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Soils are crucial in regulating ecosystem processes, such as nutrient cycling, and

supporting plant growth. To a large extent, these functions are carried out by

highly diverse and dynamic soil microbiomes that are in turn governed by numerous

environmental factors including weathering profile and vegetation. In this study, we

investigate geophysical and vegetation effects on the microbial communities of iron-

rich lateritic soils in the highly weathered landscapes of Western Australia (WA). The

study site was a lateritic hillslope in southwestern Australia, where gradual erosion of the

duricrust has resulted in the exposure of the different weathering zones. High-throughput

amplicon sequencing of the 16S rRNA gene was used to investigate soil bacterial

community diversity, composition and functioning. We predicted that shifts in the

microbial community would reflect variations in certain edaphic properties associated

with the different layers of the lateritic profile and vegetation cover. Our results supported

this hypothesis, with electrical conductivity, pH and clay content having the strongest

correlation with beta diversity, and many of the differentially abundant taxa belonging to

the phyla Actinobacteria and Proteobacteria. Soil water repellence, which is associated

with Eucalyptus vegetation, also affected beta diversity. This enhanced understanding

of the natural system could help to improve future crop management in WA since

the physicochemical properties of the agricultural soils in this region are inherited from

laterites via the weathering and pedogenesis processes.
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INTRODUCTION

Soils provide a variety of essential ecosystem services which
support life above- and below-ground (Smith et al., 2015;
Adhikari and Hartemink, 2016). They form part of the Earth’s
critical zone (CZ), which spans from the canopy to the bedrock,
incorporating a complex network of biogeochemical processes
and cycles that sustain terrestrial life (Brantley et al., 2007).
Characterizing microbial responses to bottom-up effects of soil
physicochemical properties versus top-down vegetation effects
is important to understanding CZ architecture and predicting
functional changes that may result from disturbance activities
(Chorover et al., 2007).

In Western Australia (WA), extensive and deep weathering
of Archaean granitic bedrock has resulted in the formation
of lateritic soils that cover much of the region, including a
44,000 km2 area in the southwest (Gilkes et al., 1973; Anand
and Paine, 2002). Laterites are ancient weathered profiles that
are typically formed under tropical climates (Volkoff, 1998) and
comprise five horizons underneath the topsoil: ferricrete, mottled
zone, pallid zone, saprolite, and (parent) bedrock (Figure 1A).
The ferricrete can be several meters thick, either occurring
as a ferruginous crust (duricrust) with a pisolitic structure
(Anand and Gilkes, 1987; Beauvais and Colin, 1993), or in
a nodular form (ironstone gravel) (Tille et al., 2001). The
mottled and pallid (bleached) zones comprise kaolinitic clay
and quartz grains; while the mottled zone also contains iron
oxides (e.g., goethite and haematite) and aluminum minerals
(e.g., gibbsite) (Mulcahy, 1960). The saprolite (isovolumetric
weathering product) layer may also contain some haematite,
gibbsite and goethite (Girard et al., 1997; Théveniaut and
Freyssinet, 1999).

Lateritic soils are infertile due to prolonged weathering of
the bedrock. Nitrogen (N), phosphorus, and potassium are
severely depleted, while some nutrients are inaccessible as
they bind with lateritic compounds (Orians and Milewski,
2007). This extensive leaching also causes lateritic soils to
be acidic, with Eucalyptus litter leachates also stimulating
soil acidification and iron mobilization (Ellis, 1971; Bernhard-
Reversat, 1999; Anand and Paine, 2002). Low soil organic
matter (SOM) and clay contents in near-surface horizons
result in a low cation exchange capacity (CEC), or even
confer an anion exchange capacity that promotes further
leaching (Wong and Wittwer, 2009). The pallid zone is
usually highly saline owing to the accumulation of salts over
thousands of years (Lewis, 1985; Brouwer and Fitzpatrick, 2002),
making it inhospitable to many microbial and plant species.
Since agricultural soils in WA are derived from eroded and
redistributed lateritic material, they have inherited many of
these limitations. This may have important implications for
crop management in these areas, since microbial communities
are critical in performing functions vital for soil health
and crop growth, such as nutrient cycling and disease
suppression (Frankenberger et al., 1989; Barea et al., 2005;
Van Der Heijden et al., 2008).

Water repellence is a common feature of WA soils, primarily
caused by hydrophobic waxes from the leaves of Eucalyptus

and other plants adhering to soil particles, thereby reducing
soil permeability and water infiltration (reviewed by Doerr
et al., 2000; Walden et al., 2015). Microbial activity can
gradually alleviate soil water repellence (SWR) by degrading
these hydrophobic compounds (Ma’shum and Farmer, 1985;
Roper, 2004). However, microbes may also exacerbate water
repellency since they breakdown hydrophilic SOM content
more rapidly, leading to the accumulation of hydrophobic
compounds. Furthermore, microbial exudates can become
hydrophobic under hot, dry conditions (Savage et al., 1969;
Hallett and Young, 1999).

Soil microbial communities display significant and broad
responses to geophysical attributes and vegetation. Soil pH
is frequently reported as the strongest predictor of spatio-
temporal variations in soil microbial communities (Lauber
et al., 2009; Stone et al., 2015; Siles and Margesin, 2016;
Zhang et al., 2017; Delgado-Baquerizo et al., 2018), with
neutral soils typically exhibiting greater diversity relative to
acidic soils (Fierer and Jackson, 2006; Rousk et al., 2010).
Possibly due to its associations with soil pH and nutrient
holding capacity (Liang et al., 2006), CEC has been shown
to significantly affect soil microbial community functioning
and composition (Pankhurst et al., 2001; Andrew et al., 2012;
Docherty et al., 2015). Soil electrical conductivity (EC) –
which is closely linked to salinity, CEC and SOM (Smith
et al., 2002) – is reported to negatively correlate with
bacterial diversity (Siles and Margesin, 2016). Other soil factors
reported to co-vary with bacterial diversity include texture
(silt, sand, and clay distribution) and total carbon content
(Andrew et al., 2012), which are both related to the soil’s
specific surface area (SSA) and CEC (Ersahin et al., 2006).
Research on microbial community responses to soil water
repellency is limited; although an increased dominance of
Actinobacteria, including wax-degrading actinomycetes, have
been associated with water repellent soils (Roper, 2004; Braun
et al., 2010; Lozano et al., 2014). Vegetation cover can
significantly alter microbial communities, but these responses
are inconsistent and unpredictable owing to varying soil
physicochemical attributes (Jangid et al., 2011; Lammel et al.,
2015). Indeed, associations between vegetation and soil microbial
communities range from being very weak or absent in
some studies (Kielak et al., 2008; Štursová et al., 2016) to
significant elsewhere (Shi et al., 2015; Stone et al., 2015;
Yarwood et al., 2015).

In this study, we assess compositional and functional
shifts in the soil bacterial community along a lateritic
hillslope in WA. The study site represents an ideal location
to examine biotic and abiotic dynamics in relation to laterite
profiles since gradual erosion has resulted in the exposure
of different weathering zones which has resulted in a
geochemical gradient in a small localized area. Building on
the work carried out by Gleeson et al. (2016), we conducted
further investigations to elucidate how the soil bacterial
community structure and function changes in response to
the highly localized variations in edaphic variables (pH, EC,
SWR, and soil texture) associated with different lateritic
horizons and vegetation.
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FIGURE 1 | Composition of the lateritic profile (A); site location at Fox Hill (B); and ERT profile across the hill along T35 and T210 (C).

MATERIALS AND METHODS

Study Site
This study was conducted in February 2015 at Fox Hill, located
120 km southeast of Perth at the University ofWestern Australia’s
research farm Ridgefield, West Pingelly (116◦59′31′′ E, 32◦30′23′′

S) (Figure 1B). Fox Hill is one of five hill complexes in the Avon
River CZ Observatory (AR-CZO) (Critical Zone Exploration
Network, 2018). Another hill within the AR-CZO, Avery Hill, was
the site of a study by Gleeson et al. (2016) who also investigated
environmental influences on soil microbial communities along
a lateritic profile. In this study, we used high-throughput
sequencing to further characterize the bacterial communities
of lateritic profiles using two contrasting transects along Fox
Hill, coupled with soil physicochemical and vegetation cover
measurements. The AR-CZO is part of the Eastern Darling
Range, which exhibits a typical laterite deposit over granitic
and doleritic bedrock (Anand and Gilkes, 1987). The climate is
Mediterranean (hot, dry summers, and cool, wet winters), with an

average annual rainfall of 425 mm and a mean temperature range
from 10.4 to 23.4◦C (Bureau of Meteorology, 2018). The laterite
here is believed to have formed during the Cretaceous to mid-
Miocene era (approx. 140 Ma) and has been well preserved as it
has not been subjected to glaciation since the Late Carboniferous
and Early Permian (Anand and Paine, 2002; Hopper and Gioia,
2004; Anand and de Broekert, 2005), although fluvial incision and
lateral erosion has resulted in a dissected landscape (Mulcahy,
1960). Differing histories of hillslope lowering and evolution
have resulted in varying exposures of the laterite profile along
the hillslope (as designated by depth within the laterite profile).
Normally these different horizons are buried beneath duricrust,
hence this site provides a rare opportunity to access them and
study their soil bacterial communities in relation to the CZ along
this representative and ancient weathering profile that inputs, via
colluviation, into highly vulnerable agricultural soils at its base.

The southeastern end of the hillslope was divided into
eight transects (T35, T60, T90, T110, T140, T160, T185, and
T210), named according to the corresponding compass bearing
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(with 0◦ north as reference). Soil samples were collected for
physicochemical measurements [pH, EC andMolarity of Ethanol
Droplet (MED)] at several points along each transect (Figure 1B
and Supplementary Figure S1). T140 and T210 were chosen
as principal transects for further detailed investigation, which
involved additional physical (soil texture, water content, bulk
density (BD), vegetation cover) and biological (16S rRNA gene
sequencing) analyses. These principal transects were chosen
because they represented contrasting aspects of the hill and
varying depths of the lateritic weathering profile. Hillslope
morphology was used to subdivide each transect into sampling
sections (in pasture, bottom, mid, near top, top, and plateau).
Surficial soil samples taken from the plateau of the hill represent
the duricrust; the upper and mid sections of the slope correspond
to the mottled and pallid zones; the bottom sections represent
the base of the pallid zone comprising colluvial soil and the
underlying saprolite layer (Gleeson et al., 2016) (Figure 1 and
Supplementary Figure S1). In-pasture sections, collected for
T210 only, were located in the paddock.

Field Methods
Within each section of the 8 transects, two sampling points were
chosen at 25% and 75% of the total section length (named S1
and S2, respectively, Supplementary Figure S1). Three replicate
soil samples were collected from each sampling point, one on the
mid-line of the transect and one either side (1 m perpendicular)
of the transect. Soil samples for BD and gravimetric water
content analyses were taken from the top 0–10 cm surface of
each subsection on T140 and T210 (Grossman and Reinsch,
2002). Soil samples from each transect section were then pooled,
homogenized (n = 6 per section), and cooled until laboratory
analysis. Samples for DNA extraction (n = 63) were stored in-field
at −20◦C in dry-ice coolers and subsequently at −40◦C upon
arrival at the laboratory. Down-plot photographs were taken for
ground cover percentage and vegetation type assessments via a
line-point intercept method (Herrick et al., 2005) using ImageJ
(v.2) software. Tree canopy cover was visually estimated, and
ground cover type was recorded for both the most dominant
(rank 1) and second-most dominant (rank 2) vegetation type.
To further define CZ architecture and assess the depth to
the pallid zone along hillslope position, we conducted a two-
dimensional electrical resistivity tomography (ERT) survey using
a long linear array of electrodes spaced 4 m apart (4point light,
Lippman, Germany) across the transverse profile of the hill
(396 m), encompassing transects T210 and T35 (northeast-facing
transect). The apparent resistivity values were inverted using
the program RES2DINV (Geotomo software) following Leopold
et al. (2013) (Figure 1C).

Laboratory Methods
Bulk density and loose bulk soil samples (unsieved) from the
two main transects were weighed before and after oven-drying
(105◦C for 24 h) to determine dry BD and volumetric water
contents (VWC). For all other analyses, soil samples were oven-
dried (40◦C) and sieved (2 mm). A total of 71 soil samples
were used for separate measurements of MED, pH and EC,
comprising 2 samples per section for each transect. Soil pH and

EC were determined in a soil:solution ratio of 1:5 (v/v) in CaCl2
(0.01 M) for pH and distilled water for EC. Water repellency
was assessed using the MED method (King, 1981). Soil texture
analysis was conducted on 50 g of soil per subsection of T140 and
T210 using the standard sodium hexametaphosphate dispersion
and pipetting method (Gee and Or, 2002). The particle size
class distribution was determined using the German size-particle
classification system for sand (<2000−63 µm), silt (<63−2 µm)
and clay (<2 µm).

Statistical Analysis of Vegetation and
Soil Biochemical Data
Statistical differences in vegetation cover between sections and
transects were determined using chi-square (χ2) tests. One-
way analysis of variance (ANOVA) tests were used to test for
significant differences in soil properties (pH, EC, SWR, VWC,
and soil texture) between and within transects, and Tukey’s
honestly significant difference (HSD) tests were performed
subsequently as a post hoc test. VWC and EC values were
log-transformed to attain normal distributions (Shapiro Wilks
test P > 0.05). Non-parametric tests (Kruskall-Wallis and
post hoc Dunn’s test) were used to analyse MED results as they
did not follow a normal distribution even when transformed.
Plateau and in-pasture samples were removed when testing for
difference between all eight transects, since they were not taken
from all transects.

DNA Extraction and 16S rRNA Gene
Sequencing
DNA was extracted from a total of 63 soil samples using
the PowerSoil R© DNA Isolation Kit (MoBio, Carlsbad, CA,
United States) following manufacturer instructions. The DNA
concentration of each sample was quantified using a fluorescence
approach (Qubit R© 2.0 Fluorometer, Life Technologies, Mulgrave,
Victoria, Australia), before dilution to 1 ng µL−1 prior to PCR
amplification. The V4–V5 region of the universal prokaryotic
16S rRNA gene was amplified using primers 515F and 806R
(Caporaso et al., 2010b) modified according to Whiteley et al.
(2012) to enable multiplexing of samples (Hamady et al., 2010).
PCR was conducted according to Gleeson et al. (2016). After
gel electrophoresis (1.5%, 80 V for 40 min), DNA bands were
cut and cleaned using the Wizard R© SV Gel and PCR Clean-
Up System (Promega, Alexandria, NSW, Australia), before
pooling the barcoded products and purifying the DNA using
Agencourt AMPure XP following the manufacturer instructions
(Beckman Coulter, Brea, CA, United States). High-throughput
amplicon sequencing was performed using the Ion Torrent
Personal Genome Machine (Life Technologies Australia Pty
Ltd., Mulgrave, VIC, Australia) (Rothberg et al., 2011) and 400
base pair chemistry.

Sequence Data Processing
Sequences were processed and analyzed using MacQIIME
(Caporaso et al., 2010a). Multiplexed sequences were split into
individual samples and barcodes were removed using Cutadapt
v.1.12 (Martin, 2011). Sequences with a minimum quality score
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<20 and those identified as chimeras were removed using
USEARCH (Edgar, 2010). Sequences were clustered into OTUs
based on 97% sequence similarity and taxonomy was assigned
using the Greengenes database version 13.5 (McDonald et al.,
2012). Singletons and OTUs classified as mitochondria and
chloroplasts were removed before rarefaction to 2,158 sequences
per sample, which was the minimum count per sample after
removing OTUs with a frequency <0.005% (Gihring et al., 2012).
During filtering, five samples were removed due to insufficient
reads or quality, resulting in 58 soil samples for analyses.

Trimmed sequence reads of all samples were deposited in
the Sequence Read Archive (SRA) of the National Centre for
Biotechnology Information (NCBI) under Bioproject accession
number PRJNA4946321.

Bacterial Diversity and Statistical
Analysis
Alpha (α)-diversity measures (observed species (OTUs), Chao1
richness, Faith’s phylogenetic diversity (PD), Shannon’s Index)
were calculated for samples grouped by location using QIIME
and statistical differences were checked using a non-parametric
two-sample t-test (Monte Carlo). Beta (β)-diversity metrics were
calculated using unweighted UniFrac measures and Bray-Curtis
dissimilarity matrix.

β-diversity (unweighted UniFrac distances) was visualized
using both unconstrained (PCoA) and constrained (dbRDA)
(Shankar et al., 2017) ordination methods, as recommended
by Anderson and Willis (2003). These ordination plots were
created using the phyloseq, vegan and ggplot2 packages in R
version 3.5.1 (R Core Team, 2017). Environmental vectors
depicting the contribution of the different edaphic variables
toward bacterial community diversity were added to the dbRDA
plot using the envfit function in vegan (Oksanen et al.,
2018), the statistical significance of which was tested using
ANOVA. PERMANOVA (Anderson, 2001) tests were conducted
using the adonis function in R with 9,999 permutations to
determine the amount of variation in average community
composition (unweighted UniFrac matrices) that could be
explained by each of the measured variables. The permutations
were restricted to within the sampling location (transect and
section) using the “strata” option in the adonis function. Pairwise
comparisons of β-diversity between samples grouped by location
were tested using the function calc_pairwise_permanovas in
the MCTOOLSR package (Leff, 2016), which implements the
adonis function and corrects P-values for multiple testing
with false discovery rate (FDR) corrections. PERMDISP tests
were conducted using the betadisper function to check for
differences in group dispersions, equating to unequal structural
variability of bacterial communities among groups (Erwin
et al., 2012). When significant PERMDISP results indicated
homogeneity was not satisfied, Tukey pairwise comparison tests
were performed to determine which groups had significantly
different dispersions. For these tests, continuous variables were
ranked to create groups for comparison (Supplementary Table

S1) and Benjamini–Hochberg FDR applied to correct formultiple

1https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA494632

testing (Benjamini and Hochberg, 1995). A heatmap displaying
the relative abundance of the most dominant phyla (minimum
abundance of 1% in at least one sample) was created using the
ampvis2 package in R.

Statistical differences in the relative abundances of OTUs
between sampling groups were calculated by performing ANOVA
tests with Benjamini–Hochberg FDR (filtered to a minimum
effect size of 0.7 and q < 0.05) using the software Statistical
Analysis of Metagenomic Profiles (STAMP) v. 2.1.3 (Parks
et al., 2014). Significant results were further investigated using a
Tukey–Kramer post hoc test (minimum effect size 0.7, P < 0.05).

The functional composition of the soil microbial communities
was predicted using PICRUSt (Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States),
following the documentation2 using default settings (Langille
et al., 2013). KEGG pathways that differed significantly (q-
value < 0.01) between sample groups were identified in STAMP
using the Tukey–Kramer post hoc test with Benjamini–Hochberg
FDR and a minimum effect size of 0.75.

RESULTS

Vegetation Coverage
The dominant vegetation cover at the site was Salmon
gum (Eucalyptus salmonophloia) and Ghost gum (Corymbia
papuana3). Ground vegetation cover was slightly higher on T210
(mean 59.5%) than T140 (mean 51.3%), but this result was not
significant (ANOVA = 3.34, P = 0.086) (Supplementary Table

S2). T140 vegetation was dominated by Eucalyptus, whilst on
T210 it shifted from a mixture of spring oats and Eucalyptus in
the plateau and upper sections, to wheat and native grasses in the
lower slope sections (Supplementary Table S2).

Soil Bulk Density, Texture, and Water
Content
The BD of the topsoil (0–10 cm) along the two principal transects
(T140 and T210) ranged from 0.36 to 1.09 g cm−3 which is similar
to that reported for vegetated lateritic soils elsewhere (Sherman
et al., 1953). Dry weather conditions prior to and during sampling
contributed to the low soil VWC which averaged 0.05 cm3 water
cm−3 soil, indicating a water-stressed environment.

The surface soil texture was sandy loam (U.S. Department
of Agriculture, 1993), containing on average 72.5% sand, 12%
silt, and 15.5% clay-sized particles. Soil texture composition
varied significantly between layers of the weathering profile
(sections), but not between transects. Clay content on both of
the principal transects was higher in the upper sections (top
and near top, corresponding to the mottled zone) than on the
plateau (P < 0.03) (Table 1). T210 exhibited greater variation in
soil texture, with significantly higher proportions of silt in the
plateau samples and sand in the lower (bottom and in-pasture)
sections (Table 1).

2http://picrust.github.io/picrust/tutorials/genome_prediction.html
3https://en.wikipedia.org/wiki/Corymbia_papuana
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TABLE 1 | Topsoil characteristic measurements at transect sections (means).

Sampling point pH MED (mol L−1) EC (µS cm−1) ‡ Clay (%) Silt (%) Sand (%) VWC (cm3 cm−3) BD (g cm−3)

T140

Bottom 4.58ab 1.20a 139.50a 13.69ab 11.41a 74.91a 0.03b 1.05a

Mid 4.16bc 1.60a 1781.00a 14.84ab 11.37a 73.57a 0.05ab 1.02a

Near Top 3.65cd 1.34a 2681.00a 16.13a 11.56a 72.21a 0.08a 1.09a

Top 3.57d 1.34a 2092.50a 17.95a 14.22a 67.30a 0.07ab 1.03a

Plateau 5.08a 2.40a 149.00a 9.29b 12.39a 78.32a 0.04ab 0.93a

T210

In-Pasture 4.75a 1.14bc 146.85a 12.10cd 11.48bc 76.42a 0.03a 1.03a

Bottom 4.84a 0.07c 67.15a 8.54d 10.24bc 81.23a 0.04a 1.09a

Mid 4.54ab 2.54ab 253.10a 16.17bc 12.73b 71.11b 0.03a 0.81a

Near Top 4.09bc 3.07a 202.95a 22.95ab 11.01bc 66.05b 0.02a 0.36a

Top 3.86c 2.40ab 123.50a 24.16a 9.40c 66.45b 0.03a 0.74a

Plateau 4.93a 2.40ab 100.85a 14.63cd 15.68a 69.69b n/a n/a

Letters indicate significantly different values assessed between sections within each individual transects (Tukey’s HSD test P < 0.05). ‡T210 data was log-transformed

before performing statistical tests (raw data shown); MED, molarity of ethanol droplet; EC, electrical conductivity; VWC, volumetric water capacity; BD, bulk density.

Soil pH
Overall, the hillslope soil pH was acidic (Supplementary Figure

S2A), with a clear band of lower soil pH across the upper
sections of the slope correlating with visible surface erosion and
outcropping of characteristically sub-surface material in this area.
When pooling data from all 8 transects, the bottom sections
had a significantly higher pH than the top (P = 0.008) and
near top (P = 0.038) sections. Similarly, the pH of the in-
pasture samples was significantly higher than the top and near
top sections (P = 0.004 and P = 0.001, respectively). However,
when comparing the two principal transects in isolation from
the additional transects, there was no significant difference in
pH (P = 0.085).

On both of the principal transects, soil pH was significantly
lower in the top sections in comparison to the plateau (T140
P = 0.002; T210 P = 0.002), mid (T140 P = 0.027; T210 P = 0.016)
and bottom (T140 P = 0.003; T210 P = 0.002) sections (Table 1).
Likewise, both transects also had a significantly lower soil pH in
the near top sections relative to the plateau (T140 P = 0.002; T210
P = 0.005) and bottom (T140 P = 0.006; T210 P = 0.01). The
pH of the mid-section of T140 was significantly lower than the
plateau (P = 0.009).

Soil EC
When comparing the main transects, EC was significantly
higher on the T140 slope (mean 1504 µS cm−1) compared
to T210 (mean 149 µS cm−1) (Supplementary Figure

S2B, P = 0.005), indicating greater soil salinity on the
southeastern slope (T140).

There were no significant within-slope differences in EC on
either transect, although the mid to top sections generally had
higher EC values, which correspond to the sections closest to the
pallid zone before it is covered by colluvium further down the
slope. The highest ECmeasurements (>4,000µS cm−1) occurred
along the upper slope sections of FoxHill on its north- and south-
eastern aspects (T60, T110, T140, and T160), which coincided
with the outcropping of high-salinity pallid zone deposits.

Soil Water Repellency
Focussing on the two principal transects, the only significant
within-transect differences in the mean MED results occurred
on T210 where the bottom section MED value was significantly
lower than those of the mid (P = 0.007), near top (P = 0.002),
top (P = 0.009) and plateau (P = 0.009) sections (Table 1 and
Supplementary Figure S2C).

Soil Abiotic Factor Correlations
We found correlations between several soil characteristics. Clay
content was positively correlated with gravimetric water content
(R = 0.67, P = 0.01) and SWR was negatively correlated with
BD (ρ = 0.77, P = 0.002). Soil pH correlated negatively with
VWC (ρ = 0.82, P = 0.001) and positively with secondary ground
cover vegetation, soil pH being lowest where vegetation cover was
dominated by Eucalyptus (R = 0.64, P = 0.004).

Microbial Community Composition
After filtering, a total of 217,396 sequences were obtained
from all 58 soil samples from the two main transects,
comprising a total of 24,104 operational taxonomic units
(OTUs). The rarefied data set comprised a total of 2,849 OTUs
assigned to 19 phyla, 47 classes, 73 orders, 90 families, and
87 genera of archaea and bacteria. The 10 most abundant
phyla across all samples were Actinobacteria (41.6%),
Proteobacteria (23.0%), Acidobacteria (14.0%), Chloroflexi
(8.5%), Verrucomicrobia (2.6%), Gemmatimonadetes (1.8%),
Bacteroidetes (1.8%), Planctomycetes (1.5%), Firmicutes
(1.5%) and Thaumarchaeota (0.8%); with 1.8% of reads being
unassigned to any phylum (Figure 2).

Bacterial Community Diversity
Although α-diversity measures exhibited no significant
differences between groups, the upper sections of both transects
consistently had the lowest diversity according to all tested
metrics. The bottom and in-pasture sections generally had the
highest α-diversity (Supplementary Table S3).
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FIGURE 2 | Mean relative abundance of the dominant phyla (>1%) for samples from each sampling location on T140 (A) and T210 (B).

Permutational multivariate analysis of variance
(PERMANOVA) tests indicated that all tested variables
significantly affected soil bacterial community composition

(OTU presence/absence), with soil EC (ranked) (R2 = 0.19,
P = 0.0001), and soil pH (ranked) (R2 = 0.31, P = 0.0001)
having the strongest correlations (Table 2). SWR (MED ranked)
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(R2 = 0.07, P = 0.03) and clay % (R2 = 0.02, P = 0.005) exhibited
weaker yet significant associations with microbial β-diversity.
Pairwise PERMANOVA indicated that the strongest contrasts
in β-diversity occurred between samples of the upper (top
and near top) sections and those of the plateau and lower
(bottom and in-pasture) sections on both transects (P ≤ 0.02,
R2 > 0.4; Supplementary Table S4). However, permutational
multivariate analysis of dispersion (PERMDISP) tests also yielded
significant results, indicating that the PERMANOVA results
may be partially caused by differences in the group dispersions,
rather than their centroids (Table 3 and Supplementary Table

S5). Nonetheless, the PERMANOVA results were supported
by both the principal coordinate analysis (PCoA) and the
distance-based redundancy analysis (dbRDA) which indicated
a distinct clustering of the upper section communities away
from those of the plateau and lower sections, particularly
on T140 (Figure 3 and Supplementary Figure S3). The
dbRDA plot also suggested that the upper sections exhibited
the greatest contrast between transects, as they formed two
separate clusters. The dbRDA environmental vectors indicated
that these upper section microbial communities were most
strongly associated with soil EC on T140 (P = 0.001), and
MED (P = 0.001) and clay content (P = 0.027) on T210.
The in-pasture, bottom and plateau communities of both
transects correlated strongly with soil pH (P = 0.001) and sand
content (P = 0.011).

Differentially Abundant Taxa
Within-Transects
On T140, the mean relative abundance of Gemmatimonadetes
was significantly higher in the plateau and bottom sections
relative to all others (P < 0.0001). The only differentially

abundant phylum on T210 was Chloroflexi, which was
significantly more numerous in the bottom section (P < 0.0001).
When examining within-transect differences at a higher
taxonomic resolution, several members of the Actinobacteria
were more prevalent in the T140 plateau relative to the
other sections. These included the families Kineosporiaceae,
Micromonosporaceae, and Solirubrobacteraceae (all P < 0.0001);
genera Kibdelosporangium (P < 0.0001), Dactylosporangium
(P < 0.0001), Modestobacter (P < 0.0001), Rubrobacter
(P < 0.001), and Amycolatopsis (P < 0.0001) (Figure 4

and Supplementary Figure S4). Other taxa with increased
abundance in the T140 plateau belonged to the phyla
Proteobacteria [families Beijerinckiaceae, Bradyrhizobiaceae,
Comamonadaceae, Methylobacteriaceae, and Oxalobacteraceae;
genera Methylibium, Ramlibacter, Roseomonas, and
Methylobacterium (all P < 0.0001)]; Bacteroidetes [genera
Pedobacter (P = 0.0004) and Segetibacter (P = 0.0002)] and
Firmicutes [genera Cohnella (P = 0.0001), Alicyclobacillus
(P = 0.0002), and Ammoniphilus (P = 0.0003)] (Figures 4, 5, and
Supplementary Figure S4).

The upper sections of both transects exhibited higher
abundances of Acetobacteraceae, Acidobacteriaceae, and
Conexibacter relative to all other sections (Figure 6 and
Supplementary Figure S4). On T140, the top section
had significantly more Acidiphilium OTUs (P = 0.0001,
Figure 5); the near top was enriched in an unidentified
member of the family Pseudonocardiaceae denovo13726; while
Koribacteraceae (P < 0.0001) and Cryocola (P < 0.0001)
were more numerous in the bottom section (Supplementary

Figure S4). Actinomycetospora (P < 0.0001) and Streptomyces

(P < 0.0001) were significantly more abundant in the upper and
plateau sections of T210, respectively (Figures 5 and 6).

TABLE 2 | PERMANOVA (using the function adonis) results using unweighted UniFrac (9999 permutations).

Factor Df Sum of squares Mean squares F-value R2 P-value

pHCaCl2
† 3 3.573 1.191 11.243 0.306 0.0001∗∗∗

EC† 7 2.217 0.317 2.990 0.190 0.0001∗∗∗

MED† 3 0.793 0.264 2.494 0.068 0.0323∗

Silt 1 0.263 0.263 2.480 0.022 0.7578

Sand 1 0.266 0.266 2.510 0.023 0.4242

Clay 1 0.231 0.231 2.180 0.020 0.0054∗∗

†ranked data; significance levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05.

TABLE 3 | PERMDISP test for homogeneity results using unweighted UniFrac.

Parameter Df Sum of squares Mean squares F-value P-value

Sampling location (Transect and section) 10 0.052559 0.0052559 5.1932 <0.0001∗∗∗

pHCaCl2
† 3 0.0405 0.0135 6.3757 0.0009∗∗∗

MED† 3 0.1381 0.0138 7.6943 0.0002∗∗∗

EC† 7 0.0680 0.0097 4.4453 0.0007∗∗∗

Clay 19 0.0685 0.0036 4.5889 <0.0001∗∗∗

Silt 19 0.0685 0.0036 4.5889 <0.0001∗∗∗

Sand 18 0.1329 0.0738 3.9581 0.0002∗∗∗

†ranked data; significance levels: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05.
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FIGURE 3 | dbRDA ordination plot using unweighted UniFrac distance matrices with environmental variables (pH, EC, MED, and soil texture) mapped on using the

envfit function (vegan package in R). Both the first (P = 0.001) and second (P = 0.001) dbRDA axes significantly explained the variation in the bacterial community

composition.

Between-Transect Differences in
Bacterial Taxa Abundances
When comparing the two transects, significant differences in
taxa abundances were limited to the upper sections. Relative
to those of T140, the T210 upper sections were enriched in
members of the phyla Proteobacteria (families Bradyrhizobiaceae
and Sphingomonadaceae; genus Bradyrhizobium), Actinobacteria
(genus Actinomycetospora), and Acidobacteria (family
Solibacteraceae) (P < 0.05; difference between mean proportions
>1.5) (Figure 7).

Soil Biotic Correlations
Amycolatopsis (phylum Actinobacteria) was the only OTU found
to vary significantly with pH (ranked), being more numerous in
the least acidic soils (pH 5.0–5.5) relative to all others (pH < 5).
The most water repellent soils (MED 3–3.9 mol L−1) had
significantly more Salinispora OTUs (P < 0.001), members of
which grow optimally in saline environments, such as seawater
(Ng et al., 2014).

Functional Comparisons of Microbial
Communities
The mean nearest sequenced taxon index (NSTI) value was
0.11 (±0.003), indicating a good strength of reliability in the

PICRUSt metagenome predictions. PICRUSt analysis indicated
a significant effect of the weathering profile on the predicted
functional traits of soil communities, with several pathways
involved in metabolism significantly differing in abundance
between the bottom and upper sections of both transects
(P< 0.001;Table 4). KEGG orthologs (KOs) related to N-fixation
were significantly more abundant in the plateau and bottom
sections in comparison to all others on T140 (Figure 8).

Fewer differences were detected when grouping samples
by pH, although those with a pH > 4 had more KOs
for nitrous-oxide reductase and nitrous oxidase accessory
protein in comparison to more acidic soils (pH < 4)
(P < 0.001, Supplementary Figure S5). Soils with higher EC
(>1200 µS cm−1) were enriched in KOs assigned as prephenate
dehydrogenase and putative glutamine amidotransferase,
in comparison to all other samples (P < 0.01). There
were no apparent significant effects of MED (ranked) on
predicted functions.

DISCUSSION

This study demonstrates that a suite of edaphic factors shaped
by both weathering history and vegetation result in greatly
divergent soil microbial communities along this lateritic profile.
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FIGURE 4 | Families within the phyla Proteobacteria [(A) Beijerinckiaceae, (B) Bradyrhizobiaceae, (C) Methylobacteriaceae and (D) Oxalobacteraceae] and

Actinobacteria [(E) Solirubrobacteraceae] with significantly higher mean proportions in the plateau sections of T140 (Benjamini–Hochberg FDR P < 0.05, difference

in mean proportion > 1.5%).

Multivariate analysis identified soil pH and EC as the strongest
predictors of soil bacterial diversity, as reported in other studies
(Meola et al., 2014; Kim et al., 2016; Tytgat et al., 2016). Sampling
location (transect and section) also accounted for considerable
variation in bacterial β-diversity, with plateau and lower sections
exhibiting the most similar communities on both transects. Since
these sections correspond to different layers of a well-preserved
ancient weathering profile (Figure 1 and Supplementary Figure

S1C), our findings support a link between mineralogy and soil
microbial communities. This association has been detected across
many environments (Carson et al., 2009; Jones and Bennett, 2014;
Kim et al., 2015) including alpine glacier forefields in Switzerland
(Meola et al., 2014) and naturally metal-rich soils in Australia
(Reith et al., 2015). It is important to note that the bottom sections
bordered an agricultural field, which may have affected these
results since soil microbial communities are significantly affected
by agricultural practices such as fertilizer inputs (Nguyen et al.,
2018; O’Brien et al., 2018) and tilling (Babin et al., 2018).

Of all the abiotic soil variables measured, only pH and clay
content varied significantly between sections on both transects.
Soil pH was highest in the plateau sections, while the upper
sections were the most acidic and had the highest clay content
relative to all other sections. The lower pH of the upper sections
is likely due to them corresponding with the mottled zone,
which typically has low pH and high EC (McArthur, 1991;

Tille et al., 2001). These characteristics may be explained by
the high content of kaolinitic clay (positive correlation with soil
EC) and salts (negative correlation with pH) in the mottled
zone, in addition to the widely reported negative correlation
between soil EC and pH, as supported by our results (Wang
et al., 2008; Aini et al., 2014). On T210, it may also result from
the dominance of eucalypt species in these sections as their
leaf litter leachates promote cation leaching and acidification
(Swift et al., 1979; Bernhard-Reversat, 1999) (Supplementary

Table S2). Another factor affecting soil pH may have been the
position on the slope, as soil pH has been shown to be lower
at higher elevations possibly due to the downward transport of
sediments and leaching of basic cations from upper hillslope
sections (Smith et al., 2002; Hattar et al., 2010). Soil EC has also
been reported to correlate with elevation, decreasing at lower
elevations due to higher moisture accumulation (Smith et al.,
2002; Hattar et al., 2010).

Another topographical measure that may have influenced soil
physicochemical traits at our study site was slope gradient. Slope
inclination can influence soil moisture content, as steeper slopes
have greater runoff and transportation of sediments downslope
(Hall, 1983). This runoff has been shown to result in a higher
concentration of exchangeable bases (e.g., Ca2+, K+ and Na+)
and, as a possible consequence, higher soil pH at the foot of the
slope (Tsui et al., 2004). However, there are contrasting reports
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FIGURE 5 | Heatmap of the top 25 most abundant genera in each section of the two principal transects (created using the package ampvis2 in R).

of the relationships between soil physicochemical attributes and
slope features. For instance, Ribolzi et al. (2011) reported that
steeper slopes in northern Laos had less runoff which they
partially attribute to the lower infiltration rates observed on
steeper slopes, while Hattar et al. (2010) found that neither soil
pH or EC bore a significant correlation with slope steepness.

Soil water repellence varied significantly on T210, with the
bottom sections being the least water repellent, possibly due
to the accumulation of colluvial material at the bottom of the
hillslope. The mean MED for plateau samples (both transects)
and T210 mid and upper sections represented moderate to severe
water repellency according to Jackson and Linskens (1991). On
T140, this may be attributed to the low clay content which
is characteristic of water repellent soils (Harper et al., 2000),
with clay additions serving as an effective method to ameliorate
SWR (Hall et al., 2010; Shanmugam et al., 2014). Another
possible contributing factor is the occurrence of forest fires –
which are frequent in WA – as these can result in increased
soil hydrophobicity (DeBano, 2000). Furthermore, a positive
feedback loop can establish as hydrophobic soils commonly form
preferential flow paths and soil aggregates which may intensify
drought events and inhibit microbial degradation of organic
matter (Goebel et al., 2011).

The lower soil BD on T210 relative to T140 was attributed
to the greater vegetation cover and clay content on T210, since
both correlate negatively with BD (Li and Shao, 2006; Keller and
Håkansson, 2010). However, vegetation has clearly influenced the
BD on both transects since lateritic soils which lack any vegetative

cover have been reported to have considerably higher bulk
densities than that of our study site (Sherman et al., 1953). Plant
roots, particularly those of woody species, help to maintain soil
porosity and structure, thereby avoiding compaction as indicated
by high BD (Li and Shao, 2006). The lower vegetation density
on T140 would result in thinner, more compacted and eroded
topsoils that are in closer proximity to, and thereforemore greatly
influenced by, the lateritic profile. The higher EC on T140 is also
suggestive of greater erosion on this side of the hillslope since
the pallid zone has an inherently high salt content, meaning that
increased exposure of this horizon would elevate the salinity of
surficial soils (Lewis, 1985; Brouwer and Fitzpatrick, 2002).

Although α-diversity did not vary significantly, it was
consistently lowest in the upper sections which also had the
highest EC values. The effects of salinity on bacterial α-diversity
are still debated, with increased salinity causing reductions
in species richness in some studies (Ibekwe et al., 2010; Xue
et al., 2018), whilst having no significant effects in others (Gao
et al., 2015). α-diversity has also been reported to be positively
correlated with soil pH (Fierer and Jackson, 2006), which concurs
with our results, as the upper sections had the lowest soil pH.
β-diversity analysis indicated that, on both transects, the bacterial
communities of the two most distant sections - the plateau
and bottom - were more similar than those in-between. The
bottom and plateau microbiomes exhibited positive associations
with soil pH and sand content, while the upper sections
correlated more with EC (on T140) and clay and MED content
(T210). This concurs with Gleeson et al. (2016), who found
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FIGURE 6 | Bacterial taxa with significantly higher mean abundances in the upper (near top and top, A–D) and plateau (E) sections of T210 relative to all other

sections of this transect (Benjamini–Hochberg FDR P < 0.05, difference in mean proportion > 2%).

that pH, EC, and MED were major driving factors, accounting
for almost 60% of the variation in the bacterial community
structure at a neighboring site within the AR-CZO. Our study
therefore shows that soil heterogeneity (in terms of pH, EC,
MED, and soil texture) relating to the different depths of the
weathering profile is a major driver of compositional shifts in
the soil microbial community. The significant PERMDISP result
indicates that significant PERMANOVA results were also due to
differences in the dispersion of bacterial communities between
groups, in addition to compositional differences. However, the
PERMANOVA results may also have been confounded by the

variation in the number of samples per section which resulted
from the failure of 5 DNA samples to pass the quality control
filtering stages (Anderson and Walsh, 2013).

Relative to all other T140 sections, the T140 plateau was
enriched in the phylum Gemmatimonadetes, in addition to
several members of Proteobacteria and Actinobacteria. This may
be related to this section having the highest water repellency
(MED) on T140, since these phyla have been reported to be
more abundant in water-limited environments (Acosta-Martinez
et al., 2014; Curiel Yuste et al., 2014; Fernandes et al., 2018;
Ren et al., 2018). For instance, Actinobacteria were enriched
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FIGURE 7 | Taxa with significantly different abundances between the upper sections of the two main transects T140 (orange bars) and T210 (brown bars) at the

family (A) and genus (B) level (Welch’s t-test P < 0.05 (Benjamini–Hochberg FDR), difference in mean proportion > 1.5%).

in the rhizospheres of drought-stressed rice (Santos-Medellín
et al., 2017) and subterranean clover (Mickan et al., 2018),
as well as water repellent soils of a Mediterranean semiarid
forest (Lozano et al., 2014). This has been partially attributed
to the wax-degrading ability of Actinobacteria (Roper, 2006),
which corroborates our results since the dominant vegetation on
T140 was Eucalyptus, the leaves of which contain epicuticular
waxes (Wirthensohn and Sedgley, 1996; Doerr et al., 2000). This
complements several other extreme environmental conditions
that Actinobacteria species are known to tolerate, including high
temperatures, salinity, acidity and alkalinity (Yandigeri et al.,
2012; Mohammadipanah and Wink, 2016; Nguyen et al., 2018).

The prevalence of Actinobacteria in plateau samples may
also be related to the weathering profile, since the iron oxide-
rich duricrust layer was restricted to the plateau section of the
hillslope. Actinobacteria are regarded as “subaerial settlers” that
are well-adapted to hostile environments and dominate subaerial
biofilms on exposed rock surfaces (Gorbushina, 2007). Indeed,
Actinobacteria have been implicated in the bio-weathering of
volcanic rocks in Iceland (Cockell et al., 2013) and granitic rocks
in Egypt (Abdulla, 2009).

Several species enriched in the plateau and bottom sections
are referred to as “rare” Actinobacteria as they produce bioactive
compounds that have been used to develop novel antibiotics
in the pharmaceutical industry (Lazzarini et al., 2001; Jose
and Jebakumar, 2013; Azman et al., 2015). These include

compounds with antibacterial, anticancer, nematocidal and
antiviral properties (Tomita et al., 1993; Schupp et al., 1998;
Ayar-Kayali and Tarhan, 2006; Igarashi et al., 2007; Ratnayake
et al., 2007). The presence of these “rare” Actinobacteria was
supported by our PICRUSt analysis, as the bottom sections of
both transects had higher abundances of genes involved in the
biosynthesis of penicillin, cephalosporin and ansamycins, which
all have antibacterial and/or antitumor properties (Fleming,
1929; Neu, 1974; Rinehart and Shield, 1976; Basso et al., 2002).
This site may, therefore, be suitable for future bioprospecting
studies in search of novel actinobacterial taxa with valuable
antimicrobial properties.

The T140 plateau was enriched in several families of
Proteobacteria that contain atmospheric N-fixing species
(Baldani et al., 2014; de Souza et al., 2014; Marín and Arahal,
2014). This was supported by the KEGG analysis which also
indicated a greater abundance of N-fixing bacteria in the T140
plateau and bottom sections (Figure 8). N-fixing bacteria act as
valuable biofertilizers that may be used either as supplements
or alternatives to chemical fertilizers in sustainable agriculture
(Ladha and Reddy, 1995; Monteiro et al., 2008; de Souza et al.,
2015; Kumar et al., 2015). Therefore, if the soils in the paddock
bordering our study site eventually inherit this abundance
of N-fixers, it could benefit crop production. This increased
abundance of N-fixers may result from the lower salinity of
the plateau and bottom sections, corroborating reports that
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FIGURE 8 | KEGG orthologs (KOs) involved in N-fixation via (A) Nif-specific regulatory protein, (B,H) Nitrogen fixation protein NifB and NifX, (C,F,G) Nitrogenase

molybdenum-iron protein alpha chain, beta chain, and NifN, (D) Nitrogenase molybdenum-cofactor synthesis protein NifE, (E) Nitrogenase iron protein NifH, with

significantly higher abundances in the plateau and bottom sections relative to all others (top, near top, and mid) on T140. KO abundances were calculated using

PICRUSt and visualized in STAMP (minimum effect size = 0.7, Benjamini–Hochberg multiple test-corrected q-value < 0.05).
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TABLE 4 | KEGG pathways predicted that differed significantly between sections of T140 and T210.

Gene category T140 (%) T210 (%)

Plateau Top Near Top Mid Bottom Plateau Top Near Top Mid Bottom In-Pasture

Metabolism

Arginine and proline

metabolism

1.28 cde 1.36 a 1.33 ab 1.30 bcd 1.26 e 1.31 bc 1.30 bcde 1.32 abc 1.28 cde 1.27 de 1.29 cde

Biotin metabolism 0.13 bcde 0.14 a 0.14 ab 0.13 cde 0.11 e 0.14 abc 0.13 cde 0.13 bcd 0.13 cde 0.11 e 0.12 de

Biosynthesis of unsaturated

fatty acids

0.36 bcd 0.40 a 0.41 a 0.38 abc 0.35 d 0.39 ab 0.39 ab 0.40 a 0.37 bcd 0.36 d 0.36 cd

Tropane, piperidine and

pyridine alkaloid biosynthesis

0.13 cd 0.15 a 0.15 a 0.14 cd 0.13 d 0.13 cd 0.15 ab 0.15 ab 0.14 bc 0.13 cd 0.13 cd

Fructose and mannose

metabolism

0.55 cde 0.55 de 0.54 e 0.56 bcd 0.57 a 0.55 cde 0.57 ab 0.56 bcde 0.56 bcd 0.58 a 0.56 abc

Alanine, aspartate and

glutamate metabolism

0.89 abcd 0.86 cde 0.85 de 0.88 bcde 0.92 a 0.90 abc 0.86 de 0.84 e 0.87 bcde 0.91 ab 0.91 ab

beta-Lactam resistance 0.05 abcd 0.04 e 0.04 de 0.05 bcd 0.06 a 0.04 de 0.05 cd 0.04 de 0.05 cd 0.06 ab 0.06 abc

Lipid biosynthesis proteins 0.97 abc 1.05 cd 1.12 d 1.03 cd 0.93 a 1.00 abc 1.02 bc 1.04 cd 0.98 abc 0.93 a 0.94 ab

Penicillin and cephalosporin

biosynthesis

0.08 abcd 0.06 e 0.07 de 0.08 bcd 0.10 a 0.07 de 0.08 cd 0.07 d 0.08 cd 0.09 ab 0.09 abc

Nucleotide metabolism

[Unclassified]

0.02 ab 0.01 f 0.01 def 0.01 cde 0.02 ab 0.02 a 0.01 ef 0.01 ef 0.01 bcd 0.01 ab 0.01 abc

Ubiquinone and other

terpenoid-quinone synthesis

0.28 ab 0.26 cd 0.25 d 0.27 bcd 0.28 ab 0.28 a 0.26 cd 0.26 d 0.28 abc 0.29 a 0.28 ab

Biosynthesis of ansamycins 0.06 a 0.04 d 0.05 ab 0.06 ab 0.06 a 0.05 ab 0.05 cd 0.05 bc 0.05 abc 0.06 a 0.05 abc

Protein kinases 0.39 cd 0.40 cd 0.38 d 0.39 cd 0.41 ab 0.38 d 0.40 bcd 0.38 d 0.40 cd 0.42 a 0.41 abc

Genetic information

processing

Protein processing in

endoplasmic reticulum

0.07 abc 0.06 de 0.06 cde 0.06 bcde 0.07 abc 0.08 a 0.06 e 0.06 e 0.07 abc 0.07 ab 0.07 abcd

Cellular processes and

signaling

Inorganic ion transport and

metabolism [Unclassified]

0.34 bc 0.32 d 0.33 cd 0.34 bc 0.36 a 0.33 cd 0.33 cd 0.33 cd 0.35 abc 0.36 ab 0.36 ab

Significantly higher frequencies are highlighted in bold (P < 0.001, effect size > 0.7). Letters indicate significantly different values assessed between sections of both

transects (Tukey’s HSD test P < 0.05).

N-fixing bacteria abundance and activity is lower in saline
soils (Sorokin et al., 2008; Thiem et al., 2018). It may also be
related to the nutrient-poor status common to all surficial soils
of aeolian origin, such as those covering the duricrust at the
plateau which consist primarily of quartz sand and are therefore
inherently nutrient deficient. Beijerinckia are well-adapted to
lateritic soils, as they are able to grow in environments which
lack calcium and have high levels of iron, which are common
features of the upper layers of laterites (Becking, 1961a,b;
Anand and Paine, 2002). Also, ferruginous gravels are known
to have P-fixing attributes (Tiessen et al., 1991), which may
mean that the plateau section has greater P content, thereby
alleviating P-limitations on microbial N-fixation (Crews, 1993;
Reed et al., 2007). The higher number of N-fixing bacteria
detected in samples from the bottom section may be related
to the potential influence of fertilizers applied to the paddock.
However, chemical fertilizers have varying effects on N-cycling
microbes, with inorganic N additions having no effect on nifH
gene abundance in some studies (Berthrong et al., 2014; Sun
et al., 2015), while others report a significant decrease in the
number of nifH gene copies in bulk soil following inorganic

(NH4
+ and NO3

−) N additions (Wang et al., 2017). A perhaps
more likely driver for this is the significantly higher pH of
the T140 plateau and bottom sections relative to the upper
sections, as this would concur with Wang et al. (2017) who
also reported a positive correlation between nifH gene copy
number and soil pH.

Aspect appeared to influence the microbial communities of
the upper sections only, with several taxa being significantly
more abundant on T210 relative to T140 (Figure 7). We believe
this was mainly caused by soil EC which was more than ten-
fold higher in the upper sections of T140 than those of T210.
EC is closely linked to several soil properties, notably salinity
(Rhoades and Ingvalson, 1971), clay content (Sudduth et al.,
2005), water content (Robinson et al., 2012), SOM (Martinez
et al., 2009), and availability of total water-soluble ions, such as
nitrate (Patriquin et al., 1993). Our finding that a member of
the Acidobacteria (family Solibacteraceae) was significantly less
abundant in the upper sections of T140 relative to those of T210
concurs with reports that Acidobacteria are negatively associated
with soil EC (Wakelin et al., 2012). Sphingomonas abundance
has also been shown to decline with increasing salinity, which
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complements our finding that Sphingomonadaceae were
significantly less abundant in the upper sections of T140 (Yang
et al., 2016). The increased abundance of Actinomycetospora on
T210 upper sections may be driven by the higher water repellency
on this transect, since species of this genus have previously
been found in extremely arid environments, such as deserts
(Sun et al., 2018). Certain members of Sphingomonadaceae
also have associations with water repellent environments, as
they can degrade polycyclic aromatic hydrocarbons which
have hydrophobic properties (Leys et al., 2004). Microclimatic
differences between aspects may also have directly or indirectly
influenced microbial community composition (Timmusk et al.,
2009; Wu et al., 2017), but at this relatively small spatial
scale, we expect this to have a minor role in the differences
observed in this study.

CONCLUSION

Our study indicates the strong influence that weathering
history, vegetation cover and their associated influences on
soil physicochemical attributes can exert on the soil microbial
community. The convergence of the microbial communities of
opposite ends of both transects (i.e., the plateau and lower
sections) appeared to be mainly driven by soil pH. This
convergence suggests that the gradual erosion of this lateritic
profile may eventually lead to an increased abundance of certain
members of Proteobacteria and Actinobacteria as these were
enriched in the plateau samples relative to the rest of the hillslope.
Meanwhile, significant between-transect contrasts in bacterial
community composition were limited to the upper sections. This
appeared to be related to differences in SWR and EC, which
we attribute to the greater exposure of the pallid zone in the
T140 upper sections.

This enhanced understanding of the natural system could help
to improve future management of agricultural systems in WA
since they use soil with inherited physicochemical properties and
bacterial communities. For instance, relative to the rest of T140,
the plateau section was enriched in several families known to
contain N-fixing bacteria. If the microbial communities of these
laterite-derived agricultural soils continue to converge with those
of the plateau over time via the weathering process, it could have
important implications for agricultural management as it may
reduce the need for inorganic N fertilizer applications.
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