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Investigation into using resonant 
frequency measurements to predict 
the mechanical properties of  
TiǦͼAlǦͺV manufactured by 
selective laser melting
Mark AǤ Todd  ͷǡ͸ǡ James Huntͷǡ͹ & Iain Todd  ͷ

There is a need to qualify additively manufactured parts that are used in highly regulated industries such 

as aerospace and nuclear powerǤ This paper investigates the use of resonant ultrasound measurements 
to predict the mechanical properties of TiǦͼAlǦͺV manufactured by selective laser melting using a 
Renishaw AM ͸ͻͶǤ It is Ƥrst demonstrated why R͸ should not be used to assess the predictive capability 
of a modelǡ before introducing a method for calculating predicted R͸ǡ which is then used to assess the 
modelsǤ It is found that a linear model with the resonant frequency peaks as predictors cannot be used 
to predict elongation at failure or reduction in areaǤ Howeverǡ linear models did demonstrate better 
predictive capabilities for Youngǯs modulusǡ yield strengthǡ and especially ultimate tensile strengthǤ

he use of additive manufacturing is rapidly increasing, with an estimated increase in the value of parts produced 
of 32.4% in 20171. Highly regulated industries such as aerospace and nuclear need to be able demonstrate that 
parts manufactured using additive techniques achieve satisfactory performance when compared to parts made 
by more established processing routes.

Process compensated resonant testing (PCRT)2 is a method of non-destructive evaluation (NDE) that meas-
ures the acoustic resonance of a part over a certain spectrum, and compares the resonant frequency peaks of the 
part to a training library of parts in order to classify the measured part using the Mahalanobis-Taguchi System3.

Sidambe et al.4 described a “strong correlation” (R2 = 0.8384) between one of the resonant frequency peaks 
and the 0.2% yield stress of Ti-6Al-4V parts manufactured using metal injection moulding (MIM); the resonant 
frequency peaks were measured using PCRT equipment. Sidambe proposed that a linear model using a single 
resonant frequency peak as the predictor could be used to make predictions about the 0.2% yield stress. hey then 
used their model to predict the 0.2% yield stress of a test population, and found that the error between predicted 
and experimental results was less than 10%. It should however be noted that error of 10% appears to be greater 
than the maximum diference observed between the experimental results in their test population.

he aim of this study was to investigate whether the shit in resonant frequency peaks could be used to make 
predictions about the mechanical properties of Ti-6Al-4V parts manufactured using selective laser melting 
(SLM), with a view to using this technique to non-destructively evaluate additively manufactured components.

his article starts with an explanation of the experimental method used for obtaining the tensile test data 
(response variables) and the resonant frequency data (predictors). Next, a brief introduction to the statistical 
concepts of leave one out cross-validation (model selection), predicted R2, and the lasso (variable selection) are 
presented for the reader who is unfamiliar with those concepts. his is followed by a description of the method 
used for creating the statistical models. he experimental results are then presented, followed by the results of the 
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statistical models and a discussion of those results. he inal part of this work gives the authors’ conclusions about 
the usefulness of resonant frequency data in predicting tensile properties.

Method
Experimental methodǤ Selective laser melting. A batch of 60 mechanical test blanks was additively man-
ufactured using a Renishaw AM 250 selective laser melter. he AM 250 uses a 50 ms pulsed ytterbium ibre laser 
of wave length 1060 nm. As these parts were primarily intended for fatigue testing, the part geometry was based 
on the 12.5 mm2 cross section FCE type A cylindrical fatigue specimen detailed in BS EN 6072:20105. To enable 
the parts to be machined to inal size before mechanical testing, extra material was included by adding an ofset of 
0.5 mm to all surfaces in the CAD model. he parts were designed around a fatigue geometry to support another 
element of work under this grant, however tensile tests were used in this part of the work due to signiicantly 
narrower distribution of results obtained by tensile testing than by fatigue testing.

Following creation of the 3D CAD representation of the test geometry the ile was processed using Materialise 
Magics. Specimen samples were located on the build plate as indicated in Fig. 1. Individual specimen ID’s were 
extruded on to the top surface of each specimen. hese specimens required no additional support structures, 
however, the bottom face was extruded by 0.5 mm to facilitate removal via wire electro-discharge machining 
(EDM) following completion of the build.

he parts were manufactured using a 30 µm layer thickness, and a meander scan strategy with a 67° hatching 
direction rotation between layers. he laser power, exposure time, point distance, and hatch distance values are 
given in Table 1. he mean travel speed of the laser spot is inferred by the exposure time, point distance, and 
inter-point travel speed. he powder used was Renishaw Ti-6Al-4V ELI-0406 powder, which has a nominal par-
ticle size range of 15–45 µm. he parts were built with the longitudinal axis parallel to the machine Z-axis.

he parts were removed from the build plate using EDM prior to annealing to enable resonant testing in both 
the as built and annealed conditions. he annealing heat treatment, which was performed in a vacuum furnace, was:

 1. Evacuate the chamber.
 2. Heat to 350 °C in 1 hour.
 3. Hold at 350 °C for 1

2
 hour.

 4. Heat to 850 °C in 1 hour.
 5. Hold at 850 °C for 1 hour.
 6. Turn-of heating and allow to furnace cool.
 7. Turn-of the vacuum pumps once the temperature was below 100 °C.

Resonant frequency measurements. he resonant ultrasound testing was performed using a system provided by 
Vibrant GmbH (Elz, Germany), which was designed for PCRT. he measurement system included a piezoelectric 
driver for inducing the resonance and two piezoelectric sensors for measuring the resonance. he driver and sensors 
were brought into contact with the part by placing the part in a purpose built jig that was provided with the measure-
ment system (see Fig. 2). he primary purpose of the jig was to ensure consistent placement of the driver and sensors.

Figure 1. Screen shot from Magics showing specimen layout and Cartesian axes.

Hatching Boarder scan

Laser power 200 W 100 W

Exposure time 50 µs 40 µs

Point distance 75 µm 45 µm

Inter-point travel speed 5 m/s 5 m/s

Hatch distance 65 µm 60 µm

Table 1. Selective laser melting key build parameters.
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Resonance ultrasound measurements were taken from the parts in the as built state and ater annealing. he 
frequency scanning ranges were selected by the RUT instrument manufacturer as being from 500 Hz to 226.5 kHz 
for the as built parts, and from 500 Hz to 600.5 kHz for the annealed parts. he measurement of 8 resonant fre-
quency peaks was selected by the instrument manufacturer for parts in the as built state and 17 for ater anneal-
ing. Further details about the instrument manufacturer’s process for selecting the resonant frequencies can be 
found in Sloan et al.2. he driver and sensors were controlled by the instrument manufacturer’s data acquisition 
system, which was in turn connected to a personal computer (PC) running the manufacturer’s Quasar/Galaxy 
sotware. he Galaxy sotware analyzed the sensor data to identify the resonant frequencies of the part. When a 
peak could not be identiied during data collection the sotware issued a warning message, in which case the scan 
was repeated for that part. his would sometimes enable the identiication of all peaks, but would other times still 
lead to incomplete results, in which case the scan was repeated for a third and inal time.

Tensile. To assess the mechanical properties of the samples, fifteen parts were sent to Exova Ltd 
(Middlesborough, UK) for room temperature tensile testing according to ASTM E86. he samples were machined 
by the testing company prior to performing the tensile testing. he machined sample dimensions are according 
to specimen 4 of igure 8 in ASTM E86 for test specimens with a gauge length four times the diameter (gauge 
length = 16 mm, diameter = 4 mm).

Statistical methodǤ Introduction to cross-validation, predicted R2, and the lasso. An oten used statistic to 
assess the goodness of it of a statistical model, and to select between diferent models, is R2. R2 is the ratio of var-
iability in the response variable that can be explained by the model to the total variability in the response variable. 
he total variability in the response variable is measured by the total sum of squares (TSS). he variability that can 
be explained by the model is equal to the TSS less the residual sum of squares (RSS) (1), where yi is the value of the 
ith response variable, ŷ

i
 is the predicted value of the ith response variable, and y  is the mean value of the response 

variables.
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R2 is oten seen as being relatively easy to interpret, as it always takes a dimensionless value between 0 and 1, 
with 0 indicating no it whatsoever, and 1 indicating a model with a perfect it to the data. However, a signiicant 
problem with R2 is that the measure improves in the presence of over-itting. Over-itting occurs when the model 
complexity is increased in an attempt to reduce the residual error that is due to noise. Unfortunately, by reducing 
the residual error for the training set, this can increase the error when making predictions. For example, consider 
an experiment to measure the thermal expansion of a material over some range where the expansion is actually a 
linear function of temperature (l = 8.64 × 10−6 ⋅ T + 1), but where the length measurement is subject to a Gaussian 
error. Table 2 shows some randomly generated data for such an experiment.

Due to the Gaussian noise in the measurement of the length, the residual error can be reduced by over-itting. 
Figure 3 shows the case where both a linear model and a 9th order polynomial have been itted to the ten data 
points of Table 2. he linear model (Eq. 2) has an R2 value of 0.9447, indicating an excellent it.

= . × ⋅ + .−l T9 67757 10 0 999974 (2)6

However, the polynomial model (Eq. 3) has an R2 value of 0.9996, indicating an almost perfect it.

Figure 2. Resonance ultrasound testing jig.
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Using the R2 measure, the polynomial model would appear to be better. But it is important to note that whilst 
the polynomial model is indeed a better it for this training data, if this model is used to make predictions of sam-
ple length based on temperature, then on average the linear model will perform better. For example, the observed 
value at 30 °C is 1.000419 m. he polynomial model predicts a mean sample length of 1.000424 m at 30 °C. he 
linear model predicts a mean length of 1.000264 m at the same temperature. he true mean length of the under-
lying model used in the simulation at 30 °C is actually 1.000259 m. So whilst some repeat measurements at 30 °C 
may be closer to the value predicted by the polynomial model, on average the measurements at 30 °C will be closer 
to the value predicted by the linear model.

here are a number of available statistical techniques (see James et al.7 for some examples) that can be used to 
assess the ability of a model to make predictions and help the designer to avoid over-itting; one class of methods 
is cross-validation. In cross-validation the training data is irst split into groups. hen all but one of the groups are 
used to it the statistical model. he excluded group is then used as a test set to assess the performance of the itted 

Temperature (°C) Observed length (m)

0 0.9999374

10 1.0001048

20 1.0000892

30 1.0004187

40 1.0003786

50 1.0003500

60 1.0005671

70 1.0006786

80 1.0007488

90 1.0007471

100 1.0010152

Table 2. Randomly generated data for the measured length of a heated sample with Gaussian measurement 
noise.
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Figure 3. Computer simulated measurements from a linear system with Gaussian noise. he linear model is an 
accurate model for the system, but is not able completely remove the residual error. he polynomial model is a 
poor approximation to the underlying regression, but through extreme over-itting is able to almost eliminate 
the residual error.
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model. he excluded group is then returned to the training set, and the process repeated with a diferent excluded 
group. his process continues until all groups have been used as the test set once. If the training data is split into 
groups of one, the method is referred to as leave-one-out cross-validation (LOOCV).

One metric that can be calculated using leave-one-out cross-validation to assess the predictive power of a 
model is the prediction sum of squares (PRESS)8. he PRESS is calculated as the sum of the squared diferences 
between the actual value of the response variable (yi) and the value predicted by the model itted using the set 
excluding the value being predicted ( ŷ

i( )
) (4). The PRESS can also be extended to the more general case of 

cross-validation, in which case it is the sum of the squared diferences between the actual response variable value 
and the value predicted by the model itted using the test set excluding all members of the same group as the 
member being predicted. If the PRESS statistic is divided by the population size of the training set, this mean 
cross-validation error becomes an estimator of the test mean squared error (MSE).

∑= −
=
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(4)i

n

i i
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2

Whilst the estimated test MSE is a widely used performance measure, interpretation can be diicult as the 
magnitude of the MSE will depend upon the magnitude of the response variable and will have squared units of the 
response variable. To put the PRESS statistic into perspective, it can be useful to compute the PRESS of the null 
model. he null model is the model with all of the coeicients set to zero, which is equal to the mean of the 
response variable. he PRESS of the null model (5) is the sum of the squared diferences between the actual value 
of the response variable (yi) and the mean value of the response variable excluding the samples from the same 
group as the sample currently being predicted (y
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he total sum of squares that appears in Eq. 1 can also be considered as the sum of squares of the null model, 
which makes R2 a measure that compares the error (sum of squares) of the model to the error of the null model. 
Following this deinition of R2, the predicted R2 can be deined using LOOCV, which replaces the numerator with 
the PRESS of the model, and the denominator with the PRESS of the null model (6). It should be noted whilst the 
maximum value of predicted R2 is one, unlike R2, predicted R2 can take negative values. his will be the case if the 
model has a higher sum of squares error than the null model when tested using LOOCV.
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If the predicted R2 is calculated for the example models in Fig. 3, the value for the linear model is 0.93, sug-
gesting that the model is a good approximation for the underlying regression and can be used with some coni-
dence to make predictions about sample length based on temperature. However, the predicted R2 value for the 
polynomial model is −119, which indicates that the polynomial model is a poor approximation to the underlying 
system, and should not be used to make predictions about sample length based on temperature measurements.

In the case of a polynomial model with over-itting, the over-itting can be reduced by reducing the order of 
the polynomial without afecting the number of predictors used in the model. In the case of a multiple linear 
regression, LOOCV still enables the assessment of model over-itting, but this then leads to the question of how 
select the predictors to remove from the model to reduce the over-itting. here are a range of variable selection 
techniques that can be used, but the method used in this work is the lasso9 (least absolute shrinkage and selection 
operator). he lasso (Eq. 7) introduces an extra term to the regression equation that is the sum of the absolute 
value of the coeicients multiplied by a tuning parameter (λ). his extra term is the lasso penalty, which has the 
efect of reducing the coeicients towards zero. his efect will be greater the larger the value of the tuning param-
eter. If the tuning parameter is equal to zero, the equation reverts to the standard equation for multiple linear 
regression.
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Statistical models. To analyze whether the resonant frequency data could be used to predict the tensile proper-
ties of the samples, multiple linear regressions were itted to the frequencies of the resonant peaks (predictors) 
and each tensile property (response variable). he predictors were taken to be either the set of measured resonant 
frequencies for as built condition or the annealed condition. Given that the training set size was only 15 and there 
are 8 predictors (resonant frequencies) for the as built condition, and 17 predictors for the annealed condition, 
variable selection was performed using the lasso.

In this analysis, the linear model with the lasso is calculated by co-ordinate descent using the Glmnet library10 
in the R programming language. he near-optimum tuning parameter is determined by calculating the lasso for 
a range of discrete values, and using LOOCV to calculate which value of λ gives the lowest estimate of test MSE. 
1000 diferent values of λ between 103 and 10−3 were tested in descending order, as given by (8).
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λ = = …
−( ) n10 , 0, 1, 2, , 999 (8)

n3 6
999

he ordinary least squares (OLS) multiple linear regressions and the multiple linear regressions with the lasso 
were calculated using the as built predictors. As the number of annealed predictors is greater than the training set 
size, only the multiple linear regressions with the lasso were calculated using these predictors.

Results
Experimental resultsǤ Tensile tests. he results of the room temperature tensile testing are presented in 
Table 3. AMS4999A11 speciies minimum values in the Z-direction for additively manufactured Ti-6Al-4V of 
855 MPa for ultimate tensile strength (UTS), 765 MPa for yield strength at 0.2% ofset, and 5% elongation at fail-
ure. It can be seen from Table 3 that all samples met the minimum requirements for UTS and yield stress, but that 
seven of the samples failed to meet the required standard for elongation.

Resonant frequency measurements. he measured resonant frequency data for the as built state can be found in 
Table 4 and for the annealed state in Table 5. It should be noted that for one of the parts (FCE B6) one of the res-
onant frequency peaks could not be detected in the annealed condition. his part was excluded from the training 
set for the annealed model, which led to diferent training sets for the two conditions. It is for this reason that two 
null models were calculated for each tensile property.

Statistical model resultsǤ he number of coeicients (predictors) used in each of the iteen models, along 
with the estimated test MSE, and the predicted R2 are presented in Tables 6–10. Tables 6–10 also include the 
calculated value of R2 of each model for comparison to the other model statistics. he prediction accuracies are 

ID
Young’s
(GPa)

0.2% Yield
(MPa)

UTS
(MPa)

Elongation
(%)

RA
(%)

FCE B1 122 1008 1164 7.25 10.20

FCE B6 108 993 1153 3.12 5.42

FCE B8 110 996 1128 2.25 2.97

FCE B10 109 988 1112 4.12 4.44

FCE B14 128 1012 1157 6.00 3.94

FCE B30 118 1007 1134 5.44 5.42

FCE B31 122 1010 1165 6.56 14.86

FCE B33 125 1019 1163 5.69 4.91

FCE B35 125 1015 1162 5.75 2.98

FCE B38 124 1014 1157 6.31 3.47

FCE B44 109 1004 1158 3.19 3.96

FCE B47 113 997 1156 2.88 4.44

FCE B51 121 1052 1165 4.56 6.88

FCE B56 115 994 1146 5.44 3.46

FCE B60 115 998 1119 3.50 3.96

Table 3. he tensile test results.

ID AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8

FCE B1 20.157 24.166 53.214 83.079 91.978 101.291 147.596 222.719

FCE B6 20.208 24.139 52.968 82.828 91.876 101.163 147.380 220.547

FCE B8 20.162 24.101 52.968 82.602 91.641 100.869 147.019 220.392

FCE B10 20.103 24.076 52.805 82.377 91.377 100.344 146.611 220.668

FCE B14 20.174 24.166 53.132 82.933 91.912 101.198 147.478 221.415

FCE B30 20.163 24.117 52.932 82.619 91.608 100.813 147.046 221.351

FCE B31 20.292 24.248 53.314 83.264 92.137 101.515 147.836 222.095

FCE B33 20.259 24.244 53.196 83.145 92.104 101.251 147.810 222.819

FCE B35 20.270 24.243 53.324 83.105 92.111 101.468 147.824 222.457

FCE B38 20.169 24.183 53.187 83.045 92.041 101.223 147.574 222.437

FCE B44 20.256 24.223 53.323 83.158 92.137 101.474 147.824 222.598

FCE B47 20.279 24.218 53.223 83.049 92.071 101.236 147.694 221.391

FCE B51 20.338 24.281 53.351 83.317 92.124 101.646 147.956 222.880

FCE B56 20.257 24.191 53.296 83.062 92.058 101.399 147.704 222.035

FCE B60 20.173 24.187 53.041 82.880 91.839 100.947 147.406 222.155

Table 4. he measured resonant frequencies in kHz for the parts in the as built condition.

https://doi.org/10.1038/s41598-019-45696-w
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presented graphically in Fig. 4, which for each tensile property plots the value of the response variable as pre-
dicted by the model built with that sample excluded against the actual value of the response variable. A line is also 
included in the plot to indicate where the points should lie if the predicted value equals the actual value.

ID HT1 HT2 HT3 HT4 HT5 HT6 HT7 HT8 HT9 HT10 HT11 HT12 HT13 HT14 HT15 HT16 HT17

FCE B1 7.836 20.885 54.672 78.505 85.134 94.277 120.475 151.336 191.879 198.125 206.005 221.023 223.538 229.338 393.794 397.594 521.384

FCE B6 7.960 20.925 54.741 78.658 84.994 94.288 120.391 151.387 191.573 197.641 206.073 220.878 228.873 393.181 396.744 520.452

FCE B8 7.999 20.865 54.632 78.455 84.791 94.066 120.083 151.079 191.349 197.495 205.648 220.586 223.075 228.490 392.721 396.512 519.752

FCE 
B10

7.941 20.991 54.552 78.310 84.658 93.914 119.933 150.811 191.168 197.445 205.394 220.373 222.782 228.283 392.619 396.356 519.752

FCE 
B14

7.893 20.873 54.762 78.654 85.097 94.324 120.520 151.432 192.043 198.029 206.126 221.137 223.667 229.233 393.851 397.674 521.264

FCE 
B30

8.118 20.856 54.637 78.466 84.818 94.054 120.143 151.086 191.738 197.772 205.703 220.759 223.100 228.784 393.280 397.123 520.439

FCE 
B31

7.929 20.853 54.819 78.667 85.257 94.383 120.628 151.490 192.033 198.086 206.154 221.211 223.722 229.424 394.303 397.941 521.957

FCE 
B33

7.899 20.853 54.756 78.612 85.158 94.338 120.576 151.425 191.950 198.193 206.073 221.115 223.609 229.293 393.968 397.654 521.483

FCE 
B35

7.918 20.990 54.958 78.894 85.166 94.405 120.605 151.528 191.840 198.271 206.169 221.052 223.856 229.097 393.692 397.312 521.139

FCE 
B38

8.136 20.863 54.787 78.664 85.106 94.330 120.487 151.373 192.078 198.145 205.974 220.980 223.656 229.275 393.871 397.614 521.390

FCE 
B44

7.932 21.022 54.956 78.746 85.184 94.402 120.596 151.493 191.956 198.213 206.131 221.137 223.723 229.210 393.906 397.684 521.470

FCE 
B47

7.881 20.947 54.837 78.727 85.076 94.324 120.446 151.384 191.749 198.828 205.990 220.889 223.583 229.004 393.355 396.980 520.725

FCE 
B51

7.879 20.937 54.867 78.698 85.261 94.334 120.669 151.477 191.945 198.304 206.189 221.208 223.697 229.394 394.345 398.122 521.907

FCE 
B56

7.965 20.890 54.810 78.713 85.097 94.328 120.521 151.444 191.647 198.163 206.088 220.980 223.633 228.921 393.443 397.062 520.835

FCE 
B60

7.923 20.910 54.790 78.512 84.935 94.126 120.306 151.197 191.991 198.110 205.818 220.873 223.281 229.111 393.641 397.654 521.154

Table 5. he measured resonant frequencies in kHz for the parts in the annealed condition.

AB Null AB OLS AB Lasso Ann Null Ann Lasso

Coefs 0 8 2 0 12

MSE 48.2 99.4 38.1 43.8 20.0

RPRED
2 — −1.06 0.21 — 0.54

R2 — 0.56 0.33 — 0.99

Table 6. Young’s modulus predictive model performance. AB: as built predictors. Ann: annealed predictors. 
OLS: ordinary least squares.

AB Null AB OLS AB Lasso Ann Null Ann Lasso

Coefs 0 8 3 0 2

MSE 257.6 397.8 195.7 260.9 190.9

RPRED
2 — −0.54 0.24 — 0.27

R2 — 0.79 0.49 — 0.52

Table 7. Yield strength predictive model performance. AB: as built predictors. Ann: annealed predictors. OLS: 
ordinary least squares. 

AB Null AB OLS AB Lasso Ann Null Ann Lasso

Coefs 0 8 2 0 2

MSE 325.6 267.8 95.0 351.1 90.3

RPRED
2 — 0.18 0.71 — 0.74

R2 — 0.82 0.78 — 0.85

Table 8. UTS predictive model performance. AB: as built predictors. Ann: annealed predictors. OLS: ordinary 
least squares. 
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Discussion
he results for all six models indicate that a multiple linear regression using resonant frequency peaks cannot be 
used to make predictions about elongation at failure or reduction in area. he two ordinary least squares models 
have predicted R2 values less than zero. Two of the models using the lasso have reduced to the null model with no 
non-zero coeicients, and the remaining two models that use the lasso have predicted R2 values of just 0.14 and 
0.02.

For the Young’s modulus, the yield strength, and the ultimate tensile strength, the models have varying levels 
of predictive capability. he ordinary least squares models using the as built predictors for the Young’s modulus 
and the yield strength performed worse than the null model, having predicted R2 values of −1.06 and −0.54. he 
equivalent model for predicting ultimate tensile strength performed better, having a predicted R2 value of 0.18. 
For the models built using the as built predictors with the lasso, the predictive accuarcy was increased for all three 
tensile properties, with the model for ultimate tensile strength again demonstrating the greatest predictive accu-
racy. For the Young’s modulus, the yield strength, and the ultimate tensile strength, the multiple linear regressions 
that gave the lowest prediction errors were those using the annealed frequency peaks with the lasso. Of these three 
tensile properties, the Yield strength model predictions had the greatest error, with only a modest improvement 
over the null model ( = .R 0 27PRED

2 ). he model using the annealed predictors showed some ability in being able 
to predict the Young’s modulus with = .R 0 54PRED

2 . his would suggest, given the better performance of the UTS 
model, that although resonant frequency peaks can be used to make predictions about the Young’s modulus of 
additively manufactured Ti-6Al-4V, a multiple linear regression using resonant frequency peaks is insuicient to 
properly model the relationship (bias error).

he models for predicting the ultimate tensile strength had the lowest error of all the multiple linear regres-
sions. he model using the annealed predictors achieved = .R 0 74PRED

2 , suggesting that this model may be useful 
for predicting the UTS. It is unclear whether the variance unexplained by the model is due to the inherent distri-
bution of the response variable (variance error), or whether there is an element of bias error, either due to an 
incorrect model type, or the exclusion of predictors other than resonant frequency — for example the part tem-
perature or mass.

It should be noted that for all of the models that have at least one non-zero coeicient that the value of R2 is 
greater than the value of predicted R2. For some of the models the values of the two measures of R2 are suiciently 
close that the same interpretation of predictive ability would be reached from either measure. For example, the 
model to predict UTS using the as built predictors with the lasso has an R2 of 0.78 and a predicted R2 value of 0.71. 
It is quite possible that both of these results could be read to suggest that the model has some predictive capability. 
Similarly, the model to predict the reduction in area using the annealed predictors with the lasso has an R2 value 
of 0.12 and a predicted R2 value of 0.02. Again it is reasonable to assume that both of these results would be inter-
preted in the same way: this model has no predictive ability. However, for the ordinary least squares model using 
the as built predictors to predict reduction in area, the R2 value of 0.69 could be understood to say that the model 
does have some predictive use, whereas the predicted R2 value of −1.65 clearly indicates that no predictive use 
should be made of the model. his inal example illustrates why the authors believe that predicted R2 should be 
used in place of R2 when considering the ability of a statistical model to make predictions.

Conclusion
It has been demonstrated that R2 should not be used to measure the ability of multiple linear regressions to 
make predictions, as low residual error between model and training data does not necessarily translate to low 
prediction error when used with test data. he predicted R2 value has been introduced, which is calculated using 
leave-one-out cross-validation, and is a more useful measure of the prediction accuracy of a statistical model. he 
calculated value of predicted R2 has been used to assess the predictive ability of a series of linear models using 
resonant frequency peaks to predict the mechanical properties of samples built using selective laser melting.

AB Null AB OLS AB Lasso Ann Null Ann Lasso

Coefs 0 8 2 0 0

MSE 2.5 5.1 2.2 2.5 2.5

RPRED
2 — −1.00 0.14 — 0.00

R2 — 0.51 0.34 — 0.00

Table 9. Elongation predictive model performance. AB: as built predictors. Ann: annealed predictors. OLS: 
ordinary least squares. 

AB Null AB OLS AB Lasso Ann Null Ann Lasso

Coefs 0 8 0 0 1

MSE 10.9 28.8 10.9 11.8 11.5

RPRED
2 — −1.65 0.00 — 0.02

R2 — 0.69 0.00 — 0.12

Table 10. Reduction in area predictive model performance. AB: as built predictors. Ann: annealed predictors. 
OLS: ordinary least squares. 
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he statistical results indicate that the resonant frequency peaks as measured in the samples either in the as built 
or the annealed states can be used to make predictions about the ultimate tensile strength of the samples. It should be 
recognized that although these two linear models were able to explain the majority of the variability in the measured 
values of UTS, the residual errors are not insigniicant when compared to the limited scatter in the measured UTS.

he linear models were less able to accurately predict the measured value of Young’s modulus than the UTS. 
However, a predicted R2 value of 0.54 using the annealed resonant frequency data does suggest the possibility 
that a diferent type of model could potentially make useful predictions about Young’s modulus using resonant 
frequency measurements.

here is very limited evidence to support the conclusion that resonant frequency measurements can be used 
with a linear model to predict yield strength. here is no evidence that a linear model can use resonant frequency 
data to predict either elongation at failure or reduction in area. It is slightly disappointing that the models were 
unable to make useful predictions about elongation or reduction in area, as these were the properties that were 
found to have the most variability in the mechanical testing results.
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Figure 4. he tensile properties from LOOCV as predicted by using multiple linear regression with the lasso 
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is equal to the actual value.
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