
This is a repository copy of Auslander-Reiten theory in quasi-abelian and Krull-Schmidt 
categories.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/148094/

Version: Accepted Version

Article:

Shah, A orcid.org/0000-0002-6623-8228 (2020) Auslander-Reiten theory in quasi-abelian 
and Krull-Schmidt categories. Journal of Pure and Applied Algebra, 224 (1). pp. 98-124. 
ISSN 0022-4049 

https://doi.org/10.1016/j.jpaa.2019.04.017

Crown Copyright © 2019 Published by Elsevier B.V. All rights reserved. Licensed under the
Creative Commons Attribution-Non Commercial No Derivatives 4.0 International License 
(https://creativecommons.org/licenses/by-nc-nd/4.0/). 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


AUSLANDER-REITEN THEORY IN QUASI-ABELIAN AND

KRULL-SCHMIDT CATEGORIES

AMIT SHAH

Abstract. We generalise some of the theory developed for abelian categories in papers

of Auslander and Reiten to semi-abelian and quasi-abelian categories. In addition, we

generalise some Auslander-Reiten theory results of S. Liu for Krull-Schmidt categories

by removing the Hom-finite and indecomposability restrictions. Finally, we give equi-

valent characterisations of Auslander-Reiten sequences in a quasi-abelian, Krull-Schmidt

category.

1. Introduction

As is well-known, the work of Auslander and Reiten on almost split sequences (which

later also became known as Auslander-Reiten sequences), introduced in [5], has played

a large role in comprehending the representation theory of artin algebras. In trying to

understand these sequences, it became apparent that two types of morphisms would also

play a fundamental role (see [6]). Irreducible morphisms and minimal left/right almost

split morphisms (see Definitions 3.6 and 3.13, respectively) were defined in [6], and the

relationship between these morphisms and Auslander-Reiten sequences was studied. In

fact, many of the abstract results of Auslander and Reiten were proven for an arbitrary

abelian category, not just a module category, and in this article we show that much of

this Auslander-Reiten theory also holds in a more general context—namely in that of a

quasi-abelian category.

A quasi-abelian category is an additive category that has kernels and cokernels, and in

which kernels are stable under pushout and cokernels are stable under pullback. Classical

examples of such categories include: any abelian category; the category of filtered modules

over a filtered ring; and the category of topological abelian groups. A modern example has

recently arisen from cluster theory as we recall now. Let C denote the cluster category (see

[13], [17]) associated to a finite-dimensional hereditary k-algebra, where k is a field. Fix a

basic rigid object R of C and consider the partial cluster-tilted algebra ΛR := (EndC R)op.

In the study of the category ΛR –mod of finitely generated left ΛR-modules, the additive

quotient C/[XR] has been useful, where [XR] is the ideal of morphisms factoring through

objects of XR = Ker(HomC(R,−)), because a certain Gabriel-Zisman localisation (see

[21]) of it is equivalent to ΛR –mod (see [14, Thm. 5.7]). We showed in [42] that C/[XR]

is a quasi-abelian category, and hence the generalisations of the results of Auslander and
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2 AMIT SHAH

Reiten that we prove in §3 of this article can be used to more fully understand this

category.

Furthermore, C, and hence C/[XR], is a Hom-finite, Krull-Schmidt category, and so one

can utilise techniques from a different perspective. Liu initiated the study of Auslander-

Reiten theory in Hom-finite, Krull-Schmidt categories in [28] and, in particular, intro-

duced the notion of an admissible ideal (see Definition 4.10). It was shown in [28, §1]

that if A is a Hom-finite, Krull-Schmidt category and I is an admissible ideal of A, then,

under suitable assumptions, irreducible morphisms (between indecomposables) and min-

imal left/right almost split morphisms behave well under the quotient functor A → A/I.

We extend these results of Liu in the following ways: first, we are able to remove the

Hom-finite assumption for all the results in [28, §1]; and second, we are able to remove

the indecomposability assumption in [28, Lem. 1.7 (1)]. We also prove new observations

in this setting, inspired by work of Auslander and Reiten. Moreover, in case A is quasi-

abelian and Krull-Schmidt we are able to provide equivalent criteria (see Theorem 4.19)

for when a short exact sequence in A is an Auslander-Reiten sequence (in the sense of

Definition 4.6). In particular, this characterisation applies to the category C/[XR].

This article is structured as follows. In §2 we recall some background material on

preabelian categories, and in particular we remind the reader on how one may define the

first extension group for such categories. In §3 we develop Auslander-Reiten theory for

semi-abelian and quasi-abelian categories. At the beginning of §4, we switch focus to

Auslander-Reiten theory in Krull-Schmidt categories, and then present a characterisation

theorem for Auslander-Reiten sequences in a Krull-Schmidt, quasi-abelian category. At

the end of §4 we present an example of a Hom-infinite, Krull-Schmidt category commu-

nicated to the author by P.-G. Plamondon. Lastly, in §5 we explore an example coming

from the cluster category as discussed above, which demonstrates the theory we have

developed in the earlier sections.

2. Preliminaries

2.1. Preabelian categories. The categories we study in §3 are semi-abelian and quasi-

abelian categories (see Definitions 3.1 and 3.2, respectively). A category of either kind is

a preabelian category (see Definition 2.1) with some additional structure. In this section,

we recall the notion of a preabelian category, and provide some basic results that will be

helpful later. For more details, we refer the reader to [39].

Definition 2.1. [15, §5.4] A preabelian category is an additive category in which every

morphism has a kernel and a cokernel.

Remark 2.2. By [11, Prop. 6.5.4], any preabelian category A has split idempotents, or is

idempotent complete, (see [11, Def. 6.5.3]) because every morphism in A admits a kernel,

so in particular every idempotent does. See also [4, p. 188] and [16, §6].

The following lemma is standard but often useful.
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Lemma 2.3. Suppose A is an additive category with split idempotents. Let f : X → Y

be a morphism in A.

(i) Suppose X is indecomposable and Y 6= 0. If f is a retraction, then f is an isomorph-

ism.

(ii) Suppose Y is indecomposable and X 6= 0. If f is a section, then f is an isomorphism.

Proof. We only prove (i); the proof for (ii) is dual. Suppose X is indecomposable, Y 6= 0

and that f : X → Y is a retraction. Then, by [16, Rem. 7.4], X ∼= Y ⊕ Y ′ with f

corresponding to the canonical projection Y ⊕ Y ′ →→ Y . However, X is indecomposable

and Y 6= 0 implies Y ′ = 0, so f is an isomorphism.

The next lemma may be found as an exercise in [32], and follows from [1, Lem. IX.1.8]:

the proof in [1] is for the corresponding result in an abelian category, but is sufficient for

Lemma 2.4 since only the existence of (co)kernels is needed.

Lemma 2.4. [32, Exer. 7.13] In a preabelian category:

(i) every kernel is the kernel of its cokernel; and

(ii) every cokernel is the cokernel of its kernel.

For a morphism f : X → Y in an additive category, we denote the kernel (respectively,

cokernel) of f , if it exists, by ker f : Ker f → X (respectively, coker f : Y → Coker f).

Lemma 2.5. Let f : X → Y be a morphism in a preabelian category. If f is an epi-

morphism and a kernel (respectively, a monomorphism and a cokernel), then f is an

isomorphism.

Proof. We prove the statement for when f is an epic kernel. The other statement is dual.

Suppose f : X → Y is an epimorphism and a kernel. Note that f is monic by [1, Lem.

IX.1.4], and Y 0
coker f

is a cokernel of f by [1, Lem. IX.1.5]. Now consider the identity

morphism 1Y : Y → Y , and notice that since (coker f) ◦ 1Y = 0 ◦ 1Y = 0 we have that 1Y
factors through ker(coker f) = f (using Lemma 2.4). Thus, there exists g : Y → X such

that fg = 1Y . Thus, f is a monic retraction, and so an isomorphism by [30, Thm. I.1.5].

Definition 2.6. [35, p. 23] Given a morphism f : A → B in an additive category, the

coimage coim f : A → Coim f , if it exists, is the cokernel coker(ker f) of the kernel of f .

Dually, the image im f : Im f → B is the kernel ker(coker f) of the cokernel of f .

It is then immediate from Definition 2.6 that any image morphism is a monomorphism

and any coimage is an epimorphism. Furthermore, in a preabelian category A, any

morphism f admits a factorisation as follows:

A B

Coim f Im f

coim f

f

◦

f̃

im f
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where f̃ is known as the parallel of f . This parallel morphism is always an isomorphism

in an abelian category, but this may not be the case in general.

Recall that a sequence X
f
→ Y

g
→ Z of morphisms in an additive category is called

short exact if f = ker g and g = coker f . We state a version of the well-known Splitting

Lemma, which is normally stated in the context of an abelian category (see, for example,

[29, Prop. I.4.3] or [12, Prop. 1.8.7]), for an additive category. Additionally, we do not

assume initially that the sequence of morphisms is short exact, since this is a consequence

of the equivalent conditions. We omit the proof because the one in [12] works essentially

unchanged.

Proposition 2.7 (Splitting Lemma). Let A be an additive category with a sequence X
f
→

Y
g
→ Z of morphisms. Then the following are equivalent.

(i) There is an isomorphism Y ∼= X⊕Z, where f corresponds to the canonical inclusion

X →֒ X ⊕ Z and g to the canonical projection X ⊕ Z →→ Z.

(ii) The morphism f is a section and g = coker f .

(iii) The morphism g is a retraction and f = ker g.

In this case, X
f
→ Y

g
→ Z is short exact.

Definition 2.8. A short exact sequence X
f
→ Y

g
→ Z in an additive category A is called

split if it satisfies any of the equivalent conditions of Proposition 2.7. Otherwise, the

sequence is said to be non-split.

In a non-split short exact sequence X
f
→ Y

g
→ Z, we have that f is not a section and

g is not a retraction by Proposition 2.7. However, more can be said as we see now.

Lemma 2.9. Let A be an additive category, and suppose X
f
→ Y

g
→ Z is a non-split

short exact sequence in A. Then both f and g are neither sections nor retractions.

Proof. As noted above, we need only show that f is not a retraction and that g is not

a section. Assume, for contradiction, that f is a retraction. Then f is an epimorphism

and so Z ∼= Coker f ∼= 0 by [1, Lem. IX.1.5]. However, this implies that g is a retraction

which is a contradiction. Therefore, f cannot be a retraction. Showing g is not a section

is dual.

2.2. Ext in a preabelian category. In order to avoid some Hom-finiteness restrictions

in later arguments, we recall in this section how a first extension group (see Definition

2.15) may be defined in a preabelian category in such a way that it is a bimodule (see

Theorem 2.19). Although we follow the development in [38], there is an error in their

Theorem 4 ([38, p. 523]) that is corrected in [18]. However, we also believe there should

be more (set-theoretic) assumptions in place to ensure that the first extension group is

indeed a group (see Remark 2.16).

Throughout this section, A denotes a preabelian category and we suppose X,Z are

objects of A. We note for the next definition that in a preabelian category pullbacks and

pushouts always exist as we have the existence of kernels and cokernels.
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Definition 2.10. [38, p. 523] Let ξ : X
f
→ Y

g
→ Z be a complex (i.e. g ◦ f = 0) in

A. Let a : X → X ′ be any morphism in A. We define a new complex aξ as follows.

First, we form the pushout X ′ ∐X Y of a along f with morphisms f ′ : X ′ → X ′ ∐X Y

and a′ : Y → X ′ ∐X Y . Then we obtain a unique morphism g′ : X ′ ∐X Y → Z using the

universal property of the pushout with the morphisms 0: X ′ → Z and g : Y → Z as in

the following commutative diagram.

X Y Z

X ′ X ′ ∐X Y

Z

f

a

g

a′

f ′

0

∃!g′

�

The complex aξ is then defined to be X ′ f ′

→ X ′ ∐X Y
g′

→ Z.

Dually, we define ξb for a morphism b : Z ′ → Z. The commutative diagram

X

Y ΠZ Z ′ Z ′

X Y Z

∃!f ′

0

g′

b′
�

b

f g

summarises the construction and ξb is the complex X
f ′

→ Y ΠZ Z ′ g′

→ Z ′.

The next definition is standard terminology.

Definition 2.11. Suppose

A B

C D

a

b c

d

is a commutative diagram in a category A. Let P be a class of morphisms in A (e.g.

the class of all kernels in A). We say that P is stable under pullback (respectively, stable

under pushout) if, in any diagram above that is a pullback (respectively, pushout), d is in

P implies a is in P (respectively, a is in P implies d is in P).

In a preabelian category, kernels are stable under pullback (see [38, Thm. 1]), but they

may not be stable under pushout. Dually for cokernels. Thus, Richman and Walker make

the following definition.

Definition 2.12. [38, p. 524] Let ξ : X
f
→ Y

g
→ Z be a short exact sequence in A. We

say that ξ is stable, if aξ and ξb are short exact for all a : X → X ′, b : Z ′ → Z. In this case,

we call f = ker g a stable kernel and g = coker f a stable cokernel. We will sometimes

also call ξ stable exact in this case to emphasise the exactness of ξ.
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Suppose ν : A
a
→ B

b
→ C and ξ : X

f
→ Y

g
→ Z are two short exact sequences in

A. Recall that a morphism (u, v, w) : ν → ξ of short exact sequences is a commutative

diagram

A B C

X Y Z

a

u

b

v w

f g

in A. If A = X and C = Z, then a morphism of the form (1X , v, 1Z) in which v : B → Y

is an isomorphism is called an isomorphism of short exact sequences with the same end-

terms, and we denote this by ν ∼=X Z ξ. This is clearly an equivalence relation on the class

of short exact sequences of the form X → − → Z.

Theorem 2.13. [18, Thm. 2] Suppose ξ : X
f
→ Y

g
→ Z is a stable exact sequence in A.

Then there is an isomorphism a(ξb) ∼=X′ Z′ (aξ)b for all a : X → X ′, b : Z ′ → Z in A.

Remark 2.14. It can readily be seen that a statement like Theorem 2.13 is needed to give a

definition of an extension group Ext1A(Z,X) that is also an (EndA X,EndA Z)-bimodule.

Theorem 2.13 was claimed to hold for all sequences in [38] (see [38, Thm. 4]), but a

counterexample was given in [18]. Cooper presents the corrected statement as [18, Thm.

2], presenting one half of the argument and suggesting a diagram to use for the dual

argument. However, the suggested dual diagram is not the right one to consider.

First, let us recall the setup in [18, Thm. 2]. Let E : A
f
→ B

g
→ C be a stable exact

sequence, and suppose we have morphisms α : A → A′ and β : C ′ → C. Then, as obtained

in [18, p. 266], there is a commutative diagram

α(Eβ) : A′ B2 C ′

(αE)β : A′ B3 C ′

(1A′ ,ϕ2,1C′ )

f2 g2

ϕ2

f3 g3

It is shown in detail that g3 = coker f3 and ϕ2 is an epimorphism. It is then suggested

that the diagram

α(Eβ) → (αE)β → αE → f3αE

with a dual proof strategy will yield f2 = ker g2 and ϕ2 is a monomorphism. However,

this diagram should be replaced by

α(Eβ) → (αE)β → αE → f2αE.

Furthermore, we note that it is straightforward to find a morphism α(Eβ) → (αE)β of

the form (1A′ , ϕ2, 1C′), but to then show that ϕ2 is an isomorphism requires the stability

of E (see [38, Cor. 7]). In an abelian category, the fact that ϕ2 is an isomorphism would

follow quickly, for example, from the Five Lemma.

Following [29], we introduce some notation to help the reading of the sequel. Let

A,B,C,D be objects in A. We denote by ∇A the codiagonal morphism ( 1A 1A ) : A⊕A →

A, and denote by ∆A the diagonal morphism
(
1A
1A

)
: A → A ⊕ A. For two morphisms
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a : A → C and b : B → D, we let a⊕ b denote the morphism ( a 0
0 b ) : A⊕B → C ⊕D. We

are now in a position to define Ext1A(Z,X).

Definition 2.15. [38, §4] Let A be a preabelian category. Define Ext1A(Z,X) to be

the class of equivalence classes under ∼=X Z of stable short exact sequences of the form

X → − → Z in A.

By abuse of terminology/notation, by an element ξ of Ext1A(Z,X) we will really mean

the equivalence class [ξ] ∼=X Z
of ξ in Ext1A(Z,X). If ξ : X

f
→ Y

g
→ Z, ξ′ : X

f ′

→ Y ′ g′

→ Z are

elements of Ext1A(Z,X), then we define the Baer sum of ξ and ξ′ to be (the equivalence

class of)

ξ + ξ′ := ∇X(ξ ⊕ ξ′)∆Z .

Note that by [38, Thm. 8] and [18, Thm. 2], ξ + ξ′ is stable exact and the Baer sum + is

a closed binary operation on Ext1A(Z,X).

Remark 2.16. It is observed in [38] that one may then follow [29, pp. 70–71] in order to

show that Ext1A(Z,X) is an abelian group. However, Ext1A(Z,X) may not form a (small)

set and hence may not be a group. A similar issue arises in [18].

Note, however, that if A is skeletally small, then Ext1A(Z,X) will be a set. Indeed, for

objects Y, Y ′ in A, the sets {ξ : X → Y → Z | ξ is short exact} and {ξ′ : X → Y ′ → Z |

ξ′ is short exact} are in bijection whenever Y is isomorphic to Y ′. So, up to equivalence

with respect to ∼=X Z , the collection of all short exact sequences of the form X
f
→ Y

g
→ Z

is determined only by the isomorphism class of Y and the morphisms f, g since the end-

terms X and Z are fixed. Therefore, the collection of all ∼=X Z-equivalence classes will

form a set, and hence restricting our attention to the classes of stable exact sequences will

also yield a set.

These set-theoretic considerations lead us to the next theorem.

Theorem 2.17. [38, §4] Suppose A is a preabelian category with objects X,Z, and suppose

Ext1A(Z,X) is a set. Then Ext1A(Z,X) is an abelian group with the group operation given

by the Baer sum defined in Definition 2.15. The class of the split extension ξ0 : X →

X ⊕ Z → Z is the identity element, and the inverse of ξ ∈ Ext1A(Z,X) is (−1X)ξ.

Therefore, if A is preabelian, Ext1A(Z,X) is known as a first extension group. We state

without proof one corresponding result from [29] that is needed for the last theorem of

this section.

Lemma 2.18. [29, p. 71] Let ξ0 denote the split short exact sequence X → X ⊕ Z → Z

and let ξ : X
f
→ Y

g
→ Z be an arbitrary stable exact sequence. Let 0X (respectively, 0Z)

denote the zero morphism in EndA X (respectively, EndA Z). Then 0Xξ ∼=X Z ξ0 and

1Xξ = ξ, and ξ0Z ∼=X Z ξ0 and ξ1Z = ξ.

Theorem 2.19. Let A be a preabelian category with objects X,Z, and suppose Ext1A(Z,X)

is a set. Then Ext1A(Z,X) is an (EndA X,EndA Z)-bimodule.

Proof. This follows from Theorem 2.17, [38, Thm. 4], Lemma 2.18 and Theorem 2.13.
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3. Auslander-Reiten theory in quasi-abelian categories

In this section, after recalling the definitions of a semi-abelian and a quasi-abelian

category, we will explore some Auslander-Reiten theory type results in connection with

these categories. We remark here that quasi-abelian categories carry a canonical exact

structure: a quasi-abelian category A endowed with the class of all short exact sequences

forms an exact category in the sense of Quillen [37] (see [41, Rem. 1.1.11]). Some

Auslander-Reiten theory for exact categories was developed in [20], but our results are

different in nature: we explore properties of the morphisms involved in Auslander-Reiten

sequences, whereas [20] focuses more on the existence and construction of such sequences.

See [23] also.

Definition 3.1. [39, p. 167] Let A be a preabelian category. We call A left semi-abelian

if each morphism f : A → B factorises as f = ip for some monomorphism i and cokernel

p. Similarly, A is said to be right semi-abelian if instead each morphism f decomposes as

f = ip with i a kernel and p some epimorphism. If A is both left and right semi-abelian,

then it is called semi-abelian.

Note that a preabelian category is semi-abelian if and only if, for every morphism f ,

the parallel f̃ (see §2.1) of f is regular, i.e. both monic and epic (see [39, pp. 167–168]).

Definition 3.2. [39, p. 168] Let A be a preabelian category. We call A left quasi-abelian

if cokernels are stable under pullback (see Definition 2.11) in A. If kernels are stable under

pushout in A, then we call A right quasi-abelian. If A is left and right quasi-abelian, then

A is simply called quasi-abelian.

Example 3.3. Any abelian category is quasi-abelian.

Example 3.4. The category of Banach spaces, i.e. complete normed vector spaces, over

R or C is quasi-abelian, but not abelian; see [39, p. 214].

Quasi-abelian categories, as we define them here, were called ‘almost abelian’ categories

in [39], but the terminology we adopt is the more widely accepted one. See the ‘Historical

remark’ in [40] for more details.

Remark 3.5. Rump shows that every left (respectively, right) quasi-abelian category is

left (respectively, right) semi-abelian (see [39, p.129, Cor. 1]). Furthermore, in a left

(respectively, right) semi-abelian category, if a morphism f factorises as f = ip with i

monic and p a cokernel (respectively, i a kernel and p epic), then p = coim f (respectively,

i = im f) up to unique isomorphism.

Auslander and Reiten showed that irreducible and (minimal) left/right almost split

morphisms (introduced in [6]) play a large role in the study of almost split sequences

(defined in [5]) in abelian categories. The same is true in the generality we consider in

this article, and we begin by recalling the definition of an irreducible morphism.

Definition 3.6. [6, §2] A morphism f : X → Y of an arbitrary category is irreducible if

the following conditions are satisfied:
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(i) f is not a section;

(ii) f is not a retraction; and

(iii) if f = hg, for some g : X → Z and h : Z → Y , then either h is a retraction or g is a

section.

For the results presented here that are analogues of those in known work, we omit

the proofs that carry over or that are easy generalisations. Instead, we focus on those

arguments that need significant modification or that have been omitted in previous work.

Furthermore, many of the results in the remainder of the article have duals, which we

state but do not prove.

The next proposition is a version of [6, Prop. 2.6 (a)] for the semi-abelian setting.

Recall that a monomorphism (respectively, epimorphism) that is not an isomorphism is

called a proper monomorphism (respectively, proper epimorphism).

Proposition 3.7. Suppose a category A is left or right semi-abelian. If f : X → Y is

irreducible in A, then it is a proper monomorphism or a proper epimorphism.

Proof. Suppose f : X → Y is an irreducible morphism with coimage coim f : X →→ M.

Note that f cannot be an isomorphism since it is not, for example, a section.

Suppose now that A is left semi-abelian. Then we have a factorisation f = i ◦ coim f

where i is monic (see Remark 3.5). If f is a proper monomorphism then we are done, so

suppose not. Then f = i ◦ coim f is irreducible implies i is a retraction or coim f is a

section. The latter implies coim f is monic and this in turn yields that f is monic, which

is contrary to our assumption that f is not a proper monomorphism. Thus, i must be a

retraction and hence an epimorphism. Then f is the composition of two epimorphisms

and is thus epic itself, i.e. f is a proper epimorphism.

The case when A is right semi-abelian is proved similarly.

In an abelian category, we have that a morphism f is an isomorphism if and only if

it is regular. Therefore, in an abelian setting an irreducible morphism is either a proper

monomorphism or a proper epimorphism, but never both simultaneously. However, this

need not hold in an arbitrary category. In particular, we will see in Example 5.1 irreducible

morphisms (so non-isomorphisms) that are regular.

The following two results give a version of [6, Prop. 2.7] in a more general setting. For

the first proposition, we only really need that the category A is right semi-abelian and

left quasi-abelian, but by [39, Prop. 3] this is equivalent to A being (left and right) quasi-

abelian because left quasi-abelian implies left semi-abelian. Dually, for the second result

we only require that A is left semi-abelian and right quasi-abelian. The proof we give is

inspired by that of Auslander and Reiten; however, since regular morphisms may not be

isomorphisms or, for example, monomorphisms may not be kernels in the categories we

are dealing with, we must consider some different short exact sequences in the proof.

Proposition 3.8. Suppose A is a quasi-abelian category and that f : X → Y is a morph-

ism in A with cokernel c : Y → C. If f is irreducible, then for all v : V → C either

there exists v1 : V → Y such that cv1 = v or there exists v2 : Y → V such that c = vv2.
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Furthermore, if X
f
→ Y

c
→ C is a non-split short exact sequence, then the converse also

holds.

Proof. First, suppose that f : X → Y is irreducible and that v : V → C is arbitrary. Since

A is quasi-abelian we may consider the following commutative diagram

L E V

L Y C

X

ker a a

u
�

v

im f c

p
f

where E is the pullback of c along v, f = (im f) ◦ p with p epic, and a is a cokernel

since cokernels are stable under pullback in (left) quasi-abelian categories. Then f =

(im f) ◦ p = u ◦ ((ker a)p), so either (ker a)p is a section or u is a retraction as f is

irreducible.

If (ker a)p is a section then there exists v′1 : E → X such that v′1(ker a)p = 1X . Then

pv′1(ker a)p = p = 1Lp, so pv′1 ker a = 1L as p is epic. Since a is a cokernel, we have

a = coker(ker a) by Lemma 2.4. Therefore, ker a is a section implies a is a retraction

by the Splitting Lemma (Proposition 2.7). That is, there exists v′′1 : V → E such that

av′′1 = 1V . Now define v1 := uv′′1 and note that cv1 = cuv′′1 = vav′′1 = v. Otherwise, u is

a retraction and so there exists v′2 : Y → E with uv′2 = 1Y . Setting v2 := av′2 we see that

vv2 = vav′2 = cuv′2 = c. This concludes the proof of the first statement.

For the converse, we assume that X
f
→ Y

c
→ C is a non-split short exact sequence

and, further, that for all v : V → C either there exists v1 : V → Y such that cv1 = v or

there exists v2 : Y → V such that c = vv2. Then f is not a section or a retraction, by

Lemma 2.9, as X
f
→ Y

c
→ C is non-split. It remains to show part (iii) of Definition 3.6.

To this end, suppose f = hg for some g : X → U and h : U → Y . Since hg = f = ker c

is a kernel, g is also a kernel by [39, Prop. 2] as A is quasi-abelian and so, in particular,

right semi-abelian. Thus, g = ker(coker g) (by Lemma 2.4) and X U V
g coker g

is short exact. Consider the commutative diagram

X U V

X Y C

g coker g

h v

f c

where v exists since (ch)g = cf = 0. Since 1X is an isomorphism, coker g and c are

cokernels, and A is quasi-abelian, by [39, Prop. 5] we have that the right square is exact,

i.e. simultaneously a pullback and a pushout. Then, by assumption, either there exists

v1 : V → Y such that cv1 = v or there exists v2 : Y → V such that c = vv2. In the first
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case, we have the following situation

V

U V

Y C

v1

1V

∃!a

coker g

h � v

c

since cv1 = v = v1V , and hence there exists (a unique) a : V → U such that (coker g)◦a =

1V (and v1 = ha). Thus, coker g is a retraction and by the Splitting Lemma (Proposition

2.7) we have that g is a section. Otherwise, in the case where v2 exists, we have that

there is (a unique) b : Y → U such that hb = 1Y (and (coker g) ◦ b = v2), in which case h

is seen to be a retraction. The following diagram summarises this case.

Y

U V

Y C

1Y

v2

∃!b

coker g

h � v

c

Therefore, f is irreducible and the proof is complete.

The dual statement is as follows.

Proposition 3.9. Suppose A is a quasi-abelian category. Suppose f : X → Y is a morph-

ism in A with kernel ker f : Ker f → X. If f is irreducible, then for all u : Ker f → U

either there exists u1 : X → U such that u1 ker f = u or there exists u2 : U → X such

that ker f = u2u. Furthermore, if Ker f X Y
ker f f

is a non-split short exact

sequence, then the converse also holds.

Let k be a commutative (unital) ring and suppose A is a k-category, i.e. an additive

category in which the set of morphisms between any two objects is a k-module and

composition of morphisms is k-bilinear. The radical radA(−,−) of a k-category is the

(two-sided) ideal of A defined by

radA(X, Y ) := {f ∈ HomA(X, Y ) | 1X − gf is invertible for all g : Y → X}

for any two objects X, Y ∈ A. By a radical morphism f : X → Y , we mean an element

of radA(X, Y ). Furthermore, radA(X,X) ⊆ EndA X coincides with the Jacobson radical

J(EndA X) of the ring EndA X. For n ∈ Z>0, rad
n
A(X, Y ) denotes the k-submodule of

HomA(X, Y ) generated by morphisms that are a composition of n radical morphisms. See

[26] or [27, §2] for more details.

The next two propositions together give a combined version of [8, Lem. 3.8] and [3, Lem.

IV.1.9] valid for any k-category. We provide a full proof as the proof of the corresponding

result for module categories is omitted in [8]. We also note that the equivalence of (i) and
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(iii) in each statement below has already appeared in the proof of [6, Thm. 2.4] in the

setting of an additive category with split idempotents.

Proposition 3.10. Let f : X → Y be a morphism in a k-category A, where EndA X is a

local ring. Then the following are equivalent:

(i) f is not a section;

(ii) f ∈ radA(X, Y );

(iii) Im(HomA(f,X)) ⊆ J(EndA X) = radA(X,X); and

(iv) for all Z ∈ A, the image Im(HomA(f, Z)) of the map HomA(f, Z) : HomA(Y, Z) →

HomA(X,Z) is contained in radA(X,Z).

Proof. First, assume f = 0. If f were a section then we would have 1X = gf = 0 for some

g : Y → X, but this is impossible as EndA X is local so X 6= 0. Thus, f is not a section

and (i) holds true. Furthermore, for any Z ∈ A, we have Im(HomA(f, Z)) = 0 if f = 0,

and so is contained in radA(X,Z). That is, (iii) and (iv) are satisfied. Since radA is an

ideal of A, f = 0 ∈ radA(X, Y ) and (ii) also holds in this case.

Therefore, we may now assume f 6= 0. It is clear that (iv) implies (iii).

(iii) ⇒ (i). If f is a section, then there exists g : Y → X with HomA(f,X)(g) = gf =

1X ∈ Im(HomA(f,X))\J(EndA X), so Im(HomA(f,X)) * J(EndA X).

(i) ⇒ (ii). Suppose f is not a section. Since EndA X is local, radA(X,X) = J(EndA X)

is the set of all non-left invertible elements of EndA X. Let g : Y → X be arbitrary and

consider gf : X → X. Notice that gf cannot have a left inverse because we are assuming

f is not a section. Therefore, gf ∈ radA(X,X) and 1X −gf is invertible. This is precisely

the requirement for f to be radical.

(ii) ⇒ (iv). Suppose f ∈ radA(X, Y ), and let Z ∈ A and g : Y → Z be arbitrary. Since

radA is an ideal of A, we immediately see that HomA(f, Z)(g) = gf ∈ radA(X,Z) and so

Im(HomA(f, Z)) ⊆ radA(X,Z).

Proposition 3.11. Let f : X → Y be a morphism in a k-category A, where EndA Y is a

local ring. Then the following are equivalent:

(i) f is not a retraction;

(ii) f ∈ radA(X, Y );

(iii) Im(HomA(Y, f)) ⊆ J(EndA Y ) = radA(Y, Y ); and

(iv) for all Z ∈ A, the image Im(HomA(Z, f)) of the map HomA(Z, f) : HomA(Z,X) →

HomA(Z, Y ) is contained in radA(Z, Y ).

Immediately from the above two results, we have

Corollary 3.12. Let A be a k-category and f : X → Y a morphism in A, and suppose

EndA X is local or EndA Y is local. If f is neither a section nor a retraction, then

f ∈ radA(X, Y ).

So far we have only studied irreducible morphisms and, as mentioned earlier, we will

also be concerned with (minimal) left/right almost split morphisms.
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Definition 3.13. [6, §2] Let f : X → Y be a morphism in an arbitrary category. We call

f right almost split if

(i) f is not a retraction; and

(ii) for any non-retraction u : U → Y there exists û : U → X such that fû = u.

If fg = f implies g is an automorphism for any g : X → X, then f is said to be right

minimal. If f is both right minimal and right almost split, then f is called minimal right

almost split.

Dually, one can define the notions of left almost split, left minimal and minimal left

almost split.

We recall that in an additive category if f : X → Y is right almost split (respectively,

left almost split), then Y (respectively, X) has local endomorphism ring; see [6, Lem.

2.3].

Proposition 3.14. Let A be an additive category with split idempotents.

(i) If f : X → Y is minimal left almost split and Y 6= 0, then f is irreducible.

(ii) If f : X → Y is minimal right almost split and X 6= 0, then f is irreducible.

Proof. For (i), notice that f satisfies the criterion in [6, Thm. 2.4 (b)]. Statement (ii) is

dual.

The next proposition is an observation that we may generalise [10, Prop. 2.18] to a

category with split idempotents that is not necessarily Krull-Schmidt, e.g. the category

of all left R-modules for a ring R, or the category of all Banach spaces (over R, for

example). This result generalises [6, Cor. 2.5] since an irreducible morphism with a

domain or codomain that has local endomorphism ring is radical by Corollary 3.12. We

omit the proof as the one given in [10] holds in our generality using [16, Rem. 7.4]. See

[9, Prop. 3.2] also.

Proposition 3.15. Let A be an additive category with split idempotents. Suppose f : X →

Y is a radical irreducible morphism in A.

(i) If 0 6= g : W → X is a section, then fg : W → Y is irreducible.

(ii) If 0 6= h : Y → Z is a retraction, then hf : X → Z is irreducible.

The following is a version of [6, Prop. 2.10] for the quasi-abelian setting. We will see

that the idea behind the proof is the same, but we have to negotiate around the fact that

the class of kernels (respectively, cokernels) does not necessarily coincide with the class

of monomorphisms (respectively, epimorphisms) in the category.

Proposition 3.16. Suppose A is a quasi-abelian category.

(i) If f : X → Y is an irreducible monomorphism, Y is indecomposable and v : V →

Coker f is any irreducible morphism, then v is epic.

(ii) If f : X → Y is an irreducible epimorphism, X is indecomposable and u : Ker f → X

is any irreducible morphism, then u is monic.
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Proof. We only prove (i) as (ii) is dual. Suppose f : X → Y is an irreducible mono-

morphism, and that Y is an indecomposable object. First, if C := Coker f = 0 then any

morphism v : V → C is trivially epic as A is additive, so we may suppose C 6= 0.

Consider the (not necessarily short exact) sequence X Y C.
f c:=coker f

Let

v : V → C be an irreducible morphism in A. By Proposition 3.8 either there exists

v1 : V → Y such that cv1 = v or there exists v2 : Y → V such that c = vv2. In the latter

case, as c is epic, v would also be epic and we would be done. Thus, suppose no such

v2 exists. Then there exists v1 : V → Y with cv1 = v. But now v is irreducible, and so

either c is a retraction or v1 is a section. If c : Y → C is a retraction, then by Lemma

2.3 we have that c is an isomorphism since Y is indecomposable and C 6= 0. However,

this implies f = c−1cf = 0 and in turn yields 1X = 0, since f ◦ 1X = f = 0 and f is

monic. Thus, we would have X = 0 and f is in fact a section, which contradicts that f

is irreducible. Hence, c cannot be a retraction and so v1 : V → Y must be a section.

If V = 0 then v : 0 = V → C is a section, which is impossible as v is assumed to be

irreducible. Therefore, V 6= 0 and hence, by Lemma 2.3 again, v1 : V → Y must be an

isomorphism and, in particular, an epimorphism. Finally, we observe that v = cv1 is the

composition of two epimorphisms and hence an epimorphism itself.

Definition 3.17. [38, p. 522] Let A be an additive category. A kernel (respectively,

cokernel) is called semi-stable if every pushout (respectively, pullback) of it is again a

kernel (respectively, a cokernel).

Example 3.18. Consider a stable exact sequence ξ : X
f
→ Y

g
→ Z. Let a : X → X ′ be a

morphism, and form the sequence aξ as in Definition 2.10. Since ξ is stable, the sequence

aξ is short exact and hence the pushout of f along a is again a kernel. Thus, f is a

semi-stable kernel. Dually, g is a semi-stable cokernel.

Remark 3.19. All kernels are semi-stable in a right quasi-abelian category and all cokernels

are semi-stable in a left quasi-abelian category. In particular, all short exact sequences

are stable in a quasi-abelian category.

Lemma 3.20. Let A be a preabelian category. Suppose ξ : X
f
→ Y

g
→ Z is short exact.

If f or g is semi-stable, then any morphism (1X , v, 1Z) : ξ → ξ is an isomorphism.

Proof. This follows from [38, Thm. 6], noting that the dual of this result by Richman and

Walker holds when the morphism (1X , v, 1Z) of short exact sequences is an endomorphism.

Our main theorem in §4 generalises [3, Thm. IV.1.13], and part of the proof uses

tools to detect when an endomorphism (u, v, w) of a short exact sequence is in fact an

isomorphism, i.e. u, v, w are all isomorphisms. We present generalisations of these tools

now, and we will see the work of §2.2 used below. We will assume for simplicity that

a preabelian category A is skeletally small whenever our proofs require the use of an

extension group. However, we only really need that the first extension group is a set in

the relevant arguments (see Remark 2.16).
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Definition 3.21. [27, p. 547] An additive category A is called Hom-finite if A is a k-

category, for some commutative ring k, and HomA(X, Y ) is a finite length k-module for

any X, Y ∈ A.

Proposition 3.22. Let A be a Hom-finite category. Suppose we have a commutative

diagram

X Y Z

X Y Z

f

u

g

v w

f g

in A with non-split short exact rows. If EndA X (respectively, EndA Z) is local and w

(respectively, u) is an automorphism, then u (respectively, w) is an automorphism.

Further, if A is also preabelian and if f or g is semi-stable, then v is also an auto-

morphism in this case.

Proof. Suppose that EndA X is local and w is an automorphism of Z. Showing that u is

an automorphism in this case is the same as in [3, Lem. IV.1.12].

Now assume A is also preabelian, and that f is a semi-stable kernel or g is a semi-stable

cokernel. Consider the commutative diagram

X Y Z

X Y Z

fu−1 wg

v

f g

that has short exact rows. Then v is an automorphism by Lemma 3.20.

The following corollary is a generalisation of [3, Lem. IV.1.12] to a quasi-abelian Hom-

finite setting, and it follows quickly from Proposition 3.22 in light of Remark 3.19.

Corollary 3.23. Let A be a Hom-finite category, which is left or right quasi-abelian.

Suppose we have a commutative diagram

X Y Z

X Y Z

f

u

g

v w

f g

in A with non-split short exact rows. If EndA X (respectively, EndA Z) is local and

w (respectively, u) is an automorphism, then u (respectively, w) is an automorphism.

Furthermore, v is also an automorphism.

The next proposition is a generalisation of [6, Lem. 2.13] for preabelian categories.

However, note that we need to assume the short exact sequence in question is stable.
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Proposition 3.24. Let A be a skeletally small, preabelian category. Suppose we have a

commutative diagram

X Y Z

X Y Z

f

u

g

v w

f g

in A, where ξ : X
f
→ Y

g
→ Z is a non-split stable exact sequence. If EndA X (respectively,

EndA Z) is local and w (respectively, u) is an automorphism, then u (respectively, w) and

hence v are automorphisms.

Proof. The proof is that of [6] with the following adjustments. In order to show u is an

automorphism, one needs that uξ ∼= ξ1Z = ξ and that Ext1A(Z,X) is a left EndA X-

module, which follow from [38, Cor. 7] and Theorem 2.19, respectively. Lastly, an applic-

ation of Lemma 3.20 yields that v is also an automorphism.

Since all short exact sequences are stable in a quasi-abelian category (see Remark 3.19),

we obtain a direct generalisation of [6, Lem. 2.13] as follows.

Corollary 3.25. Let A be a skeletally small, quasi-abelian category. Suppose we have a

commutative diagram

X Y Z

X Y Z

f

u

g

v w

f g

in A, where X
f
→ Y

g
→ Z is a non-split short exact sequence. If EndA X (respectively,

EndA Z) is local and w (respectively, u) is an automorphism, then u (respectively, w) and

hence v are automorphisms.

The following definition has been given by Auslander for abelian categories (see [4, p.

292]), but we may make the same definition for additive categories and are able to derive

some of the same consequences.

Definition 3.26. [4, p. 292] Let A be an additive category with an object X. Suppose

F : A → Ab is a covariant additive functor to the category Ab of all abelian groups. An

element x ∈ F (X) is said to be minimal if x 6= 0 (where 0 is the identity element of the

abelian group F (X)), and if for all proper epimorphisms f : X → Y in A, we have that

F (f) : F (X) → F (Y ) satisfies F (f)(x) = 0.

A definition of minimal can be made for a contravariant functor G : A → Ab by con-

sidering G as a covariant functor Aop → Ab.

An immediate result is a version of [4, p. 292, Lem. 3.2 (a)] for additive categories:

Proposition 3.27. Let A be an additive category with an object X. Suppose F : A → Ab

is a covariant additive functor. If F (X) has a minimal element, then X is indecomposable

in A.
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Proof. Assume x ∈ F (X) is minimal, and that X = X1 ⊕X2 with X1, X2 both non-zero.

Let ιi : Xi →֒ X and πi : X →→ Xi be the canonical inclusion and projection morphisms,

respectively, for i = 1, 2. Note that πi is a proper epimorphism for i = 1, 2 since X1 and

X2 are non-zero. Therefore, F (πi)(x) = 0 for i = 1, 2 as x is minimal. However, this

implies

x = 1F (X)(x) = F (1X)(x) as F is a functor

= F (ι1π1 + ι2π2)(x) as X = X1 ⊕X2

= F (ι1π1)(x) + F (ι2π2)(x) as F is additive

= F (ι1)(F (π1)(x)) + F (ι2)(F (π2)(x)) as F is covariant

= 0 since F (πi)(x) = 0.

This is a contradiction because x 6= 0 since it is minimal. Hence, X must be indecompos-

able.

The next proposition generalises [6, Prop. 2.6 (b)] to a semi-abelian setting. The

strategy in the proof is the same, but we need a technical result from [39] in order to work

in a category with less structure. Note that if A skeletally small, then Ext1A(−,−) is an

additive bifunctor (see [38, §4], or [18, p. 267]).

Proposition 3.28. Let A be a skeletally small, semi-abelian category with objects X,Z.

Consider the covariant additive functor Ext1A(Z,−) : A → Ab and the contravariant addit-

ive functor Ext1A(−, X) : A → Ab. Suppose ξ : X
f
→ Y

g
→ Z is an element of Ext1A(Z,X).

(i) If f is irreducible, then ξ ∈ Ext1A(−, X)(Z) is minimal, and hence Z is indecompos-

able.

(ii) If g is irreducible, then ξ ∈ Ext1A(Z,−)(X) is minimal, and hence X is indecompos-

able.

Proof. We prove (ii); the proof for (i) is similar. Suppose g is irreducible in the stable exact

sequence ξ : X
f
→ Y

g
→ Z. Since g is not a retraction, by the Splitting Lemma (Proposition

2.7) we know ξ is not split and hence ξ 6= 0 in Ext1A(Z,X). Suppose a : X → X1 is a

proper epimorphism. We will show that Ext1A(Z, a)(ξ) = aξ = 0, i.e. the short exact

sequence aξ is split. By definition, aξ comes with some commutative diagram

ξ : X Y Z

aξ : X1 Y1 Z

f

a

g

b

f1 g1
�

where the left square is a pushout square. Thus, g = g1b and so g1 is a retraction or b is

a section as g is assumed to be irreducible.

Assume, for contradiction, that b is a section. Then there exists r : Y1 → Y such that

rb = 1Y . This yields (rf1)a = rbf = f = ker g. As A is (right) semi-abelian, we have

that a is also a kernel by [39, Prop. 2]. Therefore, a is an epic kernel and hence an

isomorphism by Lemma 2.5, which contradicts that a is a proper epimorphism. Hence, b

cannot be a section.
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Thus, g1 must be a retraction, whence aξ : X1
f1
−→ Y1

g1
−→ Z is split (Proposition

2.7 again) and aξ = 0 in Ext1A(Z,−)(X1). Since a : X → X1 was an arbitrary proper

epimorphism, we see that ξ is a minimal element of Ext1A(Z,−)(X) and that X is in-

decomposable by Proposition 3.27.

We also observe that [6, Prop. 2.11] remains valid in a more general situation:

Proposition 3.29. Let A be a skeletally small, preabelian category. Suppose f : X → Y

is an irreducible morphism in A and let Z be an object of A.

(i) If HomA(Y, Z) = 0, then 0 Ext1A(Z,X) Ext1A(Z, Y )
Ext1

A
(Z,f)

is exact.

(ii) If HomA(Z,X) = 0, then 0 Ext1A(Y, Z) Ext1A(X,Z)
Ext1

A
(f,Z)

is exact.

Proof. This is an arrow-theoretic translation of the proof from [6].

The next result is an analogue of [6, Prop. 2.8] for which we need the theory of

subobjects in an abelian category. Recall that two monomorphisms i1 : X1 → X and

i2 : X2 → X in an abelian category are said to be equivalent if there is an isomorphism

f : X1

∼=
−→ X2 such that i1 = i2 ◦ f . Then a subobject of an object X in an abelian

category is an equivalence class of monomorphisms into X. Furthermore, if i : V → X

and j : W → X are representatives of subobjects of X, then we write V ⊆ W if there

exists a morphism g : V → W such that i = j ◦ g. See [27] or [19] for more details.

Proposition 3.30. Let A be a skeletally small, quasi-abelian category and suppose X
f
→

Y
g
→ Z is a non-split short exact sequence in A.

(i) The morphism f is irreducible if and only if, for any subobject F of HomA(−, Z),

we have either F contains or is contained in Im(HomA(−, g)), the image of the

natural transformation HomA(−, g) : HomA(−, Y ) → HomA(−, Z).

(ii) The morphism g is irreducible if and only if, for any subobject F of HomA(X,−),

we have either F contains or is contained in Im(HomA(f,−)), the image of the

natural transformation HomA(f,−) : HomA(Y,−) → HomA(X,−).

Proof. Note that the category of functors A → Ab is abelian as A is skeletally small (see

[36, Thm. 10.1.3]). The proof is identical to that for [6, Prop. 2.8], noting that we may

use [36, Prop. 10.1.13], and Propositions 3.8 and 3.9.

Proposition 3.31 and its dual, Proposition 3.32, below give analogues of one direction of

parts (a) and (b) of [6, Cor. 2.9] for quasi-abelian categories. There is an obvious method

to prove (ii) in light of Proposition 3.8, but the details are omitted in [6] so we include

them here for completeness.

Proposition 3.31. Let A be a quasi-abelian category and suppose ξ : X
f
→ Y

g
→ Z

is a non-split short exact sequence in A. Suppose f is irreducible. Then the following

statements hold.

(i) For any proper subobject ι : Y ′ →֒ Y such that Im f ⊆ Y ′ given by a monomorphism

s : Im f →֒ Y ′, we have that s is a section.



AUSLANDER-REITEN THEORY IN QUASI-ABELIAN AND KRULL-SCHMIDT CATEGORIES9 19

(ii) For any short exact sequence ξ′ : A
a
→ B

b
→ Z, either there exists j : A → X such

that jξ′ = ξ or there exists i : X → A such that ξi = ξ′.

Proof. Suppose f is irreducible. To show (i) holds, we assume ι : Y ′ → Y is a proper

monomorphism and s : Im f → Y ′ is a monomorphism such that im f = ιs. Since A is

preabelian and ξ is short exact, we have that f = ker g = ker(coker f) = im f by Lemma

2.4. Therefore, f = ιs and hence either ι is a retraction or s is a section. If ι is a retraction

then it would be a monic retraction, and hence an isomorphism by [30, Thm. I.1.5]. But

this contradicts our assumption on ι, so we must have that s is a section.

For (ii), if A
a
→ B

b
→ Z is a short exact sequence, then by Proposition 3.8 either there

exists v1 : B → Y with gv1 = b or there exists v2 : Y → B with g = bv2. This will yield

one of the two morphisms of short exact sequences indicated in the following diagram.

A B Z

X Y Z

a

∃!i1 I

b

v1 1Z

f

∃!i2

g

v2

Therefore, we need only show that the left square I is a pushout in either case. However,

this follows immediately from the dual of [39, Prop. 5] since a, f are kernels and 1Z is an

isomorphism.

Proposition 3.32. Let A be a quasi-abelian category and suppose ξ : X
f
→ Y

g
→ Z

is a non-split short exact sequence in A. Suppose g is irreducible. Then the following

statements hold.

(i) For any non-zero subobject X ′
ι
→֒ X, the induced morphism r : Y/X ′ = Coker(fι) →

Z is a retraction.

(ii) For any short exact sequence ξ′ : X
b
→ B

c
→ C, either there exists j : Z → C such

that ξ′j = ξ or there exists i : C → Z such that iξ = ξ′.

4. Auslander-Reiten theory in Krull-Schmidt categories

Let A denote a k-category, for some commutative ring k, and let I denote a (two-

sided) ideal of A. For a morphism f : X → Y in A, we will denote by f the morphism

f+I(X, Y ) in the additive quotient k-category A/I. For most of this section we will study

Krull-Schmidt categories that are not necessarily Hom-finite. There are very interesting

examples of Hom-infinite generalised cluster categories (see [2], [33], [25]) coming from

quivers with potential. In these examples, a certain Krull-Schmidt category has been used

in [34] to show the existence of cluster characters for Hom-infinite cluster categories. We

provide an example of this kind at the end of this section (see Example 4.20).

Before we begin our study of Auslander-Reiten theory in Krull-Schmidt categories, we

present a series of lemmas inspired by [7, Lem. 1.1]. The proofs are omitted since they

are easy generalisations of those in [7].

Lemma 4.1. Suppose X, Y ∈ A and f ∈ I(X, Y ). If 1X /∈ I(X,X) or 1Y /∈ I(Y, Y ),

then f : X → Y is not an isomorphism.
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Lemma 4.2. Suppose X =
⊕n

i=1 Xi in A, with EndA Xi local and 1Xi
/∈ I(Xi, Xi)

for each i = 1, . . . , n. For an endomorphism f : X → X, if f ∈ I(X,X) then f ∈

radA(X,X).

Lemma 4.3. Suppose X =
⊕n

i=1 Xi and Y =
⊕m

j=1 Yj in A, with EndA Xi and EndA Yj

local for all i, j. Let f : X → Y be a morphism in A.

(i) If 1Xi
/∈ I(Xi, Xi) ∀1 6 i 6 n, then f is a section in A ⇐⇒ f is a section in A/I.

(ii) If 1Yj
/∈ I(Yj, Yj) ∀1 6 j 6 m, then f is a retraction in A ⇐⇒ f is a retraction in

A/I.

(iii) If 1Xi
/∈ I(Xi, Xi) and 1Yj

/∈ I(Yj, Yj) for all i, j, then f is an isomorphism in

A ⇐⇒ f is an isomorphism in A/I.

The forward direction of the next lemma can be found in [28] just above [28, Def. 1.6],

but it is a short argument so we include it here for completeness.

Lemma 4.4. Suppose X =
⊕n

i=1 Xi in A, with EndA Xi local and 1Xi
/∈ I(Xi, Xi) for

each i = 1, . . . , n. Then EndA X is local if and only if EndA/I X is local.

Proof. (⇒) If EndA X is local, then I(X,X) is contained in the Jacobson radical J(EndA X),

which is the unique maximal ideal of EndA X, since 1X /∈ I(X,X). Then EndA/I X has

unique maximal ideal J(EndA X)/I(X,X).

(⇐) Conversely, assume EndA/I X is local and let u : X → X be a non-unit in EndA X.

We will show that 1X − u is a unit in EndA X. If u is a unit in EndA/I X then 1X = uv

for some v : X → X. Then 1X − uv ∈ I(X,X), so 1X − uv is radical by Lemma 4.2.

Then uv = 1X − (1X − uv) is a unit, so that u has a right inverse. A similar argument

also shows u has a left inverse and so u is a unit, contrary to our assumption on u. Thus,

u is not invertible and, as EndA/I X is local, u must be radical. Therefore, 1X − u is a

unit in EndA/I X. So for some w : X → X we have w(1X − u) = 1X . This shows that

1X − w(1X − u) ∈ I(X,X) must be radical using Lemma 4.2 as before, so w(1X − u) =

1X−(1X−w(1X−u)) is invertible and 1X−u has a left inverse. Again, a similar argument

shows 1X − u has a right inverse, and hence a two-sided inverse.

Definition 4.5. Suppose f : X → Y is a morphism in an additive category A. A weak

kernel of f is a morphism w : W → X such that f ◦ w = 0, with the following property:

for every morphism g : V → X with fg = 0, there exists ĝ : V → W such that wĝ = g. A

weak cokernel is defined dually. We call a sequence X
f
→ Y

g
→ Z short weak exact if f is

a weak kernel of g and g is a weak cokernel of f .

It is easy to show that a morphism is a pseudo-(co)kernel, in the sense of [28], if and

only if it is a weak (co)kernel. We adopt the terminology ‘weak’ as it seems more widely

used.

Definition 4.6. We call a sequence X
f
→ Y

g
→ Z in A an Auslander-Reiten sequence (in

an additive category) if the following conditions are satisfied.

(i) The sequence is short weak exact.
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(ii) The morphism f is minimal left almost split.

(iii) The morphism g is minimal right almost split.

In an almost identical way, Liu defines an Auslander-Reiten sequence for a Hom-finite,

Krull-Schmidt category in [28]. However, we do not impose the condition that the middle

term be non-zero, because Auslander-Reiten sequences of the form X → 0 → Z do

appear, for example, in the bounded derived category Db(kA1 –mod) of the path algebra

kA1, where k is an algebraically closed field, and A1 is the quiver with one vertex and no

arrows. As we will see now, the results of [28, §1] can be generalised to the not necessarily

Hom-finite setting. First, we note that [28, Lem. 1.1] is still valid for an arbitrary additive

category.

Next, we give a more general version of [28, Prop. 1.5]:

Proposition 4.7. Suppose A is a preabelian category, and let ξ : X
f
→ Y

g
→ Z be an

Auslander-Reiten sequence in A with Y 6= 0. Then ξ is short exact.

Recall that an additive category A is Krull-Schmidt if, for any object X of A, there

exists a finite direct sum decomposition X = X1 ⊕ · · · ⊕ Xn where EndA(Xi) is a local

ring for i = 1, . . . , n (see [27, p. 544]).

Throughout the remainder of this section, we further assume that A is a Krull-Schmidt

category unless otherwise stated. In particular, A has split idempotents (see Remark 2.2),

and an object X ∈ A is indecomposable if and only if EndA X is local. We still assume

I is an ideal of A.

The following lemma is a generalisation of [28, Lem. 1.2] that will be needed to prove

a uniqueness result about Auslander-Reiten sequences in a Krull-Schmidt category (see

Theorem 4.9). Part of the proof in [28] uses heavily that the category is Hom-finite, so

the corresponding part of the proof below is quite different in nature.

Lemma 4.8. Suppose

Y Z

Y Z

f

u v

g

is a commutative diagram in A, with f, g both non-zero.

(i) If f, g are minimal right almost split, then u ∈ AutA Y ⇐⇒ v ∈ AutA Z.

(ii) If f, g are minimal left almost split, then u ∈ AutA Y ⇐⇒ v ∈ AutA Z.

Proof. We prove only (i) as the proof for (ii) is dual. Assume f, g are non-zero, minimal

right almost split morphisms with vf = gu. Note that the argument in [28] that u is an

automorphism of Y whenever v is an automorphism of Z works here as well, so we only

show the converse. We observe for later use that Y, Z are both non-zero since there exists

a non-zero morphism between them.

Therefore, suppose u ∈ AutA Y with inverse u−1. Since f is right almost split, we have

that EndA Z is local, so Z is indecomposable. Assume, for contradiction, that v is not

a retraction. Then v factors through the right almost split morphism g as, say, v = ga
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for some a : Z → Y . In particular, we see that g = guu−1 = vfu−1 = gafu−1 and hence

afu−1 is an automorphism of Y as g is right minimal. This means that af is also an

automorphism of Y and that a is a retraction. Then, by Lemma 2.3, we have that a

is an isomorphism because Z is indecomposable and Y 6= 0. However, this yields that

f = a−1af is an isomorphism, and hence a retraction, which contradicts that f is right

almost split. Hence, v must be a retraction, and thus also an isomorphism by Lemma 2.3.

Now we generalise [28, Thm. 1.4] to a not necessarily Hom-finite (but still Krull-

Schmidt) setting.

Theorem 4.9. Let A be a Krull-Schmidt category, and suppose X
f

−→ Y
g

−→ Z is an

Auslander-Reiten sequence in A with Y 6= 0.

(i) Up to isomorphism, X
f

−→ Y
g

−→ Z is the unique Auslander-Reiten sequence start-

ing at X and the unique one ending at Z.

(ii) Any irreducible morphism f1 : X → Y1 or g1 : Y1 → Z fits into an Auslander-Reiten

sequence X Y1 ⊕ Y2 Z.

(
f1
f2

)
( g1 g2 )

Proof. Follow the proof in [28], replacing the use of [28, Lem. 1.2] with Lemma 4.8.

For a Hom-finite, Krull-Schmidt category, Liu identifies a nice class of ideals—admissible

ideals. It is observed in [28] that, for such an ideal I of a Hom-finite, Krull-Schmidt cat-

egory A, irreducible morphisms (between indecomposables) and minimal left/right almost

split morphisms remain, respectively, so under the quotient functor A → A/I. We adopt

the same definition but without the Hom-finite restriction.

Definition 4.10. [28, Def. 1.6] Suppose A is a Krull-Schmidt k-category. An ideal I of

A is called admissible if it satisfies the following.

(i) Whenever X, Y ∈ A are indecomposable such that 1X /∈ I(X,X) and 1Y /∈ I(Y, Y ),

then I(X, Y ) ⊆ rad2
A(X, Y ).

(ii) If f : X → Y is minimal left almost split, where 1X /∈ I(X,X), and g ∈ I(X,M),

then we can express g = hf for some h ∈ I(Y,M).

(iii) If f : X → Y is minimal right almost split, where 1Y /∈ I(Y, Y ), and g ∈ I(M,Y ),

then we can express g = fh for some h ∈ I(M,X).

Example 4.11. Suppose B ⊆ A is a full subcategory closed under direct sums and direct

summands. Then the ideal [B] of morphisms factoring through objects of B is admissible.

See [28, Prop. 1.9].

The next result follows quickly from the definition of an admissible ideal.

Lemma 4.12. Suppose I is an admissible ideal of A. Suppose X =
⊕n

i=1 Xi and

Y =
⊕m

j=1 Yj are decompositions into indecomposables in A with 1Xi
/∈ I(Xi, Xi), 1Yj

/∈

I(Yj, Yj) for all i, j. Then I(X, Y ) ⊆ rad2
A(X, Y ).
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Proof. Let f ∈ I(X, Y ) be arbitrary and write

f =




f11 · · · f1n
...

. . .
...

fm1 · · · fmn




where fji : Xi → Yj. Then for each i, j we have fji = πjfιi ∈ I(Xi, Yj), where πj : Y → Yj

is the natural projection and ιi : Xi → X is the natural inclusion. Since I is admissible

and 1Xi
/∈ I(Xi, Xi), 1Yj

/∈ I(Yj, Yj), we have that fji ∈ I(Xi, Yj) ⊆ rad2
A(Xi, Yj) for each

i, j. Therefore, f is a sum of morphisms in rad2
A(X, Y ) and hence f ∈ rad2

A(X, Y ) as

desired.

The next lemma generalises [28, Lem. 1.7 (1)]. The proof in [28] makes use of a specific

characterisation of irreducible morphisms between indecomposables (see [9, Prop. 2.4]),

which we cannot use since we make no indecomposability assumptions on the domain and

codomain of the morphism. See also [7, Prop. 1.2].

Proposition 4.13. Suppose I is an admissible ideal of A. Suppose X =
⊕n

i=1 Xi and

Y =
⊕m

j=1 Yj are decompositions into indecomposables in A with 1Xi
/∈ I(Xi, Xi), 1Yj

/∈

I(Yj, Yj) for all i, j. Then f : X → Y is irreducible in A if and only if f = f + I(X, Y )

is irreducible in A/I.

Proof. (⇒) Assume f : X → Y is an irreducible morphism in A. By Lemma 4.3, f is

neither a section nor a retraction in A/I. Now suppose f = hg in A/I for some morphisms

g : X → Z, h : Z → Y of A. Then f − hg ∈ I(X, Y ) ⊆ rad2
A(X, Y ) by Lemma 4.12.

Therefore, there is an object W ∈ A and morphisms a ∈ radA(X,W ), b ∈ radA(W,Y )

such that f − hg = ba. This yields f = hg + ba = (h b )( g
a ), so that either (h b ) is a

retraction or ( g
a ) is a section because f is irreducible. First, assume (h b ) is a retraction.

Then there is a morphism ( s
t ) : Y → Z ⊕ W such that 1Y = (h b )( s

t ) = hs + bt. Now

b ∈ radA(W,Y ), so bt ∈ radA(Y, Y ) as radA is an ideal of A. Then hs = 1Y − bt is

invertible, so h is a retraction and hence h is also a retraction. In the other case, we find

that g is a section in a similar fashion. Thus, f is an irreducible morphism.

(⇐) Conversely, suppose f : X → Y is irreducible in A/I. By Lemma 4.3, f cannot be

a section or a retraction. Assume f = hg for some g : X → Z, h : Z → Y of A. Then in

A/I we have f = hg and so either h is a retraction or g is a section, since f is irreducible.

Therefore, h is a retraction or g is a section, respectively, by Lemma 4.3 again. Hence, f

is irreducible.

In a not necessarily Hom-finite, Krull-Schmidt category, the results [28, Lem. 1.7 (2),

(3)], [28, Prop. 1.8] and [28, Lem. 1.9 (2)] all hold using the same proofs that Liu

provides. This concludes our work on generalisations of results of Liu. We now recall

some last definitions from [28] and prove some new results.

Definition 4.14. [28, Def. 2.2] An object X ∈ A is called pseudo-projective (respectively,

pseudo-injective) if there exists a minimal right almost split monomorphism W → X

(respectively, minimal left almost split epimorphism X → Y ).
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Definition 4.15. [28, Def. 2.6] Suppose A is a Krull-Schmidt k-category. We call A a

left Auslander-Reiten category if, for every indecomposable Z ∈ A, either Z is pseudo-

projective or it is the last term of an Auslander-Reiten sequence in A. Dually, A is a

right Auslander-Reiten category if, for every indecomposable X ∈ A, either X is pseudo-

injective or it is the first term of an Auslander-Reiten sequence. If A is both a left and

right Auslander-Reiten category, then we simply call A an Auslander-Reiten category.

Remark 4.16. Let C be a triangulated category with suspension functor Σ. Then C is said

to have Auslander-Reiten triangles if for every indecomposable Z there is an Auslander-

Reiten triangle ending at Z (see [22, p. 31]). That is, for each indecomposable Z there

is a triangle X
f
→ Y

g
→ Z

h
→ ΣX with f minimal left almost split and g minimal right

almost split. Therefore, a Krull-Schmidt, Hom-finite, triangulated k-category that has

Auslander-Reiten triangles is immediately seen to be a left Auslander-Reiten category in

light of a result of Liu: [28, Lem. 6.1] shows that X
f
→ Y

g
→ Z

h
→ ΣX is an Auslander-

Reiten triangle if and only if X
f
→ Y

g
→ Z is an Auslander-Reiten sequence as in Definition

4.6. The Hom-finite assumption may be removed by noting that one can use Theorem

4.9 in the proof of [28, Lem. 6.1].

The following two propositions generalise [7, Prop. 1.2], and the last theorem of this

section is an analogue of [3, Thm. IV.1.13] (see also [6, Thm. 2.14]). For the most part,

the proofs are straightforward generalisations of those for the abelian case, using the more

general results from this article and [28] as appropriate. Thus, we only outline the proofs

indicating the required generalised results where it is clear what needs to be done, and

provide more details otherwise.

Proposition 4.17. Suppose A is a left Auslander-Reiten category. Let f : X → Y be

a morphism in A and let I be an admissible ideal of A. Suppose X =
⊕n

i=1 Xi and

Y =
⊕m

j=1 Yj are decompositions into indecomposables in A with 1Xi
/∈ I(Xi, Xi), 1Yj

/∈

I(Yj, Yj) for all i, j. Then f = f + I(X, Y ) : X → Y is irreducible and right almost

split in A/I, if and only if there exists g : X ′ → Y in A with 1X′ ∈ I(X ′, X ′) such that

( f g ) : X ⊕X ′ → Y is minimal right almost split in A.

Proof. (⇒) Use: Proposition 4.13 instead of [7, Prop. 1.2 (a)] to show f is irreducible;

[6, Lem. 2.3] and Lemma 4.4 to show EndA Y is local; and [6, Thm. 2.4] and that

A is a left Auslander-Reiten category to obtain a minimal right almost split morphism

( f g ) : X ⊕X ′ → Y .

By [28, Lem. 1.7], the morphism ( f g ) : X ⊕ X ′ → Y is minimal right almost split,

and hence a non-retraction, in A/I. Since f : X → Y is right almost split, there exists

( a b ) : X ⊕X ′ → X such that ( fa fb ) = f ◦ ( a b ) = ( f g ). We now deviate from the

proof given in [7]. This implies

( f g )

(
a b

0 0

)
= ( fa fb ) = ( f g ),
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so
(
a b
0 0

)
is an automorphism of X ⊕X ′ in A/I as ( f g ) is right minimal. Hence, there

is
(
r s
t u

)
∈ EndA/I(X ⊕X ′) such that
(
r s

t u

)(
a b

0 0

)
=

(
1X 0

0 1X′

)
=

(
a b

0 0

)(
r s

t u

)
=

(
ar + bt as+ bu

0 0

)
.

Therefore, 1X′ = 0 and hence 1X′ ∈ I(X ′, X ′).

(⇐) Use [28, Lem. 1.7] to get that ( f g ) is minimal right almost split in A/I, and

that ιX : X →֒ X ⊕X ′ is an isomorphism in the factor category as 1X′ ∈ I(X ′, X ′).

Dually, the following is also true.

Proposition 4.18. Suppose A is a right Auslander-Reiten category. Let f : X → Y be

a morphism in A and let I be an admissible ideal of A. Suppose X =
⊕n

i=1 Xi and

Y =
⊕m

j=1 Yj are decompositions into indecomposables in A with 1Xi
/∈ I(Xi, Xi), 1Yj

/∈

I(Yj, Yj) for all i, j. Then f+I(X, Y ) : X → Y is irreducible and left almost split in A/I,

if and only if there exists g : X → Y ′ in A with 1Y ′ ∈ I(Y ′, Y ′) such that
(
f
g

)
: X → Y ⊕Y ′

is minimal left almost split in A.

Our main result of this section is the following characterisation of Auslander-Reiten

sequences, which is a more general version of [3, Thm. IV.1.13]. Furthermore, statement

(f) in [3] has stronger assumptions than the corresponding statement (vi) below: more

precisely, in (vi) we do not assume any indecomposability assumptions on the first and

last term of the short exact sequence.

Theorem 4.19. Let A be a skeletally small, preabelian category. Let ξ : X
f
→ Y

g
→ Z be a

stable exact sequence in A, i.e. ξ ∈ Ext1A(Z,X). Then statements (i)–(iii) are equivalent.

(i) ξ is an Auslander-Reiten sequence.

(ii) EndA(X) is local and g is right almost split.

(iii) EndA(Z) is local and f is left almost split.

Suppose further that A is quasi-abelian and Krull-Schmidt. Then (i)–(vi) are equivalent.

(iv) f is minimal left almost split.

(v) g is minimal right almost split.

(vi) f and g are irreducible.

Proof. From Definition 4.6 and [6, Lem. 2.3], (ii) and (iii) follow from (i). To show (ii)

⇒ (iii) and (iii) ⇒ (i), use Proposition 3.24 instead of [3, Lem. IV.1.12]. And (iii) ⇒ (ii)

is dual to (ii) ⇒ (iii), so this establishes the equivalence of (i)–(iii).

Now suppose further that A is quasi-abelian and Krull-Schmidt. Statements (iv) and

(v) follow from (i) by definition, and (iv) ⇒ (iii) is dual to (v) ⇒ (ii).

First, we claim that if g is right almost split then Y is non-zero. Indeed, if Y = 0 then

1Z ◦ g = g = 0, which implies 1Z = 0 as g = coker f is an epimorphism (since ξ is short

exact). However, if g is right almost split, then EndA Z is local by [6, Lem. 2.3] and hence

1Z cannot be the zero morphism.
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(v) ⇒ (ii). Since g is right almost split, we may use our claim above to conclude that

g is irreducible by Proposition 3.14 (ii). Then X is indecomposable by Proposition 3.28,

which is equivalent to EndA X being local as A is Krull-Schmidt.

For (i) implies (vi), use Proposition 3.14 (noting again that Y is non-zero if g is right

almost split).

(vi) ⇒ (ii). Suppose that f, g are irreducible. First we show that g is right almost split.

Note that g is not a retraction as it is irreducible by assumption. Thus, let h : M → Z

be a non-retraction. Since A is Krull-Schmidt we may write M =
⊕n

i=1 Mi, for some

indecomposable objects Mi, and h = (h1 · · · hn ) where hi : Mi → Z. Since h is not a

retraction, it follows that no hi may be a retraction either. Fix i ∈ {1, . . . , n}. As f is

irreducible, the criterion from Proposition 3.8 tells us that either there exists vi,1 : Mi → Y

such that gvi,1 = hi or there exists vi,2 : Y → Mi such that g = hivi,2. Suppose we are in

the latter case and that g = hivi,2 for some vi,2 : Y → Mi. Then, as g is irreducible and

hi is not a retraction, we have that vi,2 is section. But Mi is indecomposable and Y 6= 0,

so vi,2 is in fact an isomorphism by Lemma 2.3. In this case, we then get hi = g ◦ v −1
i,2 .

Therefore, for all 1 6 i 6 n we have that hi = g ◦ wi for some wi : Mi → Y . Hence,

h = (h1 · · · hn ) = g ◦ (w1 · · · wn ) and g is seen to be right almost split. Dually, we

have that f is left almost split and hence EndA X is local by [6, Lem. 2.3].

This shows (i)–(vi) are equivalent and finishes the proof.

We conclude this section with an example of a Hom-infinite, Krull-Schmidt category.

The author is grateful to P.-G. Plamondon for communicating the following example and

answering several questions.

Example 4.20. Let k be a field. Consider the quiver with potential (Q,W ) where Q is

the quiver

1

23

a
a′

b′

b

c
c′

and W = cba + c′b′a′ is the potential. Following [25, §2.6], we recall the construction of

the complete Ginzburg dg algebra G := Γ̂(Q,W ) associated to Q. From Q, consider the
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quiver Q̃:

1

23

a
a′

b′

b

c
c′

a∗

a′∗

b′∗

b∗

c∗

c′∗

t1

t2t3

The quiver Q̃ is given the following grading: arrows x, x′ have degree 0 and arrows x∗, x′∗

have degree −1 for x ∈ {a, b, c}, and the loop ti has degree −2 for 1 6 i 6 3. Then G

has underlying graded algebra given by the completion of the graded path algebra kQ̃

with respect to the ideal generated by the arrows of Q̃ in the category of graded k-vector

spaces. Furthermore, G is a dg algebra, equipped with a differential of degree +1.

Let mod –G, K(G) and D(G) denote the category of right dg G-modules, the homotopy

category of right dg G-modules and the corresponding derived category, respectively. The

perfect derived category perG is the smallest, full, subcategory of D(G) that contains G,

and is closed under shifts, extensions and direct summands. Let J(Q,W ) denote the

Jacobian algebra associated to (Q,W ). Then J(Q,W ) is the complete path algebra k̂Q

modulo the closure of the ideal generated by ∂x(W ) and ∂x′(W ) for x ∈ {a, b, c}, where

∂x(W ) :=
∑

W=yxz

zy,

where the sum is over all decompositions of W with y, z (possibly trivial) paths. The sum

∂x′(W ) is defined similarly. It is easy to check that J(Q,W ) is infinite-dimensional over

k.

The category perG is Krull-Schmidt by [25, Lem. 2.17]. Furthermore, we have

EndperG G = EndD(G) G since perG is a full subcategory

∼= HomK(G)(G,G) since G is cofibrant (see [25, pp. 2126–2127])

= H0(Hommod –G(G,G))

∼= H0(G)

= J(Q,W ) by [25, Lem. 2.8].

It follows that perG is a Hom-infinite k-category and is also Krull-Schmidt. We remark

that, by [34, Lem. 2.9], the corresponding cluster category is also Hom-infinite k-category

in this case.
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5. An example from cluster theory

We now present an example coming from cluster theory that encapsulates some of the

theory we have explored.

Example 5.1. Let k be a field. Consider the cluster category C := CkQ (as defined in

[13]) associated to the linearly oriented Dynkin quiver

Q : 1 → 2 → 3.

It is shown in [13] that C is Krull-Schmidt and it is triangulated by a result of Keller [24].

Let Σ denote the suspension functor of C. Its Auslander-Reiten quiver, with the meshes

omitted, is

ΣP1 P1 =
1
2
3

ΣP3

ΣP2 P2 = 2
3

I2 = 1
2

ΣP2

ΣP3 S3 = 3 S2 = 2 S1 = 1 ΣP1

ba

c d

where the lefthand copy of ΣPi is identified with the righthand copy (for i = 1, 2, 3).

We set R := P1 ⊕ P2, which is a basic, rigid object of C. By addΣR we denote the full

subcategory of C consisting of objects that are isomorphic to direct summands of finite

direct sums of copies of ΣR. The full subcategory XR consists of objects X for which

HomC(R,X) = 0. Then the pair ((S, T ), (U ,V)) = ((addΣR,XR), (XR, addΣR)) is a twin

cotorsion pair on C with heart H = C/[XR] (see [42, Lem. 5.4] and [42, Cor. 5.9], or [31,

Exa. 2.10], for more details), where [XR] is the ideal of morphisms factoring through

objects of XR. Note that [XR] is an admissible ideal by Example 4.11 as XR is closed

under direct summands.

The subcategory XR is described pictorially below, where “◦” denotes that the corres-

ponding object does not belong to the subcategory.

T = XR = U

ΣP1 ◦ ΣP3

ΣP2 ◦ ◦ ΣP2

ΣP3 S3 ◦ ◦ ΣP1

The heart H = C/[XR] for this twin cotorsion pair is quasi-abelian by [42, Thm. 5.5],

and, by [28, Prop. 2.9], has the following Auslander-Reiten quiver (ignoring the objects
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denoted by a “◦” that lie in XR)

H = C/[XR]

◦ P1 ◦

◦ P2 I2 ◦

◦ ◦ S2 S1 ◦

ba

c

e

d

where one may define the Auslander-Reiten quiver for a Krull-Schmidt category as in [28].

Again we have omitted the meshes. Furthermore, we have denoted by X the image in

C/[XR] of the object X of C, monomorphisms by “ →֒” and epimorphisms by “։”. In this

example, we notice that there are precisely two irreducible morphisms (up to a scalar)

that are regular (monic and epic simultaneously)—namely, b and c.

Consider the Auslander-Reiten triangle P2 P1 ⊕ S2 I2 ΣP2

( ac ) ( b d )
in C,

and note that the minimal left almost split morphism ( a
c ) is irreducible by Proposition

3.14. Therefore, by Proposition 4.13, ( a
c ) : P2 → P1 ⊕ S2 is also irreducible. Similarly,

( b d ) : P1 ⊕ S2 → I2 is irreducible in C/[XR]. We remark that one cannot use [28, Lem.

1.7 (1)] since the morphisms are not between indecomposable objects.

One can check that ( a
c ) = ker( b d ) and ( b d ) = coker( a

c ) by, for example, using the

construction of (co)kernels as in [14, Lem. 3.4]. So, we have that

P2 P1 ⊕ S2 I2
( ac ) ( b d )

is a short exact sequence in the quasi-abelian, Krull-Schmidt category C/[XR]. Hence, by

Theorem 4.19, the sequence is an Auslander-Reiten sequence because it satisfies statement

(vi) in the Theorem. Note that we could also have established this fact using [28, Prop.

1.8] and Proposition 4.7.

Furthermore, this example also shows that the indecomposability conditions in Pro-

position 3.16 cannot be removed. The morphism ( a
c ) is an irreducible monomorphism,

but has decomposable target, and the morphism d is an irreducible morphism with codo-

main the cokernel of ( a
c ) that is not epic. Indeed, ed = 0 but e 6= 0 so d cannot be an

epimorphism.
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