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INTEGRABLE SYSTEMS OF DOUBLE RAMIFICATION TYPE
ALEXANDR BURYAK, BORIS DUBROVIN, JEREMY GUERE, AND PAOLO ROSSI

ABSTRACT. In this paper we study various aspects of the double ramification (DR) hierarchy,
introduced by the first author, and its quantization. We extend the notion of tau-symmetry to
quantum integrable hierarchies and prove that the quantum DR hierarchy enjoys this property.
We determine explicitly the genus 1 quantum correction and, as an application, compute com-
pletely the quantization of the 3- and 4-KdV hierarchies (the DR hierarchies for Witten’s 3- and
4-spin theories). We then focus on the recursion relation satisfied by the DR Hamiltonian den-
sities and, abstracting from its geometric origin, we use it to characterize and construct a new
family of quantum and classical integrable systems which we call of double ramification type,
as they satisfy all of the main properties of the DR hierarchy. In the second part, we obtain
new insight towards the Miura equivalence conjecture between the DR and Dubrovin-Zhang
hierarchies, via a geometric interpretation of the correlators forming the double ramification
tau-function. We then show that the candidate Miura transformation between the DR and DZ
hierarchies (which we uniquely identified in our previous paper) indeed turns the Dubrovin-
Zhang Poisson structure into the standard form. Eventually, we focus on integrable hierarchies
associated with rank-1 cohomological field theories and their deformations, and we prove the
DR/DZ equivalence conjecture up to genus 5 in this context.
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1. INTRODUCTION

The Dubrovin-Zhang (DZ) hierarchy [DZ05] is an integrable system of Hamiltonian PDEs
associated to any given semisimple cohomological field theory (CohFT). As an important prop-
erty, it is tau-symmetric and we can then define its partition function as the tau-function of its
topological solution. The DZ hierarchy plays a central role in generalizing to any semisimple
CohFT the notion, underlying the Witten-Kontsevich theorem [Wit91], Kon92], which states
that the partition function of the CohFT should correspond to the topological tau-function of
some integrable Hamiltonian tau-symmetric hierarchy of evolutionary PDEs.

The double ramification (DR) hierarchy has been introduced in [Burlb] by the first author
and is another integrable system of Hamiltonian PDEs, associated to any given cohomological
field theory (CohFT). It does not require any semisimplicity condition and it is also defined for
partial CohFTs, satisfying weaker axioms, see [BDGRI1S8]. At the heart of its construction lies
the double ramification cycle DRy(aq, ..., a,), which is the push-forward to the moduli space
of stable curves Mg,n of the virtual fundamental cycle of the moduli space of rubber stable
maps to P! relative to 0 and oo, with ramification profile (orders of poles and zeros) given by
(a1,...,a,) € Z"™.

We prove in [BDGRIS]| that the DR hierarchy is also tau-symmetric and we define its par-
tition function as the tau-function of its string solution. The DR/DZ equivalence conjecture
[BDGRI1S]| predicts the existence (and unicity) of a normal Miura transformation under which
the partition function of a given CohFT equals the associated DR partition function. As a
consequence, we recover in the semisimple case the original conjecture from [Burl] that the
DR and DZ hierarchies are Miura equivalent.

One application of the DR/DZ equivalence conjecture, when proved true, is to give a quanti-
zation of any Dubrovin-Zhang hierarchy. Indeed, the DR hierarchy has a natural quantization,
constructed in and recalled in Section . In this paper, we prove that the quantum
DR hierarchy is also tau-symmetric and we define a quantum tau-function. In the limit when
the quantum parameter i tends to zero, we recover results from [BDGRIS]. We also study
the first quantum correction in genus 1 and, as an application, we completely determine the
quantum DR hierarchies associated to the Witten’s 3- and 4-spin theories.

One of the most striking property of the quantum DR hierarchy is that it can be recovered
recursively from the knowledge of one Hamiltonian, usually denoted 51,1, via the recursion
equations of Theorem [2.2] proved in [BRI6b]. Conversely, any Hamiltonian H compatible with
these recursion equations in the sense of Theorem produces a unique quantum integrable
tau-symmetric hierarchy. An integrable hierarchy obtained in this way is said to be of double
ramification type. As an example, we study the dispersionless quantum deformations of DR
type of the Riemann hierarchy and suggest they are in one-to-one correspondence with the DR
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hierarchies associated with CohFTs of rank 1.

Starting from Section @ we go back to the classical DR hierarchy and to the DR/DZ equiv-
alence conjecture. In Theorem we give a very explicit and geometric formula for the coeffi-
cients of the DR partition function, called the DR correlators. This formula is used in Section
towards the DR/DZ equivalence conjecture. More precisely, we prove in Theorem that the
candidate Miura transformation between the two, which we uniquely identified in [BDGRI18],
indeed transforms the Hamiltonian operator K% of the DZ hierarchy to the standard opera-
tor nd, used in the DR hierarchy, giving a new evidence for the conjecture.

To conclude, we give various results about the DR and DZ hierarchies associated to CohFT's
of rank 1. In particular, we show that the DR hierarchy is a standard deformation of the
Riemann hierarchy in the sense of [DLYZ16] and we prove the existence of a normal Miura
transformation that reduces the Dubrovin-Zhang hierarchy to its unique standard form, prov-
ing one of the conjectures from [DLYZ16] about tau-symmetric deformations of the Riemann
hierarchy. Lastly, we prove that the DR/DZ equivalence conjecture holds for rank-1 CohFTs
at the approximation up to genus 5.

1.1. Acknowledgements. We would like to thank Andrea Brini, Guido Carlet, Rahul Pand-
haripande, Sergey Shadrin and Dimitri Zvonkine for useful discussions. A. B. has received
funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sktodowska-Curie grant agreement No. 797635 and was also supported by Grant
ERC-2012-AdG-320368-MCSK and Grant RFFI-16-01-00409. J. G. was supported by the Ein-
stein foundation. P. R. was partially supported by a Chaire CNRS/Enseignement superieur
2012-2017 grant.

2. DOUBLE RAMIFICATION HIERARCHY

In this section we recall the main definitions and results from [Burl5l [BR16al, BR16b]. The
classical double ramification (DR) hierarchy is a system of commuting Hamiltonians on an
infinite dimensional phase space that can be heuristically thought of as the loop space of a fixed
vector space. The entry datum for this construction is a cohomological field theory (CohFT) in
the sense of Kontsevich and Manin [KM94] or, more in general, a partial CohFT in the sense
of [LRZ15] (the definition of a partial CohFT is the same as the one for a CohFT apart from
the loop axiom, which is not required in the first). For actual CohFTs (not just partial), in
[BR16b|] a quantization was constructed for the classical double ramification hierarchy, dubbed
quantum double ramification (qDR) hierarchy.

2.1. Formal loop space. Let V be an N-dimensional vector space and 7 a symmetric bilinear
form on it. The loop space of V will be defined somewhat formally by describing its ring
of functions. Following [DZ05] (see also [Rosl0]), let us consider formal variables u$, a =
1,....,N, 1 =0,1,..., associated to a basis e1,...,ey of V. Always just at a heuristic level,
the variable u® := u§ can be thought of as the component u®(z) along e, of a formal loop
u: S' — V, where z is the coordinate on S', and the variables u® := u$, u?, := ug,... as its
x-derivatives. We then define the ring Ay of differential polynomials as the ring of polynomials
fu*;ub,uk,,...) in the variables u$, i > 0, with coefficients in the ring of formal power series
in the variables u® = u§ (when it does not give rise to confusion, we will use the symbol * to
indicate any value, in the appropriate range, of the sub or superscript). We can differentiate
a differential polynomial with respect to « by applying the operator 9, = ), ufﬁrl% (in
general, we use the convention of sum over repeated Greek indices, but not over repeated Latin
indices). Finally, we consider the quotient Ay of the ring of differential polynomials first by
constants and then by the image of 0., and we call its elements local functionals. A local
functional, that is the equivalence class of a differential polynomial f = f(u*;uf, u’_,...), will

x) xx?
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be denoted by f = [ fdz. Let us introduce a grading degu = i and define AE@] and AKC,] as
the subspaces of degree k of Ay and of Ay respectively.

Differential polynomials and local functionals can also be described using another set of formal
variables, corresponding heuristically to the Fourier components pg, k € Z, of the functions
u® = u®(x). Let us, hence, define a change of variables

(2.1) uj = Z(ik)jpgeikx,

keZ

which allows us to express a differential polynomial f(u;uy, tzs, .. .) as a formal Fourier series
in « where the coefficient of e*** is a power series in the variables P (where the sum of the

subscripts in each monomial in p§ equals k). Moreover, the local functional f corresponds to
the constant term of the Fourier series of f.

Let us describe a natural class of Poisson brackets on the space of local functionals. Given
an N x N matrix K = (K*) of differential operators of the form K = 3" K!"0], where

the coefficients K J“ ¥ are differential polynomials and the sum is finite, we define

— 5f 0g
{f7§}K = / (#Kuyﬁ) dl’,

where we have used the variational derivative % = Zizo(—ﬁx)i%.
bracket satisfies the anti-symmetry and the Jacobi identity will translat@e, of course, into condi-
tions for the coefficients K ]“ . An operator that satisfies such conditions will be called Hamil-
tonian. A standard example of a Hamiltonian operator is given by nd,. The corresponding
Poisson bracket {-,-},s, will sometimes be denoted just by {-, -} when no confusion arises. Such

Poisson bracket also has a nice expression in terms of the variables pj:

Imposing that such

(2.2) (b3, 0] oo = k11810

Finally, we will need to consider extensions .,ZN and A ~ of the spaces of differential polyno-
mials and local functionals. Introduce a new variable ¢ with dege = —1. Then .,Zﬂf,] and /A\E@ are
defined, respectively, as the subspaces of degree k of Ay := An|[e]] and of Ay = An|[e]].
Their elements will still be called differential polynomials and local functionals. We can
also define Poisson brackets as above, starting from a Hamiltonian operator K = (K*),
Km = Zi7jZO(K}Z])“”5i8§, where (K]M)’“’ € Ay and deg(ij)“” =i —j+1. The corresponding
Poisson bracket will then have degree 1. In the sequel only such Hamiltonian operators will be
considered.

A Hamiltonian hierarchy of PDEs is a family of systems of the form

ou® 552

2.3 = K
( ) 87'1- 5u“’

a=1,...,N, i=12...,

where h; € /A\E(\),} are local functionals with the compatibility condition {h;, h;}r = 0, for i, j > 1.
The local functionals h; are called the Hamiltonians of the systems (2.3).

2.2. Classical double ramification hierarchy. Let c,,: V& — H®°(M,,,C) be the
system of linear maps defining a (possibly partial, in the sense of [LRZ15]) cohomological field
theory, V' its underlying N-dimensional vector space, 1 its metric tensor and e; € V' the unit
vector. Let 1; be the first Chern class of the line bundle over M, ,, formed by the cotangent lines
at the ¢-th marked point. Denote by E the rank g Hodge vector bundle over ﬂgm whose fibers
are the spaces of holomorphic one-forms. Let \; := ¢;(E) € H¥(M,,,Q). The Hamiltonians
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of the double ramification hierarchy are defined as follows:

(2.4)
_ . (_52)9 d n - o
Jad = Z o Z o DRy(0, a1, ..., an)Ag¥icgni1(ea ® @ €q;) Hpa“
g>0 al,e.,an€L g,n+1 =1
n>2 > a;=0
fora=1,...,Nandd=0,1,2,.... Here DRy(ay,...,a,) € H¥(M,,,Q) is the double rami-
fication cycle. If not all of a;’s are equal to zero, then the restriction DRy(ay, ... ,an)|Mg _ can
be defined as the Poincaré dual to the locus of pointed smooth curves [C,py, ..., p,] satisfying

Oc (37, aipi) = Oc, and we refer the reader, for example, to [BSSZIH] for the definition of the
double ramification cycle on the whole moduli space /ngn. We will often consider the Poincaré
dual to the double ramification cycle DRy(ay,...,a,). It is an element of Hyog—34n) (ﬂgm, Q)

and, abusing our notations a little bit, it will also be denoted by DR, (ay, ..., a,). In particular,
the integral in (2.4)) will often be written in the following way:

(25) / /\gwilcg,n—i-l(ea & ®?:leai>‘
DRy (0,a1,...,an)

The expression on the right-hand side of (2.4]) can be uniquely written as a local functional

from /A\E(\),} using the change of variables (2.1)). Concretely it can be done in the following way.
The integral (2.5) is a polynomial in ay,...,a, homogeneous of degree 2g. It _follows from
Hain’s formula [Hail3], the results of [MW13] and the fact that A, vanishes on M, \ M¢"

g’”’

where /\/ltn is the moduli space of stable curves of compact type [Mum83, [Fab99]. Thus, the
integral (2.5) can be written as a polynomial

_ bl?"'vb bl b
Pa7d7g;a17'~~7an (a'17 st 7an) - Z Pa’d’g;a77i7...7ana1 PN Cln".
b1,...,bn>0
b1+...+bn=29

Then we have

Z % Z bib
— _ 1syeees n aq Qn
ga,d - / n! Pa,d,g;al,..‘,anuln T ubn dx.

g0 " bi,..bn>0
n>2 b1+...+bn=2g

Note that the integral (2.5) is defined only when a; + ... + a, = 0. Therefore the polyno-
mial Py gg.a,,..a, 18 actually not unique. However, the resulting local functional Jod € AE?,]
doesn’t depend on this ambiguity (see [Burl5]). In fact, in [BR16al, a special choice of differen-

tial polynomial densities g,q4 € .ZES] for g, = [ ga,a dz is selected. They are defined in terms
of p-variables as

_82 . n - o  —iagT
ga,d = Z ( ' ) Z (/ )\gwilcg,n-i-l (ea ® ®i1€0¢i)> Hpaize 0 ,
n DRy (ao,a1,...,an) i=1

g>0,n>1 ’ ag,...,an €L
2g—1+n>0 ZQ/Z:O

and converted univocally to differential polynomials using again the change of variables ([2.1).

The fact that the local functionals g, , mutually commute with respect to the standard
bracket n0, was proved in [Burl)] for CohFTs and in [BDGRIS] for partial CohFTs. The
system of local functionals g, 4, fora =1,...,N,d=0,1,2,..., and the corresponding system
of Hamiltonian PDEs with respect to the standard Poisson bracket {-,-},s,,

ou® - 0G5,
ot dur’

is called the double ramification hierarchy.
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2.3. Quantum Hamiltonian systems. We will need, first, to extend the space of differen-
tial polynomials to allow for dependence on the quantization formal parameter h. A quantum

differential polynomial f = f(u*,u},uy, ...;€,h) is a formal power series in /i and e whose
coefficients are polynomials in uj, for £ > 0, and power series in u{, where « = 1,..., N. The
quantization parameter has degree degh = —2 and all other formal variables retain the same

degree as in the classical case. The space of quantum differential polynomials will be denoted by
AN The space of quantum local functionals AL '\ 1s given, as in the classical case, by taking the
quotient of AN with respect to formal power series in € and A and the image of the d,-operator.

As in the classical case, the change of variables

u;y Z(Zk) a zka:,

kezZ
allows to express any quantum differential polynomial f = f(ul;e,h) as a formal Fourier
series in x with coefficients that are (power series in € with coefficients) in the Weyl algebra
Clphsos - - - Phool[[Ph<os - - - s Preos )] endowed with the “normal ordering” *-product

> iﬁknaﬂzi
f *g e f (e k>0 Bpk 8?61@) g
and the commutator [f,g] := fxg—g* f.
These structures can then be translated to the language of differential polynomials and

local functionals. In [BR16D] it was proved that, for any two differential polynomials f(z) =
flut,uy,uy,, .56, h) and g(y) = g(u”, ), uy,, . . . €, 1), we have

hn an - 7‘ o TkTSk ang
f@)xgly)= Y FW (H ke gLt +1)(a:—y)> m(?ﬂ,

n>0 k=1
T1y0,"n >0
815004,8n 20

where 55f) (=y) = 10 (ik)*e*@=v) s > 0, is the positive frequency part of the s-th derivative
of the Dirac delta distribution §(z — y) = 3, , e*~% and

ol = 3 SO e ([T )

n>1
T1 4oy >0

(26) S1,...,sn§0

2n—14>"7_ (sp+rk)

. g
y Ce1+r1+1,...,sn+rn+15(]) T — - J .
> J =g W

j=1
where
(2'7) tin _ ( %C‘?l,...,anj ifj =n—1+ Z?Zl a; (mod 2)’
’ 0, otherwise.

and

k k—1+z d;

(2.8) [[uia(z) = > Cf*Li(z),  Li_g(z):=) k'

i=1 j=1 k>0
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In particular, for f € ./Zl\glv and g € /A\%, we get

. —j )L anf o n N
/9l = Z ( )n! 8u°‘1...8u0¢n(_1)2k:1 ' (Hn kﬁk) x

n>1 k=1
7150 >0
(2.9) S1 im0

2n—1+4>"7_, (sp+rk) on
X § C;l+rl+1,---75n+7”n+18j g

pu Coult . oul

If f and g are homogeneous, [f,g] is a non homogeneous element of .Z?’V of top degree equal
to deg f + degg — 1. Taking the classical limit of this expression one obtains (%[ f ,§]) lh=o =

{fli=0,Gln=o}, i.e. the standard hydrodynamic Poisson bracket on the classical limit of the local
functionals.

Notice that, given g € /A\R,, the morphism [, g| : ./17\, — A\?V is not a derivation of the
commutative ring jﬁ\, (while it is if we consider the non-commutative x-product instead). This
means that, while it makes sense to describe the simultaneous evolution along different time
parameters 7; (in the Heisenberg picture, to use the physical language) of a quantum differential

polynomial f € .Z?V by a system of the form

of 1

(2.10) i

[f,hi], «=1,...,N, i=1,2,...,

where h; € K%O] are quantum local functionals with the compatibility condition [h;, h;] = 0, for
i,7 > 1, one should refrain from interpreting it as the evolution induced by composition with

%L: = %[uo‘, hi], as the corresponding chain rule does not hold: 8f #* Zk>0 o7 8’“ ( ) This

corresponds to the familiar concept that in quantum mechanics there are no traJectorles in the
phase space along which observables evolve.
A formal solution to the system 1' can be written in the form of an element in ./21\7\,[[7'*]]

(2.11) f(ul;e,h) :==exp (Z%[,E]) fluz;e,h) = (Hexp( [, hil >> f(ul;e,h)

i>1 i>1

where

(2.12) exp (%[-,Ei]) =Y il R R R

k>0

and f € ﬁ in the right hand side of is interpreted as the initial datum. Lifting the

quantum commutator |-, -] to A% [[r,]], it is easy to check that f™ satisfies equation (2.10) (2-10). We
do insist that f™(uf;e, k) # f((ul)™, e, h).
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2.4. Quantum double ramification hierarchy. Given a cohomological field theory ¢, ,,: V" —
H®*(M,,,;C), we define the Hamiltonian densities of the quantum double ramification hier-
archy (qDR) as the following generating series:

(2.13)
_ (ih)?
Ga,d = Z ol X
920,n>0
2g—14n>0
2 ' .
X Z (/ A <_h> lpiicg,nJrl (ea X ®;L:1€ai)> pgll .. .pg:emzal,
a1,ancZ \YPRg(=22aia1,...an) ¢
Q1 5eeey Ol
g
for a = 1,...,N and d = 0,1,2,.... Here A(;—‘f) = <1+ <:—‘;2> M+ + (:—f:) )\g),

with \; the i-th Chern class of the Hodge bundle. Notice also that, since A(s) is itself a coho-
mological field theory depending on the formal parameter s, we could absorb such factor into

Com+1 (€ @ ®F_€,,) obtaining densities for a CohFT analogue of the Symplectic Field Theory
Hamiltonians of [EGHO00, [FR11].

As for the “classical” Hamiltonian densities ¢, = Ga,p|n—0, we would like to rewrite the above

expression in terms of formal jet variables u® = Y, ,(ik)*ple™™, a=1,...,N, s =0,1,2,....
Since the double ramification cycle DRy(ay,. .., a,) is a non-homogeneous polynomial of de-
gree at most 2¢ in the variables ay,...,a, (as apparent from Pixton’s formula [JPPZ1T]), we

actually obtain that each G, can be uniquely written as a quantum differential polynomial of
degree deg Gy, < 0 and such that deg Gu |, o = 0, i.e. Gap € (A3)E0 and G,,l,_, € AV.
This means that the number of z-derivatives that can appear in the coefficient of e*A/ is at
most k 4 27, and exactly k in the coefficient of e¥A°.

We finally add manually N extra densities G, _1 := n,u”. Recall that by Ea’p = f Gapdx
we denote the coefficient of ¢** in G, , considered also up to a constant, for all « = 1,..., N,
p=-—10,1,....

The fact that the local functionals @aﬁd mutually commute with respect to the above commu-
tator, [Gap, G4 = 0, was proved in [BRI6D] together with the fact that Gy = | (%nw,u“u”) dx,
so that, for any f € /21\7\,, Onf =01

2.5. Recursion for the DR Hamiltonian densities. We recall some of the properties of
the DR hierarchies, in particular a recursion equation, proven in [BR16a] for the classical case
and in [BR16D] for the quantum case, allowing to recover all the Hamiltonian densities G, p,
a=1,...,N,p >0, recursively from G, _1 = 1,,u" starting from the knowledge of the func-
tional 5171 only.

Let us define the following two-point potential for intersection numbers with the double
ramification cycle

(ih)9 —&?
Copspalry)= >, =0 > || AT ) e
g(@0,a1,...,an,an+1

9>0n>0 ' ag,...ant1€7Z
2g+n>0 > a;=0
AT y..ryQin

n (e %1 Qo ,—1A0T—1An4+1Y
X Cgn+2 (ea X ®’i:16ai & 65) )pal c ‘pase " ?

fora,6=1,...,N and p,q=0,1,2,....
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In [BR16b] the following result was proven

Lemma 2.1 ([BRI16b]). For alla,f=1,...,N and p,q =0,1,2,..., we have

1
(2'14> aﬂfGa,erl;B,q(xa y) - 8yGa,p;ﬂ,q+1(xv?/) = P [Ga,p(x)7 Gﬁﬂ(y)]

From this lemma the following theorem can be deduced

Theorem 2.2 ([BRI6b]). For allao=1,...,N and p=—1,0,1,..., we have

1 —
(2-15> ax(D - 1)Ga,p+1 = ﬁ [Ga,pv Gl,l} )
0G, 1 —

where D = eZ + 215 + Do US 8ua.

Notice how equation (2.15)) can be used to recover recursively (up to a constant) G, p, a =
L,...,N,p>0from G, _1 = n,,u" and of course the knowledge of G ;. From equation ([2.16])
we can instead deduce the string equation (always up to a constant, actually)

aGa7p+1 — Ga -
out ’
Since we can prove such string equation separately from geometric considerations [BR16b], the

constant terms of the densities G, ,, that are left undetermined by the recursion (2.15)), can
then be chosen uniquely as those that verify equation (2.17]).

(2.17)

3. QUANTUM DOUBLE RAMIFICATION HIERARCHY IN GENUS 1

In [BDGRI18] we computed the genus 1 term of the classical double ramification hierarchy
for any cohomological field theory in terms of genus 0 data. In this section we compute the
quantum correction, always in genus 1 and in terms of genus 0 data plus the genus 1 G-function
of the CohFT. As an application we compute the full quantum double ramification hierarchies
for Witten’s 3- and 4-spin classes.

3.1. Genus-1 quantum correction. Let ¢,,, : V& — H*(M,,,C) be a cohomological field
theory with V' an N-dimensional vector space endowed with a non-degenerate metric n and
basis ej,..., ey, where e; is the unit of the CohFT. Let Goq, 1 < a < N, d > —1 be the
corresponding quantum DR Hamiltonians and let G = (D — 2)~'G;, with D as in Theorem
. Let g, and g be their classical counterparts and gg)’]d gg)]d(
Hamiltonian densities.

L. u) the genus 0

Theorem 3.1. Let F = F( .., ulV) be the Frobenius potential (genus 0 potential with no
descendants) and G = G(u?, N) the G-function (genus 1 potential with no descendants) of
the CohF'T. Let cop = afjg;ﬂ, coég7 au(,gdw, CaBys = m and indices be raised and

lowered by the metric . Then we have

(3.1) G=7+ m/ [(icﬂ + Lo ﬁ) ulul — ic"} dx + O(h?) + O(he?),

_ 1 349[0]01 1 Py, d 9G
Ga _ - i L « uv - @ Hv
@ = Gaatt / [<4gamauﬁauuauv" T Swoow ow
1 0 829 d—1 89 ,d—1 9G
. 1, o &5 a ) v,,B8
(3.2) T3 (24 duowd "t Tou T ow ) ) et
0
1 a2g£¢}d /u/

o 2 2
21 g | do + O() + O(he?).
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Proof. Let us prove equation (3.1)). Recall that

] 2
a E : (th)? Z —€
= n (o3} (e}
G T n' (/ A (ﬁ) Cgvn (®i—160¢i)) pa1 . 'pasv
920,n>1 ’ al,...,an €L DR’g(alvn'»an)
2g—2+n>0 Q1 yeeny QO

so the relevant intersection numbers for the genus 1 quantum corrections are

n
/ i (@ €a,) -
DR (017---7an)

To compute them we use the following formulae for the DR cycle (see [Hail3]), psi and lambda
classes on My ,,

" 2
DRl(al,...,an):Z%af—% Z (Za]) 5 | — A,

i=1 Jc{l,..n} \jeJ
|7|>2

1 1
i = _(Sirr 5J7 A= _5irr>
Vi = g0 ¥ >, % DY
Jc{1,...,n}
|J|>2,i€]
where d;,, and 7 denote the divisor in M, of singular curves with a non-separating node and
of curves with a separating node whose rational component carries exactly the marked points
labeled by J (the points labeled by the complement J¢ belonging to the elliptic component),
respectively. In particular we get

Cin (®f=1€ay) / Con+2 (Df_1€a, D€, ®e,)n"
\/DRl(ah ’ ) * 248 Mo nt2 * :

1
+ 5 Z a; / Coil+1 (Dreseay, @ eu) N / 11 J]+1(Dreselay, @ €y)

Jc{l,..n} Mo, 171+1 M4
|J|>2,i€]

1

5 > QO w) / Col7+1 (Okesay @ €u) N / CLn—|1+1(Preseay @ €y)
JC{1,..n} jEJ Mo, |71+1 M- g)4+1

[J]>2

1 . »
24 Mo ni2
In terms of generating functions, this becomes
€ 1 1 0G 1(,,0F G 1
=g+t T A — + = 277 g oM 2
¢ Hh/ { 18" an ~ gt a g T (@caw) T o 246“} 4o+ OF)

which can be brought to the form of equation (3.1) by integrating by parts.

The proof of equation (3.2)) is completely analogous, the only difference being the insertion
of a psi class to the power d at an extra marked point, which makes it necessary to use genus
1 topological recursion relations (see [Wit91])

OFi(t;) 1 PRty 5 PRt s0R(t)
ots 4ot ooty oot ot
where F,(t%) is the genus g potential of the CohFT and whose right hand side, when restricted
to t§ = u® and ¢ = 0 for p > 0, becomes the term

1 aQQad 1 65_|_ agt[f]d 1 &5 0G

24 Qucou’ " Ous " ou?’
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in equation ((3.2)). O

3.2. 3- and 4-spin quantum double ramification hierarchies. As an application of the
genus-1 computation of the previous section we compute the quantum DR hierarchy of Wit-
ten’s r-spin class, for r = 3,4. In light of the results of [BG16, BDGRI1S]|, which establish that
the DR hierarchy in these cases coincides with the DZ hierarchy once we pass to the normal
coordinates u® = n* g”lo (which, for » = 4 also changes the form of the Hamiltonian operator,
see [BDGR1S]), and the fact that the DZ hierarchies for the 3- and 4-spin theories correspond
in turn to the 3- and 4-KdV Gelfand-Dickey hierarchies [DZ05| [Dic03], we obtain this way a

quantization for such two well-known integrable systems.

Recall from [Wi93 [PV00] that, fixing » > 2 and an (r — 1)-dimensional vector space V/

with a basis ej,...,e,—;, Witten’s r-spin cohomological field theory W,(eq,41,...,€a,+1) =
Wy(ar,...,a,) € H*( M,,;Q) is a class of degree degW,(ay,...,a,) = (r=2)(9— 1)+Zz L% f
a; € {0,...,r — 2} are such that this degree is a non-negative integer, and vanlshes other-

wise. By [PPZ15J this cohomological field theory is completely determined, thanks to generic
semisimplicity, by the initial conditions Wy(ay, az,a3) = 1 if a3 + as + a3 = r — 2 (and zero
otherwise) and Wy(1,1,r —2,r—2) = X[pt] for » > 3 (while it vanishes for r = 2). In particular,
the metric 7 takes the form 7,5 = 0445

Theorem 3.2. For r = 3,4, the quantum double ramification hierarchies for Witten’s r-spin
classes are uniquely determined by

3 apin (1 2)4 1 1 1 '
Gilp :/ (5 (u1)2u2 i (1;6) ) i <_E (Ui)Q _ ﬂlﬁ (u%) 2> 24 @( 2) 2.4 _ %ull de,

(%)2 u? (u%)2 U3U1Ui1)’ 3 2 3 1 3\3 3\ 2
+( 8 16 64( u) 2J“192( w) s ) e
1 2\ 2 3 2
+(16 (12) " + a5 2+ 4096 8192 wey
1 1

—i—(% (ul) % (u) 8u)zh 1280u zh@}dm

Proof. The classical parts of the above formulae are copied from [BR16a]. Moreover, from
dimension counting, we obtain that E{'i"m is a homogeneous local functional of degree 2r + 2
with respect to the grading |u{™!| =r - a, le| =1, |h| = r 4+ 2. This means that the quantum
correction in éi’j"i“ is entirely in genus 1 and hence determined by Theorem (recall that the
G-function for the r-spin theory vanishes identically, see e.g. [Str03]). The quantum correction
in @ﬁpm, instead, has a part in genus 1 (to be determined again using Theorem but also
the genus 2 term [ au®ihe®dz, with a € Q. The constant a corresponds to the intersection
number a = _IDRQ(O,O) MU Wa(ey,e3) = —3 fDRQ(O) MWa(es) = —3 fﬂz,l Ao A Ws(es). Using

the fact that, on Myg, AA; = Tlﬁo[pt] and that the class of a fiber of 7 : My, — My is
represented by the closure of the locus of singular genus 2 curves with 3 nodes (one separating,
two non-separating) and a marked point on either of the two irreducible components we obtain

1 1
a=—3X g5 X 2fﬂo,3 Wo(e,, €y, e)nn® fmm Woles, ea, €5, €3)n*° = — 55+ O
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4. TAU-SYMMETRY AND TAU-FUNCTIONS FOR QUANTUM INTEGRABLE SYSTEMS

In this section we introduce a quantum version of the notions of tau-structure and tau-
functions for a Hamiltonian hierarchy.

Remark 4.1. We note here that, for the time being, we will restrict our definitions to the
case (relevant for the quantum double ramification hierarchy) of quantum Hamiltonian systems
whose commutator [-,-] is the one defined in Section 2.3] This means in particular that the
semiclassical limit has the Poisson structure in standard form {-,-},,. A more general theory of
quantum tau-structures will require a study and classification of star-products and commutators
on the space of quantum differential polynomials and local functionals. We plan to study this
subject in a future work.

4.1. Tau-symmetric quantum Hamiltonian hierarchies. Consider a quantum Hamilton-
ian system defined by a family of pairwise commuting quantum local functionals Hg, €

(/A\R,)[SO}, parameterized by two indices 1 < 8 < N and ¢ > 0, [Fﬁvq,ﬁ%p] = 0, with respect to
the quantum commutator introduced in section

ou®

o
Let us assume that H,; o = %fmwu“uV. Notice that, in this case, %i[f, Hig) = {f, Hip} =
k>0 i—%ugﬂ =0, f for any f € ﬁ?v

«

[u ’Fﬁ#}]

A tau-structure for such hierarchy is a collection of quantum differential polynomials Hg, €
(AR)IEY 1 < B < N, ¢ > —1, such that the following conditions hold:

(1) Hp_ := [ Hp _1dx = [ ngutdz,
(2) For ¢ > 0, the quantum differential polynomials Hg, are densities for the Hamiltoni-

ans Hgg,
(41) ﬁ@q = /Hg’qdl‘.
(3) Tau-symmetry:
(42) [Ha,p—laﬁﬁ,q] = [Hﬁ,q—laﬁa,p]a 1 S «, /B S N, P, q Z 0.

Existence of a tau-structure imposes non-trivial constraints on a quantum Hamiltonian
hierarchy. A quantum Hamiltonian hierarchy with a fixed tau-structure will be called tau-
symmetric.

4.2. Sufficient condition for the existence of a tau-structure. Consider again a quantum
Hamiltonian hierarchy defined by a family of pairwise commuting quantum local functionals
Hg, € (A%)I=9) parameterized by two indices 1 < 8 < N and ¢ > 0. In the same way, as

in the previous section, we assume that FI,O = % [ nuutu’. We have the following quantum
analogue of a result from [BDGRIS].

Proposition 4.2. Suppose that

aﬁﬁ,q _ ﬁﬁ,qflv qu > 17
out [ npputde, if ¢ =0.

Then the differential polynomials

_ 5ﬁﬂ,q+1
Jul

define a tau-structure for the quantum hierarchy.

Hpg, : q > —1,
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Proof. We have Hg 1 = [ ng,utdz. Condition (4.1)) is clear, since for ¢ > 0 we have

0H g 011 0 — _
/HB qdv = / 52’? dv = 5 7 Hp o1 = Hp,

Let us check the tau-symmetry condition (4.2). We have the commutativity [H ,, Hg,4) = 0.
Let us apply the variational derivative % to this equation. It is much easier to do it in the

o _ S g ik 20 Zk>ozhkn o a7\ _
p-variables (2.1)). We have [H,,, Hpy) = Hap | e7° o Pk — 7K Hg,.

For the variational derivative we have $Z = S~ e=ine 9 8H & for any H € (AR )9, Therefore,
we get
0 —
0= %[H ap Hp
T . v _ 0 T)
=Y o ( ( Eio ™ G w0 hhn aa> Hg ) -
opl 4
nez n
—— S
_ —znxaH a,p Zk>0mk77 3 uapak Zk>07'hk7l }L ng H
= Z e Il - B.q
nez Pr
s ihknH L— Zbo ikt ‘Z :i: ; 8ﬁ5
+ Ha e > ap T % 2Pk e in@ 4 —
= [Hap1, Hpg) = [Hp g1, Hap
The proposition is proved. 0
Corollary 4.3. The quantum double ramification hierarchy {aa,d}lgaSN,dz—lLW'th Go.a given
by (2.13), is tau-symmetric. A tau-structure is given by the densities H, 4 = 505%

4.3. Quantum tau-functions. We consider again a quantum Hamiltonian hierarchy gener-
ated by Hamiltonians ﬁa,p, 1 <a< N,p>—1 where ﬁl,o = %fmwu“u”dx. Suppose that
the quantum differential polynomials Hg,, 1 < 8 < N, ¢ > —1, define a tau-structure for such
hierarchy. From commutativity of the Hamiltonians we have

(4.3) / [Hop1, Hpgldz = 0.

The quantum differential polynomial [H,, 1, H s,] has no constant term (because of the form
of the quantum commutator), hence there exists a unique differential polynomial Q" €

(AR)= such that
(4.4) 0,"

a,p;f3,q

[Hap_]_’F/B’q] and Q" = 0.

=0

a,piB,q a,p;B,q |y,

The differential polynomial QZP; 54 18 called the two-point function of the given tau-structure
of the hierarchy. From condition (4.2)) it follows that

h _Oh

(4'5) Q a,piBq T Q 145
and, moreover, it implies that the differential polynomial
(4.6) [ g0 Ho]

is symmetric with respect to all permutations of the pairs (a p) (8,q), (v,r). Since the
Hamiltonian H, generates the spatial translations, equation (4.4 implies that 9,Q"
O0xHyp—1, p > 0. Therefore,

(47) QZP;L() - Ha,p—l = Ca p > Oa

a,p;1,0 =
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where C' = C(e, h) is a formal power series in € and 7.

Counsider also the evolved Hamiltonians

P
* 1h *
(48) f&fwm<iﬁﬂﬂm0H@eAMWL
q>0
and the evolved two-point functions
. o _—
(49) S (z iy, Hﬁ,q]) o, € A
q=>0

They satisfy, respectively,

OHY, 1. . — . .

8tﬂ = ﬁ[ itp’HB,qL H(i*,p =0 = Ha,p S AN
q
and
aQZ%%%T‘ Loone: = Tt h 1
atﬁ = 7_1[9047,;;7,7“7 H/B,QL Qa:;z;;*y,r tx=0 = Qa,p;’y,r = AN

q

together with
OH" . . OHY
(4.10) 5 = Wsa = Baaw = g
atg »P55,9 ke y Y at;&
Moreover
o

4.11 N
(4.11) ot}

is symmetric with respect to all permutations of the pairs («, p), (5,¢) and (v, 7).

Then equation (4.10) and the symmetry of (4.11)) imply that there exists a function P €
A [[£]] such that

Bt @2P

omgs=——5, forany 1 <oa,8 <N andp,q>0.
PiBya atgatqﬁ Y

To each initial condition uf|,—i:—¢ = ¢{ (e, k) € C[[e, h]] with ¢£(0,0) = 0 we can associate the
restriction P|ug:cg e € Cl[tZ, e, hl] which is called (the logarithm of) the tau-function of the
given solution.

5. HIERARCHIES OF DOUBLE RAMIFICATION TYPE

In this section we interpret the recursion ([2.15]) as a system of functional derivative equations
for G1, and elevate it to the main axiom in the definition of a class of (quantum or classical)
Hamiltonians producing integrable, tau-symmetric Hamiltonian systems.

5.1. An integrability condition for Hamiltonian systems. Let us consider the quantum
Hamiltonian system defined by a Hamiltonian H € (A%)I<9 with respect to the standard
quantum commutator introduced in Section . We give a sufficient condition for H to be part
of an integrable hierarchy. Consider the operator D% : Al [[2)] = AL [[2] defined by

Dif(2) = 9:(D = D)f () = £ [1(2). T,

f(z) = fluise, by 2) = ka_1(u’;;5, )2, foor(uts e, B) € (AR,

k>0
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Suppose there exist N solutions G4(z) € (A%)=Y[[z]], @ = 1,..., N, to DLG.(z) = 0 with
the initial conditions G, (z = 0) = n,,u*. Then a new vector of solutions can be found by the
following transformation

(5.1) Ga(z) = AL(2)Gu(2) + Ba(2),
where A%(z) = 0 + >, 0 AL 2" € C[[2]] and B, (2) = 3,20 Baiile, )2 € C[[e, h, 2]].

Theorem 5.1. Assume that H € (K?\,)[SO} has the following properties:

(a) there exist N independent solutions Ga(z) = 3 50 Gap-12P € (ASI[2]), a=1,...,N,
to the equation -
(5.2) DhGo(z) =0
with the initial conditions Go(z = 0) = na,u”,
6H 1 -
(b) 57 = gnwt'v’ + R+ cle,h),  Re (AM)ET e(e, h) € Cle, R,
(C) 61’1 = H
Then, up to a transformation of type , we have

— 1
(i Gl,oz/(é%uuuuy) dz,

)

(11> [éaﬁlﬂaﬂyq] = 07 Oé,B = ]-7 . '7N7 p7q Z _]-;
)
)

1 — 0G,
[Gapy Go] = O au’gﬂ, B=1,...,N, p>—1,

= Gap-1, a=1,....N, p>-—1,

hence in particular H is part of a quantum integrable tau-symmetric hierarchy.
Proof. Equation (5.2)) implies in particular that [G,,, H] = 0 for every a = 1,..., N, p > —1.
Moreover we have
1 — §H 1
8I(D — 1)G170 = ﬁ[GL—l? H] = @rF = 05,; (57]MVUMUV =+ 8xR + C(€, h)) s
u

which proves (i).

We write equation (5.2) as 0,(D — 1)Gap = +[Gap-1,G1,1]. To prove (ii) we will show that
such recursion implies
1
ﬁ [Ga,p<x>7 Gﬂ,q(y)] = azGOé7p+1;B7Q(x= y) - ayGa,P;ﬁ,Q-H (.T, y)7
fora,=1,...,N,p,q > 0 (which is equation (2.14))), for some opportunely defined G .5 4(, v),
symmetric with respect to simultaneous exchange of the indices («, p, ) and (5, ¢q,y). We pro-
ceed by recursion starting from the fact that, for p > 0

(Gop(2), G 1 (9)] = 3 2026000 1 ) — —p, (Z Do s, y>) ,

B
1>0 uy >0 Y4

St =

so that we can pose

0G,
Gappo(T,y) = Z anép(s(l) (x —y) =t Gpoap(y, ), Gapp—1(7,y) = Gp—1ap(y, ) =0,
>0 l

and have
[Ga,p(x>’ GB,—I(y)] = awGa,p-H;ﬁ,—l(xa y) — ayGa,p;ﬁ,O(xa Y),

(Go1(2), Goa(y)] = 0eGa0p.0(7:Y) = OyGa1p.011(2,Y).

St = St =
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Now we assume

[G ( )7 G,B,q—l(y)] = axGa,p-i-l;,B,q—l(x? y) - 6yGoc7p;ﬁ7Q(xa y)a

St = St =

[Gap 1(z), Gﬁ,q(y)] = awGa,p;B,q<x’y) - ayGa,p—I;B,q+1($7 Y),

and obtain

Gus § Ganle). Gages0)]| - [GWU (Gu, G WD

— 1

0,Clapa(.y) — 0,Goup g1 (2:9), Cus] + - [0,(D — 1>Gﬂ,q+1<y>,Ga,p_1<x>J)

1
R
: A

9, [6 Gapt+1,8,9- (7, y) — ayGa,p;ﬁ,q(x:y)aal,l} +

+

HEMORAGEESNE)

1

(1 —
= -0,0;" (3 (Gaprtiaaes(0:0).Cua] = 1 (0 = 1Gingia (), Cuyes (0]

1 — 1
+ 9,0, <E [Gapiripa—1(z,y), Gra] + % [Gpq-1(y), (D — 1)Ga,p+1<x)]> :
Hence we can define

1 (1 — 1
Ga,p+1;ﬂ,q($7 y) =D lay ! (ﬁ [Ga,p-l—l;,@,q—l(xu y), Gm] + ﬁ [G,B,q—l(y)7 (D - 1)Ga,p+1($)]) )

| — 1
Ga,p§ﬁ7Q+1(x7y) =D lax ! <ﬁ [Ga,p—l;ﬁ,q—f—l(x)y)a Gl,l] - ﬁ [(D - 1)G57q+1(y>a Ga,p—l(x)]) )

which enjoy the correct symmetry property with respect to exchange of indices and variables.
By induction we arrive then to the proof of (ii).
. . : ilen
From the last equation we can deduce in particular that [ G pi1,60(@, y)dy = é”T};M. We

also have

1
I [Ga,p(x)v GBD(?J)] = azGa,erl;B,O(xv y) - ayGa,p;ﬂ,l(xa ?/)

which, upon integration with respect to y, gives

G 0G, x
[Ga,p(fﬂ), G,B,O} = /axGa,p+1§/3,0($a ?J)dy = 036#;1()

h

and proves (iii).

Point (iv) follows from point (iii) in the case § = 1, which gives &CM 0.Gap. O
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We also have the following theorem, which is slightly stronger than the classical version of

the above one. For a local functional h € /AXE(\),} consider the operator Dy : An[[z]] = An[[z]
defined by

Dﬁf<)= o(D = 1)f(2) = 2{(2), B},
f(2) = flusie2) =Y frauize)sh,  fia(ule) € AY.

k>0

Suppose there exist N solutions g,(z2) € ./Zl\[](\),] [[2]], « =1,..., N, to Dyga(z) = 0 with the initial
conditions g,(z = 0) = n,,u”. Then a new vector of solutions can be found by the following
transformation

(5.3) 9a(2) = af(2)gu(2) + ba(2),
where al(z) = 6k 4+ 3, o ah ;2" € C[[z]] and ba(2) = >_,o( bz’ € C[[2]].

i>0 Vot

Theorem 5.2. Assume that h € /A\E(\),} has the following properties:

(a) there exist N independent solutions go(2) = > ~o Gap-12" € ./zl\[o][[ ], a=1,...,N, to
the equation

(5.4) Digalz) = 0

with the initial conditions go(z = 0) = Na,u",

Sh 1 ) 2
(b) Sl = 577Wu“u + 0%r, re le\[ !
Then, up to a transformation of type , we have
1
(i = énw,u“u +02(D - 1)1,

(i) g1,
1 {gap7g,8q} 07 (I,B:]_,...,N, paqz_la
{

(iii

) g
)
)
)
)

aga, +1
(IV gapvgﬁo} Oy 8upﬁ ) 6=1,....N, p>-—1,
99
(V agulp: ap—l, azl,...,N’ pz—l)

hence in particular h is part of an integrable tau-symmetric hierarchy.

Proof. The only differences in the statement of this theorem from the classical limit of Theo-
rem are that hypothesis (b) has become stronger together with claim (i) and that hypothe-
sis (c¢) of Theorem [5.1{ has now become claim (ii) and so it needs to be proved. The proof of (i)

follows from equation (|5.4)):

§h 1
8 (D — 1)910 = {91 —1, h} 8 5 1= 81« (ﬁr]wju“ul’ -+ 857“) .
Also from equation (5.4) we obtain that g;; = (D — 1)’18’1{91 0, h}. A direct computation
shows that {3n,u'u’, h} = 8,(D — 1)h + 02s, where h € AV s e ALY with 7 = [ hdx,
so we deduce {g10,h} = 0.(D — 1)h + 9%s + 0?{(D — 1)"'r, h}, where we used that Dh =
(Zkzo(k + 1)u%%) h. This implies, always up to 1}

=

i1 = / (D =170 (0:(D = Dh+ 82 + 02{(D — 1) 7', h}) ] dw =
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Remark 5.3. When we restrict to h = ¢ = 0, a particular Hamiltonian satisfying conditions
(a) and (b) of Theorem |5.1|is given by ﬁ‘h:azo = (D=2) [ F(u',...,u")dz, where the function
F=F(u!,...,u") is a solution to the WDVV equations
PF ;w PF B PF v PF
ducduPour duwrow o | duedwdur durduw o
PF B

Bulduadup 1
for a, 8,7v,0 = 1,..., N. This is because, at h = ¢ = 0, equation promptly reduces to an
averaged (and hence weaker) form of genus 0 topological recursion relations, and the WDVV
equations are equivalent to the existence of N independent solutions to such equations. At that
point, such N solutions to correspond to the N generating functions of the classical (A = 0)
dispersionless (¢ = 0) Hamiltonian densities g’ (2) := Gq(2)| hee—o Of the principal hierarchy
of the resulting (formal) Frobenius manifold, that is the N flat coordinates of its deformed
flat connection (see [DZ05] for details). In such classical dispersionless context, Theorem [5.1}is
hence a generalization of results proved for instance in [DZ05].

Definition 5.4. Let H € (A%)E% (resp. h E_/A\ES]) satisfy the hypothesis of Theorem
(resp. Theorem [5.2). Then we say that H (resp. h) and the induced quantum (resp. classical)
integrable tau-symmetric hierarchy are of double ramification (DR) type.

Theorem 5.5. The quantum double ramification hierarchy with H = G11 and its clas-
sical limit are hierarchies of double ramification type.

Proof. Hypothesis (a) of Theorem [5.1]is satisfied thanks to recursion (2.15)). Hypothesis (b) fol-
lows for instance from the string equation together with the fact that 61,0 = [ (%UWU”UV) dx
and hypothesis (c) holds by definition of double ramification hierarchy. For the classical coun-
terpart, hypothesis (b) of Theorem is a consequence of the divibility, for g,n > 1, of
To (ADRy (= X0 ai,ay,...,a,)) by a2, where 7 : M, 1 — M,, forgets the last marked
point, which was proved in [BDGRI1S], and which implies the possibility of finding a density
for g, ; which is independent of u,. U

5.2. Classification of rank 1 quantum integrable hierarchies of DR type. In this
section we study quantum deformations of DR type of the Riemann hierarchy, which is the
genus 0 double ramification hierarchy associated to the trivial cohomological field theory with
V =C e and ¢, (") =1 € H'(M,,,Q). At first we concentrate on purely quantum
deformations of the Riemann hierarchy, which means that, in this classification problem, the
variable ¢ will not appear. This amounts to classifying quantum Hamiltonians of the form

Gi= [SCwrydn orea™
6 Pt 1 ) 1 1 )

satisfying the hypothesis of Theorem [5.1 with & = 0. An explicit computation gives, modulo
terms proportional to the Casimir [ udz, the following classification up to order 3 in h:

— 3 10b% —
(55) Gi= / {% + (au?) ih + (bus?) (ih)* + (chS + 7—C
a
In the above formula we assume a # 0. In case a = 0, the computation gives b = ¢ = 0 too.
Let us compare this formula with the Hamiltonian G of the dispersionless (i.e. ¢ = 0) quantum
DR hierarchy for a rank 1 cohomological field theory with 7, ; = 1. According to [Tell2] such
CohFTs are parameterized by numbers r{,ry, ... in the following way:

u32) (ih)* + O (;#)} d.

(5.6) an(e?n) —e 2ix1 g;l!riChQifl(]E).
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Here Chy;_; denotes the (2i —1)-th component of the Chern character and the By; are Bernoulli
numbers (see also Section . A direct computation along the line of Section gives, up to

ih : :
the term —g; | udz, exactly equation ([5.5) with
1 1 2 . 8 &
CL:—§7"1, b:—ETg—ng, 02—4—807'37]4‘57"%—57”27"?—%7’?,

suggesting that dispersionless quantum deformations of the Riemann hierarchy are in one to
one correspondence with rank 1 cohomological field theories with 7, ; = 1.

Assuming this correspondence, it is possible to recover dispersive deformations too by defining
new parameters s; as follows

~ iy FEriChaioa(B) _ A ( < ) o iz %SiChmfl(E)‘

th

e

This amounts to

B, 2 2i—1

which gives

_1 g2 1 "
“=in\Tag Tt

b_(ih)2( 5051~ 105 ihe <551+1232 (th)* ),

-t (ot ) - 2o 00 2 o
1
230458 + 24005557 + 105835, — 50053 (ih)?
— 1 .
7200

Once plugged into ([5.5)), this parametrization provides the quantum correction to the density
(8.2) or (8.23) up to genus 3. Rescaling e — &2y and h — Ay to keep track of the genus, we

obtain

— u? 2 5 ih
G, = [ |L L VY D B
! ,/{6'+<( 24 2Z>“1 24“>’y

2 2453 +5
+ (<—i€4 _ Ayper L ZLTOR 0% (zh)2) u%) 72

120 10 60
_s_?gﬁ 5 5 2457 + 55159 ihed 460857 + 24005257 + 3553 (ih)%<?
360 1728 720 28800
230457 + 24005557 + 1055351 — 50053 (h? ) b + _3_%56 965 + 5322,7%4
7200 420 2520
245} + 5s9sy . 46085s° + 24005452 + 3555 , .
_ B)2e2 _ 1 1 ENPEADE
5 e 8400 () ) s ) v
+0 (74)} dz.

6. GEOMETRIC FORMULA FOR THE DOUBLE RAMIFICATION CORRELATORS

The goal of this section is to prove a geometric formula for the double ramification correlators.
In Section we recall the construction of these correlators from [BDGRI1S]. In Section
we introduce certain cohomology classes in Mg,n. They are used in the formulation of the
geometric formula for the double ramification correlators in Section In Section [6.4] we
collect main formulas with the double ramification cycles and then use them in Section [6.5] for
the proof of the geometric formula.
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Let ¢y V" — H even(ﬂg,n, C) be an arbitrary cohomological field theory, where V' is an
N-dimensional vector space, 7 is its metric tensor, ey, ..., ey is a basis in V such that e; is the
unit.

6.1. Double ramification correlators. Here we briefly recall the construction of the double
ramification correlators from [BDGRI1S]. Define differential polynomials hg% € E]@], d> -1,
by
hDR — 6§a,d+1
ad = T T
For 1 < a, 8 < N and p, ¢ > 0 there exists a unique differential polynomial QP®
that

0
a,p:B,q E./zl\[]\[] such

8hDR .
DR ao,p—1 DR — _
Y a,piBg atﬁ - ha,pfl’gﬁvq}naw and Q apiBqlur=0 — 0.

The string solution (u*)*(x,t*, €) of the double ramification hierarchy is specified by the initial
condition

(ustr)a o — 5a,1x'
=

Let (us%)) := 0"(u™)?. Then there exists a unique power series FPR(t2 e) € C[[tr,&?]] such
that

82FDR _ <QDRIB )
- a,p;f3, u;‘/l:ustr;}; P

oteoty PR lun= 0 ) =0

OFPR OFPR 1 N
(61) atl Z tn—‘rl ata + §na6t0 t@?

0 n>0
(6.2) OF"% _ Z aFDR T por 42 ¥
' Sotl "oty de 24
DR _
Coef 2 I 1m0 = 0.

We see that the first equation here determines F'°® uniquely up to constant and linear terms
in the variables ¢7. The other equations fix this ambiguity. The power series [ DR ig called the
double ramification potential. Let

FDR () ZengDR

g>0

The double ramification correlators (74, (€q,) - - .Tdn(ean))gDR are defined as the coefficients of
the expansion of F’%:
DR pr L. tgn
F Z Z le eal Tdn (ean)>g T
n>0 di,....dn >0

DR

In [BDGRIS, Sections 6.6, 6.7] we proved that a double ramification correlator (74, (€a,) - - - Ta, (€an)) g

vanishes unless
2g—24n>0 and 29—1§Zdi§39—3+n.

6.2. Stable trees and cohomology classes in M, ,. In this section we collect notations
and definitions related to stable graphs that will be needed for the formulation of our geometric
formula for the double ramification correlators. We will use the notations from [PPZ15| Sections
0.2 and 0.3].

By stable tree we mean a stable graph

I'=(V,H,L,g:V — Zsp,v: H—V,.: H— H),
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that is a tree. Let H¢(T") := H(I')\L(T"). A path in I is a sequence of pairwise distinct vertices
U1, V2, ...,0, €V, v; # v; for i # j, such that for any 1 <¢ <k — 1 the vertices v; and vy, are
connected by an edge. For a vertex v € V(I') define a number r(v) by

r(v) :=2g(v) — 2+ n(v).

A stable rooted tree is a pair (I',vg), where I' is a stable tree and vy € V(I'). The vertex vy
is called the root. Denote by H, (I") the set of half-edges of I that are directed away from the
root vg. Clearly, L(I') C H(I"). Let H$(I') := H(I')\L(I"). A vertex w is called a descendant
of a vertex v, if v is on the unique path from the root vy to w. Note that according to our
definition the vertex v is a descendant of itself. Denote by Desclv] the set of all descendants
of v.

Let g > 0 and m,n > 1. Denote by ST}", ; the set of stable trees of genus g with m vertices
and with n+1 legs marked by numbers 0, 1,...,n. For a stable tree I' € ST}" .| denote by ;(I")
the leg in I' that is marked by i. We will always choose the vertex v(lo(I")) as a root of I'. In this
way a stable tree from ST}', ., automatically becomes a stable rooted tree. For a leg I € L(T')
denote by 0 < i(l) < n its marking.

Consider a stable tree I' € ST, ;. We have the associated moduli space

Mr =[] Myt

veV
and the canonical morphism
&t Mr = M), jum).

Consider integers ag, ay, ..., a, such that ay + a; + ... + a, = 0. To each half-edge h € H(I')
we assign an integer a(h) in such a way that the following conditions hold:

a) If h € L(T'), then a(h) = a;q;

b) If h € H¢(T"), then a(h) + a(c(h)) = 0;

c) For any vertex v € V(I'), we have 3,y a(h) = 0.
Since the graph I' is a tree, it is easy to see that such a function a: H(I') — Z exists and is

uniquely determined by the numbers ag, a4, ..., a,. For each moduli space ﬂg(v)m(v), veV(),
the numbers a(h), h € H[v], define the double ramification cycle

DRy ((a(h))nern)) € H*™) (M) n(w), Q)-

If we multiply all these cycles, we get the class

H DRy ((a(h))nenp)) € H*(Mr, Q).

veV(T)

We define a class DRr(ag, ay, . . ., a,) € H*9™ "D (M, ,..1,Q) by

DRr(ag, a1, ...,a,) := H a(h) | - &rs H DRy ((a(h))nern)

heH¢ (T) veV(D)

Note that in the case when the valency of some vertex v in I' is equal to one, the class
DRr(ag,ay,...,a,) is equal to zero. This happens because, if h is the half-edge incident to v,
then, obviously, a(h) = 0. From Hain’s formula [Hail3] it follows that for an arbitrary stable

tree I' € ST}", |, the class

n

)‘QDRF (_ Z ai, ag, - - - ,(ln) € H2(29+m—1)(ﬂg’n+h @)

=1

is a polynomial in a4, ..., a, homogeneous of degree 2g +m — 1.
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For a stable tree I' € STY, .| define a combinatorial coefficient C'(I") by

cr) =[] o)

veV (D) Z"JEDesc[v} T(,i) .

6.3. Geometric formula for the correlators. Recall that a double ramification correlator
(Ta, (€ay) - - .Tdn(ean»I;R vanishes unless > d; > 2g — 1 (see [BDGRI18|, Section 6.7]).

Theorem 6.1. Supposeg > 0,n > 1 and2g—2+n > 0. Letd > 2g—1 and1 < ay,...,a, < N.
Then we have the following equality of polynomials in ay, ..., a, of degree d:

(63) > (ta(€ar) - Tan(ea,))y Tt ai =

di,...,dn>0
Y di=d
_ c(r DR A 5
~Sa ) [ r{— D ai,ai,...,a4,) AgCyni1 (€1 @ R} €q,) .
i d—2g+2 Mg,nt1
PesSTy )

Note that in the case d = 2g — 1 formula (6.3) becomes particularly simple:
(64) Y (Tulew) Ta(ea))y alt i =

|
- DR (— n))\ . " e Y.

We will prove Theorem [6.1] in Section [6.5]

6.4. Main formulas with the double ramification cycles. Here we collect main formulas
with the double ramification cycles that we will use later.

6.4.1. Double ramification cycle and fundamental class. Suppose 7: ﬂgynﬂ] — Mg,n is the
forgetful map, that forgets the last g marked points. Then we have [BSSZ15, Example 3.7]

(6.5) mDRy(ay, ..., anyg) = glas 1 .. aly [Mg,).

6.4.2. Divisibility properties. Let g,n > 1. Suppose 7: mgmﬂ — Mg,n is the forgetful map
that forgets the last marked point. Then the polynomial class

m.DR, (— E ai,al,ag,...,an>

vy € MO
g,n

is divisible by a?2.
Suppose g,n,m > 1. Then we have [BDGRI18, Section 5.1]

(6.6)
/ Ag 5 Comim1 (D7 eq, @ €]') =
DRy(— > ai—_ bj,a1,....an,b1,....bm)

— fDRg(fzaifz b]‘,a1+z b]',ag ..... an) )\g gfmcg’n+1(®?’:+11€ai) _'_ O<b%) + te + O(b?n)7 lf d Z m7
o)+ ...+ O(b2), if d < m.
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6.4.3. Double ramification cycle times a 1-class. Here we recall the formula from [BSSZ15] for
the product of the double ramification cycle with a 1-class. Denote by
glk: mgl,n1+k X m9277L2+l€ - m91+Q2+7€*1,n1+nz

the gluing map that corresponds to gluing a curve from mghnﬁk to a curve from Mgwﬁk
along the last k£ marked points on the first curve and the last k£ marked points on the second
curve. Suppose n,m >k > 1 and ay,...,a, and by, ..., b, are lists of integers with vanishing
sums. Let

DRy, (a1,...,a,) K DRy, (b1, ..., bpy) :=
—gl,. DRy, (a1,...,a,) X DRy, (b1, ..., by)) € HXOH2FR (AL 1 im ok, Q).

Let aq, ..., a, be a list of integers with vanishing sum. Assume that as # 0 for some 1 < s <
n. Then we have [BSSZ15, Theorem 4]
(6.7)

as¥sDRy(aq, ..., a,) =
Pk
- Z Z Z Z EHZ:I DRg1(a17_k17~--7_kp) &p DR92<aJ7k17"'7k'p)7

r pl
IuJj={1,..,n} p>1 91,92>0 k1, kp>1
D icr @i>0 g1+g2+p—1=g 3" kj=>sc s ai

where ay denotes the list (a;)ier, 7 = 29 — 2 + n and

)29 =2+ |J| +p, if sel,
—(291 =2+ |I|+p), ifsed.

6.5. Proof of the geometric formula. In this section we prove Theorem 6.1, The plan is
the following. In Section [6.5.1] we put combinatorial definitions and constructions that we will
need for the proof. In Section we show how to use the combinatorial map ¢ defined in
Section [6.5.1] in order to simplify the geometric formula for the double ramification correlators
from our previous work [BDGRIS]. From this simplification we will see that Theorem
follows from a certain relation in the cohomology of the moduli space of curves. This relation
is proved in Section |6.5.3]

6.5.1. More about stable trees. In this section we collect a combinatorial material related to
stable trees that we will need in the proof of the geometric formula. We will partly repeat the
material from [BDGRIS8| Section 6.6.2].

Let I' € ST}, 1. Introduce the following notations:

L) == LIO\{b(I)},  H(I) = H(D)\{lo(I)}.
Clearly, for any vertex v € V/(I') the set H[v]\ H'_[v] consists of exactly one element. The stable
tree I' will be called admissible, if the following two conditions are satisfied:
a) For any vertex v € V(I') we have |L'[v]| > 1;
b) For any two distinct vertices vy, vy € V(I') such that vy is a descendant of v; we have

A
0 < 2y 0

The set of all admissible stable trees will be denoted by ASTy", ., C ST, 5.

Consider a stable tree I' € ST}, ,; a vertex v € V(I') and a half-edge h € H¢[v]. Denote
by T', the stable rooted tree formed by the descendants of v(:(h)) and all half-edges incident
to them together with the vertex v(c(h)) as a root (see Fig. [1)).

Let us define splitting and contracting operations on stable trees. Consider a stable tree
['e ST, ., a vertex v € V(I'), a subset I C H' [v] and an integer 0 < g, < g(v) such that
2g1+|1] > 0 and 2g, +[1¢| =1 > 0, where I° := H/ [v]\I and g, := g(v) — g1. We define a stable

tree Spl(I',v,g1,1) € ST;?;;ll in the following way. We split the vertex v in two vertices of
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FIGURE 2. Splitting operation

genera g; and g, respectively, connect them by an edge, attach the half-edge from H [v]\ H’, [v]

to the first vertex and then attach the half-edges from the set I to the first vertex and the

half-edges from the set I¢ to the second vertex (see Fig. |2 ' This is the splitting operation.
Let us define a contracting operation. Suppose m > 2. Let I' € ST, ,, v € V(I') and

h € He¢v]. A stable tree Con(I',v,h) € STZ‘njl is defined simply by contracting the edge
corresponding to the half-edges h and ¢(h).

A modified stable tree is a stable tree I' where we split the set of legs in two subsets: the
set of legs of the first type and the set of legs of the second type, where we require that each
vertex of the tree is incident to exactly one leg of the second type. The set of legs of the first
type will be denoted by L;(I') and the set of legs of the second type will be denoted by Lo(T").

For g > 0 and m,n > 1 denote by MST{", . | the set of modified stable trees of genus g with m
vertices and with (m+n+1) legs. We mark the legs of first type by numbers 0,1, ..., n and the
legs of the second type by numbers n+1,...,n+m. In the same way, as for usual stable trees,
for a modified stable tree I' € MST}', ,; we use the notation [;(T') for the leg marked by 4 and
the notation (/) for the marking of a leg [ € L(T'). We will always choose the vertex v(lp(I")) as
a root of I'. In this way a modified stable tree from MSTY", ., automatically becomes a stable
rooted tree. An example of a modified stable tree from MST}", ., is shown on the left-hand
side of Fig. [3l The legs of the second type are drawn by double lines. The reader can see that
in our example n =8 and m = 4.

Consider a modified stable tree I' € MST}" ;. Define a function p: V(I') — {1,...,m} by
p(v) := i — n, where ¢ is the marking of a unique leg of the second type incident to v. The
modified stable tree I' is called admissible, if for any two distinct vertices vy, v, € V(I') such
that vy is a descendant of vy, we have p(vy) > p(v1). The subset of admissible modified stable
trees will be denoted by AMST(", ., C MST(", ;. Note that the modified stable tree on the
left-hand side of Fig. |3] is admissible.

Consider a modified stable tree I' € MST(", || and integers ag, a1, . . ., @, with vanishing sum.
Define a function a: H(I') — Z by the properties

a) If h € Li(T"), then a(h) = a;);
b) If h € Ly(T'), then a(h) = 0;
¢) If h € He(T), then a(h) + a(u(h)) = 0;
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FIGURE 3. Map ¢: MSTg w1 — ST

d) For any vertex v € V(I'), we have 3,y a(h) = 0.

In the same way, as in Section , we define the class DRr(ag, - . ., a,) € H>9"D(M, ini1, Q).
Suppose I' € MST(", . It is useful to introduce the notations

L) v= LoD\ {lo(D)}
(6.8) H'(T) := H*(T) U {ly(D)}.

Clearly, for any vertex v € V(I') we have |H[v]\L}[v]| > 2. A vertex v € V(I') will be called
exceptional, if g(v) = 0 and |H[v]\L}[v]| = 2. Otherwise, it will be called regular. The reader
can see that one vertex in the graph on the left-hand side of Fig. [3] is exceptional. Denote
by Ve¢(T') and V™8(T") the sets of exceptional and regular vertices in I" respectively. An edge
in I' that is incident to an exceptional vertex will be called exceptional. The set of modified
stable graphs with e exceptional vertices will be denoted by MST,",",; € MSTy", .,

Consider g > 0 and m,n > 1 such that 29 +m — 1 > 0. Note that for any modified stable
tree I' € MSTY", ., the root is regular. So we have |[V=¢(I')] <m — 1. Let 0 <e <m — 1. Let
us define a map

¢: MST,'7 — ST, 5

in the following way. Suppose I' € MST{'" ;. We construct the graph ¢(I') by contracting all
exceptional edges and then by throwmg away all legs from L|(T"). It is easy to see that the
graph ¢(I") has m — e vertices and m + 1 legs. We only have to specify how we mark them. A
leg [ in ¢(I") corresponds to some leg [;(I") in ', where i =0 orn+1<i<m+mn. Ifi =0,
then we mark [ by 0 and if n + 1 < i < m + n, then we mark [ by i — n. An example of the
action of the map ¢ is shown in Fig. |3 I It is easy to see that for any I' € AMST,"* , we have
¢(T') € AST}',%,. So we have the map

gt
¢: AMSTI | — AST™ .

6.5.2. Map ¢ and integrals over double ramification cycles. The string equation (6.1]) for the
double ramification correlators implies that

> (ra(ear) - Ta(ea,) DRHa Zaz > <To(el)7d1(em)...Tdn(ean)ﬁRHafi.




26 A. Buryak, B. Dubrovin, J. Guéré, P. Rossi

FIGURE 4. Map ¢ and integrals over double ramification cycles

Therefore, formula (6.3) is equivalent to

6.9 > (molen)a(Ca) - Tu,(€an))y aft .. atn =

di,..ydn >0
S di=d+1

= ), oo /

d—2g+2 Mg,n+1
FGSTg ntl

DRr (— Z a;,ay, . .. ,an> AgCon+1 (€1 ® @I €q,) -

In [BDGR1S, Section 6.6.3] we proved that the correlator (1o(e1)74, (€a,) - - .Tdn(ean))gDR is equal
to the coefficient of b1by ... byg4pn—1 in the polynomial
1

m / A Cg,2g+2n( ® ®z—166¥1 H ¢29+n 1
g T TEAMST?,, ,, Y PRr(=2bibi,b2gin—1)

On the left-hand side of Fig. [4] we schematically represent an example of an integral from this
formula. Note that the modified stable tree I' in this example coincides with the modified stable
tree on the left-hand side of Fig. |3l We have

2g+n n d;
(6.10) /DR S bt ))‘gcg,2g+2n(€1g ® ®j_1a;) H¢2;+n71+j -
T'\— 7,015--4,02g4n—1

j=1
— H b(h) Z p (v (e(h)

heH¢ (T) v: He(T)—{1,...,N}

X
veV

dp(v L
/ )‘g(v)%p( )Cg,IH[vH( Caypy O 6‘ ol ® ®h€H€[v]€u(h))-
() DRy(y) (0,(6(0))1e, o], (b(A) ne e o))

In order to simplify our formulas a little bit, it is convenient to use the notation and set
v(lp(T")) := 1. Then we can rewrite formula (6.10)) in the following way:

(611) / A Cg?g—f—?n( ®®] 160<] H¢2g+n 145 —
DRr(— > bi,b1,....b2g4+n—1)

7=1
= 1 > (V)

heH¢ (T) v: He(I)—{1,...,N}

L3 []]

X v)¢0 Cg |H[v] <€ap(1,) ® ey

/ ® Dner'v]Cu(h))-
veV () DRQ(U) <07(b(l))leL/1[v]’(b(h))heH/[u]>
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Suppose that v € V™8(I"). Then equation implies that the integral

dy(o L4 [v]
(6.12) /DR (0.6 (b(h)) ))\g(v)%p g )| (Cayy @ €1 @ nerueun))
g(v) \ leLf v heH'[v]

is equal to

29+n 1

dp(oy— L4 0]
/ Aay¥o™” T g 1241l (Cay @ Bheriy) Z O(b;)
DRy (o) (Sre s 1oy 8OO ne i)

in the case dyw) > |L4[v]] and is equal to S29F""1O®B?), if dywy < |L4[v]]. Suppose that
v € V=¢(T'). Then the set H'[v] consists of only one element, H'[v] = {l}. The integral
is equal to 7a,,,,00), if |L1[v]] = dyw) + 1, and is equal to zero otherwise.

We say that an adrms&ble modified stable tree I' € AMSTY 5, is compatible with an n-tuple
of non-negative integers (di, ..., d,) if the following two conditions are satisfied:

a) For any v € V™8(I") we have dpy > |L[v]].
b) For any v € V(IT") we have d y+ 1 =[L[v]].

We obtain that the coefficient of b10s . . . bag4,,—1 in (6.10]) can be non-zero only if I is compatible
with (dy, ..., d,). Suppose that an admissible modified stable tree I' € AMST}, ., is compat-
ible with an n-tuple (di,...,d,), where > d; = d + 1. Then from the computations above it

follows that the coefficient of b1bs . . . bygtn—1 in (6.10]) is equal to the coeflicient of b1bs . .. bagyn—1
in

I > ) x

veVexe(T) le L] [v]

n ( y— L4 [’U]|
AgCn+1(€1 ® ®is€q,) H w e
Sl r) vty 2y 2 01 D) 15@) veVres(T

<.
DRg(r) (* Zbiv(

An example of an integral from this formula is illustrated on the right-hand side of Fig. [4] It is

casy to see that the coefficient of b1bs . .. bygin—1 in the last expression is equal to the coefficient

dn

of af* ... ad in

H |L/1 [U”' / )\gcg,n-‘rl(el ® ®?:1606i) H (ap(v)¢p(v))dp(v)_|L1[U“.
veV (I) DRg(r) (= 22 ai,a1,..-,an) veveE(r)

Let e := |[V¢(T")|. Note that

S () — 4] =d+1— (2g+n—1—¢).
peVres(T)

Note also that for any v € V*8(I") the leg I, (¢(I")) € L(¢(I")) satisfies the property:

v) = min (1.
p( ) Vel To(ly) ((1)))] ( )

This motivates the following definition. For 0 < e < n — 1 and an admissible stable tree
[' € ASTY S define a set Sp g C Z%, by

L n | ¢ =0,if i ¢ {minepr(o) i) }oev ()
Srd = {(Clw“"cn) € Zz S ermd b1 (29 m1—0)
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We obtain the following equation:

Z <7'0(€1)7'd1 (Gal) ... Td, (ean»gDR ];|1: agli _

_Z Z Z /];)RF( o) )\gcg7n+1 (61 ® ®?:1€al E aﬂﬁz

e=0 PeAST 4 (C1yen)EST 4

We can now see that the following relation in the cohomology of M, 11 implies formula :

(6.13) Z Z Z ADRr(ag,a1,...,a 11 aih;)

e=0 TeAST) %, (¢15:,6n)EST 4

= > C@OADRr(ag,ar, ..., an),
resTd- 202

where ag := — " | a;. This relation will be proved in the next section.

6.5.3. Relation in the cohomology of ﬂgyn. We prove relation by the double induction
on d and on n. The base cases are when d =2g—1orn = 1. If d = 29 — 1, then the condition
> ¢ =d+1—(2g+n—1—e) in the definition of the set Sr 4 immediately implies that e = n—1
and that the left-hand side of is equal to DR(ao, . .., a,). The right-hand side of
is clearly the same. Suppose n = 1. Then the left-hand side of is equal to

(6'14) )‘gDRg(_aha1)<a1¢1)d+1_2ga

while the right-hand side of (6.13)) is equal to

(6.15) Y. C)ADRr(—ar, @)

d—2g+2
resT?,

The class DRr(—aq,a1) is zero unless I' is a chain. Therefore, applying formula (6.7]) to (6.14))
d+1— 2g times, we get (6.15)). So, the base cases for our induction are proved.

Suppose now that d > 2g and n > 2. We rewrite the left-hand side of (6.13]) in the following
way:

n—1 n
> > ADRr(ag, ..., an) [ Jlanh)™ =
e=0 FEASTZ’;?H (c15--Cn)€EST 4 =1
n—1 n
(6.16) =y Y > ADRr(ag, ... an) [ Ja)+
e=0 TeAST, S, (€1,-Cn)EST a1 i=1
(617) + Z Z Z /\gDRF(CL(], Ce ,(ln) :l_‘[((lﬂﬁz)ez
e=0 PcAST”? ¢ . (0,c2,...,¢n)EST 4 1=2

g,n+1
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By the induction assumption, expression (|6.16)) is equal to

atr Y CDADRr(ap, ..., a,) L

resTy 4
(6.18)
291 + 1|
= Z C()A, Z Z —T(U(ll(F))) DRspir,v(t, (1)),91,1) (@05 - - - 5 )
d—2g+1 ,g2>0 IuJ=H'_[v(l1(T
FeTania grarmg(o(a(T) h(Fge(f o
2g1+|1>0
2g2+|J|—1
(6.19)
290 + | J] — 1
) cmA = DRspur
;29“ s ggz>o 10 H;(l oy "Gd)) SPAT( (1).g1) (405 -+ On)
- 1,922 = v
FESTg»n-‘-l g1+g2=g(v(l1(T))) ll&‘)ejl
2g2+]J]—-1>0

Let us now analyze expression ((6.17). From the definition of an admissible stable tree it
immediately follows that for any I' € AST}" %, the leg [;(T') is incident to the root of I'. The
stable rooted tree I' is obtained by attaching the stable rooted trees I'y, h € H¢w(lo(I"))]
together with the legs from L[v(lo(T"))] to the vertex v(lp(I")). Note that the number of legs
in each tree I'y is strictly less than n 4+ 1. Therefore, the induction assumption implies that
expression (6.17]) is equal to

(6.20) > CIADRr(ap, ..., a,),
resTd 20
v(l1(I))=v(lo(T))
where

CI) = H r(v)

veV(D)\{o(lo(T))} 2 vepesch) " (0)

It remains to prove that the sum of (6.18)), (6.19) and (6.20]) is equal to the right-hand side
of (6.13). We see that all expressions (6.18)), (6.19), (6.20) and the right-hand side of (6.13])

are sums of classes

(6.21) ADRr(ag, ...,a,), T €8Ty 22

with some rational coefficients. Consider a stable tree I' € STg;jf’fr ?. It remains to check that

the coefficients of the class (6.21]) in the sum of (6.18)), (6.19)) (6.20) and in the right-hand side
of (6.13) are equal. Let v := v(l1(I")). Introduce the notations

R:= Z r(v'),

v’ €Desc[v]

Ry, := Z r(v'), for h e Hfv).

v’ €Desc[v(c(h))]

There are two cases.
Case 1. Suppose v # v(lp(I')). Clearly, the set H¢[v]\H$[v] consists of a unique element.
Let us denote it by h_ and let ¥ := v((h_)) (see Fig[f]). Let

R:= Z r(v'),

v’ €Desc[v]

r(v')
B = .
H ZU”EDesc[v’] T(U//)

v eV(IN\{v,0}WUne me v o(¢(h)))
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So the constant C'(I') can be written as

heH¢ [v]

Clearly, the stable tree I can be obtained by splitting of the tree Con(I", v, h_). Therefore, the

coefficient of the class (6.21]) in (6.18)) is equal to

r(v r(v) +r(v r(v(e(h r(v r(v(c(h
© g 0l p rel) o pp )

(6.22) @) + r(0) 5 3 Ry

heH$ [v] heHS [v]

On the other hand, for any h € H¢ [v] the stable tree I' can be obtained by splitting of the tree
Con(I", v, h). Therefore, the coefficient of the class (6.21]) in (6.19)) is equal to

S re(h)) 5 (@) r) +r(v((h) 11 r(v(u(i)))

ne r(v(e(h))) + r(v) R R WeHS Wh\(h) Ry
r(v) r(v(c(h))) r(v(e(h')))
(623) =-B- Y — I —
heHS [v] R R W eHs [o]\{h} Bw

Obviously, the class (6.21)) does not appear in (6.20). Summing (6.22)) and (6.23)), we get
r(v) r(v(c(h))) Ry,
I —% > 7| =cm
heH [v] heHS [v]

So, this case is done.
Case 2. Suppose v = v(lp(I")). Let

B = H r(v)

A%
VeV (N[} UUpe e 1o (u(h) 2vrepesciy) (V")

Therefore,

_p.rw r(v(e(h)))
coy=8-— [ —5—
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It is easy to see that the class (6.21)) does not appear in (6.18). By the same arguments, as in
the first case, the class (6.21]) appears in (6.19) with the coefficient

. ) r(el(h) + ) r(o(u(H)
he;”ru())) 7T R o h

r(v(u(h))) r(v(u(R)))
(6.24) =-B Z R Ry
heH¢ [v] 'eHS [v]\{h}

WeHS [v]\{h}

One can easily see that the coefficient of the class (6.21)) in (6.20) is equal to

(6.25) - B- II

heHev

Summing (6.24]) and ( -, we obtain

B-{ ]I ﬁﬂ%%ﬁ} T é% = C(T).

heH$ [v] heH$ [v]

Case 2 is also done. Relation (6.13)) is proved and, hence, Theorem is also proved.

7. MIURA TRANSFORMATION FOR THE DUBROVIN-ZHANG OPERATOR

In this section we show that our strong DR/DZ equivalence conjecture [BDGRI18| Section 7.3]
together with formula give a simple description of a Miura transformation that should
reduce the Hamiltonian operator of the Dubrovin-Zhang hierarchy to the standard form. Re-
markably, the description is given purely in terms of the potential of the cohomological field
theory. The main goal of this section is to prove that this Miura transformation indeed reduces
the Dubrovin-Zhang operator to the standard form. This gives a new evidence for the strong
DR/DZ equivalence conjecture.

In Sections and we briefly recall the theory of the Dubrovin-Zhang hierarchies and
our strong DR/DZ equivalence conjecture from [BDGRI1S8]. The Miura transformation for the
Dubrovin-Zhang operator is given at the end of Section [7.2] The main result is proved in
Section [7.3]

Throughout this section we fix a semisimple cohomological field theory ¢, : V" — H*" (/Vg,n, C)
with dimV = N.

7.1. Brief recall of the Dubrovin-Zhang theory. Here we recall the construction of the
Dubrovin-Zhang hierarchy. We follow the approach from [BPS12h] (see also [BPS12al).
The potential of the cohomological field theory is defined by

£) :ZFg(t g2

920
R i
Z Z (Ta, (€ay) - -Tdn(ean»g%,

n>0  di,...,dn>0
2g—24n>0

where

Mgn

() T (€0 )y = [ conl@lrca)ilt
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Recall the string and the dilaton equations for F:

OF ;
= o aptoto
o ;;; n+1at + 3 astts + € mlen))

OF JOF  OF
o1 ;tn%an——QFJr 0

We will use rings of differential polynomials in different variables and Miura transformations
between them. We refer the reader to [BDGRIS8| Section 3.4] for the corresponding notations.
We also refer the reader to [BDGRIS, Section 3.1] for a brief review of the theory of tau-
symmetric Hamiltonian hierarchies.

Introduce power series (w™P)* € Cl[[z, t*, ]] by

0*F
OGOt |

dtdta
Let (wP)2 := 9 (w'P)*. For k > 0 denote by C[[t]]®) the vector subspace of C[[t}]] spanned
by monomials ¢3! ...t3" with ) d; > k. From the string equation for F it follows that

(7.1) (W) _ =% — 6,,0%" € ],

e=zx=0

(wtop)a - na,u

Therefore, any power series in ¢ and € can be expressed as a power series in ((w*P)%| _, — 8,10
and ¢ in a unique way. Consider formal variables w!,...,w". In [BPSI2h] the authors
proved that for any 1 < o, < N and p,q > 0 there exists a unique differential polynomial
QPz e AU ~ such that

a,p;B, q wl,...w

O°F
o ots

QDJD 8. (WP, WP .. e) =

thti+a
In particular, QB}%;LO = Nouw". The equations of the Dubrovin-Zhang hierarchy are given by

ow”
(7.2) 5 = 70,00
Otq
Clearly, the series (w'P)* is a solution of these equations. It is called the topological solution.
The system ([7.2)) has a Hamiltonian structure. The Hamiltonians are given by

,uO,qu 1§0476§Na QZO.

(7.3) Fro = /Qgiﬂlodaz p>0.
The construction of the Hamiltonian operator is more complicated. Let
(,Utop)oz — (wtop)a‘azo ]

Then any power series in t& and € can be expressed as a power series in ((v'°P)2| _, — 0,10*")
and ¢ in a unique way. In particular, for ¢ > 1 we can express the function F, as a function
of (v*P)2| _,. Then F, depends only on (v*P)%| _, with n < 3g — 2 (see e.g. [BPSIQb,
Proposition 4]). This property is called the 3g—2 property. Consider formal variables v!, ... v.
Let .AZVI v be the ring of formal power series in (v — 6*'4,,1) with complex coefficients. We
have a natural inclusion

Av17.,,7v1v C Afk

1
)

Let .AWk N = AYE v @ Cl[e]]. Clearly, there exists a unique element w*(v};e) € ﬁflk__ )
such that

N -

w* (VP VP L e) = (w'P)°.
We have
(7.4) w*(vi;e) = v + Z %9 f(v

g>1

Y
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The 3g — 2 property implies that the function f&(vi) € AY  » depends only on v; with
n < 3g. Then formula (7.4 can be considered as a change of variables between v7 and w?.
Define an operator KP%(v};e) = ((KP%)* (v};¢)) by

(07 *, ﬁ *.
(7.5) (KDZ)O‘B(U:;g) = Z Mag o™y 0 (—0,)7 o ow (%75)‘

= vy vy
Since f;'(vy) depends only on v with n < 3g, the expression on the right-hand side of (7.3)) is
well-defined. We have
(KPP (lse) = 3 (KPP (w520
i>0
Let (KP%)% (w?:¢) be the function (KDZ)O‘ﬁ (v £) expressed in the variables w? using the

change of variables (7.4). We have (KP%)*(w?;¢) e .A - In [BPS12b] the authors proved
that we actually have

(KP%) P (w?;e) e .zzl\[_Hl]wN.

wl...,
The operator KP% = 37 KP?(w}; )0, is Hamiltonian. Together with the local function-
als ([7.3]) it defines the Hamiltonian structure for the Dubrovin-Zhang system ((7.2)).
Finally, the tau-structure for the Dubrovin-Zhang hierarchy is given by the differential poly-
nomials

DZ DZ
he, Q,p+1107 p=—1

hDZ

Since 1 = NapW*, we see that the coordinates w® are normal.

7.2. Strong DR/DZ equivalence conjecture. In [BDGRIS8| Section 7.3] we proved that

there exists a unique differential polynomial P € Al 12? ~ such that the power series F™4 ¢

Cl[tz, €]], defined by

(7.6) Fred .= F + P(w', wi®, wiP, .. ;e)|
satisfies the following vanishing property:
(7.7) (Tar(€ar) - Tan(€a, )t =0, i ) d; <29 -2,
where (74, (€q,) - - .Tdn(ean)>;ed are the coefficients of the expansion of F*ed:
red red tgll e tg:
F t 6 Z Z le eal Tdﬂ(ean)>g TL'

gn>0 : di,...,dn >0

We called the power series F™¢ the reduced potential of the cohomological field theory. We
proved that the reduced potential F™9 satisfies the string and the dilaton equations:

@Fred Z red 8
te + Z1astSt
o n+1 o aBlo o>
ot = 875 2
i Fred a Fred red N
= te —2F
1 Z n «
oty = 875 24
Recall (see [BDGRIS, Section 4]) that the tau-structure for the double ramification hierarchy
is given by the differential polynomials hg}:; = 59;;—”1“. The normal coordinates for this tau-
structure are
o)k for «a 5§ 0
79 e (udi2) = PR, = on 2

In [BDGRIS|, Section 7.3] we proposed the following conjecture.
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Conjecture 7.1. The normal Miura transformation defined by the differential polynomial P
transforms the Dubrovin-Zhang hierarchy to the double ramification hierarchy written in the
normal coordinates u®.

We called this conjecture the strong DR/DZ equivalence conjecture. In [BDGRIS8| Section 7.3]

we proved that the strong DR/DZ equivalence conjecture is true if and only if FPR = Fred,
Note that formulas and ([6.4) together with the string equation for FP® imply that that

the normal coordinates ﬂ“(uj; e) can be described using the double ramification correlators:

u : 829 bR ;
o) wne=u 3 r 3w (lenen [Traten)), TTui
gn>1 "7 it rda=2g g

If Conjecture is true, then <T0<€1)T0(6“)HTdi(eai»gDR = <7'0<€1)T0(6“)HTdi(eai»;ed. To-
gether with equation ([7.9)), it motivates the following theorem.

Theorem 7.2. Define Miura transformations w® — u®(wi;e) and u® — u*(ul;e) by
- —D7Z
ua(wj; 8) =w + na”ﬁx{P, hM’O}KDZ’
~So * (0% €2g [ red (077
o) =+ > S0 3 (nolenmolen) [T ralea))  TTus
gn>1 " di4..+dn=2g g
Then the Miura transformation w® — u®(w?;e) transforms the operator KP% to no,.

We will prove this theorem in the next section.

7.3. Proof of Theorem We split the proof into three steps. In Section [7.3.1] we introduce
rational Miura transformations and discuss their properties. In Section we prove that the
change of variables v — w*(v}; €) from Section|7.1]is a rational Miura transformation. Finally,
in Section [7.3.3] we prove Theorem [7.2]

7.3.1. Rational Miura transformations. For d € Z let .Art [d

expressions of the form

(7.10) 3 Pi(f )

sz (UCE)Z 7

where m € Z, P, € Aﬁﬂ] ,~ and % = 0. Let .Aff o =Dz A, A [d] . Since

ﬁ = (14 (0 —1)" =) (:) (v = 1),

x k>0

~ be the vector space spanned by

we have a natural inclusion
t k
. oV - Ayl,...,vN'

vl
In the same Way, as for differential polynomials, we introduce a grading by degv* = ¢. Then

the subspace A} L]

fWD) =2 m ]Z)(f’){) € A’ n define the polynomial part by

1
vl

w~ C _~ consists precisely of elements of degree d. For an element

*

0
U
l
po E 1 E.Av1 N

i=m 33

Define the extended space .,Zl\;tl v =A% y[[e]]. Denote by

the subspace of elements of degree d, where we, as usual, set dege = —1.
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A rational function ([7.10]) is called tame, if there exists a non-negative integer C' such that

gﬁi = 0 for k > C. The subspace of tame elements in A’ will be denoted by
k PAREE)

rt,t
vl

Anelement f(vi;e) =3 o9 fy(vi) € ,Zl\f]tl v will be called tame if all functions f, € A%}

are tame. The subspace of tame elements in ﬁfﬁ _~ will be denoted by

rt
L oN - vl N

oV

art.t

~
C Tt
vl ol vl ol

Consider changes of variables of the form
(7.11) v w*(vie) = vt +efYvie), a=1,...,N, f*¢€ ﬁztl’t.’_[.lq]}N.
We will call them rational Miura transformations. These transformations form a group. Any

tame rational function f(vl;e) € ﬁf}t{f‘_w}v can be rewritten as a tame rational function in the
new variables w®. The resulting tame rational function will be denoted by f(w?;e). Clearly,
the polynomial part w®(v¥;e)P°! of a rational Miura transformation (7.11]) is a usual Miura
transformation.
Define a subspace S,1_,~ C Aﬁ’j“’w by
of

L art,t pol __ i
Svl,...,vN = {f = vl ol =0, ovt O}

It is easy to see that the subspace S, _,~ is closed under multiplication and also under the
derivations 0, and 8%.

Lemma 7.3. Let v® — w*(v};e) be a rational Miura transformation such that

(wa)p"l(v:; g)=v" and —aw 6(51*’5) = 6>
Consider an operator K = (K*?) defined by
(7 12) KB .— Z Wap ond, o (_3 )q o w = Z KQ'B(U*‘ 5)ai
. . a0 8@5 ¢ ’ ’ aUZ i>0 ' h -

Suppose that K’ (w*;¢) € -’Zl\wl,‘..,wN- Then K% = n°89,.
Proof. From formula ([7.12]) one can easily see that
K;IB(U:; 6) - 5i,1naﬂ € Svl,...,vN'

Observe that if f(vi;e) € S, ,~, then f(w!;e) € Sy . Since Sy, v N -’z{wl,...,wN =0,
we get K™ (w?, ) — 6;1n*® = 0. The lemma is proved. O

Lemma 7.4. Consider three sets of variables v®, u® and w®. Suppose that we have rational
Miura transformations v® — u®(vl;e) and u® — w*(ul;e) such that

o (i2) u(uiep
ov! ’ vl ’

awa(ui; 5) _ (Sa,l awa(u:7 6)p01 _ 0
oul ’ oul '

Then the polynomial part of the composition of these rational Miura transformations is equal
to the composition of their polynomaial parts.

Proof. The proof is straightforward. One should just notice that the singularities of w®(u};¢)
and u®(vi;e) cannot give a non-trivial contribution in the polynomial part of the composition
of these rational Miura transformations. U

Let us formulate one more technical statement in this section.
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Lemma 7.5. Consider variables u® and w®. Suppose we have a Miura transformation u®

w*(ul;e) such that % 5! and w = 0. Then the inverse Miura transformation
w® — u*(wk; ) satisfies the same properties: % =61 and auot;(# =0.
Proof. This is a direct computation based on the chain rule. U

7.3.2. Rationality of the function w®(v},e). Consider the function w®(v};e) from Section

Art,6,[0]

Proposition 7.6. We have w®(v;;e) € A ;""" x and, moreover, Gut(viie) — goul,

ovl
Remark 7.7. While this work was under preparation, we were informed that this proposition
was independently proved by S. Shadrin, D. Lewanski and A. Popolitov.

Proof of Proposition[7.6. The proof is very similar to the construction of the differential poly-
nomial P from [BDGRIS|, Section 7.3]. Consider the e-expansion of the topological solu-
tion (w'P)®:
(w'P)¥(z, t%, ) Zezg topyenlal (g ¢7).
9>0
Define a linear differential operator Og; by

o 0 )
o — Y
Oui =71 — T3, ZM nag

For g > 1 let us construct a sequence of functions wlokl ¢ Aztl’[%‘f’LN, k > —1, such that

O P19:K]
I (0 B A L
(7.14)  ((w'oP)>la) — quulobl(ytop ytop ) | € Cl[E])*+D,

Y Yx Y

(7.15) Qg9 (ptoP yfop ) = 24 . okl (ytop ytop ),

y Y )

Let w®9~1 := 0. Suppose that & > 0 and that w®9*~1 is already constructed. Let

anwa,[g,k—l}(vtop ,Utop N )
(7 (€an) - - 74, (€a,)) ™1 1= TR
e oty ... oty" =0
Define
wa,[g,k} = wa,[g,k—1]+
(7.16)

29 n n a,[g,k—1] n
DI S I <To<el>fo<eu)Hm<eai>> (M) o Tl

n! ,
n>0 di+..tdn=k i=1

Let us prove properties ([7.13] - We have
Odﬂ ((wt0p> algl _ w a,[g,k—1] (Utop UtOP . )) = 2g ((wtop)a,[g] _ wa,[g,k—l] (Ut0p7 ’U;Op, . )) .

) Y )

Using (7.14)) for w™!9*~1 we see that the underlined expression in (7.16) is equal to zero, if

a; = d; = 1 for some i. Therefore, formula (7.13]) is clear. Equation (7.15) follows from the
fact that Ogy(v*°P) = n(v*P)2. Property (7.14) follows from (7.1]).

From (7.13)) it follows that the limit w®l9 = limy_., w9+ ¢ Aztl’[%?LN is well-defined.
Formula ([7.14]) implies that
(,Utop)a + Z€2gwa,[g] top ,top ) _ (wtop)a,[g].

) €T b
g>1

Therefore, w*(vi;e) = v* + 3 -, 29>l ¢ ﬁf}tl[o}vlv The tameness of w®(v};e) was already
explained in Section [7.1]



Integrable systems of double ramification type 37

It remains to show that % = 6% Let
0 0
Oyy i = — — L —.
ot ; "ot

From the string equation for the potential F' it follows that Og, (w'P)® = O, (v'°P)* = §1.
Ow*(v};e)

St = 5. The proposition is proved. U

Therefore,
7.3.3. Final step. Consider the rational Miura transformation v® — w®(v}; €) from the previous
section. Since the variables u® and u® are related to w® by Miura transformations, we see
that they are related to the variables v® by rational Miura transformations, that we denote
by u®(v¥;e) and u®(v?;€) respectively. From equation ([7.5]) it follows that the operator KP% in
the variables u® is equal to

ou*(vs;e) ouP (vi;e)
KPZyeb — —— P o9, 0 (—0y)T 0 ——212,
(K02 = 30 S oo e, o (0,70 S
,g>0 q
Lemma implies that it is sufficient to show that
ou®(vi;e)
7.17 —— 2 =%t and  w®(vie)P = v
(1.17) L (is2)
We have
aQFred
~a(, top top . _
u (v P P, )
( ) " 8t“8t0 thti+a
The string equation for £ implies that Og,u®(v*°P vto :€) = 0*!. Therefore, aaz(:l:;s) =

5!, From the string equation for F™¢ and property (7.7] 1t follows that w = 6!, Thus,

ou® ’U*,E) 60& 1
Ovl
Let us now prove the second equation in . Let

~a % o Ofk(”: ) [2g+k]
U(viie) = v 4 Y e Z —?vl)k , Pooe Al
g>1 k>-2g T
Property (7.7) together with the string equation for F*¢ imply that
Coef 2o (0™, 0¥, .. ;e)| _, € C[[t]]*

Using also ([7.1]), we conclude that Pl =0for k <0 and

719 Ee =Y X (nene) [Traten)”

n>1di+...+dn=29

Thus,

u(ulye) = (v} e)P| ol -

The rational Miura transformation v* — u®(v};€) is the composition of the transformations
(7.19) v¥ = ut(vie) and  w® e ut(ule).

We already know that % = §*!. Equations (7.18] , (7.7) and the string and the dilaton
equations for F red imply that anO = 0. Therefore, %f)pol = 0. So, the first transfor-
mation in satisfies the assumptlons of Lemma (7.4 - Usmg Lemma b| we see that the
second transformatlon in ((7.19) also satisfies the assumptions of Lemma We conclude that
u®(vi; e)P?! = v Theorem [7.2]is proved.
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8. DOUBLE RAMIFICATION AND DUBROVIN-ZHANG HIERARCHIES OF RANK 1

In this section we focus on cohomological field theories of rank 1, i.e. dimV = 1, and the
corresponding double ramification and Dubrovin-Zhang hierarchies.

In Section 8.1 we recall certain definitions and the main conjecture from the work [DLYZ16]
about tau-symmetric deformations of the Riemann hierarchy. In Section we show that the
double ramification hierarchy is a standard deformation of the Riemann hierarchy in the sense
of [DLYZ16]. In Section we prove an existence of a normal Miura transformation that
reduces the Dubrovin-Zhang hierarchy to its unique standard form. This proves a part of the
conjecture from [DLYZI16] for the Dubrovin-Zhang hierarchies. In Section we prove the
strong DR/DZ equivalence conjecture at the approximation up to genus 5.

Since dim V' = 1, a rank 1 cohomological field theory is described by classes ¢,,, = ¢, ,(e$") €
H®*"(M,.,,C). Recall that, according to [Tel12], rank 1 cohomological field theories with

m,1 = « are parameterized by numbers si, s9, ... in the following way:
L@
(81) Cg,n — al ge Z’LZI Bo; S 24 1( )

Here Chy;_; denotes the (2i — 1)-th component of the Chern character and we use the same
rescaling of the coefficient of Chy;_1(E) in the exponent, as in [DLYZ16, page 384]. Since
dimV = 1, we will omit Greek indices in many notations. For example, the correlators of a
cohomological field theory will be denoted by (74, ... 74, ) g the Hamiltonians of the Dubrovin-

Zhang hierarchy will be denoted by EdDZ, .

8.1. Tau-symmetric deformations of the Riemann hierarchy. The Riemann hierarchy
is the tau-symmetric Hamiltonian hierarchy given by the Hamiltonians

R ud+2
h, .= —d d >
d /(d+2)! nod=0

ud+2

the Hamiltonian operator 9, and the tau-symmetric densities Y := o d>—1.

A tau-symmetric deformation of the Riemann hierarchy is a tau-symmetric Hamiltonian hier-
archy given by Hamiltonians h4, d > 0, Hamiltonian operator K and tau-symmetric densities hg,
d > —1, such that

— —R (5E0
hd’a:() - hda K|E:0 - a.r; hd|€:0 = hE{a K% = Uyg-
Here the last condition means that the Hamiltonian h generates the spatial translations.

Denote by P, the set of all partitions of n. For a partition A = (Ay,..., N), Ay > ...\ > 1,

let [(A) := [. Introduce a subset P! C P, by

. 1(0)>2,
Pn =<\ E Pn A1=M2, .
i>2.
For a partition A € P, let uy := Hi(z)‘l) uy,. A tau-symmetric deformation of the Riemann

hierarchy is said to be standard, if K = 9, and a density hy for the Hamiltonian h; can be
chosen in the following form:

~ ud g?
(8.2) hl = — —aoui + Z€2g Z AU,

6 24
922 AEPs,

for some complex coefficients ag and «a. It is easy to show that if such a density exists, then
it is unique. In [DLYZ16] the authors proposed the following conjecture.

Conjecture 8.1. Consider an arbitrary tau-symmetric deformation of the Riemann hierarchy.

1. Suppose that the deformation is standard. Then for the unique density of the form (8.2))
we have the following.

a) If ag =0, then ay =0 for all \.
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b) If ag # 0, then all coefficients «y are uniquely determined by the coefficients ag
and o 29y, g > 2.
2. There exists a unique normal Miura transformation that transforms the hierarchy to a
standard deformation. This deformation is called the standard form of the hierarchy.

The authors of [DLYZ16] checked the uniqueness statement in the second part of the conjecture.
Moreover they verified the conjecture at the approximation up to '

Consider a cohomological field theory of rank 1 with 7,; = 1. Clearly, the corresponding
double ramification and Dubrovin-Zhang hierarchies are tau-symmetric deformations of the
Riemann hierarchy. In the next section we will prove that the double ramification hierarchy is
a standard deformation. In Section we will prove that part 2 of Conjecture is true for
the Dubrovin-Zhang hierarchy.

8.2. Double ramification hierarchy as a standard deformation. Introduce a subset P, C

P, by
Pri= {re PS50}

Lemma 8.2. Let d > 2. Consider a differential polynomial h = 3, p ha(u)uy € Al
where hy(u) are formal power series in u.

1. For the local functional h = [ hdx there exists a unique density he A of the form

(8.3) h=">" ha(u)uy,

AEPS

where hy(u) are formal power series in u.
2. Let d = 2g. Suppose that ahgiu) = 0 for all A\ and that hy = 0 unless \; > 2. Then

ahgu =0 for all X and h,\ 0 for A € P,\P,. Moreover, we have E(gg) = h(29).

Proof. 1. Let us prove the existence of such density. Suppose that the set

(8.4) {A € Pa\Pylha(u) # 0}

is non-empty. Let A\(?) be the lexicographically maximal partition in the set (8.4) and m be the
multiplicity of the part A§°) —1in A9, Define a differential polynomial A(!) by

m+1 )

u
A1
Y = ph — Oy - h)\(()) H u/\(o) = Z h&l)(u)uA

i=m+2 AEPy

Obviously, h(!) is a density for h. It is also clear that the lexicographically maximal partition in
the set {\ € Pd\P§|hf\1)(u) # 0} is lexicographically smaller than A\(?). Continuing this process,
after a finite number of steps, we come to a density of h of the form (8.3)).

The uniqueness part follows from the fact that a non-zero differential polynomial of the
form does not belong to the image of the operator 0,.

Part 2 of the lemma is clear from the proof of part 1. [l

Proposition 8.3. Consider an arbitrary cohomological field theory of rank 1 with n,; = 1.
Then we have the following.
1. The corresponding double ramification hierarchy is a standard tau-symmetric deforma-
tion of the Riemann hierarchy.
2. For the unique density g, for §1 of the form (8.2)),
3

512% DRZ—FZsZgZaA Uy,

g>2 AEPs,
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we have
agt =1, a]él;) = (39 —2) / AgCq.0-

g

Proof. We have

i (e }
g1 = Z n! Z (/})Rg(07a1,...7an) )\g’l/}lcg,n+1> gpar

g>0,n>2 ’ a1~+--+an=0

For ¢ > 1 and n > 2 we have
(8.5) / AgU1Cgnt+1 = (29 —2+n) / AgCoum-
DRy (0,a1,...,an) DRy(ai,...,an)

For k < n denote by my: /\_Agm — Mg,n_k the forgetful map that forgets the last & marked
points. Using (6.5]), we see that if g = 1, then the right-hand side of (8.5) is equal to

(5.6) / \ 0, if n > 3;
. n 1C1n = by (8] 42 .
DRi(at,...,an) QCL% mel )\10171 y:. ﬁ, ifn=2.
Suppose g > 2. Then
(8.7) (29 —2+n) / AgCon = (29 —2+n) / AgCg0-
DRy (a1,...,an) TnxDRg(a1,...,an)

Note that the right-hand side is equal to zero unless n < g. We also see that for n = g the
right-hand side of (8.7)) is equal to

(8.8) (3g —2) / - ) AgCg0 = (39 — 2)glai - a? / AgCg.0-

My

For an arbitrary n < g we write

(29 —2+n) / AgCg0 = ————— / P1XgCq1-
mnxDRg(a1,...,an) 29 -2 mn+DRg(0,a1,...,an)

The divisibility property from Section [6.4.2 implies that the integral fwn*DRq (0.01,....an) P1AgCq 1

can be expressed as a polynomial
p = P, hoalh, P C
(a1,...,a,) = diyendn @1 0 0y Ly d, €0,
di+-+dn=2g

where the coefficient Py, 4, is equal to zero unless d; > 2 for all 1 < ¢ < n. Therefore, we

obtain

n

— ut ooy 2
glz/ E—ﬂum—FZegZB)\uA dx,

g>2 AEP2yg

for some constants 5, € C such that 5y, = 0 unless A\; > 2 for all 1 < i < [(\). Moreover,

by (8.8]), we have
Bas) = (39 — 2)/ AgCq,0-

Mg
Lemma [8.2f completes the proof of the proposition. 0
We obtain the following formula for the constants agfg{) in terms of the parameters s; from (8.1)):
_ ey op
(8.9) afllly = (39— 2) / Moo ezt By siChaa (®)

Mg
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In particular,

S1
(8.10)  apy =— 4881/ A = ———,
@) =, 120
(8.11)  abf = (40325 — 840s,) / Mdady = L2
2% i 360 1728’
25°  s2s s
8.12 DR — (—33177657 — 172800525, — 2520 / Adghg = — L — 12 78
(812)  api) = %1 1% %) w77 525 504 34560
207028224 51757056
(813) Oéggi) 28'17 / <—/\5/\4>\3 - —)\5)\4)\2/\1>
. 35 5
+ 518y / (10782720 A5 A4 A5 — 10782720A5 A4 A2\ 1)
Ms
+ 8%83 / (943488/\5/\4A3 — 471744)\5)\4/\2/\1)
Ms
- 84/ 3120/\5)\4)\3,
Ms
+ 8183/ (2246400)\5)\4)\2)\1 — 8985600)\5)\4/\3) ==
Ms
B 75457 13slsy  13ss3 1354 135153
67375 1320 52800 10644480 22176
Here we use the formulas [FP00, DLYZ16]
1 |Baga| | Byl
AgAg_1 A2 = g g > 2
/Mg 912 T g o)ag 2 29 0 I=%
1
AsAgdo ] = ———.
/M5 P T 766402560

8.3. Standard form for the Dubrovin-Zhang hierarchy of rank 1.

Theorem 8.4. Consider a cohomological field theory of rank 1 with m 1 = 1. Then part 2 of
Congecture |8.1] is true for the corresponding Dubrovin-Zhang hierarchy.

Proof. Consider the normal Miura transformation w +— u(w,;e) and the Miura transformation
u +— u(uy; €) from Theorem . From equation (7.7)) and the string equation for F™4 it follows

that <T§H7'di>;ed =0, if Y d; = 29 and g > 1. Therefore, u(us;e) = u. By Theorem ,
KDZ = ,. Let us prove that the Hamiltonian & [u] has a density of the form (8.2). Let
52 Fred

red
u T t*,E = ——F

to—to+x

Denote by h;ed € .,21\5)], p > —1, the tau-symmetric densities of the Dubrovin-Zhang hierar-
chy after the normal Miura transformation w +— u(wy;e). The differential polynomial h;ed is
uniquely determined by the condition

82 Fred
(8.14) Rt (ued ud, L e) =
atoatpﬂ to—to+a
The string equation for F*¢ implies that
8hred
P _ gred
By~ eev P20
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. . . =Dz . .
Since KP% = 9, and the Hamiltonian h, [u] generates the spatial translations, we get u, =
bz u 0 g
9,20 14 Therefore
ou )

hy [u] = %d:c
We obtain o
Ohy [u] —pz u?
éu =hy [u] = Eda:
Therefore,

for some constant ag.
Lemma 8.5. Suppose d > 4 and h € A Then h has a density h of the form
(8.15) % = Z C)\UA, GS (C,
AEP)
if and only if
oh d 6h

8.16 - — d or
( ) ou an Ouy Ou
Proof. Obviously, if a density of the form (8.15)) exists, then equations (8.16) are satisfied.
Suppose now that the conditions are true. Consider the unique density A for h of the
form (8.3]). The first condition in 1mmed1ately implies that 8}“ (u) = 0. Then we compute
o oh 0 . 0 Oh o Oh & Oh
Ouy, dou  Ouy Z( 8un Z ou,, Ou + ;( ) ou, Ou,  Ou Ou,

n>0 n>1

We obtain & 2% = ( and, therefore, Oh g d,-exact. Clearly, the differential polynomial Oh.
x Oug

ou 8 ou.
has the form , S0 it can be 0,-exact only if it is zero. Thus, h has the form (8.15)) and the
lemma is proved. [l

—DZ
We see that it remains to prove that a%z‘shl—["} = 0. We have (see [BDGRI1S8|, Section 3.7])

ou
6h1
5u

29 red
red __ U €
(8.17) hy¢ = 5 + Z o Z <T0T1 HTdi>g Hudi.
g,n>1 di+...+dn=2g
From ([7.7) and the string equation for £ it follows that
ultd o = b+ 0a1 + Z EQQngd(t*),
920

where R, 4 € C[[t.]]?974+Y. Denote the right-hand side of (8.17) by Q. Using (8.14)), we see

that
(h(rf’d(umd, u;ed, S E) — Q(ured, u;ed, . ;5)) |x:0 = ZngRg(t
920

where R, € C[[t.]]?9"V). The proof of equation (8.17) is completed by the following lemma.

= hi*d. Let us prove that

Lemma 8.6. Suppose for a differential polynomial P € AL we have
(8.18) P(ut i, e)| g =) 9T, (L),
920

where T, € C[[t,]]9TV). Then P = 0.



Integrable systems of double ramification type 43
Proof. Suppose that
P(use) =Y e'Py(u), Pye A, P, #0.

9290
Let
ko
Pgo(u*) = Z Pgo,k(u*)uga
k=0
where ((?T‘l’k = 0 and Py, s, # 0. Clearly, we have
(8.19) P, 58], = & (P kolug=ta + B(E)) + O(),

where R(t,) € C[[t,]]9~ o+ Since Py, 1, # 0, we see that equation (8.19) contradicts (8.18).
Therefore, P = 0 and the lemma is proved. 0

Equations (8.14)), (7.7) and the string and the dilaton equations for £ imply that % =0.
—D7Z

Therefore, %M%—UM = (0 and the theorem is proved. U

8.4. Strong DR /DZ equivalence up to genus 5. In Section we recall a sufficient

condition for the strong DR/DZ equivalence conjecture to be true. In Section we consider a

rank 1 cohomological field theory (8.1)) and show that the strong DR/DZ equivalence conjecture

for general « follows from the case « = 1. Finally, in Section [8.4.3| we prove the strong conjecture
at the approximation up to genus 5.

8.4.1. Sufficient condition for the strong DR/DZ equivalence conjecture. Consider an arbitrary
semisimple cohomological field theory, ¢, : V" — Hev" (ﬂg,n, C), where dimV = N. Recall
that by u®(ul;e) we denote the normal coordinates for the double ramification hierarchy.
Denote by KP® the operator 79, in the coordinates . In [BDGRIS8| we proved the following
proposition.

Proposition 8.7 ([BDGRI18, Section 7.3]). Suppose that the Hamiltonians and the Hamiltonian
operators of the double ramification hierarchy in the coordinates u® and the Dubrovin-Zhang
hierarchy are related by a Miura transformation of the form

(82()) ’,JOé = wa(ﬂ:? 8) = aa + naﬂax {Q7§p,0[ﬁ]}K~DR )
where Q € .,Zl\[ﬂ_f]“ v and 92 = &2 (ry(e1)),. Then the strong DR/DZ equivalence conjecture is
true.

8.4.2. Reduction to the case o = 1. Consider a rank 1 cohomological field theory (8.1). Then
both potentials F' and F™4 are power series in tg,t1, ... and ¢ that additionally depend on the

parameters si, So, ... and a. Define an operator O by O := a% + %5%. From Theorem m we
immediately see that
(8.21) OFPR = PR,

Clearly, we have OF = F. Since n''! = é, we get Ow'™ = 0. Then from the construction of
the reduced potential F™¢ in [BDGRIS|, Section 7.3] we can easily see that

(8.22) OFd = fred,

Formulas (8.21]) and (8.22)) imply that if FP® and F™¢ are equal for a = 1, then they are equal
for an arbitrary «. Therefore, if the strong DR/DZ equivalence conjecture is true for ao = 1,
then it is true for an arbitrary a.
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8.4.3. Proof of the equivalence up to genus 5. Consider a cohomological field theory . Let
us prove the strong DR/DZ equivalence conjecture at the approximation up to genus 5. From
the previous section we know that it is enough to consider the case & = 1. By Theorem [8.4]
the normal Miura transformation

w— u(w,;e) = w + 2P,

transforms the Dubrovin-Zhang hierarchy to its standard form. We have the following formula
for the unique density hy for E?Z[u] of the form ({8.2)):

(8.23)
~ ud g2 gl $3 s 52
By =—— — — 2 — = g2 —e8 | 2L 2 3 512
1= T ogMe T 100 e € |\ 360 T 1728 ) Yar T g Veee

252 s%s s 11s7  1l1sys 53 5
s =51 152 3 4 1 152) o 1 2 2
c {(525 TEu T 34560) e (1400 5720 ) W thae (1260 * 60480) ““"W]
L 75457 N 135951 N 13s35% N 13535 N 1354 5
67375 | 1320 ' 52800 ' 22176 ' 10644480 ) "o
5888 Tsyst  Tszsy s3 9 9
(1375 330 T 26400 T 3168 ) o=

XX T ITT

" (12600 T 756 T 276480 ) “emeter T\ 3465 T G628 ) Heween
+O(e").
This formula is given in [DLYZ16l page 433] at the approximation up to genus 4, and we are

grateful to the authors of [DLYZ16] for providing us a software that computes the density h
at the approximation up to genus 5. We see here that ag = 1 and

S1
04(22) = — m7
o — 53 B
@)= 7 360 1728’
257 sisy S3
oty = — — —
@4 525 504 34560
754sT  13syst  13s3s7  13s3sy 1354
O[(Q5) = — — . _

67375 1320 52800 22176  10644480°
From equations (8.10)—(8.13) we see that a () = 04](321;{) for g = 2,3,4,5. Since Conjecture

is true at the approximation up to €%, we obtain that the standard form of the Dubrovin-
Zhang hierarchy coincides with the double ramification hierarchy up to genus 5. Note that
U(uy;€) = %0 = u. We have

d :
(£ = F)|to>—>to+x =P w;™, ... ;e).
From the string equations for F™*! and F it follows that 25 = —? (7o),. Then it is easy to see

that the Miura transformation u +— w(u,;¢) has the form
w(uy; ) = u+ 029,
09 _

where £% = £?(ry),. Therefore, the sufficient condition from Proposition is satisfied and
we conclude that the strong DR/DZ equivalence conjecture is true at the approximation up to
genus o.
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