) by [32, Prop. 6]. The objects of the

localisation ARA
are the objects of A. A morphism in ARA

from X to Y is a left fraction

of the form
A

X Y

f r

denoted [f, r]LF, up to a certain equivalence (see [16, §I.2] for more details), where f is any

morphism in A and r is in RA. The localisation functor LRA
: A → ARA

is the identity

on objects and takes a morphism f : X → A to the left fraction LRA
(f) = [f ] := [f, 1A]LF.

If r : Y → A is in RA, then the morphism [r] in ARA
is invertible with inverse [r]−1 equal

to the left fraction [1A, r]LF. An exposition of the morphisms as right fractions may be

found in [9, §4].

We note that the localisation as described above may not exist without passing to a

higher universe. However, as in [28], we will show that the localisations considered in the

remainder of this article are equivalent to certain subfactors of locally small categories,

and hence locally small themselves. Thus, the localisations we are interested in are already

categories and we need not pass to a higher universe.

Proposition 4.1. There is an additive functor F : H → H that is the identity on objects

and, for a morphism f : X → Y in Σ−1S ∗ S, maps the coset f + [S](X, Y ) to the coset

f + [W ](X, Y ).

Proof. The full subcategory H = Σ−1S ∗ S ⊆ C = H comes equipped with an inclu-

sion functor ι : H → H, which may be composed with the additive quotient functor

Q[W] : H → H/[W ] to get a functor Q[W] ◦ ι : H → H. Note that this functor maps

any morphism in the ideal [S] to 0 as S ⊆ U = W , and therefore we get the following
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commutative diagram

H = Σ−1S ∗ S C = H

H = (Σ−1S ∗ S)/[S] C/[W ] = H

ι

Q[S] ◦ Q[W]

∃!F

of additive categories using the universal property of the additive quotient H . Further-

more, we see that F (X) = F (Q[S](X)) = Q[W](ι(X)) = X and

F (f + [S](X, Y )) = F (Q[S](f)) = Q[W](ι(f)) = Q[W](f) = f + [W ](X, Y ).

The next result below is a characterisation of the regular morphisms in H = C/[W ],

and is a special case of [6, Lem. 4.1]. Note that Σ−1S is a contravariantly finite and rigid

(i.e. Ext1C(Σ
−1S,Σ−1S) = 0) subcategory of C, because S ⊆ U = T = S⊥1 , and that

(Σ−1S)⊥0 = S⊥1 = T = U =W .

Proposition 4.2. Suppose Σ−1Z
h
−→ X

f
−→ Y

g
−→ Z is a triangle in C. Denote by f

the morphism f + [W ](X, Y ) ∈ HomH(X, Y ) in H.

(i) The morphism f is monic if and only if h factors through W.

(ii) The morphism f is epic if and only if g factors through W.

(iii) The morphism f is regular if and only if h and g factor through W.

The following lemma is a generalisation of [10, Lem. 3.3]. The proof of Buan and

Marsh easily generalises, so we omit the proof of our statement. One is able to recover

the result of Buan and Marsh by putting the appropriate restrictions on C and by setting

((S, T ), (U ,V)) = ((addΣT,XT ), (XT ,XT
⊥1)), where T is a rigid object in C.

Lemma 4.3. Let Y be an arbitrary object of C. Then there exists X ∈ Σ−1S ∗ S = H

and a morphism r : X → Y in the class R of regular morphisms in H.

By Proposition 4.1, we have an additive functor F : H → H. Define G := LR ◦ F ,

where LR : H → HR is the additive localisation functor [9, Rem. 4.3], to obtain the

following commutative diagram of additive functors

H H

HR

F

G
LR

Note that G(X) = X and G(f+[S](X, Y )) = [f ] = [f+[W ](X, Y ), 1Y ]LF. The remainder

of this section is dedicated to showing that G is an equivalence of categories.

Proposition 4.4. The functor G : H → HR is dense.

Proof. Recall that the objects of HR are the objects of H = C. Let Y ∈ HR be arbitrary.

Then by Lemma 4.3, there exists a morphism r : X → Y in C with X ∈ Σ−1S ∗ S = H ,
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such that r is regular in H. Hence, in HR we have that LR(r) : X → Y is an isomorphism

so that Y ∼= X = LRF (X) = G(X), and G is a dense functor.

To show G is faithful we need the following observation due to Beligiannis.

Lemma 4.5. [6, Rem. 4.3 (iii)] Suppose X ∈ Σ−1S ∗ S and f : X → Y is a morphism in

C. If f factors through W, then f factors through S.

Proposition 4.6. The functor G : H → HR is faithful.

Proof. Suppose f = f + [S](X, Y ) : X → Y is a morphism in H = (Σ−1S ∗ S)/[S] such

that G(f) = LR(F (f)) = 0 in HR = (C/[W ])R. Then f + [W ](X, Y ) = F (f) = 0 in

H = C/[W ] because LR : H → HR is faithful by [9, Lem. 4.4]. Hence, f factors through

W in C. Note that X ∈ Σ−1S ∗S, so f factors through S by Lemma 4.5 and f is the zero

morphism in H . Therefore, the functor G is faithful.

Proposition 4.7. The functor G : H → HR is full.

Proof. Let X, Y be objects in H and consider the mapping

Hom
H
(X, Y ) −→ HomHR

(G(X), G(Y )) = HomHR
(X, Y ).

Let X A Y
f r be an arbitrary morphism in HomHR

(G(X), G(Y )). Since r : Y →

A is a morphism in C such that r is regular inH, there is a triangle Σ−1Z Y A Zs r t

such that s, t factor through W by Proposition 4.2. As X ∈ obj(H ) = obj(H ) =

obj(Σ−1S∗S), there exists a triangle Σ−1S1 Σ−1S0 X S1
a b c in C with S0, S1 ∈

S. Suppose t : A→ Z factors as ed for some d : A→ T , e : T → Z with T ∈ W = T . Then

the morphism dfb ∈ HomC(Σ
−1S0, T ) ∼= Ext1C(S0, T ) = 0 vanishes, and hence tfb = edfb

is the zero map too. Thus, there exists g : Σ−1S0 → Y such that rg = fb. Applying

(TR4), we obtain a morphism

Σ−1S1 Σ−1S0 X S1

Σ−1Z Y A Z

a

h

b

g

c

f Σh

s r t

of triangles in C, in which ga = sh vanishes as S1 ∈ S and s factors through W = T .

Hence, by [9, Lem. 3.2], there are morphisms u ∈ HomC(X, Y ) = HomH (X, Y ) and

v ∈ HomC(S1, A) such that f = ru + vc in C. Therefore, in H = C/[W ] we have

f = ru+vc = ru as v = 0 because S1 ∈ S ⊆ U =W . This implies that [f ] = [ru] = [r][u],

and hence [u+ [W ](X, Y )] = [u] = [r]−1[f ] = [f, r]LF in HR. Finally, we see that

[f, r]LF = [u+[W ](X, Y )] = [F (u+[S](X, Y ))] = LRF (u+[S](X, Y )) = G(u+[S](X, Y )),

and the map Hom
H
(X, Y )→ HomHR

(G(X), G(Y )) is surjective, i.e. G is a full functor.

Theorem 4.8. Let C be a Krull-Schmidt, triangulated category. Suppose ((S, T ), (U ,V))

is a twin cotorsion pair on C that satisfies T = U . Let R denote the class of regular
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morphisms in the heart H of ((S, T ), (U ,V)). Then the Gabriel-Zisman localisation HR

is equivalent to the heart H (S,T ) of the cotorsion pair (S, T ).

Proof. It is well-known that a fully faithful, dense functor is an equivalence. Hence, the

functor G = LR ◦ F gives an equivalence H (S,T )
≃
−→ HR using Propositions 4.4, 4.6 and

4.7 above.

Remark 4.9. Notice that although Theorem 4.8 looks somewhat independent of the cotor-

sion pair (U ,V), we have that the pair (S, T ) determines (U ,V), and vice versa, using

Proposition 2.20 and that T = U .

Remark 4.10. We show now that the conclusion of Theorem 4.8 also follows from results

of Beligiannis. Let C be a category as in the statement of Theorem 4.8 above. Let

X be a contravariantly finite and rigid subcategory of C. Suppose further that X⊥0 is

contravariantly finite. Beligiannis shows (see Remark 4.3, Lemma 4.4 and Theorem 4.6

in [6]) that there are equivalences

(X ∗ ΣX )/[ΣX ] = (X ∗ ΣX )/[X⊥0 ]
≃
−→ modX

≃
←− (C/[X⊥0 ])R,

where modX is the category of coherent functors over X (see [1]) and R is the class of

regular morphisms in the category C/[X⊥0 ]. In the situation of Theorem 4.8, we have

that Σ−1S is a contravariantly finite, rigid subcategory, and that (Σ−1S)⊥0 = W = U

is also contravariantly finite; see the discussion above Proposition 4.2 for more details.

Therefore, with X = Σ−1S one obtains

(X ∗ ΣX )/[ΣX ] = (Σ−1S ∗ S)/[S] = H (S,T )

and

(C/[X⊥0 ])R = (C/[W ])R = HR.

Hence, one may deduce that H (S,T ) and HR are equivalent from the results in [6]. How-

ever, the proof method is different: Beligiannis makes use of adjoint functors and obtains

a functor (C/[X⊥0 ])R → (X ∗ ΣX )/[X⊥0 ], which is stated to be an equivalence, using

the universal property of the localisation (C/[X⊥0 ])R; on the other hand, we construct an

explicit equivalence in the other direction.

5. An application to the cluster category

In this section, we assume k is a field and that, unless otherwise stated, C is a Hom-

finite, Krull-Schmidt, triangulated k-category with a Serre functor ν. As usual, we will

denote the suspension functor of C by Σ. For the convenience of the reader, we recall the

definition of a Serre functor below.

Definition 5.1. [22, §2.6] A Serre functor of a Hom-finite, triangulated k-category C is

a triangle autoequivalence ν : C → C such that for any X, Y ∈ C we have

HomC(X, Y ) ∼= DHomC(Y, νX),

which is functorial in both arguments and where D(−) := Hommod k(−, k). In this case,

we say C has Serre duality.
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For the remainder of this section, we also assume that R is a fixed rigid object of C

(that is, Ext1C(R,R) = 0). For an object X in C, we denote by addX the full, additive

subcategory of C consisting of objects that are isomorphic to direct summands of finite

direct sums of copies of X, and by XX the full, additive subcategory of C that consists of

objects Y such that HomC(X, Y ) = 0. Hence, XX is equal to (addX)⊥0 , or (addΣX)⊥1

as in [9]. The next proposition collects some easily verifiable observations, some of which

may be found in [10].

Proposition 5.2. For any rigid object R′ ∈ C, the subcategories addR′ and XR′ are

closed under isomorphisms and direct summands. Moreover, these subcategories are also

extension-closed.

Remark 5.3. Since C is a Krull-Schmidt category, if an object X of C has a right X -

approximation, for some subcategory X ⊆ C, then X has a minimal right X -approximation

(see Definition 2.16) by [25, Cor. 1.4]. Dually, the existence of a left X -approximation

implies the existence of a minimal such one under our assumptions.

The next result is stated in [30], but we include the details to illustrate where the

various assumptions on C are needed. See also [9].

Lemma 5.4. [30, Exam. 2.10 (2)] The pair ((addΣR,XR), (XR,XR
⊥1)) is a twin cotorsion

pair with heart H = C/[XR].

Proof. First, we show that (addΣR,XR) is a cotorsion pair on C. Since C is assumed to

be Hom-finite, we have that addΣR is contravariantly finite, so for any X ∈ C there exists

a triangle ΣR0 X Y Σ2R0,
f

where f : ΣR0 → X is a minimal right addΣR-

approximation of X because C is also Krull-Schmidt. Since addΣR is extension-closed

(see Proposition 5.2), by Lemma 2.18 we have that Y ∈ (addΣR)⊥0 = ΣXR. Therefore,

C = addΣR ∗ΣXR. We also have Ext1C(ΣR,XR) = HomC(ΣR,ΣXR) ∼= HomC(R,XR) = 0.

Comparing with Definition 2.15, we see that (S, T ) := (addΣR,XR) is indeed a cotorsion

pair.

To see that (U ,V) := (XR,XR
⊥1) is a cotorsion pair, take a minimal left add νR-

approximation r : X → νR1 of X and complete it to a triangle Z X νR1 ΣZ.s r

Then by Lemma 2.18 again, we have Z ∈ XR and so C = XR∗Σ(Σ
−1 add νR). In addition,

Ext1C(XR,Σ
−1

add νR) = HomC(XR, add νR) ∼= HomC(addR,XR) = 0,

so (XR, addΣ−1νR) is a cotorsion pair. Therefore, by Proposition 2.20, we see that

(U ,V) = (XR,XR
⊥1) = (XR, addΣ−1νR) is a cotorsion pair.

Furthermore, we have HomC(R,ΣR) = Ext1C(R,R) = 0 as R is rigid, so S = addΣR ⊆

XR = U . Hence, ((S, T ), (U ,V)) = ((addΣR,XR), (XR,XR
⊥1)) is a twin cotorsion pair on

C (see Definition 2.21). In particular, T = XR = U , so W = T = U = XR, and

C− = Σ−1S ∗W = Σ−1S ∗ T = C = U ∗ ΣV =W ∗ ΣV = C+.

Therefore, H = C−∩C+ = C and the heart associated to ((S, T ), (U ,V)) is H = H/[W ] =

C/[XR].
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Theorem 5.5. Suppose C is a Hom-finite, Krull-Schmidt, triangulated k-category that

has Serre duality, and assume R is a rigid object of C. Then C/[XR] is quasi-abelian.

Proof. Consider the twin cotorsion pair ((S, T ), (U ,V)) = ((addΣR,XR), (XR,XR
⊥1)). As

T = U in this case, by Corollary 3.5, H = C/[XR] is quasi-abelian.

Let R be the class of regular morphisms in C/[XR], and denote by C(R) the subcategory

(addR) ∗ (addΣR) considered in [23, §5.1]; see also [20, Prop. 6.2], [10] and [9]. An

equivalence between C(R)/[addΣR] and (C/[XR])R exists by combining [20, Prop. 6.2]

with [9, Thm. 5.7] (or results of [6] as discussed in Remark 4.10) as follows

C(R)/[addΣR]
≃
−→ modΛR

≃
←− (C/[XR])R,

where ΛR := (EndC R)op. We now give a new proof that C(R)/[addΣR] and (C/[XR])R
are equivalent, which avoids going via the module category modΛR altogether.

Theorem 5.6. Let C be a Hom-finite, Krull-Schmidt, triangulated k-category, and assume

R is a rigid object of C. Let R be the class of regular morphisms in C/[XR] and let

LR : C/[XR] → (C/[XR])R be the localisation functor. Then there is an additive functor

F : C(R)/[addΣR]→ C/[XR] such that the composition

LR ◦ F : C(R)/[addΣR]
≃
−→ (C/[XR])R

is an equivalence.

Proof. Let ((S, T ), (U ,V)) = ((addΣR,XR), (XR,XR
⊥1)). The heart (see Definition 2.34)

of the cotorsion pair (S, T ) = (addΣR,XR) is H (S,T ) = C(R)/[addΣR], and the heart

of the twin cotorsion pair ((S, T ), (U ,V)) is H = C/[XR]. By Proposition 4.1 there is an

additive functor F : C(R)/[addΣR] → C/[XR] that is the identity on objects and maps a

morphism f + [addΣR](X, Y ) to f + [XR](X, Y ), which is well-defined as addΣR ⊆ XR

since R is a rigid. Then an application of Theorem 4.8 yields an equivalence

C(R)/[addΣR] = H (S,T )
≃
−→ HR = (C/[XR])R.

We make two last observations before giving an example to demonstrate this theory.

Definition 5.7. [22, §2.6] For n ∈ N, we say that a Hom-finite, triangulated k-category

C is n-Calabi-Yau if C admits a Serre functor ν such that there is a natural isomorphism

ν ∼= Σn as k-linear triangle functors.

Proposition 5.8. Let C be a Hom-finite, triangulated k-category which is 2-Calabi-Yau.

Suppose (S, T ) and (U ,V) are cotorsion pairs on C. Then T = U if and only if S = V.

Proof. Assume T = U . Then we have the following chain of equalities

S = T⊥1 = U⊥1 = U⊥1 = V ,

using Proposition 2.20 and that C is 2-Calabi-Yau. The converse is proved similarly.
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Corollary 5.9. Let C be a Hom-finite, Krull-Schmidt, 2-Calabi-Yau, triangulated k-

category, and assume R is a rigid object of C. Then the subcategory addΣR coincides

with XR
⊥1.

Proof. Since ((S, T ), (U ,V)) = ((addΣR,XR), (XR,XR
⊥1)) is a pair of cotorsion pairs on

C with T = U , we must have addΣR = S = V = XR
⊥1 by Proposition 5.8.

It can also be shown that Corollary 5.9 follows from [10, Lem. 2.2] using T = ΣR and

the 2-Calabi-Yau property.

Example 5.10. Consider the cluster category C := CQ associated to the linearly oriented

Dynkin quiver

Q : 1→ 2→ 3→ 4.

Its Auslander-Reiten quiver, with the mesh relations omitted, is

ΣP1 P1 =
1
2
3
4

ΣP4

ΣP2 P2 =
2
3
4

I3 =
1
2
3

ΣP3

ΣP3 P3 = 3
4

M = 2
3

I2 = 1
2

ΣP2

ΣP4 P4 = 4 S3 = 3 S2 = 2 S1 = 1 ΣP1

where the lefthand copy of ΣPi is identified with the corresponding righthand copy (for

i = 1, 2, 3, 4) (see, for example, [35, §3.1]). We set R := P1 ⊕ P2 ⊕ S2, which is a basic,

rigid object of C. Note that since R has just 3 non-isomorphic indecomposable direct

summands, it is not maximal rigid (see [11, Cor. 2.3]) and hence not cluster-tilting.

Denote by ΛR the ring (EndC R)op. We describe the twin cotorsion pair ((S, T ), (U ,V)) =

((addΣR,XR), (XR,XR
⊥1)) pictorially below, where “◦” denotes that the corresponding

object does not belong to the subcategory. Since the cluster category is 2-Calabi-Yau (see

[8]), that S coincides with V below is not unexpected (see Corollary 5.9).

T = U =W = XR

ΣP1 ◦ ΣP4

ΣP2 ◦ ◦ ◦

◦ P3 ◦ ◦ ΣP2

ΣP4 ◦ S3 ◦ ◦ ΣP1
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addΣR = S = V = XR
⊥1

ΣP1 ◦ ◦

ΣP2 ◦ ◦ ◦

◦ ◦ ◦ ◦ ΣP2

◦ ◦ S3 ◦ ◦ ΣP1

By [26, Prop. 2.9], the quasi-abelian heart H = H/[W ] = C/[XR] for this twin cotorsion

pair then has the following Auslander-Reiten quiver (ignoring the objects denoted by a

“◦” that lie in XR and again with the mesh relations omitted).

◦ P1 ◦ P4

◦ P2 I3 ΣP3

ΣP3 ◦ M I2 ◦

◦ P4 ◦ S2 S1 ◦

where one may define the Auslander-Reiten quiver for a Krull-Schmidt category as in [26].

We have denoted by X the image of the object X of C in C/[XR], monomorphisms by

“ →֒” and epimorphisms by “։”. The extra righthand copy of P4 is included to illustrate

that this quiver really is connected and similar in shape to the Auslander-Reiten quiver

of modΛR (see below). In this example there are precisely three irreducible morphisms

between indecomposables that are regular morphisms, namely the morphisms P1 → I3,

P2 →M and ΣP3 → P4. As noted in §1, one may show that various aspects of Auslander-

Reiten theory are still applicable in quasi-abelian categories. We refer the reader to [36]

for more details. However, one noticeable difference is that in a quasi-abelian category

there exist irreducible morphisms that are regular. On the other hand, in an abelian

category an irreducible morphism cannot be regular, since a morphism is regular if and

only if it is an isomorphism in such a category, and irreducible morphisms cannot be

isomorphisms by definition.

In addition, one may obtain the Auslander-Reiten quiver of modΛR by localising H at

the regular morphisms as shown in [9]. In this case, one obtains the Auslander-Reiten

quiver
1
′

2
′ 3′

2′ 1
′
3
′

2
′

3
′

2
′ 1′

where ΛR is isomorphic to the path algebra of the quiver 1′ → 2′ ← 3′.
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