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ABSTRACT

We present rapid, multiwavelength photometry of the low-mass X-ray binary Swift J1357.2-0933
during its 2017 outburst. Using several sets of quasi-simultaneous ULTRACAM/NTT (optical),
NuSTAR (X-ray), XRT/Swift (X-ray), SALT (optical) and ATCA (radio) observations taken during
outburst decline, we confirm the frequent optical dipping that has previously been noted both in
outburst and in quiescence. We also find: 1) that the dip frequency decreases as the outburst decays,
similar to what was seen in the previous outburst, 2) that the dips produce a shape similar to that
in binary systems with partial disc occultations, 3) that the source becomes significantly bluer
during these dips, indicating an unusual geometry compared to other LMXB dippers, and 4) that
dip superposition analysis confirms the lack of an X-ray response to the optical dips. These very
unusual properties appear to be unique to Swift J1357.2—0933, and are likely the result of a high
binary inclination, as inferred from features such as its very low outburst X-ray luminosity. From
this analysis as well as X-ray/optical timing correlations, we suggest a model with multi-component
emission/absorption features with differing colours. This could include the possible presence of a
sporadically occulted jet base and a recessed disc. This source still hosts many puzzling features,
with consequences for the very faint X-ray transients population.

Key words: accretion, accretion discs — X-rays: binaries — X-rays: individual: Swift

J1357.2-0933 — stars: optical: variable — black holes

1 INTRODUCTION discovery in 2011. Lying at a distance between 2.3 — 6.3
kpe (Shahbaz et al. 2013, Mata Sanchez et al. 2015), it is a
Black Hole Candidate (BHC) whose mass is estimated as
29.3 M (Corral-Santana et al. 2016). It is also one of the
faintest of the black-hole LMXBs, with a peak luminosity of
1.1x10% erg s~! at outburst and a very low Ly /L,p ratio
* E-mail: j.a.paice@soton.ac.uk (KTS) (57) (Corral-Santana et al. 2013. This puts it into the grow-

Swift J1357.2—0933 is a Low-Mass X-ray Binary, or LMXB,
that has been the subject of much scrutiny ever since its

1 Leverhulme Emeritus Fellow
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ing population of Very Faint X-ray Transients (VFXTs),

whose peak luminosities are L}’}eak < 10% erg s~ (Wijnands
2005) - a unique property among currently known galactic
BHCs.

Swift J1357.2—0933 (hereafter J1357) has been ob-
served to go into outburst twice — once in 2011 (Krimm et al.
2011), and again recently in 2017 (Drake et al. 2017). How-
ever, even during quiescence, an additional component
in the system dominates the light from the companion
(Shahbaz et al. 2013, Russell et al. 2018). For this reason,
the mass of the system has not been dynamically deter-
mined; instead, it was inferred by measuring the Full Width
at Half-Maximum (FWHM) of the Ho profiles from the
accretion disc. The companion’s properties have been in-
ferred through similar processes and upper limits on its
quiescent brightness; it has been found to have a mass of
~0.4 Mg, a binary period of 2.8 £ 0.3 hours, and spec-
tral type M4.5 (Corral-Santana et al. 2013, hereafter JCS13,
Mata Sanchez et al. 2015).

Curious, semi-periodic drops in optical flux have been
noted in J1357 during both outburst and quiescence (JCS13,
Shahbaz et al. 2013). When seen in the 2011 outburst, the
frequency of these dips decreased as the outburst declined.
JCS13 explain these dips by suggesting that the compact
object is surrounded by a thick, irregular torus-like struc-
ture, which is seen at a high inclination (270 degrees). Our
view of the central emitting region is thus occasionally ob-
scured by outer parts of the accretion disc (Torres et al.
2015, Mata Sénchez et al. 2015, Armas Padilla et al. 2014).
The change in frequency could therefore be due to these per-
turbations travelling outwards from the compact object as
the surrounding structure recedes.

However, the exact nature and geometry of the sys-
tem that creates these dips is still unclear, as is a satis-
factory physical explanation. An extended, accretion-disc
corona is assumed to be common among X-ray binaries,
particularly those hosting a neutron star (White & Mason
1985), yet the prevalence of such structures in black hole
systems remains unclear. Alternative interpretations have
also been suggested, including a thick inner torus, a warped
disc, or an asymmetric outer disc with a tidal arm (JCS13,
Mata Sanchez et al. 2015).

None of these explanations are fully self-consistent,
however, and there are some features which present prob-
lems; in particular, the lack of eclipses by the companion star
given the estimated high inclination, or the fact that these
dips are not present in X-rays (JCS13, Armas Padilla et al.
2014). Additionally, recent studies report a lack of X-ray
spectral features (Beri et al. 2019); a lack of such reflection
components is consistent with an edge-on geometry, but this
does not fit the explanation of a toroidal structure where
there should be features seen from X-rays passing through
the material or reflecting off the back wall. The material that
makes up this obscuring structure is likewise unknown. In
short, there are still many aspects of this system that need
to be explained.

This paper presents new simultaneous optical, X-ray,
and radio data obtained during the decline of the 2017 out-
burst. We investigate the dips, highlighting their varying
colours and response in the X-rays, and compute DCF's be-
tween the optical and X-ray data, amongst other work. We
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Figure 1. Timeline of Swift J1357.2—0933’s 2017 outburst, as
seen by XRT/Swift. Red lines denote dates of observations (see
Table 1); line 1 is the Apr 28 SALT + NuSTAR observation, line
2 is the May 15 SALT + Swift + ATCA observation, and line 4
is the Jun 10 ULTRACAM + NuSTAR + Swift observation.

thus consider the implications of these results with regards
to current models.

2 OBSERVATIONS
2.1 ULTRACAM/NTT — Fast Optical timing

ULTRACAM is a fast-timing optical instrument on the New
Technology Telescope (NTT) in La Silla, Chile. It was built
for the purpose of fast optical timing in multiple wavebands.
To this end, it includes three channels for simultaneous mul-
tiwavelength monitoring (with replaceable filters), and it
can also observe at frame-rates well above 100Hz - this is
achieved by the lack of a physical shutter, and frame-transfer
CCDs that can rapidly shift charge into a storage area for
reading out, freeing up the original pixels for observation
and achieving low dead times (Dhillon et al. 2007).

Observations of J1357 were taken on the night of 2017
June 10, encompassing just over three hours (see Table 1).
The source was monitored in SDSS u/, g’ and / filters,
and the times were chosen to coincide with NuSTAR ob-
servations (see Section 2.4). ULTRACAM was used in two-
window mode (one each for the target and the comparison
star), with both window sizes of 50 x 50 pixels with a 2x2
binning for sensitivity and speed. ¥ and g’ bands were ob-
served with an exposure time of 86.1 ms, and a total cycle
time of 110.1 ms, giving 24 ms of dead time and a sampling
rate of ~9 Hz. J1357 was very faint in #’, however, and so
ULTRACAM’s co-adding feature was used; this combines
multiple observations to increase signal-to-noise ratio. For
our observation, 20 co-adds were used, giving an exposure
time of 2179 ms and thus a frequency of ~0.45 Hz in the
blue band.

The data were reduced using the ULTRACAM pipeline
v9.14 (Dhillon et al. 2007). The bias was subtracted from
each frame, and flat field corrections were also applied. Aper-
tures of optimally varying sizes were used, with radii be-
tween 3.15” and 4.9”, with an annulus of between 6.3"” and
8.75" to calculate the background, varying with the seeing,
which was between 1-2”. These apertures had variable cen-
tre positions that tracked the centroids of the sources on
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Table 1. Swift J1357.2-0933 Observing log. Epochs refer to the times marked in Figure 1.

Instrument/Telescope Date Start (UT) End (UT) Start (MJD) End (MJD) Epoch

NuSTAR 2017-04-28 13:09 10:13 (+1 day)  57871.54816  57872.42582

XRT/ Swift 2017-04-28 14:49 16:39 57871.61721  57871.69349 1
SALT 2017-04-28 20:02 20:47 57871.83477  57871.86618
ATCA 2017-05-15 09:56 17:47 57888.41388  57888.74119

XRT/ Swift 2017-05-15 12:06 12:21 57888.50399  57888.51454 2
SALT 2017-05-15 18:38 19:19 57888.77631  57888.80485

SALT 2017-05-22 18:16 18:41 57895.76112  57895.77873 3
NuSTAR 2017-06-10 13:40 03:40 (4+1 day)  57914.56944  57915.15278

XRT/ Swift 2017-06-10 14:42 15:45 57914.61247  57914.65659 4
ULTRACAM/NTT 2017-06-11 00:30 04:00 57915.02083  57915.16667

SALT 2017-07-19 18:27 19:22 57953.76900  57953.80714 5

each frame, with a two-pass iteration (where an initial pass
is made to to track the sources on the CCD before a second
photometry pass) used for accuracy. Our times were then
adjusted to Barycentric Dynamical Time (BJD_TDB) using
methods given in Eastman et al. (2010). Interstellar extinc-
tion along the line-of-sight to the source in A(V) was found
to be 0.094/0.136/0.174 mag in /g’ /u’ respectively, using
Schlafly & Finkbeiner (2011); these corrections were applied
to our data so as to obtain the intrinsic source magnitudes.

Our comparison star is located at RA = 13:57:18.58,
Dec = —09:31:20.74 (J2000), and is listed in the
Sloan Digital Sky Survey (SDSS) release DR14 as ID
1237671956450377819 (Abolfathi et al. 2018) with #/ /g’ /u’
magnitudes of 13.85/14.50/16.33 respectively. The star was
assumed to be constant, and was used for photometric cali-
bration.

2.2 SALT — High Speed Photometry

The Southern African Large Telescope (SALT) is a 10m-
class optical telescope operated by the South African As-
tronomical Observatory. It was built with spectroscopy in
mind, although it can also achieve high-speed photometry
(most salient for this paper), and it saw first light in 2005
(Buckley et al. 2006).

High-speed photometry of Swift J1357.2—0933 was
undertaken using the Robert Stobie Spectrograph (RSS;
Kobulnicky et al. 2003) on 2017 April 28, May 15, 22 and
July 19 with seeing 1.5”, 1.8”, 1.3" and 1.7” respectively
(see Table 1). Fast imaging observations were performed in
“slotmode”, with a clear, fused silica filter and employing 6
x6 pixel binning, with 100 ms time resolution. This mode
is similar to slotmode implemented on the imaging camera,
SALTICAM (e.g. see O’Donoghue et al. (2006)). For RSS
slotmode, an occulting mask with a narrow slot is placed
at the focus of the telescope, which is then reimaged by
the RSS optics onto the mosaic of three edge-butted frame
transfer CCDs (E2V 42-81). The slot image has a width
of 144 unbinned 15um pixels, approximately 20 arcsec on
sky, and a length of 8 arcmin. At the end of each slotmode
exposure the image is rapidly (in a few ms) moved across
the frame transfer boundary of the CCD, and a new expo-

sure is initiated. No shutter is used in slotmode. The images
eventually migrate down to the serial readout register in a
stepwise manner after each exposure and read out during
an exposure. The start times of two consecutive exposures
differ by 104 ms, which is the effective time resolution of our
observations.

These slotmode observations allowed for the placement
of both the target star and an appropriate nearby (1.8 ar-
cmin) comparison star, SDSS J135716.43—093140.1 (RA =
13:57:16.452, Dec = —09:31:40.14, g’ = 15.8), within the
slot by rotating its long axis to a position angle of 85° using
the instrument rotator on SALT. Both stars were imaged
onto the central CCD of the detector and so readout by the
same CCD amplifier, reducing instrumental effects, such as
gain or bias variations. The data were reduced using the
PySALT pipeline (Crawford et al. 2010), which corrects for
bias, overscan, crosstalk and gain, and differential aperture
photometry was undertaken using standard IRAF tasks.

In determining the source magnitude during this obser-
vation, the clear filter was approximated as g’ by using the
comparison star’s g’ magnitude as a reference. We estimate
that this will produce a systematic uncertainty of +£10%.

2.3  Swift — X-ray

The XRT onboard the Neil Gehrels Swift Observatory
(Gehrels et al. 2004), was also used to measure the soft X-
ray flux of the source (1 — 10 keV, Burrows et al. 2005).
We used three observations with Obs IDs 00088094002 (Apr
28), 00031918058 (May 15), and 00031918066 (Jun 10), co-
incident with other observations (see Table 1). The April 28
observation was made in photon counting mode, while the
latter two were made in windowed timing mode.

The April 28 data were processed using the Build XRT
Products tool (Evans et al. 2009). The other two datasets
were processed using XRTPIPELINE, with source and back-
ground spectra extracted using XSELECT. A circular region
of radius 35” was used to extract the source, and a similar
region centered on an area of no source events was then ex-
tracted as the background. Ancillary response files were then
created using XRTMKARF. The source was found to have an
average count rate in the 1 — 10 keV band of 1.11 + 0.03
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counts s~! for the Apr 28 observation, 0.81 + 0.03 counts
s~1 for May 15, and 0.67 + 0.03 counts s—! for Jun 10.

2.4 NuSTAR — X-ray

The Nuclear Spectroscopic Telescope ARray (NuSTAR) is
a NASA X-ray satellite that was launched in 2012. Among
X-ray telescopes, NuSTAR is particularly notable for its de-
ployable mast, providing a long focal length of 10m when
extended; this allows it to focus high-energy X-rays in
the 3 — 78 keV range, the first orbital mission to achieve
this (Harrison et al. 2013). NuSTAR carries two telescopes,
FPMA & FPMB. Except for subtle differences in their ef-
fective areas, the two modules are very similar, and for all
but spectral analysis we sum the counts from the two here.

Two observations carried out by NuSTAR are used here;
one on April 28 (Obs ID 90201057002, coincident with Swift
and SALT) and one on June 10 (Obs ID 90301005002, co-
incident with Swift and ULTRACAM) (see Table 1). Due
to the low-Earth orbit of NuSTAR, the observation was in-
terrupted by frequent Earth occultation and by passages
through the South Atlantic Anomaly (SAA), splitting the
observation into numerous discrete segments.

Data reduction was completed using NUPIPELINE, and
source and background regions were selected with a radius of
30", as recommended by the pipeline documentation. With
NUPRODUCTS, both source and background lightcurves were
extracted from both FPMA and FPMB. The background
was subtracted manually, and the lightcurves were adjusted
to BJD_TDB using the FTOOLS command BARYCORR.

2.5 ATCA and EVN — Radio

Radio observations of this outburst were carried out with the
Australia Telescope Compact Array (ATCA), under project
code CX385 (PI Plotkin). We observed on 2017 May 15 from
09:30-18:00 UT, to be coincident with Swift and SALT. Ob-
servations were carried out simultaneously in two frequency
bands, centred at 5.5 and 9.0 GHz, each with 2048 MHz of
bandwidth. The array was in the extended 6A configuration.
The bright extragalactic calibrator source PKS 1934—638
was used as a bandpass calibrator and to set the flux density
scale, and PKS 1406—076 to set the time-dependent complex
gains. Data processing was carried out according to standard
procedures within the Common Astronomy Software Appli-
cation (CASA v5.1.1; McMullin et al. 2007). The data were
imaged using the CASA task CLEAN, using two Taylor terms
to model the frequency dependence over the large fractional
bandwidth. Imaging was performed using Briggs weighting
with robust=1, to reduce sidelobes from other sources within
the field. Flux densities were then measured using IMFIT, re-
quiring a point source during the fitting.

Following the ATCA radio detection, we requested
high angular resolution Very Long Baseline Interferometry
(VLBI) observations via a Target of Opportunity proposal
on the European VLBI Network (EVN). The project (code
RMO010; PI Miller-Jones) was observed on 2017 May 21,
from 17:25-23:30 UT. Observations were taken at a cen-
tral frequency of 4.95 GHz, with a bandwidth of 256 MHz.
Ten telescopes (Effelsberg, Jodrell Bank Mk II, Westerbork,
Medicina, Noto, Onsala 25m, Torun, Yebes Hartebeesthoek,

and Shanghai) participated in the experiment. Amplitude
and bandpass calibration was performed using the EVN
pipeline, and fringe-finding and hybrid-mapping of the phase
reference source was carried out manually using the As-
tronomical Image Processing System (AIPS, 31DEC17 ver-
sion; Greisen 2003). The calibrated data were imaged using
natural weighting, and Swift J1357.2—0933 was detected at
the 5.20 level, at 122423 uJy beam ', at a position consis-
tent (within uncertainties) with the reported Gaia position
(Gandhi et al. 2019; Gaia Collaboration et al. 2016, 2018).

3 RESULTS
3.1 Lightcurves

The complete SALT/RSS lightcurves from all four obser-
vations are shown in Figure 2. Dips were present in all four
observations, and can be seen to increase in duration and pe-
riod as the outburst declines. On 2017 April 28/29, a NuS-
TAR observation was coincident with SALT, and had an
observed average flux of ~7.4 counts/second in FPMA and
FPMB combined; both SALT and NuSTAR lightcurves are
shown in Figure 3, with the X-rays binned every 10 seconds,
resulting in ~74 counts per bin.

The complete ULTRACAM and NuSTAR lightcurves
from 2017 June 10/11 are shown in Figure 4. Over the course
of the night, J1357 periodically varied by 0.3-0.4 mag in all
three bands, and the source S/N was >20 per frame in ¥ for
most of the night. Of the 3 bands, the source was brightest
in g’ (~16.64) and dimmest in # and ' (~16.73 and ~16.72
respectively). Four discrete segments of the NuSTAR obser-
vation were coincident with ULTRACAM. J1357 was fainter
in X-rays compared to the earlier observation, with an ob-
served average flux of only ~2.2 counts/second in FPMA
and FPMB combined. The X-rays were again binned every
10 seconds, resulting in ~22 counts per bin.

All optical lightcurves periodically contain large dips,
and ULTRACAM lightcurves show them to be simultane-
ous across all three bands. These dips are not immediately
visible in X-rays; this can be seen in detail in Figures 3 and
5. Such dips change in duration, from ~70 seconds on April
28, to ~250 seconds on July 19. ULTRACAM data shows
them to drop between 0.1 — 0.5 magnitude, with a depen-
dence on wavelength. The colour of these dips, and the X-ray
response to them, are discussed in Section 3.4.

3.2 Power Spectral Densities

The power spectral densities (PSDs) of the source from NuS-
TAR and ULTRACAM were computed by splitting the data
into segments of equal length, applying a fast Fourier trans-
form to the lightcurve of the target, and then averaging the
results (see Figure 6). The units were rms-normalised Py,
(Power) using the following formula:

2XEXN
pPy=——7F—

(1)

XZ

where E is the exposure length per frame (time resolu-
tion for X-rays), N is the number of bins in each segment,

610Z 8unp /g uo Jasn pjaiuays 1o Alsianiun Aq S/ ¥E1LSS/E 1L 9L ZIS/SBIUW/EE0 L 0 | /IOP/1oBIASE-8|dILB-80UBAPE/SRIUW /W00 dNo olwapede//:sdiy Woll papeojumo(]



Puzzling Blue Dips in Swift J1357.2—0933 5

Apr28 -+

Arbitrary Flux

0 500 1000

1500

2000 2500 3000

Time (Seconds since start of Observation)

Figure 2. SALT/RSS lightcurves from four different dates. These observations have been binned with a 50s moving average function.
Dashed lines show the mean of each observation. Note the dips, and their changing frequency and duration over time.
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Figure 3. SALT/RSS & NuSTAR lightcurves from 2017 Apr 28. Top: Optical from SALT, using a clear filter. These observations have
been binned with a 20s moving average function in order to highlight optical dipping. Bottom: X-rays from NuSTAR, binned every 10s.

Errors are shown in grey.

and x is the counts. Standard errors on the mean were cal-
culated for each bin. For this analysis, the X-ray event data
were binned to the /' and g’ time bins.

The fractional RMS (Fs) of the bands was calculated
by splitting the lightcurves into ten segments, and then using
the following formulas:

Var(x) —x2,.
Fo— /(;72 )

where x is the counts, and x,, is the error on the counts.
The total fractional RMS is defined as the mean of the re-
sults, while the error is the standard deviation. The frac-
tional RMS (Fys) of the bands are X-ray = 0.409 + 0.188,
' = 0.082 £ 0.014, ¢’ = 0.100 &+ 0.012, and ¥ = 0.120 &
0.018.

The most striking feature of these figures is the peak in
all three optical bands at around 5 x 103 Hz, which relates
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dipping. Bottom: X-ray band, binned every 10s. The dotted lines demarcate the section showing prominent dips, which is expanded in

Figure 5.

Table 2. Parameters for the four Lorentzians used in Figure 7.

Colour N (x1073) (Hz™') T (x1073) (Hz) 2 (x1073) (Hz)
Red 2.30 + 0.82 1.59 + 0.43 5.16 + 0.37
Green 4.71 + 1.49 3.87 + 2.23 0
Blue 6.47 + 1.82 300 + 153 0
Cyan 5.95 + 0.52 2500 + 2049 0

to the approximate frequency of the dips. The X-ray PSD
shows no such peak.

To investigate the PSDs further, we used a model com-
posed of Lorentzians (as defined in Nowak et al. 1999),
whose form is given by:

_N il
Lix) = T (x—x0)2+ (%F)2 (3)

where N is the normalisation, I' is the Full Width at Half
Maximum (FWHM), and x is the midpoint (xg = 0 indicates
a zero-centred Lorentzian).

The optical data were well fitted with four Lorentzians
plus a white noise component; this included a strong signal
seen at 5.16 x 1073 Hz, with a Q-factor of 3.25. These are
given in Figure 7, while the parameters can be seen in Ta-
ble 2. For the X-ray data, Beri et al. (2019) fitted a single
Lorentzian at 4 (= 1) x 1073 Hz (though at a low Q-factor
of 0.57).

3.3 Discrete Correlation Functions

The simultaneous multiwavelength nature of the observa-
tions allowed us to use a Discrete Correlation Function
(DCF) analysis, which investigates any correlations between
different bands. Our analysis used methods presented in
Edelson & Krolik (1988). For this analysis, as with the
Power Spectra, the X-ray event data were binned to the
7 and g’ time bins.

To create a DCF, we split the data into segments of
equal size (the size of these segments was varied in order to
probe different length scales). After pre-whitening the data
to remove any red noise trend (Welsh 1999), we used lag
bins with sizes approximately equal to twice the optical time
resolution. The final DCF corresponds to the median of all
segments. The DCF's were calculated with optical against X-
ray signals; hence, a correlation at positive time lags would
indicate the optical lagging the X-ray signal.

To analyse the significance of our results, we simu-
lated lightcurves based on our optical data. To do this, we
Fourier transformed the lightcurves, randomised the phases
(i.e. the arguments of the resulting complex numbers), and
then inverse Fourier transformed the result. This simulated
lightcurve therefore had the same power spectrum as the
source lightcurve, but was randomised in time and would
thus be uncorrelated with respect to X-rays. We then found
the standard deviations of these simulations, as well as their
5-95% intervals.

The resultant DCFs are displayed in Figure 8 from the
nights of both April 28 and June 10. They show a lack of
strongly significant features; however, a peak can be seen in
all three bands in the bins directly after 0s. This peak, at its
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Figure 5. Unbinned section of the Swift J1357.2-0933 lightcurve showing three prominent dips. Top: Optical: «’' (blue, top), g’ (green,
middle), ¥ (red, bottom), with «’ and r offset by -0.5 and +0.5 mags respectively for clarity. Representative error bars are shown, and
note the difference in sampling between the bands. Bottom: X-rays from NuSTAR, binned every 10s.
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Figure 6. Optical and X-ray PSDs of J1357 with ULTRACAM
and NuSTAR respectively, showing from top-to-bottom the X-ray
(black), u’ (blue), g’ (green), and ¥’ (red) bands. For clarity, g’ has
been shifted downwards by a factor of 10!, and /' by a factor of
10%. They were created by splitting the data into fifteen segments
of roughly 1165 seconds each in X-rays, five segments of roughly
2250 seconds each in u’, and three segments of roughly 3600 sec-
onds each in g’ and 7. Fourier transforms of each of those segments
were then taken, and the results averaged. A black dashed line
shows the lorentizan midpoint noted in Table 2.

height, lies above the 95% confidence line (dotted). These
results will be discussed further in Section 4.2.
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Figure 7. The optical PSD in #/, binned logarithmically (black
solid line). The purple solid line is a model, made up of four
Lorentzians (red, green, blue, and cyan dashed lines) and a con-
stant noise component (black dashed line). Note the QPO at
around 5 x 1073 Hz.

3.4 Optical Dips — Superposition

The frequent dips seen by ULTRACAM, shown in Figure
4, occur over timescales of around 100 — 200 seconds from
start to finish. During this time the brightness of the source
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Figure 8. Discrete correlation functions, created from
50s segments. These graphs show the Apr 28 observation
(SALT/NuSTAR, purple, very top), as well as the Jun 10 obser-
vation (ULTRACAM/NuSTAR) in all three ULTRACAM bands
(u: blue, top, g': green, middle, and #: red, bottom). All plots
are optical vs X-ray, i.e., a peak at positive lags means optical
features lag X-ray. DCFs created from 500 simulated lightcurves
are shown in grey, with their standard deviation over the shown
range shown as the black dashed line, and the contours contain-
ing 5%-95% of the simulations are shown as black dotted lines. A
zoom-in about Os lag is shown on the right for clarity. Note the
lack of any clear features, aside from the potential peak directly
after Os lag.

can drop by 0.1 — 0.5 magnitude, and minima of the dips
can occur roughly every 200 seconds (c.f. Section 3.2). How-
ever, neither the shape nor the depth of these dips appear
constant.

To build up a better picture of this feature, we super-
imposed a number of dips from the June 10 observation to
create an ’average’ dip event. Using the /' lightcurves, we
first selected every dip that involved a drop of >10% in flux
from the median. We then determined the approximate mid-
point of each of these events by binning the lightcurve with

a moving average function every 200 points. Then, we found
the time when this binned lightcurve last dropped below the
median value (of the entire lightcurve), and the time when
it next went above that same median value. The midpoint
of these two times was taken to be the midpoint of the dip.

Dips were constrained so that only those that had cor-
related X-ray observations across a 300s range were selected,
resulting in twelve dips being selected. These were then av-
eraged, and the result is shown in Figure 9.

The figure clearly shows dips in all three optical bands,
with the red band dropping significantly more than the
green, which drops more than the blue. Quantitatively, and
on average, the dips relative to the median level are 0.2-
0.3 mag (), 0.15-0.2 mag (g’) and 0.1-0.15 mag («’). The
average dip’s total duration is between 150-180s. It is also
implied from Figure 9 that there are no X-ray dips associ-
ated with the optical in the 3 — 78 keV range - the highest
deviation is ~0.35 counts s~ from median, and there is an
apparent drop in X-ray counts at an offset of -20s, but nei-
ther of these well match the shape seen in optical, and are
mostly inside the 5-95% scatter range indicated.

3.5 Optical Dips — Evolution

One of the more remarkable properties of these dips is the
evolution of the dip periodicity; JCS13 found that the period
increased as the source declined from the outburst peak.

Their interpretation of this dip behaviour was that the
inner edge of some obscuring material was moving outwards
through the disc during the decline. Others have since con-
firmed that these dips exist in quiescence at much lower
frequencies (5 x 107* Hz, Shahbaz et al. 2013), consistent
with the pattern seen during outburst decline.

Our extensive coverage of the 2017 outburst with SALT
allows us to follow the evolution of the dip over the course
of the outburst. Lorentzians were then fitted to the power
spectra to obtain a frequency for the dips in each scenario,
and the results plotted in Figure 10. The resultant graph
shows a decline that is very similar to Figure 3(G) in JCS13,
and a similar curve can be fitted the new data - albeit one
that cannot simply be shifted in time to fit. These dips are
discussed further in Section 4.4.

3.6 Spectral Energy Distribution

Three Spectral Energy Distributions (SEDs) of J1357 were
created, one on each of the three dates of correlated ob-
servation; April 28 (NuSTAR, Swift, SALT), May 15 (Swift,
SALT, ATCA) and June 10 (NuSTAR, Swift, ULTRACAM).
The XSPEC software (Arnaud 1996) was used to fit the data,
which involved the models phabs and TBabs (accounting
for absorption by the interstellar medium, where standard
galactic values were assumed for ISM abundances), power-
law (standard power law), and diskbb (black body spectrum
from a disk). All errors given are quoted at 1-¢ confidence.

For April 28, the Swift and NuSTAR observations were
fit with an absorbed power law, with Ny = 2.6 & 0.3 x 102!
em~2 and photon index (I') = 1.66 + 0.01. A small constant
of 1.00561 was also applied to FPMB. This gave a flux (2 —
10 keV) of 1.01 x 10719 ergs cm=2 57!

For May 15, the Swift observation alone was fit with an
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Figure 9. Lightcurve superposition of twelve optical dips that
also have X-ray observations, normalised to each band’s respective
median (shown as a solid line in that band’s colour). Top: Optical
bands, in the top-to-bottom order ¥, g’, «’, with the ' offset by
+0.3 mag, and the 7 offset by -0.3 mag. Note the smooth shape of
the dip, and the increasing depth from ' to g’ to . Bottom: X-
ray band, where no significant variations are noted. Dashed lines
show the 5-95% significance intervals of data.

absorbed power law, with Ny = 2.6 &+ 0.7 x 10! em~2 and
photon index (I') frozen at 1.8. The radio observation was
also fit with a power law, which was found to have a spectral
index o (Fy < v%) of 0.47 + 0.19.

For June 10, we found that the X-ray emission alone
can be well described with an absorbed power law, with Ny
=3 £ 0.6 x 10! atoms cm™? and I' = 1.81 £ 0.01. This
gave us a flux (2 — 10 keV) of 3.03 x 107! ergs em™2 57!,
We also fit the multifilter optical data for this observation;
this, and its implications for the jet break, are noted down
in Section 4.5.

3.7 Radio Observations and VLBI position

Our observations with ATCA show an inverted spectral in-
dex (i.e., Fy increasing with v). It has been shown before
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Figure 10. Evolution of the dip frequency over time for both
the 2011 and 2017 outbursts. Blue circles mark SALT observa-
tions, while the red circle marks the ULTRACAM/NTT observa-
tion. Black crosses are the 2011 observations reported in JCS13.
All points from both outbursts are plotted against time since
each outburst was first reported (Krimm et al. 2011, Drake et al.
2017). The black dashed line shows a fit to the JCS13 data (given
in the source paper), while the blue dashed line is a fit to the
latter four points of the new data; these are discussed further in
Section 4.4.

that J1357 lies significantly off the Lgagio/Lx—ray plane that
other hard-state X-ray Binaries follow (Plotkin et al. 2016).
Using our present data, we find source radio luminosities
(5.5 GHz) of 4.3 x 10* — 3.3 x 10?® erg s7! and X-ray
luminosities (1 — 10 keV) of 3.1 x 103 — 2.3 x 10% er
s~1, for distances of 2.3 — 6.3 kpc. This places the source in
a very similar position in the Lgagio/Lx —ray plane during the
current (2017) outburst, as the previous (2011) outburst.

Our EVN observations have allowed the most accu-
rate determination yet of the source’s position, phase ref-
erenced to the extragalactic calibrator source J1401—0916
(Beasley et al. 2002), whose position was assumed to be
RA=14:01:05.331831, Dec = —09:16:31.57207 (J2000). Rel-
ative to this reference position, Swift J1357.2—0933 was
found to be at RA= 13:57 : 16.835810 4 0.000028, Dec =
—09 :32:38.80117 £ 0.00047 (J2000); this position is a dis-
tance of 7.34 x 1073 ” from the optical counterpart given in
Gaia (Gandhi et al. 2019).

4 DISCUSSION
4.1 Current Knowledge and Previous Models

Since its discovery, J1357 has proven to be highly enigmatic,
as no other system has demonstrated the extraordinary vari-
able dipping period that evolves during the outburst. It also
has properties that seem to be in conflict with “standard”
LMXB models, which we shall address here.

A key parameter with any LMXB interpretation is its
orbital inclination, and at first sight, the presence of dipping
would indicate that it is high. However, evidence such as a
low absorption due to the disc (Torres et al. 2015), and soft
emission apparently from inner regions of the accretion disc
(Armas Padilla et al. 2014) imply that a high inclination is
unlikely for this source - whereas, He I line cores and the in-
ferred high mass function (Mata Sanchez et al. 2015) as well
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as a lack of X-ray dips (Beri et al. 2019) suggest the oppo-
site. Additionally, the source has been shown to be radio-
quiet relative to its X-ray emission (Plotkin et al. 2016), a
property that could be consistent with high inclinations in
black hole transients (Motta et al. 2018).

The optical dips do provide strong evidence for a high
inclination; if they are indeed due to occlusion, and there
are no models at present suggesting otherwise, it means that
the inclination cannot realistically be any lower than ~70°.
The current model, put forward by JCS13, hypothesises that
these dips are caused by vertical extensions of a torus-like
structure around the compact object that periodically occult
the emitting regions. It is this model that we will investigate
with our new data.

4.2 Optical Dips — Colour

By observing J1357 in three optical bands, we are able to
probe its variability as a function of wavelength throughout
the observation. The dips present in the optical lightcurve
are of particular interest in this regard.

These dips have, on average, a V-shaped lightcurve that
can best be seen in Figure 9. This sort of lightcurve is very
similar to those seen in grazing binary systems with gradual
source obscuration (e.g. as seen in Howell et al. 2010). In-
deed, obscuration of an emitting region has previously been
postulated as a cause (Armas Padilla et al. 2013).

What can the colour tell us about this system? As noted
earlier in Section 3.4, these dips are significantly blue com-
pared to the rest of the lightcurve. This result is puzzling;
standard absorption would affect shorter wavelengths much
more than longer, causing a significant reddening, rather
than the blue colour seen here (Cardelli et al. 1989). To il-
lustrate this disparity a colour-magnitude locus was also cre-
ated, and is shown in Figure 11; this makes it clear that the
source becomes bluer, not redder, during the dips. Hence,
reddening due to standard absorption cannot be a solution.
Moreover, if the obscuring matter were optically thick, we
would expect to see achromatic colour changes. Obscuration
by the disc would also cause dips in X-rays.

One possibility is that the observed emission from the
source is composed of two components, with each being a
different colour. One scenario in which this could occur is
if one considers the presence of blue disc and red jet spec-
tral components. Viscous optical disc emission, which could
explain bluer emission, was indeed inferred by Beri et al.
(2019). Meanwhile, jet base synchrotron emission has previ-
ously been shown to primarily emit in the red optical band
(Fender et al. 1997, Gandhi et al. 2011). If obscuring mate-
rial were then to pass in front of the primarily red jet base,
very close to the black hole, it may preferentially highlight
the comparatively bluer disc and create the change in colour
seen during these dips.

Our DCFs from Section 3.3 are relevant to this discus-
sion. In Figure 8, a weak but significant correlation can be
seen directly after Os in every band. Such a feature has been
seen in numerous LMXB systems before, and has been linked
to synchrotron emission from an inner jet (Gandhi et al.
2017). The greater strength of this feature in r compared
to g’ also supports this interpretation. However, this feature
is extended, instead of the sharp peak that is predicted for
such a phenomenon. This could point towards X-ray repro-
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Figure 11. Colour-Magnitude diagram covering the entire optical
lightcurve, plotting g’ against g’ - #/. The data have been binned
to 10s resolution so as to minimise scatter and highlight the
main trend. The dashed red lines represents the slope that the
data should follow under extinction by standard dust, and the
horizontal solid line is the g median magnitude. Representative
error bars are shown at the bottom-right. The variations in J1357
are clearly orthogonal to what would be expected through dust
extinction.

cessing, but it is also important to note that most of the liter-
ature on this source does not support a reprocessing scenario
(Armas Padilla et al. 2013, Weng & Zhang 2015, Beri et al.
2019, Qiao & Liu 2013). Also, other sources that are thought
to emit synchrotron emission, such as V404 Cyg, have shown
distinct, rapid red flares in their lightcurves (Gandhi et al.
2016); these are not present in the lightcurve of J1357.

4.3 Optical Dips — X-Ray Response

It has been previously shown that there is a lack of any
discernible response in X-rays to the optical dips. Our data
supports these findings through superposition analysis (Sec-
tion 3.4) and the X-ray PSD (Section 3.2). A single RXTE
QPO was seen in the 2011 outburst at similar frequencies,
but it did not strongly match with the observed evolution
(JCS13, Armas Padilla et al. 2014).

To further test if any X-ray dips (correlated with the
optical) were present and merely hidden by poor S/N, we
created a simulation based on the ULTRACAM v’ data. We
first took the lightcurve as a baseline, and binned it to corre-
spond to that in X-rays. We then scaled this baseline down
in count rate so that its mean matched the X-ray mean rate,
and then simulated random sampling around this baseline
using Poisson statistics. This was done five hundred times,
a CCF was made between the original baseline and each
simulation, and the results were then combined.

The resultant CCF was found to show a strong correla-
tion both before and after zero lag at a correlation coefficient
of 0.3, far stronger than that seen in Figure 8. From this,
we draw the conclusion that even at low photon count rates,
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we would have expected to detect dips of similar size to the
optical, were they present in the X-ray lightcurve. We there-
fore conclude that the X-ray lightcurve, for at least the 3 —
78 keV energy range, appears to be disconnected from the
optical in terms of dipping behaviour.

4.4 Optical Dips — Evolution

JCS13 previously showed how the frequency of the dips de-
clines over the course of the outburst; they theorised that
this behaviour was due to the perturbations moving out-
wards in the disc. Our new data, from both SALT and UL-
TRACAM (see Figure 10), confirm this trend. The original
fit given by JCS13, shown in black, is f = 8.91 x 107772 —
12.87 x 107*T + 46.71 x 1072, where T is time since the
discovery of outburst (in days), and f is measured in Hz.
Our new fit, shown in blue and fitted to only the latter four
points, is given as f = 8.10 (£10.39) x 107772 — 2.05 (+1.24)
x 1074T + 1.37 (£0.30) x 1072. The similarity of fits gives
further evidence that the dips here are caused by the same
phenomenon as in the 2011 outburst. The shift along the
x-axis could be explained by the fact that the 2017 outburst
was discovered in optical, while the original discovery of the
source was made in X-rays.

However, the data that we present shows that the points
do not all share the same parabolic pattern that JCS13 pre-
sented. This has been hinted at before; Armas Padilla et al.
(2014) presents an RXTE observation that shows a QPO
at 6 mHz very early on in the outburst (four days after the
discovery), before the optical observations by JCS13.

The implication here, combined with our first SALT
observation, is that during the early stages in the outburst,
the dip frequency increases up to a peak before beginning its
parabolic decline. With the similarity with our initial SALT
observation, we chose not to fit our parabolic trend to that
datum.

4.5 Spectral Energy Distribution

The SEDs shown in Figure 12 show that the X-ray data
can be easily modelled by a pure absorbed power law with
no reflection components or dips. This is consistent with a
reduced apparent reflection component at high source incli-
nation, and is in accordance with analysis of the June 10
X-ray data carried out by Beri et al. (2019); however, note
that Stiele & Kong (2018) did fit a reflection model in their
analysis of other X-ray data from this source.

A disk black-body spectrum was used to parameterize
the multifilter optical data for this observation, while ac-
counting for intrinsic reddening of the source with the red-
den model; for this latter model, using Bohlin et al. (1978),
we set Ep_y = 0.0567 mag. The slope of the fit depended
both on the optical and X-ray data; since the latter show no
sign of disc black body features, we had to ensure that our
model did not extend into the X-ray regime. From this, we
obtained a range of inner disc temperatures 0.004 < T;, <
0.1 keV. In the SED, a value of Ty, = 0.05 was plotted as
an example.

We also investigated the ULTRACAM broad-band
spectral behaviour with respect to the dips. Following meth-
ods presented in Hynes (2005), we fitted the ULTRACAM
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Figure 12. SEDs of J1357 from the three nights of corre-
lated observation, showing NuSTAR FPMA (black), FPMB (red),
XRT/Swift (green), optical (both ULTRACAM and SALT, blue),
emission from regions hidden by the dips (ULTRACAM, cyan),
and ATCA (purple) data. Top: April 28. X-ray data were fit using
a TBabs x powerlaw model. The SALT datapoint was not included
in this fit. Middle: May 15. Swift data were fit using a phabs x
powerlaw model, with the photon index frozen at 1.8. ATCA data
were fit to a power law (purple dashed line) with errors (dotted
lines). The cyan data were normalised using the SALT datapoint.
Bottom: June 10. X-ray data were fit using a phabs X powerlaw
model. Disc emission (ULTRACAM data taken during the dips)
is shown in blue, and is fitted independently with a redden X
diskbb model (blue dashed line). Emission from the region hid-
den by the dips is shown in cyan, and fitted with a power law
(dashed line) with errors (dotted lines).
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slope to a power law (of the form Fy, o« v%) in log/log space;
we did this using data both inside and outside the dips,
finding values of @ = 0.28 £+ 0.21 (during dips), and o =
0.07 £ 0.21 (outside of dips). The former is close to the
1/3 value expected for a viscously heated disc - this implies
that, during dip events, the source emission is more domi-
nated by the disc. This correlates with previous observations
of J1357; Armas Padilla et al. (2013) found the correlation
slope B = 0.2 (Between UV /Optical and X-ray) to imply a
non-irradiated, viscous accretion disc, while Weng & Zhang
(2015) stated that a viscously heated disc is the only option
for this source, and that the NUV is dominated by emis-
sion from the outer non-irradiated viscous disc. We also sub-
tracted the flux observed during the dips from the spectra
outside the dips; this difference would be the emission from
the region being obscured. Fitting to a power law as before,
we found a value of o = -0.94 + 0.29; this means that this
spectrum is red, which is in line with the source appearing
bluer during the dips. This is plotted in the June 10 SED.

With the inclusion of the ATCA data, we can also make
inferences to the upper bound of the jet break, by mea-
suring where the radio optically-thick power-law intersects
with the optically-thin jet power-law inferred after subtract-
ing the disc from the optical observations. Unfortunately,
the ATCA data (May 15) were not simultaneous with the
ULTRACAM observations (June 10). However, examining
long-term light curves over this period suggests minimal flux
changes, at least in the optical and the X-rays. The fluxes
that we measure across the three SEDs in 12 are also ap-
proximately constant. We, therefore, make the assumption
that there are no substantial changes in terms of jet power-
law between May 15 and June 10, and we assume identical
jet component fluxes and normalisations between the two
dates.

With this assumption, we measure the synchrotron jet
break frequency to be at ~1.4 x 1013 Hz. Accounting for
1-0 uncertainties on the slopes, the bounds to the break
frequency are 1.97 x 10'2-7.66 x 10'3; these ranges are sim-
ilar to the jet break frequency of other black hole bina-
ries, e.g. GX 339-4 (Gandhi et al. 2011) and XTE 1550-564
(Russell et al. 2013).

4.6 An Updated Model of J1357

Based on our new data, we put forward a model for J1357
which could account for the source’s observed properties. We
illustrate this model in Fig. 13.

We require a multi-component model to explain the
spectra and colours. With this in mind, we postulate that
this source features a truncated disc, with an inner radius
that is recessed from Rygco. Between the disc and the black
hole, we suggest that there is an extended X-ray corona, the
spherical nature of which making it visible high above any
perturbations.

We also propose a region of jet emission near the black
hole itself, made up of a superposition of several smaller re-
gions, primarily emitting in red wavelengths. This region,
facilitated by a high inclination, would be sporadically oc-
cluded by vertical extensions of the accretion disc. When this
occurs, less red light is seen, giving preference to the bluer
disc. Over the course of the outburst, the perturbations in
the accretion disc first move inwards to some minimum dis-

tance, and then propagate outwards; with the changing or-
bit that these perturbations thus have, the frequency of the
dips they cause changes accordingly. It is possible that this
changing orbit could echo a changing truncation radius of
the disk.

The ways that this model differs from the one presented
in JCS13 is the addition the truncated disc, the jet base, and
the clarification of what the perturbations occlude. There
are several advantages to these changes; first, the truncated
disc allows for an extended X-ray corona, which helps to
explain the apparently low source luminosity and the lack of
X-ray reflection features (due to there being no hot inner disc
for the X-rays to reflect off of ), and the lack of any X-ray dips
(due to the corona extending far above any perturbations,
preventing any occlusion).

Along with the extended corona, the superposition of
jet emission regions could explain the optical response to
X-ray emission seen in the DCFs; the correlation up to a
lag of several seconds could be due to the superposition of
jet emission regions, where emission takes place over time as
material from the disc travels through successive zones - this
would result in a ‘smearing’ of usual features, which would
also compromise fast variability (as seen in other LMXB
sources). Such a red-emitting jet emission region, when oc-
cluded by the vertical extensions mentioned in the previous
model, would cause the source to appear bluer - as seen in
the dips presented in this paper.

These features, if present, could be confirmed in future
observations; for example, a jet emission region could fea-
ture a corresponding synchroton self-Compton component
in the X-ray. Higher resolution optical and X-ray data, that
newer generation instruments would be invaluable in pro-
viding, could also see signs of jet emission in more accurate
DCFs. Additionally, the presence of jets would be detectable
by radio observations of this source during outburst. X-ray
dips could also be present in lower-energy lightcurves of the
source.

This model also suggests that the source is intrinsi-
cally faint in X-rays. If it represents the tip of the ice-
berg of a larger faint population, it will likely be difficult
to identify them; however, surveys like LSST should help
(Johnson et al. 2019).

Swift J1357 remains complex, and this proposed sce-
nario does not account for every feature. For example, it
does not explain why the jet emission region would be ex-
tended in such a manner, nor why the inner disk is trun-
cated, nor why the perturbations move outwards during out-
burst. Another aspect not investigated here is any impact
of emission and absorption line contributions. For this, we
would need time-resolved optical spectra that resolve the
dips. Therefore, further multi-wavelength investigations of
this source during outburst are highly desirable, particularly
with higher-resolution X-ray and optical timing instruments
for epochs on a similar timescale or longer, allowing for more
refined DCFs and probing of X-ray variability. These obser-
vations are essential for understanding the physical processes
responsible for this highly unusual behaviour.
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Vertical Perturbation of Inner Disc
(Cause of Optical Dips)

70-80°
Inclination

Perturbations move
outwards with outburst

Puzzling Blue Dips in Swift J1357.2—0933 13

Extended Corona

Jet Base
(Obscured by Perturbation)

Recessed Disc

Figure 13. Schematic of a potential geometry for J1357. We posit that the lack of X-ray dips indicates a large, extended corona, so
that any obscuration is minor. Primarily red optical emission from the base of a jet would be obscured by the vertical structure, while
a recessed disk would remain mostly unobscured, explaining the colour of the resultant dips. Inset: Face-on schematic, showing the

outward-moving structure (appearing like spiral arms) in the disc.

5 CONCLUSIONS

We have investigated new ULTRACAM, ATCA, SALT,
Swift and NuSTAR observations from the 2017 outburst of
J1357, a number of which were were carried out simultane-
ously. In every optical observation, we clearly see the optical
dips that were reported previously, and once again show no
detectable X-ray dipping.

In applying a Fourier analysis and fitting Lorentzians to
both ULTRACAM and SALT data, we found the frequency
of the dips to evolve over time, matching the decreasing pat-
tern reported by JCS13; in our observations, this frequency
changes from ~1 x 1072 Hz to ~2 x 1073 Hz (period range
100-500s) over the course of 82 days.

In the ULTRACAM + NuSTAR simultaneous observa-
tion, these dips were found to have an average V-shaped
pattern (reminiscent of eclipsing scenarios) that lasts ~150
seconds. In analysing the colour of these features, we found
that longer wavelengths are more affected than shorter ones,
giving the source a ’bluer’ colour during the dips - this is
contrary to what would be expected if they were caused by
standard dust obscuration. This relation was clearly seen in
data binned every 10 seconds. Thus, we rule out standard
dust as the sole cause of features longer than that time pe-
riod.

Analysis of the source SED reveals that the optical emis-
sion cannot be fully explained by reprocessing, implying that
a significant part of the optical emission is likely to be intrin-
sic emission from the disc, in agreement with other results.

We also applied a discrete correlation function between

the coincident optical and X-ray lightcurves. While a small
peak at short positive lags was found, reminiscent of syn-
chrotron emission from a jet, the main result of the DCF is
the lack of a strong lag signature, implying that there is no
strong link between the the X-ray and optical variabilities.

Considering this lack of significant correlation, com-
bined with no obscuration in the X-rays and a reconfirma-
tion of the changing timescale of the dips over the outburst,
we propose a possible geometry outlined in Figure 13, up-
dated from current models to fit these results. The salient
features of this model include a high inclination angle, an ex-
tended X-ray corona, a bluer outer recessed disc, and clumpy
obscuring regions within that disc occulting a relatively red
inner emitter that could be a jet.
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