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Abstract

In their fundamental work, Dubrovin and Zhang, generalizing the Virasoro equations
for the genus 0 Gromov—Witten invariants, proved the Virasoro equations for a descen-
dent potential in genus 0 of an arbitrary conformal Frobenius manifold. More recently,
a remarkable system of partial differential equations, called the open WDVV equa-
tions, appeared in the work of Horev and Solomon. This system controls the genus
0 open Gromov—Witten invariants. In our paper, for an arbitrary solution of the open
WDVV equations, satisfying a certain homogeneity condition, we construct a descen-
dent potential in genus 0 and prove an open analog of the Virasoro equations. We also
present conjectural open Virasoro equations in all genera and discuss some examples.
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1 Introduction

The WDVV equations, also called the associativity equations, is a system of non-
linear partial differential equations for one function, depending on a finite number of
variables. Let N > 1 and n = (n4) be an N x N symmetric non-degenerate matrix
with complex coefficients. The WDVV equations is the following system of PDEs for
a function F (¢!, ..., tV) defined on some open subset M C CN:

PF o, F PF o, OF L<a.By.8<N
= , 1<a,B,y,8 <N,
ararPork " arvarrar | ardorPark arvarr are Y
(1.1

where (n®f) := n~!

and we use the convention of sum over repeated Greek indices.
Suppose that the function F satisfies the additional assumption azl?;% = Nap-
Then the function F defines a structure of Frobenius manifold on M and is also
called the Frobenius manifold potential. Such a structure appears in different areas of
mathematics, including the singularity theory and curve counting theories in algebraic
geometry (Gromov—Witten theory, Fan—Jarvis—Ruan—Witten theory). A systematic
study of Frobenius manifolds was first done by Dubrovin (1996, 1999).

Consider formal variables t;’,‘, 1 <a <N, p > 0, where we identify tg = t*. There
is a natural way to associate to the function F' a descendent potential F, which is a
function of the variables 77, such that the difference F |ti1 —o — F is at most quadratic

in the variables t!, ..., " and the following equations are satisfied:
O F 9*F PF

= n"" , 1<a,B,y <N, a,b,c>0. (12
e, ifor)  01gdry T au¥arfon)

These equations are called the fopological recursion relations (TRR). In Gromov—
Witten theory, where the function F is the generating series of intersection numbers
on the moduli space of maps from a Riemann surface of genus 0 to a target variety, a
natural descendent potential F is given by the generating series of intersection numbers
with the Chern classes of certain line bundles over the moduli space. Note that the
system of Eq. (1.2) can be equivalently written as
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Open WDVV Equations and Virasoro Constraints 147

9 F 9*F >F
d 7= Zn''d 5], 1=aB=N ab=z0 (13
1%, 191, d1g 0t 31y dt,)

a

where d (-) denotes the full differential.

Let € be a formal variable and tNg =t — sols p,1. If our Frobenius manifold
is conformal, meaning that the function F satisfies a certain homogeneity condition,
then in Dubrovin and Zhang (1999) the authors constructed differential operators L,,,
m > —1, of the form

. 92 9 _
Lm = Z (Szaf’(”p’ﬁ’q wn.B + bf{;%:,p?z_ﬂ +e zcm;a,p;ﬂ’q?zyg)
p.q>0 315914 9

a.p;B.g 1 B.q
m b

+ const - 8,0, @ e, p Cmiapipg € C,

satisfying the commutation relations
[Li, Lj]1=(G—jLivj, i,j=-1,

and such that the following equations, called the Virasoro constraints, are satisfied:

)

L. ef F

Coef, > (”f_—zf> -0, m=>—1. (1.4)
e

We recall the details in Sect. 2.

In Gromov—Witten theory, for each g > 0 one defines the generating series F (1)
of intersection numbers on the moduli space of maps from a Riemann surface of
genus g to a target variety, o = JF. The Virasoro conjecture says that the following
equations are satisfied:

Lyere=0 7 Fe — 0 > 1, (1.5)

One can see that Eq. (1.4) is the genus O part of Eq. (1.5). The Virasoro conjecture
is proved in a wide class of cases, but is still open in the whole generality.

More recently, a remarkable system of PDEs, extending the WDVV Eq. (1.1),
appeared in the literature. Let s be a formal variable. The open WDVV equations are
the following PDEs for a function FO(t', ... ", s):

PF L, F° 0PF° 9°F°
n +
orxarPor " 9rvory - 9r*otP 9soty
PF o, PF° | 9PF° 3*F°

= Svatbor’ arare T 97 arP asore”

l<a, B,y =N, (1.6)
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PF L PF 9PF 9F°
n +

At arBorr arvos  0r*orP 09s?

92F° 92F°

= 95018 9591%

l<a,B<N. (1.7)

These equations first appeared in Horev and Solomon (2012, Theorem 2.7) in the
context of open Gromov—Witten theory. The open WDVV equations also appeared
in the works (Pandharipande et al. 2014; Buryak et al. 2018, 2019). The solutions of
Egs. (1.6), (1.7), considered in these works, also satisfy the additional condition

92 F° ?F°

artore 7 drlas (1-8)
Remark 1.1 The works (Pandharipande et al. 2014; Buryak et al. 2018, 2019 don’t
mention the open WDVV explicitly, but, as it is explained in Buryak (2018, Section 4),
the open WDV'V equations follow immediately from the open TRR equations (Pand-
haripande et al. 2014, Theorem 1.5), (Buryak et al. 2018, Theorem 4.1), (Buryak et al.
2019, Lemma 3.6).

There is an open analog of Eq. (1.3). Let s,, p > 0, be formal variables, where
we identify so = 5. The open topological recursion relations are the following PDEs
for a function F?, depending on the variables t;’,‘ and s, and such that the difference

-7'—0|t§1=0 — F° is at most linear in the variables ¢!, ..., " and s:
s>1=0
9F° O*F OF°\ | OF° (9F°
d > = and< v>+ ad( ) l<a<N, p=>0,
o, 15 01 a1y ary s
(1.9)
aF° oF° oF°
d( >= d( ), p=>0. (1.10)
08p41 asp as

As we already mentioned in Remark 1.1, these equations appeared in the works (Pand-
haripande et al. 2014; Buryak et al. 2018, 2019).
The simplest Frobenius manifold has dimension 1 and the potential F = FP' =

%. A natural descendent potential FP', associated to it, is given by the generat-
ing series of the integrals of monomials in the psi-classes over the moduli space of
stable curves of genus 0. Here “pt” means “point”, because such integrals can be
considered as the Gromov—Witten invariants of a point. One can easily see that the
function F° = FPL0 = rlg 4 % satisfies the open WDV'V equations and condi-
tion (1.8). In Pandharipande et al. (2014) the authors, using the intersection theory on
the moduli space of stable pointed disks, constructed a solution FP"° of the open TRR
Egs. (1.9), (1.10). Moreover, they introduced the operators
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Open WDVV Equations and Virasoro Constraints 149

G+m+1! 9 3
S

L= LV e, ; S 0=
" mt m,—15 + ; il " OSmpi * m0y
3 D! o
SM . om>—1, (1.11)
4 0Sm—1

where L) are the Virasoro operators for our Frobenius manifold, and proved the
equations (Pandharipande et al. 2014, Theorem 1.1)

[Pt s 2 F P FRLe
Coef, 1 [ == =0, m>—I, (1.12)

ot 2P Lo

which they called the open Virasoro constraints.

Remark 1.2 Strictly speaking, in Pandharipande et al. (2014) the authors constructed
a function FPST, related to our function FP-¢ by FPST = fpt"’| _o- The function

JFPL0 can be reconstructed from the function FPST, using the differential equations

3]_‘pt,0 1 a]_‘pt,o
as, (41! as

(2014), look as

[PST pe 2 FPlqe™ | FPST
Coef -1 n =0,

S>1

n+1
) . The Virasoro equations, proved in Pandharipande et al.

o6 2 FPi e 1 FPST

3m+1 3 3 om
MAIm O s, (1.13)
dsm+tl 4 s

t
E};ST =L 4+ &

The fact, that Eqs. (1.12) and (1.13) are equivalent, was noticed in Buryak (2016,
Section 5.2).

In our paper, we generalize formula (1.12) for an arbitrary conformal Frobenius
manifold and a solution of the open WDV'V equations. We consider an arbitrary con-
formal Frobenius manifold, an associated descendent potential F and the Virasoro
operators L,,, m > —1. Let F° be a solution of the open WDVV equations, satisfy-
ing condition (1.8) and a certain homogeneity condition, that we will describe later.
We will construct a solution F of the open TRR Egs. (1.9), (1.10) and differential
operators L,,, m > —1, of the form

Ly =Ly +e" Sm.—18 + de;a,p?;‘

p=0
(+m+D! 9 . 3
‘ I — 4 80—
H o+ > ey g5, T Om0g

i=0 p,9=0

9 3m+D! 9
a,p O
te| L s T A P

p=0
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2

2 o, piq q o, piq
> em T s dwaps gy S g €C, (114
P:q=0

such that the equations
-2 -1 1o
Lt F4e F
Coef-1 <W =0, m=>—I,

hold. The details are given in Sect. 3, with the main result, formulated in Theorem 3.4.

It occurs that, given a function F = F @t .., defining a Frobenius manifold
and a solution F° of the open WDVV equations, satisfying (1.8), the (N + 1)-tuple
of functions (nll‘%, SN 35 , F”) forms a vector potential of a flat F-manifold.
This was observed by Paolo Rossi. We say that this flat F-manifold extends the Frobe-
nius manifold given. In Sect. 4 we prove Virasoro type constraints for flat F-manifolds
and derive Theorem 3.4 as a special case of this result.

Let us return to the particular case, considered in the paper (Pandharipande et al.
2014). The construction of the intersection theory on the moduli space of stable
pointed disks, given there, can be generalized to higher genera. This has been
announced by Solomon and Tessler, some of the details of their construction are
presented in Tessler (2015). As a result, one gets a sequence of functions fgt’o =

FpLo, .7-'{’ t’o, fgt’”, ..., and already in [PST14] the authors conjectured that the fol-
lowing equations should hold:

2¢—2 Pt —1 pto
LPe2g=0™  Fe t g0 T g gy > 1, (1.15)

where _7-'? is the generating series of the intersection numbers of psi-classes on the
moduli space of curves of genus g. This conjecture was proved in Buryak and Tessler
(2017).

In Sect. 5 we discuss a conjectural generalization of Eq. (1.15) for an arbitrary
conformal Frobenius manifold and a solution of the open WDV'V equations.

Finally, in Sect. 6 we present examples of solutions of the open WDV'V equations,
for which our main result can be applied. In a forthcoming paper (Basalaev and Buryak
2019) we will discuss solutions of the open WDV'V equations for the Coxeter groups.

2 Virasoro Constraints for Frobenius Manifolds

In this section we review the construction of a descendent potential associated to a
solution of the WDV'V equations and recall the Virasoro constraints.
Letus fix N > 1 and let M be a simply connected open neighbourhood of a point

(tgrig, el orlg) € CN. Denote by O the sheaf of analytic functlons on CV. Consider

a solution F € O(M) of the WDVV Eq. (1.1), satisfying m = 1nap- In order to
include the case, when F is a formal power series, in our considerations, we allow M
to be a formal neighbourhood of (tong, .. té\rllg) € CV meaning that O(M) denotes

in this case the ring of formal power series in the variables (t% — tg‘ng)
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Open WDVV Equations and Virasoro Constraints 151

2.1 Descendent Potential

In order to construct a descendent potential, one has to choose an additional structure,
called a calibration of the Frobenius manifold. Denote

3F

Nt
AtratBary

a L
Cﬂ)/ =

A calibration is a collection of functions Q%:Z e OM),1 <a,B<N,d > —1,
satisfying the following properties:

Qﬂ Y =05
Q%Y
_'Bd w0
5 = a1 420,
S =nrttealt pralt =0, d>-1.
p+q=d
p.q=—1

The space of all calibrations is non-empty and is parameterized by elements G(z) €
Maty n(C)[[z]], satisfying G(0) = Id and G(—z)n~'G” (z) = n~' (Dubrovin 1999,

Lemma 2.2 and Exercise 2.8).
«,0

BQ C oy .
Letus choose a calibration. One can immediately see that —4~ 0 = 6%‘, which implies
that Q?g —tYisa constant Let us make the change of coordmates % — Q‘f’g , SO
that we have now Ql 0 = 1%

Let v!, ..., vY be formal variables and consider the system of partial differential
equations

ov* «,0
=9
o B "( p.d
otk

),lfmﬁfN,dZQ
tYy =vV

called the principal hierarchy. We see that the equations for the flow 3—] look as
0

% = v{. This allows to identify t& = x. Denote by (v'°P)* ¢ O(M)[[tzl]] the

solution of the principal hierarchy specified by the initial condition

topy o _ qa,l
('°P) ]tgzsﬂ_lad’ox_s x.

We have (v™©°P)¥

— U
2,=0 — Iy -

Define functions Q.44 € O(M) and Qg’f;;ﬁ,q e O(M)[[tx Sl pog = 0, by

- w,0 top
Qa.pipg = Z(_l)q lQ o, p+q— tnlWQﬂz 1 Qapﬁq = Qaﬁﬂqu (vtop)r *
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152 A.Basalaev, A. Buryak

The descendent potential corresponding to the Frobenius manifold together with the
chosen calibration is defined by

1
Fi=y Y mEQr € O],
,4=0

where we recall that 7;’,[ = t;‘ —selg p.1 (Dubrovin and Zhang 1999, Section 3). The
difference F| t,=0" F is at most quadratic in the variables t! ..., tV and the function
F satisfies Eq. (1.2) together with the equation

0F 1
Tori e T 3 apt“t? =0,
=0 arp 2

which is called the string equation (Dubrovin and Zhang 1999, Sections 3, 4).

Remark 2.1 Strictly speaking, in Dubrovin (1999) and Dubrovin and Zhang (1999) the
authors consider the case of a conformal Frobenius manifold, but one can easily see that
the results, discussed in this section, together with their proofs presented in Dubrovin
(1999), Dubrovin and Zhang (1999), hold for all not necessarily conformal Frobenius
manifolds. We have borrowed the term “calibration” from the paper (Dubrovin et al.
2016).

2.2 Virasoro Constraints

The Frobenius manifold is said to be conformal if there exists a vector field E of the
form

0
E=(1—gt" +17)——, g7.17 eC, q' =0, @2.1)

—=:EVY

satisfying
LEF =3 —-8)F + %Aaﬁt"‘tﬁ + Bot* +C, forsome 8, Agg, By, C € C.
The number § is often called the conformal dimension. Denote
uri=gq —g, M::diag(,ul,...,uN).

In the conformal case there exists a calibration, satisfying the property
1
5 d+

Bl 5@ =@+ 1+ uf —uQG0+ 3 9u (R, d=—1. 22)
i=1
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Open WDVV Equations and Virasoro Constraints 153

for some matrices R,,, n > 1, satisfying
[, R, =nR,, nRyp~'=(=1)""'RT.

One can actually see that the matrices R, are determined uniquely by the functions
Q%:S. Note that only finitely many of the matrices R,, are non-zero. The space of all
calibrations, satisfying property (2.2), can be explicitly described, see (Dubrovin 1999,
Section 2). A calibration of a conformal Frobenius manifold will always be assumed
to satisfy property (2.2).

Let us choose a calibration of our conformal Frobenius manifold and denote

R::ZR,-.

i>1

For an arbitrary N x N matrix A = (A%) define matrices P, (A, R), m > —1, by the
following recursion relation:

P_i(A,R) =1d,

1
Pu+1(A,R) =RP,(A,R)+ P,(A, R) (A +m + 5) , m>—1.

Alternatively, the matrix P, (A, R) can be defined by

m

Pm(A,R)zzl_[(R—i-A—i-i—%) :

i=0

where the symbol :: means that, when we take the product, we should place all R’s to
the left of all A’s. Given an integer p, define a matrix [A], by

Ag,  ifg* —qf =p,
0, otherwise.

(A1) = {

The Virasoro operators L,,, m > —1, of our conformal Frobenius manifold are given
by

-2
&
Lyi=— > (D" ([Pul+dr+ 1, Dlnsarar 1)y nanly 1y, (23)
dy,dr>0
ad
+ ) (Pa(ptd+ 1 Rlna-0h T — (24)
at?
d>0 k
0<k<m+d
e DEFL ([P d, R « up 0
+5 2 CDET (P = o Rt aan) P
di+dry<m—1 d\"'dy
dy,d»>0
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154 A. Basalaev, A. Buryak

L1,
+ 3m,OZtr Z — K , m = _19 (2'5)

and Eq. (1.4) hold (Dubrovin and Zhang 1999, page 428).

Remark 2.2 One can easily see that the last term 8m,0}‘tr (}‘ - Mz) in the expression
for the Virasoro operators L,, doesn’t play arole in Eq. (1.4). However, this term plays
a role in the Virasoro constraints in all genera (1.5). We discuss it in more details in
Sect. 5.

3 Open Virasoro Constraints

Here we present our construction of an open descendent potential associated to a
solution of the open WDV'V equations and present our main result—the open Virasoro
constraints, given in Theorem 3.4.

Consider a conformal Frobenius manifold M together with its calibration from
Sect. 2.2. Let U be a simply connected open neighbourhood of a point suq; € C.
Suppose that a function F”(tl, otV s € O(M x U) satisfies the open WDVV
Egs. (1.6), (1.7) and condition (1.8). Let us assume that the function F? satisfies the
homogeneity condition

F° 1-96 F°
E}’a —i—( s—l—rN'H)—a

aty 2 as

—EN+1

3-8 - -
=TF0+Dat“+Ds+E, for some ¥, D,, D,E € C. (3.1)

This condition holds in the examples, considered in the papers (Horev and Solomon
2012; Pandharipande et al. 2014; Buryaketal. 2018, 2019). Actually, in these examples
the constant NV t! is zero, but this is not needed in our considerations.

In order to construct an open descendent potential 7 we need an additional struc-
ture, similar to a calibration of a Frobenius manifold. It will be convenient for us to
denote the variable s; by tév 1 we adopt the conventions

1
Ailig =0 1<a<N, dz-1 p" =,
and define a diagonal (N + 1) x (N + 1) matrix it by

o= diag(u!, ..., uNh.
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Open WDVV Equations and Virasoro Constraints 155

Definition 3.1 A calibration of the function F is a sequence of functions &g, €
OM xU),1 <B<N+1,d> —1, satisfying the properties

Qp,—1 =8 N+1, 5-2)
aq)ﬁ,d 32F0 0.0 32F0
ar ZN atY otk Qg1 Aty 9N+l Ppa-1. d=0. G-
=M=
d+1
IDg g 1 ~
Eﬂ—atlli = (d + 5 =+ ,u,ﬁ) cDﬁ,d + Z qD//,,dfi(Ri)g’ d=—1, (G4

i=1
for some (N + 1) x (N + 1) matrices En, n > 1, satisfying

oy (Rﬂa’ lflfa’ﬂSNv ~ 5 jag
R)% = p ,R,1=nR,.
( n)ﬁ {O, i =N+1, [, R,] n
One can easily see that, for a calibration of the function ', matrices R, are uniquely
determined by the functions ®g 4.

Lemma 3.2 The space of calibrations of the function F° is non-empty.

The proof of the lemma will be given in Sect. 4.3.3.

Consider a calibration of the function F°. One can easily see that aaq;# =08y N+1»
which implies that @1 o — tV*! is a constant. Let us make the change of coordinates
tN*t1 1 @ g, so that we have now @1 g = ¥+

Let 71, 92, ..., 9N *! be formal variables and consider the system of partial differ-
ential equations

g .
=ax(9gd

L), lsasN, 1=p=N+1, d=0,
V=

8:5 v
8’1‘)‘N+1
7 =0, (Ppoa|,y_zy) - I<B<N+1, d=>0.
t
d

Let (9'°P)* be the solution, specified by the initial condition
~top\ o _ el
(™P) |t5=8ﬂ~184,0x =4§%"x.

Clearly, (v'°P)% = (v'°P)* for 1 < a < N. Define

top ,__
dDﬁ,d = qz'ﬂﬁ‘ﬁ:(fﬁcp)y .

Then we define the open descendent potential 7 by

0 .__ ~u g, l0p
Foo= th D, 4
d=0

@ Springer



156 A. Basalaev, A. Buryak

Lemma 3.3 The function F° satisfies Egs. (1.9), (1.10) and the difference ‘7:0|ti|=0 -
551=0
F° is at most linear in the variablest', ..., tN and s.

We will prove the lemma in Sect. 4.4.
Let L,,, m > —1, be the Virasoro operators for our conformal Frobenius manifold
and define operators L,,, m > —1, by

- ~ N1
Lopi=Lln+e' Y Y ([PaE+d+1B),,,) &
d>0 1<a<N+1 ¢
~ ~ N+1 o 3
N ([Pm(u—i-d-l— 1,R)]m+d7k)a T +omog
d=0 1<a<N+I k
0<k<m-+d
~ ~ N+1 a 3m+1)! 9
_1\ktL _ o[l V7
tel XX O ([B@ -k R, e T
O0<k<m 1<a,u<N k m—1
- N+1 92
2 dy+1 ~
+é& Z Z (=D ([Pm(ll —dy, R)]mflfdrdz)a ﬂaﬂw~
dy,d»>0 1<a,u<N d dy
dy+dy<m—1
(3.5)
Theorem 3.4 We have
-2 —1 1o
Emes Fte ' F
_ - — >
Coef -1 ( o T 1 0, m=>-1. (3.6)
Remark 3.5 Since §% = 0, we have
N ~ N+1
([Pt +d+ LR, ), = Bn1bi0. m=-1,dz=0,
N - N+1 d+m+1)!
([Pt +d 4 LR, )y, = Stmea s mz =1 d 20, 0<k<m+d.

Therefore, the operators L,,, given by (3.5), have the form (1.14).
Eme€72f+€7l'ro

W has the form
e

Remark 3.6 One can easily see that the expression

Emes’zfﬂ?’l]:“

_ i g
g FreFo D Efi),

i>-2
for some functions f; depending on the variables tf,‘, l1<a<N+1,p=>0.Note

that the vanishing of the function f_; is equivalent to the Virasoro equations for the
descendent potential F,
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Open WDVV Equations and Virasoro Constraints 157

-2
L, ef F
f 2—C06f -2 (ne—z}_> =0.

Remark 3.7 One can see that the terms §,, OZ and 83("1:_1) mfv’ 7 in the expression

for the operator £,, don’t play a role in Eq. (3.6). However, they play a role in our
conjectural open Virasoro constraints in all genera, which we discuss in Sect. 5.

In the next section we derive Virasoro type equations for flat F-manifolds and then
get Theorem 3.4 as a special case of this result.

4 Virasoro Type Constraints for Flat F-manifolds

In this section we recall the definition of a flat F-manifold and show how such an
object can be associated to a solution of the open WDV'V equations. We then present
a construction of descendent vector potentials, corresponding to a flat F-manifold,
and prove Virasoro type constraints for them. The open Virasoro constraints from
Theorem 3.4 are derived as a corollary of this result.

4.1 Flat F-manifolds

Here we recall the definition and the main properties of flat F-manifolds. We refer a
reader to the papers (Manin 2005; Arsie and Lorenzoni 2018) for more details.

Definition 4.1 A flat F-manifold (M, V, o) is the datum of an analytic manifold M,
an analytic connection V in the tangent bundle 7'M, an algebra structure (7, M, o)
with unit e on each tangent space, analytically depending on the point p € M, such
that the one-parameter family of connections V + zo is flat and torsionless for any
z € C,and Ve = 0.

From the flatness and the torsionlessness of V + zo one can deduce the commu-
tativity and the associativity of the algebras (T, M, o). Moreover, if one choses flat

coordinates 1%, 1 <o < N, N = dim M, for the connection V, with ¢ = 8 =7, then it
is easy to see that locally there exist analytic functions F(¢', ..., tV),1 <a < N,
such that the second derivatives
32 F*
I pn— 4.1
B = aiPory @1

give the structure constants of the algebras (T, M, o),

0 d 0
— 0 — = (C .
atB ~ drv P e

From the associativity of the algebras (T, M, o) and the fact that the vector % is the
unit it follows that
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aZFoz
atlarh
0°F% 9PFF 9PF §FH
= , 1 <o, B,y,6 <N. 4.3
AtPat atrard 9tV ottt 3tPord o py 4.3)

80‘, 1<a,B<N, 4.2)

The N-tuple of functions (F L . FN ) is called the vector potential of the flat F-
manifold.

Conversely, if M is an open subset of CNand F',...,FN ¢ O(M) are functions,
satisfying Eqgs. (4.2) and (4.3), then these functions define a flat F-manifold (M, V, o)
with the connection V, given by V 2 E)tiﬂ = 0, and the multiplication o, given by the
structure constants (4.1). t

A flat F-manifold, given by a vector potential (F L. FN ), is called conformal,
if there exists a vector field of the form (2.1) such that

oF“
otk

E®

=Q2—-g"F*+ A%tﬂ + BY%, for some A%, B* € C. 4.4)

Remark 4.2 A Frobenius manifold with a potential F' and a metric n defines the flat
F-manifold with the vector potential F¢ = n** (‘;”; If the Frobenius manifold is
conformal, then the associated flat F-manifold is also conformal. This follows from

the property

(@* + g — 8)nup = 0.

A point p € M of an N-dimensional flat F-manifold (M, V, o) is called semisimple
if T, M has a basis of idempotents 7y, ..., 7wy, satisfying 7y o} = (Sk 17Tk Moreover
locally around such a point one can choose coordinates u' such that 577 au’ =0ki=7 3uk
These coordinates are called the canonical coordinates. In particular this means that
the semisimplicity is an open property of a point. The flat F-manifold M is called
semisimple, if a generic point of M is semisimple.

Remark 4.3 In the semisimple case, a conformal flat F-manifold is a special case of a
bi-flat F-manifold, see (Arsie and Lorenzoni 2017, Theorem 4.4).

4.2 Extensions of Flat F-manifolds and the Open WDVV Equations

Consider a flat F-manifold structure, given by a vector potential (F!, ..., F¥*1) on
an open subset M x U € CN*!, where M and U are open subsets of C" and C,
respectively. Suppose that the functions F!, ..., F¥ don’t depend on the variable
tN*1 varying in U. Then the functions F', ..., F" satisfy Eq. (4.3) and, thus, define
a flat F-manifold structure on M. In this case we call the flat F-manifold structure on
M x U an extension of a flat F-manifold structure on M.

Consider the flat F-manifold, associated to a Frobenius manifold, given by a poten-
tial F(¢',...,tN) € O(M) and a metric , F® = p** alﬁ, 1 <o < N.Itis easy
to check that a function FO(r', ..., 1N, s) € O(M x U) satisfies Egs. (1.6), (1.7)
and (1.8) if and only if the (N + 1)-tuple (FY, ..., FN, F9)isa vector potential of a
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flat F-manifold. Recall that here we identify s = ¥ *!. This defines a correspondence
between solutions of the open WDVV equations, satisfying property (1.8), and flat
F-manifolds, extending the Frobenius manifold given. This observation belongs to
Paolo Rossi.

4.3 Calibration of a Flat F-manifold

In this section we introduce the notion of a calibration of a flat F-manifold. This is
done analogously to the case of Frobenius manifolds.

4.3.1 General Case

Let M be a simply connected open neighbourhood of a point (térig, R té\r]ig) e CN and
consider a flat F-manifold structure on M given by a vector potential (F!, ..., FV)

F% € O(M). A calibration of our flat F-manifold is a collection of functions Q%”g €
OM),1 <a,B <N,d > —1, satisfying Q‘;al = 8/"3‘ and the property

i

aQd -
B0 _ ot dzo. 4.5)

Let us describe the space of all calibrations of our flat F-manifold. Denote by V the
family of connections, depending on a formal parameter z, given by

VxY :=VxY +2zXo0Y,

where X and Y are vector fields on M. Then Eq. (4.5) is equivalent to the flatness,
with respect to V, of the 1-forms

Yoagi ' |af, 1<a<N.
d>0

From the flatness of the connection V it follows that a calibration of our flat F-manifold
exists. In order to describe the whole space of calibrations, introduce N x N matrices
Q(d), d > —1,by (Qg)g = Qg:g. Then Eq. (4.5) can be written as

9 d—1_d d—1_d
R Dot R I D ot 1o 49
d=0 d=0
where C, = (c;’jﬁ). From this it becomes clear that the generating series

> d>0 ngl z% is determined uniquely up to a transformation of the form

@ Springer



160 A. Basalaev, A. Buryak

Zgg—lzd — G(2) Zgzg_lzd . G(z) e Maty ny(O)[[z]l, G(0) =
d>0 d=0

Let us introduce matrices Qg = (Q5 5 d) d > 0, by the equation
d+ Y (=D9Q) 27 | [1d+ > e 'z | =1d. 4.7)
d>1 d>1
By definition, we put le := Id. From Eq. (4.6) we get

oy

S =C ,QY , d=o. (4.8)

4.3.2 Conformal Case
Suppose now that our flat F-manifold is conformal. Introduce a diagonal matrix Q by

0 = diag(q', ..., q").

Proposition 4.4 There exists a calibration such that

Oan d d e i—1 d—i
E'— =@+ DR +194, 01+ ) _(-D'T'RQY™, d= -1, (49)

i=1
for some matrices R,, n > 1, satisfying [Q, R,] = nR,,.

Proof Similarly to the work (Dubrovin 1999, pages 310, 312), the proposition is proved
by considering a certain flat connection on M x C*.

Introduce a family of connections VA, depending on a complex parameter A, on M X
C* by

TH S Y A—0
VY :=VxY +zX oY, V43Y = —4+EoY+ ——Y,
7z 0z z
bl ~, 0
Vi— =V4 — =0,
Xaz %0z

where X and Y are vector fields on M x C* having zero component along C*.

Remark 4.5 Note that for the flat F-manifold, associated to a conformal Frobenius

manifold M, the connection %% coincides with the flat connection V on M x C* from
the paper (Dubrovin 1999, page 310).

Lemma 4.6 The connection V* is flat.
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Proof Direct computation analogous to the one from (Dubrovin 1999, proof of Propo-
sition 2.1). O

_ A differential form gy (1%, z)dt® on M x C* is flat with respect to the connection
V* if and only if the following equations are satisfied:

9% y
98— Cpaly
08y r—q°
2= :Z/{V + ,
aZ o é‘y z ;'Ol
where Z/{g = E“czﬁ. Denote by ¢ the row vector ({1, ..., ¢n), then the last two
equations can be written as
29
W = Z;Cﬂv (4-10)
d A—
—§=;(u+ Q), @.11)
0z z

where U = (Z/{g).

Let us construct a certain matrix solution of the system (4.10), (4.11). We first
consider Eq. (4.11) along the punctured line (t(}rig, e té\r’ig) x C* € M x C*. Let
U =U |’“=f§‘rig and consider the equation

_ T _
0z Z z

9z

for an N x N matrix &£. Then there exists a transformation &’ = G (z)&” with G(z) €
Maty v (O)[[z]], G(0) = Id, that transforms Eq. (4.12) to

o0&’ A—Q 1 _
—_— = — —IRT ) g 4.13
o — TR g (4.13)
n>1
where matrices R, satisfy [Q, R,] = nR, (see e.g. Dubrovin 1999, Lemma 2.5).
The fact that G(z) and the matrices R, can be chosen not to depend on A is obvious.
=T —

The matrix £’ = z*~9zR | where R := anl(—l)"’an, satisfies equation (4.13).
Therefore, the matrix & = zRz2~2(G7 (z))~! satisfies Eq. (4.12).

Using Eq. (4.10), we can extend the constructed function & on the punctured line
té\iig) x C* € M x C* to a function ¢ on the whole space M x C*. The
function ¢ has the form

1
(thigr -

¢ =R Y el ], (4.14)
d>0
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where Q¢ € Maty y(O(M)), ;" = Id and <Zd20 Qg’—lzd)

=Gy
- ~orig
Since the connection V* is flat, the function ¢ satisfies Eq. (4.11).

Equation (4.10) for a function ¢ of the form (4.14) implies that the sequence of
matrices Qg ,d > —1, is a calibration of our flat F-manifold. Equation (4.11) gives

r-0 - _
— DR | 29T | 4+ 3o+ D

n>1 d>0 d>0

_ Zgngd (U—l—)L_Q).

d>0 <

Taking the coefficient of 74, d > 0, in this equation, we get

d+1
QU=+ 1Qf +19f, 01+ ) (-D'RQ)T, d>0.
i=1

By (4.10), the left-hand side is equal to Eeda%gg. This completes the proof of the
proposition. O
A calibration of a conformal flat F-manifold will always be assumed to satisfy
property (4.9).
From Eq. (4.9) it is easy to deduce that

d+1

QY
EG?;:(d+l)QS+[QO,Q]+ZQS,iRi, d>—1. (4.15)
i=l1

Remark 4.7 We see that a calibration of a conformal Frobenius manifold is the same
as a calibration of the associated flat F-manifold, satisfying the additional properties
nQn~" = ()" and nRuy~ = (=1)"'R}.

4.3.3 Calibrations of Extensions of Flat F-manifolds

For an (N 4+ 1) x (N + 1) matrix A denote by 7x(A) the N x N matrix formed by
the first N raws and the first N columns of A.

Lemma 4.8 Consider a flat F-manifold, given by a vector potential (F', ... FN),
F® € O(M), and its extension with a vector potential (F', ..., FN*l) FN+1 ¢
O(M x U), where the open subsets M € CN and U e C are simply connected.
Suppose that the flat F-manifold M x U is conformal with an Euler vector field
E = Ziv:'ll (A —=qg9r* + r”)%. Let us also fix a calibration of the flat F-manifold
M, given by matrices Qg and R,.
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Then there exists a calibration of the flat F-manifold M x U with matrices Q and
Rn satisfying the properties

n(@ = Q8 mnvR) = Re. QN = RO =00 @16

Proof Consider the construction of a calibration of the conformal flat F-manifold
M x U from the proof of Proposition 4.4 in more details. So we consider the differential
equation

for an (N + 1) x (N + 1) matrix &, where (171)% = (Bl 1 <a, B <
orig

N + 1, and~§ = diag(q', ..., ¢V, A transformation £’ = é(z)gT, é(z)
Id + anl G, 7", transforming this differential equation to the form

ag/_ A—
0z

&,

n>1

where [é, En] = nl?,,, is determined by the recursion relation (Dubrovin 1999, equa-
tion (2.53))

(_l)n_lﬁy{ = Sn,lﬁlT + nén + [éa én]
n—1

+ 3 (Gomsda U = D! 'R Got) . nz 1. 4.17)
k=1

If one has cgmputed the matrices §i and I?i for i < n, then Eq. (4.17) deternlines
the matrix R,, and the elements (G,,)% with g% — g# # —n. The elements (Gn)%
with g% — g# = —n can be chosen arbtitrarily. Note that (l7 1)1%/14\:1 = 0. Therefore, if
(RO = (GoY¥it = 0fori < n, then (R,)5, = 0 and, choosing the elements
(Gn)él\H‘l with g% — qﬂ = —n to be zero, we can guarantee that (5,,)1;];1 =0.

Let Uy := iy (Uy) and Q := iy (Q). We know that the N x N matrices G, given

by (Zdzo Qg_lzd) ‘t"‘—t” ={d+3 5 GI'z")~!, together with the matrices R,
~orig

satisfy the equations
(D" 'R} =8, U] +nG,+10Q, Gyl

+ 3 (Gusda U = DRI Gk = 1.
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Therefore, therg exist matrices~§n and 5,1, n > 1, satisfyi~ng Eq. (4.17) and the

properties 7y (Ry) = Ry, 7y (Gy) = G, and (R)FY, = (G5! = 0. Note that

the property [é ,R,1 =nR, implies that the diagonal elements of R, are also zero.
We construct the matrices SNZS as a solution of Eq. (4.6), satisfying the initial condi-

tion (Zd>0 ﬁgflzd) ‘ =Ad+) - égz”)_l, and one can easily check that
= ta:tgrj =

N (G = QF and G5 = 0. O

Let us now apply this lemma to the conformal flat F-manifold, associated to a
solution of the open WDV'V equations, satisfying property (1.8) and the homogeneity
condition (3.1). We assume that the matrices Qg and R, give a calibration of the
Frobenius manifold. By Lemma 4.8, there exists a calibration of the flat F-manifold
M x U, given by matrices Qd and R,, satisfying properties (4.16). Consider the
matrices QO and define functlons ®pa,1<B=<N,d>-—1,by

Dpq =y 0. (4.18)

Lemma4.9 [. The functions ®g 4 together with the matrices R, give a calibration
of the function F°. As a corollary, Lemma 3.2 is true.

2. Equation (4.18) defines a correspondence between calibrations of the flat F-
manifold M x U, satisfying properties (4.16), and calibrations of the function
Fe.

Proof 1. Property (3.2) is obvious. Equations (4.8) and (4.15) for the matrices £~22
give exactly properties (3.3) and (3.4), respectively.
2. The fact that Egs. (4.8) and (4.15) for the matrices 522 together with Eqgs. (3.3)

and (3.4) give the required equations for the matrices 52 is obvious. O

4.4 Descendent Vector Potentials of a Flat F-manifold

Consider a flat F-manifold, given by a vector potential (£, 1 ,FN), FY ¢ OM),

a

and letus choose a calibration. One can immediately see that = 6%‘ , which implies
that Q‘i‘g —t%isa constant Let us make the change of coordlnates 1 Q‘i"g , S0
that we have now Ql 0 = 1%

Letv!, ..., vV be formal variables and consider the principal hierarchy associated
to our flat F-manifold and its calibration (see e.g. Arsie and Lorenzoni 2018, Section
3.2):

8 o
Lﬂ =9, (Q“’O
o

), l<a,B<N, d=>0. (4.19)
tY =vV

The flows of the principal hierarchy pairwise commute. Since Q‘;"g = 1%, we can
identify x = té.
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Clearly the functions v* = ¢ satisfy the subsystem of system (4.19), given by the
ﬂows . Denote by (v'°P)* € O(M )[[#Z 1] the solution of the principal hierarchy

spemﬁed by the initial condition
WP s =15
Recall that 7% = 14 — 6%18, .

Lemma 4.10 We have

~ 8(vt0p)ot

T+ 51 =0, (4.20)
d>0
9 top«
PN @ o, 4.21)
rlE

Proof From the property [1 = 4—1-d = 0, itis easy to deduce that the system

9v” 7 sl l<a<n
= v " S =NV,
a.L_i] d+1 8[y
d=0 d
is a symmetry of the principal hierarchy (4.19). Since, obviously, a(av:’Pl)"‘ 0= 0,
-l =
we get Eq. (4.20).
The rescaling combined with the shift along tll , given by
o o
T ?Zai, l<a <N,
R =0 Jat y
is also a symmetry of the principal hierarchy. We compute
(V1P o AP Lo
= 0 — 1 = 0 — 1 =0,
RN t; all Ti1=0 3l0
concluding that Eq. (4.21) is true. O

Define matrices Qg = (Q‘;:ﬁ;), p,q =0, by

q
Qb = Y (—neiaptitiq) | LD Z( HPiQi-lQl
i=0 i=0

prq—i-
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We also adopt the convention Qq’l = Qq_l = J4,0ld, g > 0. One can easily check
that

-1
def =) ~'aQ) =ae)- Q) . p.q=o0. (4.22)
QY 1
W_Qp +Qq 1> p,qz(), p+q21 (423)

Let

top\&.P .__ %P
(Q )ﬂ,q : Qﬂsq 17 > (vtoP)Y '

IQP)Y _ @yt

>
577 P , p,q,r >0.

Lemma 4.11 We have

Qtop o, p IRE.IC9)
)ﬂ 4 — (Q‘Op)‘;’g 1% The fact that the flows
(Q“)P)ﬁjq Qe )y " This
at] B azq
completes the proof of the lemma. O

Proof By (4.22), we have

of the principal hierarchy pairwise commute implies that

We finally define the descendent vector potentials (F Lp .. FN.p ), p > 0, asso-
ciated to our flat F-manifold and its calibration, by

FOr =Y (Pl e OM)II1Z,1l, p=0.
q>0

Let us also adopt the convention
For = (=P L ifp <.

Proposition4.12 . We have

oF*P
7 — (@) p =0, (424)
8.7-'
Zf+l +Fer~l =0, peZ. (4.25)
qz0
2. The difference .7-"’"0|,§1=0 — F is at most linear in the variablest', ... t".

Proof 1. We compute

s top
aFer 5 QDL (cponyp Lo 411 5~ AR )ﬁq?ry
oty =0 at’3 = arf
top\& P €q. ﬂ.Zl) top\ & P
@em s & oy
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For p < 0 Eq. (4.25) is obvious. Suppose p > 0, then we have

QF%P J(Qrr eq. (4.20)
LTy = 2 T Tl + LT @

420 =R A 4=0
QP 7 ~y topya.p ed- (4:23)
— _ PyY: P q-
- Z a(vtop)l + Z 1(9 )
q=0
= - Z(me’)izfiﬁl = 2@+ Y@
r>0 r>0 q>0
= — For-l
a0
oo D 0 _ 0%0 gio. 990 _
2. By the first part of the proposition, m (]-'“ |z;:()> = Qg Since ;5= = cgy,

the second part of the proposition is also proved. O

Remark 4.13 Consider a Frobenius manifold, its calibration and the associated flat
F-manifold. Then the functions %7 are related to the descendent potential F of the
Frobenius manifold by F*? = n** %

Consider a conformal Frobenius manifold together with a calibration and a solu-
tion F? of the open WDVV equations, satisfying properties (1.8), (3.1), also with
a calibration. We have the associated flat F-manifold with the vector potential

(771“ gt—ﬁ, N gtI; , F 0) Immediately from the definitions and Lemma 4.9 we see
that if (FL-P, ..., FN+Lp), p > 0, are the decendent vector potentials of this flat
F-manifold, then F%P = p% g],i, 1 <a < N,and FN*t1.0 = F° Therefore,

Lemma 3.3 follows from Pr0p051t10n 4.12 and Eq. (4.22).

4.5 Virasoro Constraints

We consider a conformal flat F-manifold, given by a vector potential (F L FNy,
F* € O(M), and an Euler vector field (2.1), its calibration, described by matri-

ces Qg, d > —1, and R,, n > 1, and the associated descendent vector potentials
(FLr, . FNPy, p>0.
Recall that R = ) ;| R;. Let A be a complex parameter and define

3 .
"‘::q“—i—)»—i, ,u::dlag(ul,...,uN).
Define the following expressions, depending on the parameter A:

A= Y DB (P = do R)lno1-di-a)), ()5,
d\>—1,dreZ

l1<a<N, m>-—1.
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Proposition 4.14 We have A}, =0,1 <o <N, m > —1.

Remark 4.15 For a Frobenius manifold the expressions A¢, have the following inter-

pretation:
-2
d Lyet T
Anhsyt =1 5 [Coef”( )|

where L,, are the Virasoro operators described in Sect. 2.2. Therefore, we consider
Proposition 4.14 as a generalization of the Virasoro constraints (1.4) for an arbitrary
conformal flat F-manifold.

Proof of Proposition 4.14 During the proof of the proposition, for the sake of shortness,
we will denote the functions (v'°P)* and (Q“’P)Z’g by v and Q%zs, respectively. We

\g/ill;ollso denote the function cg 11015 uropyo BY cg , and the function (1— q%) (v'OP)* 4
y E*.
Define an operator B = (Bg), depending on the parameter A, by

1
Bﬂ =E“cﬂﬂ8 +vx(k—1+q‘9)c = Etc "‘/53 +! (/Lﬂ+§>c;‘,‘ﬂ.

O

Remark 4.16 For a Frobenius manifold the operator B, _ == ;! coincides with the
recursion operator R from the paper (Dubrovin and Zhang 1999, equation (3.36)).

We begin with the following lemma.
Lemma 417 We have BRY = . (@, (i +d +3) + X7 @0, Ri).d = 1.

Proof Note that Bg = 0y (EH cfj ) +v) (A+q* —2)c;‘j 5 This follows from the property
a o
E® Cﬂ Y = (gP+q7 —q%)c g which is equivalent to the homogeneity condtition (4.4).

We then compute BQd = 0y (E“ ‘”‘ + A+ 0 - 2)S2d+1>, that, by Eq. (4.15),

implies the lemma. O

Denote by A,, the column vector (A}, ..., AN).
Lemma 4.18 We have

BAm - 3xAm+l

1
= (5 - u) Y DETQY Py — doy R)lnay -y % e m = —1,
dy,dy>—1

where e denotes the unit vector (1,0, ...,0).
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Proof We compute

,0
BiAw =3 (=D ([(Pu(u = do, Rlno1-a-ar)), Byg, - FH O
di1>—1,dreZ
Q%"
+ 3 (Pu(u+ 1 R)ln—g)] EO—1H
= av?

390{’?1 1
+ > DB (P — dy Rl 1—d—ay) EY L0 Q)

0
di>—1,d»>0 dv
,0
= Z (—1)d2+1 ([Pm (u — dy, R)]m—l—dl—dz)l/ BZQl;,dl . o
d1>—1,dr€Z
(4.26)
Q%0
,d1+1 d
+ D DT (Pu = o, Rlnot-ay-ar)y B — 520G
dy,dy>—1
4.27)

On the other hand, we have

oA = Y DT (Pt — do, Blnay-ar)), .25, - FH

v.d
d1>0,dreZ
(4.28)
+ 2 D (P — o, Rlay—ar), 9500, QU2
dy,dy>—1
(4.29)

Let us show that the expression in line (4.26) is equal to the expression in line (4.28).
Using Lemma 4.17, we rewrite the first one as follows:

3
Z (—l)d2+l.7'-v’d2 ([Pm(uv —da, R)]m—l—d] —dz)‘}: 0x ((MV +di + 5) Q$:21+1
di>—1,dreZ

di+1
,0 0
+) Qg,d1+1—i(Rf)y)
i=1

1
= Y (=netipe ([Pm(u —d, R) (u —dy+m+ 5)] ) 0220
m—1—dy—d>

di>—1,dreZ v
di+1

+ ) Y DI F (R Py — dy R) 1y -y )02 1
dy>—1,dr€Z i=1

= 2 (—1)d2+l-7‘—v‘d2([Pm(u—dz,R)<M—d2+m+l)+

2
dy=—1,dr€Z

14
+RPm(/'L_d2’ R):| > axﬂi:ghq
m—1—dy—d>

v
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= Y EDETE (P (= dy R 1y )] 0 g 1
di>—1,dreZ

and we see that the last expression coincides with the expression in line (4.28).
Using Eq. (4.15), we transform the expression in line (4.27):

Y. GO (P — dy R)ln-ai-ar)) ((M — 1 i+ DY
d=0,dr>—1

di+1
2R >9) iy

= Y DT (Pa =, R — A m—do+ Dlnay—ay)] g, Q16

di=0,dr>—1
di+1
+ Z Z( l)dﬁ_1 ([RP (mw—dz, R)|m— —d;— d2+l) Q(;/(()l] tQ‘l}gz
di>0,dr>—1 i=1
1 d.
:(a—u“> 2 D (P — o R)nii-ar)] 2 Q05
di120,dr>—1

14
1
SD DG ([me—dz,R) <u+m—dz+5>] ) 04,200
m—di—dy /

d1>0,dr>—1

+ Y DT (R (= day R)may—ar)), 55, Q467
dy,dr>—1

On the other hand, the expression in line (4.29) is equal to

14
1
> (=1 [Pm(u—dz, R) <u«+m—dz+—>} sz‘;?,lsz”dz
2 m—d|—dy

dy,dy>—1

+ Y DT (IRPu (i — dy R)may—ay) ) 2504, 210"
dy,dy>—1

As aresult, we get
B/L ax m+1

1
- <——Ma> Z (= 1)d2+1 ([P (= d2, R)|m—a dz) Qiglg‘)dz

2
d120,dr>—1

[
1
Z (_1)d2+1 <|:Pm(ﬂ—d2,R) (M+m—d2+§>] ) Q‘]j:g2
m+l-dy/

dr>—1
1
= (5 —M"‘> Z (=%l ([P (n—do, R)lim—a;— dz) Qy dIQ‘f gz’
dy,dr>—1
as required. .
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Form > n > —1 denote

Con = (=D®T'QY [Py = d2 R)ln-ay-a, 25
dy,dy>—1
Lemma 4.19 We have Cy, , =0, m > n > —1.

Proof We proceed by induction on n. By Eq. (4.7), we have

Co1= Y. (=D"HQ) QP =0, m=>-1.
dy,dr>—1
di+dry=m

Suppose that m > n > 0. We compute

1
Cnpn = Z (_1)dz+1§22,1 |:Pn_1(,u —dy, R) <y, —dy+n— 5)

dy,dry>—1
+RPy_1 (1 — da, R)} Q

m—d|—dy

1
= Z (—Dh®BHQ) [(u —m4n+d — E) Pu_1(n —dr, R)

d],dzz—l
+RPy_1 (1 — d, R)} Q.

m—d|—dp

Using property (4.15), we transform the last expression in the following way:

3 o d
(u —m+n— 5) Conot + Y (=D — G [ Pat (1 = o, R) -,

dy,dr>—1
di+1
dr+1 0 d
= 2 DB G [RiPiu = da B, s
dy,dry>—1 i=1
d+1o0 d
+ ) CDEMQY [RPi(n—da B, 0, Q0
dy,dr>—1

One can see that the last two expressions cancel each other and, as a result,

3 5 029
Cm,n =\u—m+n-— z Cm,n—l +E Wcm—l,n—l,

that, by the induction assumption, is equal to zero. The lemma is proved. O
Lemmas 4.18 and 4.19 imply that BA,, = 9;A;4+1 for m > —1. Introduce a

differential operator L :=)_,_ ?2{ 11 d%
- d
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Lemma4.20 We have LAY, = (—m — 1)AS _,, m > 0.

m—1’

260
Proof Using formulas (4.20), (4.25) and the formula % = 522_1, d > 0, we compute

LAL == Y (=D (Pt — doy R) 1 —ay—ar) ), g, F "
dlzo, dzEZ
— > CDEP e — da R i) Ry, P
di>=—1,dreZ
= Y EDPTAP (= dy = 1 R) = P — day R)ln2dy—ay) ], g, F.
di>—1,dreZ

Since P, (u—dry— 1, R) — P,(u—dz, R) = (—m — 1) Py,_1 (i — d3, R), the lemma
is proved. o

Lemma 4.21 We have AJ,

:0=0,m2—1.

2
Proof During the proof of this lemma we return to the initial notation, where Qgs is

a function of #!, ..., tV. Note that, by Eqgs. (4.24) and (4.25), we have .7-"0‘”’|,i1:0 =

1
Q‘f (')’ + , p > 0. Therefore, we have

Al o= D0 (Pulet+ LR -1y 25
B d>—1

= Y AP+ 2, R)lm1-a) | 25
d>—1

,dr+1
+ Y DT APL (= dy, Ry S, 20T
dy>—1,d>>0

,d
= — Z (_l)d2+1([Pm(l/L +1—d, R)]m_dl_dz);:gz;’j:gl Qlll-’oz
di.dr>—1

- - (Cm,m)?’ ;ilzo )
>+l

which, by Lemma 4.19, is equal to zero. O

Let us now prove that A%, = 0 by induction on m. We have

S — _1\+102.0 ryd _ L a0~ _ Lo 0 eq.UiZS)
A% = Y (Bl Frd =g 4 N el = 4 L0 T2 0,
d>—1,dreZ d>0
dy+dy=-2

Suppose that m > 0. Let us express AY, as a power series in the variables ’tf defined
by

5. 1 —1h. itd =0,
S P ifd > 1.

@ Springer



Open WDVV Equations and Virasoro Constraints 173

From the induction assumption, Lemma 4.20 and the fact that BA,,—; = 0,A,, it
follows that

A
Z d+1 ,.,, =

d>0

We also know that A7, [x—o = 0. We see that the proof of the proposition is completed
by the following lemma

Lemma4.22 Let f be a formal power series in the variables ?3 such that
d
Zdzo;gﬁ a’,{;ﬁ =0and f|‘3§=o =0.Then f =0.

Proof Denote by P the set of all finite sequences A = (Ay,..., A7), >0, %; € Z,
such that Ay > --- > A; > 0. We also denote /(1) := [ and |A| := >_ A;. Then we can
express the power series f in the following way:

f = Z @ )LNt)J . '/t;{\i/, @ AN € (C,
AL ANep
where for an element A = (A1, ..., ;) € P we denote 7% := ?" . ’7" . Note that if
. . -~ [)
we assign to a monomial 7, - - 7V, degree Y |A|, then the operator Z 450 td 1w

becomes homogeneous of degree 1. Denote by V,; the subspace of (C[f:‘ 1] spanned by

monomials of degree d. Using the lexicographical order on monomials /t;ll sty
is easy to check that the map Zk>0’t'?+1 av?ﬁ : Vg — Vg4 is injective for d > 1; and
- k

for d = 0 its kernel consists of constants. This completes the proof of the lemma. O

4.6 Proof of Theorem 3.4

Let us apply Proposition 4.14 to the flat F-manifold associated to the function F°. We
choose A = 3%5, then we have

AN =S ) (P (@ = d Blo1-ay-ay), O,
di>—1,dr€Z

Since RS | = 0, we have ([Pp(fi — d2. R)ln—1-d,-a) )y, = Ofor 1 <y < N.
Therefore,

0F°

> =L g
"oty

AN+ Z Z (—1ht! ([Pn(Bt — da, R)ln-1-4, dz)

d1>0,dr,eZ 1<y ,u<N

+ 3 (P +d + 1 B)lnar)) 778

d>0
N1~y 0F°
+ 3 (P +d+ 1 R)sas), I
d.k=0 Osi
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~ ~ N+1 0F
+Y > D (P =k R, o
k>0 1<a,u<N k
dr+1 ~ >3 N+1 0F? au 0F
+ Y Y 0P (P = o B 1-ay-ar), v ey
dy,dr>0 1<a,u<N 1 dy
~ ~ N+1
+ D DR = dy Bl 1-di—as) sy P T
diz—1,d2=0
. L ot 2FeTlFo
The first term here is equal to Coef-1 | ===~ |- The next four terms cor-
eE €

respond to the four summations in the expression (3.5) for the operators L,,. Since
pLN + = %, the last term is equal to zero. Thus,

Nl Emee_2f+€_'.7-—"
A, = Coef -1 preroverTal 0,

that proves Theorem 3.4.

5 Open Virasoro Constraints in All Genera

There is a canonical construction that associates to a given semisimple confor-
mal Frobenius manifold and its calibration a sequence of functions Fo(t)) =
F, Fi1(t}), Fa(t}), ..., such that for the differential operators L,,, given by (2.3),
Eq. (1.5) hold (Givental 2001, 2004; Teleman 2012). If one considers the Gromov—
Witten theory of a given target variety, then the functions F, (¢}) are the generating
series of intersection numbers on the moduli space of maps from a Riemann surface
of genus g to the target variety.

We conjecture that, under possibly some additional assumptions, there is a
canonical way to associate to a solution F° of the WDVV equations, satisfying
properties (1.8), (3.1), and its calibration a sequence of functions F (th, Sx) =
Fe, Fi (th, Sx), Fo (t*SN, S4), - - ., such that for the differential operators L,,, given
by (3.5), the equations

2¢-2 g—1 1o
EnggZOS Fetdig=0¢ ¢ =0, m>-—1,

are satisfied. At the moment the conjecture is verified only in the case, corresponding
to the intersection theory on the moduli space of Riemann surfaces with boundary
(Pandharipande et al. 2014; Buryak and Tessler 2017).

As a step towards the proof of this conjecture, we verify the following commutation
relations between the operators L,,.

Proposition 5.1 We have [L,,, L,] = (m — n)Lpyqp, m,n > —1.
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Proof Denote the parts of the expression for the operator L,, from lines (2.3), (2.4)
and (2.5) by L,ln, L,%1 and L%, correspondingly. One can see that the operators £, can
be written in the following way:

3
Lo = Lo+ LY 4+ L2+ L3+ L3+ 6718, 15+ 8mo>

4
+Z(d+m+1)!s 0 +83(m+1)! 0
d! @S Sdem 4 Osmt

d>0

m N+1

1 -1 > i

e I (| L

d>0  1<a<N i=0 o
u,"‘:—%—m—d

m N+1 5
(]’[(§+k+1—i)> ?‘8—
i o

W
™
]

m N+1 52

Ly=¢ Y Yoo (=p®t (]‘[<R+d1+1—i)) .

di.dy>0  1<o,u<N i=0 o di %%,
ua=%—1n+d1+d2

Let us first prove that [£L_y, £,,] = (=1 —n)L,_1, for n > 0. For this we compute

n N+1
[Loi, L= (=1=mLy1, (Lo, Lyl=e"Y > (]‘[(E—i)) T,
i=0 o

d=1 1<a<N
n jfnfd
(GR))
" N+1 5
2 jog .
L. L31= ). > <H(R+k+1—z)) ?“87 (5.2)
d>1,k>0 1<a<N i=0 o
,u“:% —n—d+k
n N+1
-y (]‘[(ﬁ+1_i)) b (5.3)
d>0 1<a<N i=0 o
;L"’:%—n—d

n N+1
-3 > (]‘[(E+k+2—i)> ?”ai (5.4)
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N+1
VENHETEEDY (H(R—z)) 7 (5.5)

" N+1
~ a
+e) D <—1>"+‘<H<R—i>> s (5.6)
i=0 @

k>0 1<o,u<N
“:%—n-kk

,, N+1 )
~ 0
L_ ,£4 &2 —1)htl R+di+1—i o
(£ > > (=D H( | ) 752,007
dy,dr>0 I<a,u<N i=0 o 2

p."‘=%fn+d1+d2

(5.7)
u Nl
+y ) (]‘[(§+d+1—i)) ?’8— (5.8)
d>0 1<a<N i=0 o
/L“:%—n-‘rd

" N+l
~ ad
- ) u (H(R +1- i)) v (59)

d>0 1<a,u<N i=0
/L“:%—n+d

" N+ 52

R SR SRRl CITRERY R

B0 1< p=N i=0 « S Ol
p.“:%ﬂl+d1+dz

(5.10)
and
d+n+1)! d 1 (d+n)! 9
Ly, =3 —1- .
|: ! dg(:) d! o 35d+n:| n0e s + ( n) dg(:) d! o asd+n—l
3n+1)! 0 3 3n+1)! 0

Lo et P o

4 08y—1 2 4 Osp—2

It remains to note that the sum of the expressions in lines (5.1), (5.3), (5.5) is equal
to (—1 —n)L} the sum of the expressions in lines (5.2), (5.4), (5.8) is equal to
(-1 —n)ﬁn I
and the sum of the expressions in lines (5.7), (5.10) is equal to (—1 — n)/jn 1

Let us now prove the proposition for m, n > 0. The commutator [L,,, £,] has the
form

n—1°

the sum of the expressions in lines (5.6), (5.9) isequal to (—1 — n)L

n—1

(L. Ly] = (m — n)Lm+n + 571 Z Z Aa,d;g

d>01<a<N

d
+ Y > B(,(,,p8 +chs,,E+D

,q=0 1<a<N P,q=0
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d Gl o
Z Z E® atd+2>: Bsd

d>01<a<N

9
2
el 2 2 Hapqataasq zlpqas,,asq

P,q=0 1=a<N

Let us consider separately the terms on the right-hand side of this expression.
1. Term =1 D450 2l<a<N Aa.dly:

e N Awdly =LY L+ Ly, L3 = [Ly. L] — [L). £;)).

d>01<a<N

We compute

m ﬁ n N+l
(L. Lyl=e"" )" > > (l_[(R—n—i)> (]‘[(ﬁ—i)) .
i=0 o« \i=0

d.k>0 1<a<N 1<<N P

o

nw :—%—m—n—d /Ug:—%—n—k

Similarly, we get

m B n N+1
[Ly. Lol=e"" > > ([([)(R—n—i)) ([([)(ﬁ-i)) 7.

d>0, k<0 1<a<N 1<B=<N B

o 1

u¥=—5—m—n—d uﬂ:—%—n—k

As a result,

m-+n N+1
(L. L+ (L, Lo1=e"" >0 Y ((ﬁ—@]‘[(ﬁ-i)) 7,
d>0 l<a<N i=0 o

u“:—%—m—n—d

which finally gives
(Lo L+ (L, £31 = [L7, £,] = [Ly, £3,]

m-n N+1
=m-ne"Y" > (H(E—i)) = (m—nLl
i=0 o

d=0 1<a<N

nr=— % —m—n—d
as required.
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o 0 .
2. Term Zp,qZO ZISaSN Bl plp s

0 d+n+1)! 9
Do D Blyiys =1L L1 | L) 5
q

!
p.q>01<a<N =0 d! 054+n
+ Ly L31=
2 M2 2 (d+m+1)! B
— L Ll = L) ar Y saem
d>0
—[LL, gty
We compute
2 2 2 d+n+1)! ]
Wi £l ] L Z d! Sd 0Sd4n
d>0
d.k,1=0 1<a<N 1<B<N+1

p=%—m-n—d+k pf=1—nik-1

m /3 n N+1 a
x R+k+1—-n—i R+k+1—i o,
(1_[( +hk+1—n z)) (]_[( +k+ z)) e
=0 o i=0 /3

and then check that this sum, after replacing the summation leo by the summation
>,_0» is equal to the commutator [L),, £}]. This gives

d 1!
2,21+ | 2, Y R0 0 e

= 354 tn
m+n N+l 3
= > ((ﬁ+k+1—n)]_[(1?+k+1—i)) ?ua—
d k>0 1<a<N i=0 o

p,"‘:%—m—n —d+k

q o9 ;
Asaresult, 3, oD <4<y Ba plpag = = (m —n)L2,,,, as required.
q J .
3. Term ) p.q=0 CpSp 3s;

Zcppa _ Z(p—l—m—i—l)!sp d ’Z(q—l—n—i—l)!sq 0

P =0 p! 0Sprm =0 q! 08g+n
d+ 1)! bl
:m—n)Z( m+n+)Sd ,
=0 d! 0Sd+m+n
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as required.
4. Constant D:

! £3] where

n’

N+1 n N+1
Ly L= > (H(R - z)) n“’ (]‘[(ﬁ— i)) :
i=0 B

=cl. 1 —1c

d>0 1<a,B<N =0

o _

w 7—%—m—d
p.ﬁ=%fn+d

Because of the property un + nu = 0, the last expression is equal to zero unless
m + n = 0, which implies that m = n = 0. Thus, D = 0, as required.

o, d 0 .
5~Te”m82d30215a5NE Tk

ey Y E"d =Ly LV +IL;,. L] = [Ly. Lo] — (L. L)),
d>01<a<N

We first compute

n N+] m ﬁ
~ d
3 _1\d _ 1% i —
2 L3 =¢ Z > =D (H(R 1)) 1 “(H(R—f—n—i—z)) 7
d.k>0 1<a,B,y<N i=0 y i=0 o Y
uﬂ =m+n— k—:
MD(:*%Jrnfd

n N+1 /o y 9
=ey > (=D (]‘[(R—i)) (]‘[(R—n—i)) " —.
dk=0 1<a,py<N i=0 y \i=0 «
[,Lﬁ =m+n—k— %
MV:%—rH—d

5.11)

where the second equality is obtained using the property nR;n~' = (—=1)'"'RT". Then
one can compute that the commutator [L ] is equal to the expression in hne (5.11)
with the summation ) ;. replaced by Z J<o- This implies that

(L. L1+ (L. Lyl=e> Y (=D

k>0 1<a,B<N
M5=m+n—k—%

N+1

n - m - 8
R-D[[(R-—n—i b
(E)( Z)EJ( n l)>a 0 7
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and, as a result,

(L2, L3V + (L3, chy =112, 23— (L3, )]

m+n N+l 9
_ _ _1h\k+1 D B _
=m-mey. Y (=D (H(R z)) n® 7 =(m—n)L>
k>0 1<a,<N i=0 o k
;,Lﬁ:m-kn—k—%

m-+n>

as required.
6. Terme ) ,-q G?

3&‘,1

0 3 1)! ad
EZGd =(m—n)e m+n+D
d>0 4 0Sm-+n—1

Y Vo5 I Vi ond R Vsl R VL s

We compute

L. Ll=eY (D" >

d>0 1<a.f<N
n=—t4n—d
wf=1—n+d
m N+1 n N+1 5
< [T®R+m+n—i) e ([TR -0 S
0 0 0Sm4n—1
1= o 1= /B

A term in this sum is equal to zero unless u% < % & d>n—1and uf <
1

5 ¢ d < n, that never happens. Therefore, [E ] 0, and, similarly, one
can check that [£), £%] = [£2,£3] = (£}, £}] = 0. Hence, szd>0G

_ 3(m+n+1)! il
(m —n)e=—7—"—~ T 8 requ1red

2
7. Term ¢ Z ,q>0 Zl<a<NH [”83‘

0sd -

& Z Z 015954

p.q=01<a<N

d+n+1)! 0
=Ly, Lol +1L,, Lo]+ c;‘n,z( L
= d! 3Sdn

d o8
SR o -k ) - | op Y D
d=0 d! 8Sd+m
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We proceed with the computation

n N+1
(L. Lol=¢" > (=1 > (]‘[(R +di+1- i))
dy,d»,d>0 Sot B.u<N i=0 o
m —>7n+d1+d
;1./3_ 5tm+n—di—dy

m B 32
o (H(R—l—d1+n+i)) —

i=0 . 95,914,

1

Using the relation nR;n~' = (—1)I~! Rl.T, we convert this sum to

PBNCOLNDS
dy,dy,d>0 1§a§N+1
nw _j—n—i-d1+d
Mﬁ_—*-‘rm-i-n —di—d;

n N+1 m o 82
x<]_[(§+d1+1—i)) (]‘[(13+1+d1—n—i)) [ —
o W

i=0 i=0 asdlati
(5.12)

0Sd+n
equal to the expression (5.12), with the summation »_ 4>0 replaced by > g0 Asa
result,

Then one can check that the expression [Lfn, C,%] + [ Zd> (d+n+l)'5d g ] is

d+n+1)! 9
(L2, C 4103, 221+ | 2t Z( > )Sda
4=0 : Sd+n
m+n N+1
e Y (=pnH! > ((R+d1+1—n)1_[(R+d|+l—i))
d1,d2=0 Mﬂ=*%+m+n7d17d2 i=0 "
82
x ,7/4;‘3
054,01,

i i 2 apig_ 9 _ 4 .
which gives &= > 0> <qoy H*P qat;’,‘_asq = (m —n)L,, ., as required.

92
8. Term & 2pg=0 17 _dspasq

) 4 p2 4 p2
E 174 LC,, L L, Lol
et as,,asq =1 nl = Lo L]
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where

m N+1
(L. Ll =€ ) NG Vian (]‘[<R +p+1 —i))
p,q,d>0 1501 B<N i=0 o
i —§7m+p+d

wh=tntq—d
n N+1 52
xnP (H(R+q +1 —i)) T
i=0 B pd

A term in this sum is equal to zero unless u* < % S p+d <m-—2, uﬂ <

%@q—din—landu"‘—i—,uﬂ=O©p+q=m+n—2.Theﬁrst

two condition give p +q < m 4+ n — 3, that contradicts the third condition. Thus,
&2 Zp 420 1P avp o, = = 0, as required. This completes the proof of the proposition.
O

6 Examples of Solutions of the Open WDVV Equations

In this section we present several examples of solutions of the open WDV'V equations,
satisfying conditions (1.8) and (3.1) and, thus, Theorem 3.4 can be applied to them.

6.1 Extended r-Spin Theory

Let us fix an integer r > 2. There is a conformal Frobenius manifold that controls the
integrals of the so-called Witten class over the moduli space of stable curves of genus 0
with an r-spin structure. This Frobenius manifold has dimension r — 1 and is described
by a potential F"Spin(tl, e, t’_l) with the metric 7, given by g = a+p,-, and the
Euler vector field

r—1 1

r+l—o , 0 ~— o OF -spin  2r+2
EZZ ; Y ZE e = F"-spin.

a=lI a=l1

The conformal dimension is § = “=2. The potential F"PI" is a polynomial in the vari-
ablest!, ..., . For more detalls, we refer a reader, for example, to Pandharipande
et al. (2019), Buryak et al. (2019).

The generating series of the descendent integrals with Witten’s class over the moduli
space of curves of genus 0 with an r-spin structure gives the descendent potential
TSP (1), corresponding to our Frobenius potential F7-*P™", This descendent potential
corresponds to a calibration with all the matrices R; being zero. Thus, the Virasoro
operators L,, are given by
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L Z (o + ar)m+1 o 5ol ) 9 n i amﬁm 52
m = +1 a a, o Tl
i<az1 Marm 2 52y " o1ty
a>0 a+b=m—1
1 B r2—1
+5m,71_2 Z tgt() +5m,0 s
2¢ Nl 24r

where we use the notation

g iGe+i=n,ifn =1,
. 1’ ifn:O,

for a complex number x and an integer n > 0.

In Jarvis et al. (2001) the authors considered a generalization of the r-spin theory,
that we call the extended r-spin theory, and in Buryak et al. (2019) the authors noticed
(see Remark 1.1) that such a generalization produces a solution F&'(s!, ... ") of
the open WDV'V equations, satisfying condition (1.8) and the homogeneity condition

r—1
ZEQBFCM . 1— (StraFe"‘ _ 3— BFext_
= orv 2 at” 2

Recall that we identify " = s. Note that the function F* also controls the open -
spin theory, constructed in [BCT18]. The generating series F*'(¢}) of the descendent
integrals in the extended r-spin theory is the open descendent potential, corresponding
to the function F°* and a calibration with all the matrices Ei being zero. Thus, the
associated open Virasoro operators L, are

@+m+1), 9 | 3m4D 9
Ly=L 1)
=Lt ) G T4 o

m—1

—1,r 3
+5m’_18 t +8m’OZ‘
d>0

6.2 Solutions Given by the Canonical Coordinates

Consider a conformal Frobenius manifold given by a potential F = F(t!, ..., tV), a
metric 77 and an Euler vector field E. Suppose that the Frobenius manifold is semisimple
and let u 1, ..., u! be the canonical coordinates. It is well-known that in the canonical
coordinates the Euler vector field E looks as

N 9
E = ul + a' —_—,
D +ahos
i=1
for some constants a’ e C.
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Proposition 6.1 Forany 1 < k < N the function F° = uF - s satisfies the open WDVV
equations together with condition (1.8) and the homogeneity condition

o T S o5 2

N
aFo 1-58 9F° _3-5
Z ~_F°+ds. 6.1)

Proof Recall that the canonical coordinates satisfy the equations

auf  duk duk
v —_— ——

C“ﬁat" =@ 3 Il <a,B<N, (6.2)
which immediately imply Eq. (1.7). Equation (1.6) for the function F’ = u - s are
equivalent to

32uk 3%uk qu* , %k 32uk uk

re———t ————— = y—— + ——— —. 6.3
“a3rvarr  oreaif o YPamare | airarl ar ©3)
Differentiating Eq. (6.2) with respect to 1V, we get

3C¢‘)},ﬁ uk Zuk duk " quk 9%uk N 92uk
—_— = —t ———— - —.
Aty arv  arrar 9P 9t arvarP P orvary

ac’, guk
Combining this equation with the similar equation for 81‘);/3 BLtt" and noting that
ac’ ac’
v _ “Tap
5 = By , we get Eq. (6.3). |
Property (1.8) follows from the fact that 7% 2= =y, ﬁ The homogeneity prop-
erty (6.1) is obvious. O

6.3 Open Gromov-Witten Theory of P!

Consider the 2-dimensional Frobenius manifold given by the Gromov—Witten theory
of PL:

1
F(t,n) = Etlztz + €.

The Euler vector field is £ = l1387| + 23372 and § = 1. Let us find all solu-
tions F(t1, t2,s) of the open WDVV Egs. (1.6), (1.7), satisfying condition (1.8)
and the homogeneity condition

8F” oF°
+2

= F° + Dit| + Dots + Ds + E.
311 ot

We consider such solutions up to adding a constant and linear terms in the variables
t1, tp and s. Then we can assume that D; = 0. The general form of such a function F*
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is F = t1s + e2 ¢(1p, 5), for some function ¢ (12, s), satisfying 2e?2 % = Drtr +

~ ~ T
Ds + E. Making the transformation ¢ +— ¢ — (D2(t2 +2) + Ds + E)e’%, we come
to a function F? of the form

FO=tis+e3(s), (6.4)

where the function ¢ depends only on s. Such a function F¢ satisfies the homogeneity
property

oF° oF°
1 +2 =F°
an ot

t

and condition (1.8).

The system of open WDVV Egs. (1.6), (1.7) for a function F° of the form (6.4)
is equivalent to the equation (¢')> — ¢¢” = 4 and, solving this ordinary differential
equation, we get the following two-parameter family of solutions:

FCy=tis + 207 "e? sinh (a(s + B), a peC.

o

For o = 0 we get the functions

s = (tls + 20 "% sinh (a(s + ,B)))’ J=nsE 23 (s + B),

o=

. . . . . 2
which correspond to the solutions given by the canonical coordinates u; = t| + 2e?

) . .
and up =t — 2e2 of our Frobenius manifold.

Remark 6.2 We believe that the function F; z with a correctly chosen calibration
and the corresponding open descendent potential should control the genus O open
Gromov—Witten invariants of P!, which don’t have a rigorous geometric construction
at the moment.
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