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Abstract

In thinking about the charging and associated energy require-

ments of plug-in vehicles, spatial and temporal forecasts of 

electricity demand tend to rely on analysis of individual car 

usage. hese are derived from travel diary studies or, increas-

ingly, GPS traces to provide diurnal, weekly and seasonal 

patterns by diferent people in diferent places. More accu-

rate forecasts of electricity demand require knowledge of the 

patterns of the individual cars themselves – where they will 

be, when, for how long, and with what likely level of battery 

charge. We present a two-stage optimal matching analysis of 

the 2016 UK National Travel Survey (NTS) to classify cars 

based on their patterns of use over a week. his required a 

novel reconiguration of NTS data into a ‘vehicle travel diary’ 

dataset, to which sequence and cluster analysis of individual 

vehicle use sequences were applied. Firstly, each of the seven 

days of the travel diary was subdivided into 48 half hour time 

slots with cars recorded either in use or not in use at any point 

in each slot. From this, six types of ‘car day’ were identiied, 

with less than half of those exhibiting the stereotypical pattern 

of ‘morning-out and evening-home’. hese six rhythms are 

exhibited by diferent groups of cars, and in diferent propor-

tions on diferent days of the week. Secondly, each car was 

attached with their own set of 7 x daily rhythms using the car-

day types and then grouped with cars with similar ‘lifestyle’ 

across the week. Here we found eight clusters of car-weeks, 

each with diferent rhythms within and across weekdays and 

weekends. We examine how these car ‘lifestyles’ are associ-

ated with household and vehicle characteristics using a broad 

range of variables available within the NTS. Finally, we con-

trast these indings to assumptions commonly being made in 

assessments of the impacts of electric vehicle grid integration. 

A key inding is that as electric vehicle use becomes more 

common in wider sections of the population, the present clus-

tering of charging needs at times of relatively high electricity 

demand may become a more spread pattern, making power 

demand peaks somewhat easier to manage.

Introduction

he mass uptake of (plug-in) electric vehicles (EVs) is seen as a 

key ingredient of the energy transition, and of climate mitiga-

tion in the transport sector (Tran et al., 2012). In several coun-

tries, transport decarbonisation strategies rely heavily, if not 

exclusively, on the electriication of the vehicle leet, with the 

UK expecting the majority of new cars and vans sold to be ‘ul-

tra low emission’ by 2040 – up from just 1.8 % in 2017 (HMG, 

2018). Despite this urgency, behavioural factors inluencing the 

difusion of EVs have been under researched until relatively 

recently (Sovacool & Hirsh, 2009; Sovacool et al., 2018; Tran 

et al., 2012). 

One of the implications of the EV transition is to bring to-

gether two sectors, transport and electricity, which have to date 

been relatively separate, despite having both major relevance 

for energy consumption and greenhouse gas emissions. he 

potential impact of mass EV uptake on the decarbonisation of 

the electricity grid is contested (e.g. Colantuono, 2016; Huang 

& Inield, 2009; ITF, 2012). On one hand, it may improve ‘grid 

lexibility’, helping to smooth the inherently variable and in-
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termittent supply of electricity from renewables. his would 

happen if signiicant numbers of vehicles connected to the grid 

were able to provide storage at times of day when demand is 

low, and potentially even feed this back at peak times as in the 

Vehicle-to-grid (V2G) concept (Moura et al., 2019; Sovacool et 

al., 2017). Conversely, if many EVs are recharged at peak load 

times, as empirical studies suggest (Carroll et al., 2013; Hard-

man et al., 2018; Langbroek et al., 2017; Robinson et al., 2013), 

decarbonisation could be more diicult, as further fossil fuel 

generation may be required. In addition, the potential conver-

gence of signiicant additional electricity demand in time and 

space will have implications for where the local supply network 

may require expansion.

It appears thus that a crucial factor in the EV transition is the 

timing of EV recharging, which in turn is crucially depend-

ent on temporal patterns of vehicle use. Yet as Tran et al. note, 

when these questions are explored, there is a tendency to over-

look the potential heterogeneity of vehicle use patterns (2012, 

p.329–331). Notably, much extant research assumes that tem-

poral patterns of EV use will relect the rhythms of commuting, 

with e.g. a daily return trip at ‘rush hour’ (e.g. 9am and 5pm), 

and little use outside of that (e.g. Colantuono, 2016; Huang & 

Inield, 2009; Lund & Kempton, 2008). Yet there are reasons 

why such an assumption may be misplaced. 

First, non-work activities account for a large and increasing 

share of passenger travel, and are oten rather car-dependent 

(Anable, 2002; Mattioli et al., 2016). In the UK, commuting 

accounted for only little more than a ith of all trips in 2016 

(DfT, 2018). Second, vehicles may be used by more than one 

household member (not all of which are necessarily em-

ployed), notably in households with fewer cars than driver 

licences. We would expect this to result in more ‘mixed’ pat-

terns of vehicle use than usually assumed, relecting the tem-

poralities of more than one type of activity, and use by the 

secondary driver will inherently tend to make use of some 

of the time unused by the primary driver, leaving less time 

available for charging. hird, research on the temporality of 

working patterns shows that these have become less standard-

ised over time (e.g. Lesnard & Kan, 2011), and this is relected 

in an increasing heterogeneity of commuting patterns (DfT, 

2016). 

If that is the case, it is essential to provide a comprehensive, 

accurate and nuanced picture of the temporal patterns of use 

of the current vehicle leet, and to relect on how these may 

afect the electricity grid, similarly to studies on domestic en-

ergy consumption (e.g. Anderson & Torriti, 2018). his could 

inform more accurate forecasts of electricity demand, which 

will require knowledge of the patterns of the individual cars 

themselves – where they will be, when, for how long, and with 

what likely level of battery charge. 

In this study, we provide an initial picture of temporal pat-

terns of vehicle use in England in 2016, based on a sequence- 

and cluster-analysis of travel survey data. In the next section, 

we introduce the dataset and analysis approach. We then pre-

sent the results of the two-stage optimal matching analysis, 

and at both stages proile the obtained clusters based on a 

range of variables. We conclude by discussing the indings 

and contrasting them to assumptions commonly being made 

in assessments of the impacts of electric vehicle grid integra-

tion.

Data, methods and approach

Our analysis in this paper uses travel survey data to create a 

typology of vehicles based on the timing of their use over a 

week. We applied Optimal Matching (OM) to the National 

Travel Survey of Great Britain (NTS) in two stages (as proposed 

by Lesnard & Kay, 2011) to irst discover the diferent types 

of usage patterns cars can be characterised as having over a 

day, and secondly how sequences of these daily patterns can be 

diferentially adopted by individual cars over a week. he ‘dy-

namic hamming’ approach to OM adopted here is well suited to 

identify diferent ‘collective rhythms’ of social processes such as 

the scheduling of work (Lesnard, 2010; Lesnard & Kay, 2011). 

We conduct the analysis using the SADI command packages in 

Stata (Halpin, 2017). Our analysis is organized in ive consecu-

tive steps, as described below.

DATA CONFIGURATION AND SELECTION OF ANALYSIS SAMPLE

he NTS is a cross-sectional representative survey of household 

travel behaviour, carried out continuously since 1988 (since 

2013 in England only). he analysis in this paper is based on 

the sample for 2016, i.e. the most recent year available at the 

time of the analysis. Unlike other comparable surveys, which 

are generally limited to one or two travel days, the NTS travel 

diary collects information on respondents’ mobility (timing of 

the start and end of trips, distance, mode etc.) over seven con-

secutive days. To ensure representativeness, households start 

their travel diary week on diferent days, so that, approximately, 

one seventh of the sample starts on Monday, another seventh 

on Tuesday, etc. 

Crucially for the analysis in this paper, the NTS collects in-

formation on all motor vehicles to which the household has 

access. he ‘vehicle dataset’ contains details about vehicle char-

acteristics (e.g. make, model, and age) and use (e.g. self-report-

ed annual mileage). Every vehicle in the dataset can be linked 

to the characteristics of the household to which it belongs, to 

those of its ‘main driver’, and to trip ‘stages’ reported by house-

hold members in the travel diary. NTS provides weighting fac-

tors to adjust for probability of selection, non-response, under-

reporting of trips, as well as to reproduce sample population 

characteristics. hese were applied where appropriate in our 

analysis.

hrough manipulation of NTS data, we obtain a dataset 

where the unit of analysis is ‘vehicle days’, i.e. every record in 

the dataset reports information on the use of a speciic house-

hold vehicle during a speciic travel diary day. his is a form of 

‘event-based data’, i.e. “data composed of sequences of ordered 

events (where) each event … has a start time, and a duration, 

and each begins when the previous ends (and) the types of 

event … all belong to a set of predeined event types” (Vrotsou, 

2010, p. 6). 

In the resulting dataset, each event-sequence consists of 

48 30-minute ‘time slots’ (adding up to 24 hours, from 0:00 

to 24:00), with just two types of event (or ‘states’): ‘vehicle in 

use’ and ‘not in use’. A time slot was marked as in-use if any 

household member reported vehicle use (as either driver or 

passenger) during that half-hour interval, even if for a single 

minute. While this leads to overestimation of vehicle use in our 

dataset (and hence an underestimate of the time available for 

charging), this is not an issue since our analysis aims to identify 
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broad patterns of similarity in the timing of car use throughout 

the day, not for grossing up estimated total energy use, which 

can be calculated separately from the same data base1. 
he NTS 2016 sample includes information on 8,445 four-

wheel cars (including Land rover and jeeps). Our analysis fo-

cuses on a subsample of vehicles of households whose travel 

diary started between February and June, for two reasons. 

First, when applying the speciic sequence analysis technique 

and similarity measures described below on such a large sam-

ple, Stata is unable to complete the task, due to the memory 

requirements of computing such a large pairwise distance ma-

trix2. Second, we aim to control for seasonality efects, which 

might confound our analysis. For example, patterns of vehicle 

use will be rather diferent during the summer school break, 

when a proportion of people in employment will be on annual 

leave, and their travel patterns inluenced by the disappearance 

of school trips. Were we to analyse the entire twelve-month 

worth of data, we might end up with a classiication that is 

overly inluenced by the timing of the household interview, and 

we would need to provide a further distinction into months 

and seasons for the analysis. herefore, we select a ive-month 

span during school term, which is arguably relative homog-

enous from this point of view. his provides a more accurate 

picture of the part of the year which transport analyses oten 

treat as normal, and for which much infrastructure planning 

is focussed, at the expense of putting aside the patterns in the 

other parts of the year for later analysis. We further exclude 

vehicles that the respondents reported not to be in regular use, 

those that became available to use during the travel week (e.g. 

newly acquired), and vehicles of households with incomplete 

travel diary information. his leaves us with 3,064  vehicles, 

which constitute our analysis sample.

CLUSTERING OF VEHICLE-DAYS

Ater having restructured the NTS dataset, we conduct Opti-

mal Matching (OM) on a sample of 14,265 vehicle-days – cor-

responding to seven days for each of the 3,064 vehicles, minus 

7,183 vehicle-days with no occurrence of car use, which are 

excluded from the analysis at this stage. he aim here is to dis-

cover a set of distinctly diferent and meaningful patterns of 

usage across a day that an individual car may undertake.

Optimal matching (OM) is a sequence analysis technique 

used to assess the similarity between sequences through el-

ementary editing operations (insertion, deletion and substitu-

tion). he (weighted) number of operations required to trans-

form a sequence into another provides a metric of dissimilarity, 

enabling the clustering of event-sequences (Halpin, 2013; Les-

nard, 2006). here are various ways of measuring dissimilarity 

between sequences in OM, each corresponding to a diferent 

‘narrative of similarity’ and thus suitable to diferent applica-

tions (Halpin, 2013). 

In our analysis, we adopt the ‘dynamic Hamming’ approach 

to OM proposed by Lesnard (2006; 2010), which uses substitu-

1. We tried adopting a more ine-grained deinition of events (144 10-minutes 

slots) but we ultimately decided against it because: i) the data shows that respond-

ents are more likely to report start and end of trips at o’clock times and half past 

times; ii) such level of granularity tends to make the identiication of broad patterns 

of similarity more diicult, especially for vehicle use which is typically relatively rare 

event over 24 hours.

2. Brendan Halpin, personal communication, 27 June 2018.

tion operations only, and deines ‘dynamic’ substitution costs 

that are inversely proportional to the transition rates between 

states at a given time. In practice, this means that substitutions 

at times of high transition (e.g., in our analysis, the rush hour 

where lots of cars are going from being in use to not in use) are 

weighted less than those at times when transitions are rare (e.g. 

the middle of the night). In other words, in this approach the 

distance between two sequences depends not just on the num-

ber of substitutions, but also on their timing, making it easier to 

identify the ‘collective rhythms’ of social processes.

Ater having estimated pairwise distances between sequenc-

es, we conduct cluster analysis on the resulting matrix, with 

Ward’s linkage method3. To determine the appropriate number 

of clusters, we use the cluster stopping rules proposed by Hal-

pin (2016). We retain a ive-cluster solution based on consid-

erations of parsimony, interpretability and on the Duda-Hart 

Je(2)/Je(1) index, assessing how much the clusters are distinct 

from each other (Halpin, 2016). 

PROFILING OF VEHICLE-DAY CLUSTERS

We conduct descriptive analysis (means and crosstabula-

tions) of the ive vehicle-day clusters. he proiling variables 

include the frequency, duration, distance and purpose of car 

travel on the day, as well as vehicle occupancy. We test difer-

ences between clusters with Chi-square tests at the 0.05 level 

(design-based F) for percentage values, and with ANOVA post 

hoc analysis (Schefe test searching for diferences among all 

combinations of groups, at the 0.05 level) for means. 

CLUSTERING OF VEHICLE-WEEKS 

Following Lesnard & Kay (2011) we conduct a second round 

of OM. At this stage, our unit of analysis is individual vehicles, 

or more precisely their sequences of seven vehicle-days (from 

Monday to Sunday). Each event (day) in the sequence can as-

sume six diferent states, corresponding to the ive vehicle-days 

clusters derived from the irst-stage OM, plus an additional 

cluster for the 7,183 ‘empty’ vehicle-days. So, for example vehi-

cle X may correspond to a sequence where Monday is a vehicle-

day cluster no. 1, Tuesday is a vehicle day cluster no.5, and so 

on. Ater excluding 247 vehicle-weeks with no occurrence of 

car use (which we retain as a separate cluster in the analysis be-

low), we are let with a sample of 2,817 vehicle-weeks, on which 

we conduct OM. We retain a seven-cluster solution based on 

considerations of parsimony, interpretability and on the dis-

tinctiveness of clusters. 

PROFILING OF VEHICLE-WEEK CLUSTERS 

We conduct descriptive analysis (means and crosstabulations) 

of the seven vehicle-weeks clusters, and an additional cluster 

consisting of the 247 ‘empty’ vehicle-weeks excluded from the 

previous step of the analysis, for a total of eight groups. he 

proiling variables include variables derived from the travel di-

ary, as well as attributes of the vehicles, the households own-

ing them and their main drivers. We test diferences between 

clusters with Chi-square tests and ANOVA post hoc analysis 

as detailed above.

3. While the Ward method is sometimes criticized for being biased towards produc-

ing equally-sized clusters (e.g. Lesnard, 2006, p.13), this is not the case for our 

results (see Results section). 
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Results

CLUSTERING OF VEHICLE-DAYS

Out of 14,265 vehicle-day sequences with a least one car use 

episode, there are 7,653  ‘unique’ observations, i.e. diferent 

types of sequences. his highlights high levels of heterogene-

ity in the timing of vehicle use, even when using a relatively 

coarse measurement approach (48 half-hour time slots), and 

thus indicates the need for OM to classify the patterns into a 

manageable number of clusters. 

hrough OM we identify ive vehicle-day clusters (VDC in 

the following), which we illustrate with density plots in Fig-

ure 1. In addition to the ive VDCs derived from OM, the graph 

depicts an additional ‘no use’ cluster for sequences that were 

excluded from OM (33.5 % of all sequences – henceforth re-

ferred to as VDC0). 

VDC1 (accounting for 23.3 % of vehicle-day sequences) and 

VDC2 (7.9 %) are both characterized by a morning and an af-

ternoon ‘peak’ of use, with some subtle diferences. Vehicle use 

in VDC2 is more synchronized at speciic times in the morn-

ing and aternoon, as shown by the more distinct bands in the 

indexplot and by the ‘peakier’ curve in the chronograph. Also, 

both morning and aternoon peak are slightly later in the day 

for VDC2, and further exploration shows that a minority of 

sequences in VDC1 do not include any vehicle use in the morn-

ing. VDC3 (14.3 %) groups sequences with vehicle use in the 

mid-aternoon, with a concentration around 16, although with 

a relatively low degree of synchronization, and relatively many 

car use episodes before 12 and ater 18. VDC4 (7.4 %) is similar 

in showing a mid-late aternoon peak, but vehicle use appears 

much more concentrated at a speciic time of day here (which 

is slightly later than the peak of VCD3), and most sequences 

include some vehicle use in the morning as well, although that 

is less synchronized. Finally, VDC5 (13.6 %) shows a clear con-

centration of use around noon (from 10 to 14). here is rela-

tively little use outside of those hours (mostly in the aternoon, 

and not particularly synchronized). 

PROFILING OF VEHICLE-DAY CLUSTERS 

here are notable diferences between the VDCs in terms of 

frequency, distance and duration of car travel during the day 

(Table 1). VDC4 (characterized by a concentration of vehi-

cle use in the late aternoon) stands out as the type of day 

with the most intensive car travel patterns. Conversely VDC5 

(concentration of use around noon) has the lowest values in 

terms of travel frequency, duration and distance. Other clus-

ters are between these two extremes, but it is interesting to 

note that VDC2, while being relatively similar to VDC1 in 

terms of timing of vehicle use (with concentrations of use in 

both morning and late aternoon), has lower overall car travel 

distance and duration (although not frequency). Average ve-

hicle occupancy is also lowest for VDC1 and 2, while it is 

highest for VDC4. 

hese diferences may be explained by systematic diferences 

in travel purposes between the clusters. Approximately 60 % 

of vehicle-days in VDC1 and 2 include at least one commut-

ing trip – signiicantly higher than all other clusters. Education 

(and escort to education) trips are also more highly represented 

in VDC2. his is consistent with the dual rhythm of vehicle use 

in these clusters, with a morning trip and a return trip in the 

aternoon, and with low average vehicle occupancy for VCD1. 

Conversely VDC3 (characterized by a concentration of use 

in the mid-aternoon), shows higher representation of all trip 

purposes other than commuting, business and education, with 

e.g. virtually 50 % of vehicle days including at least one leisure 

trip. Other clusters are similarly characterized by a low inci-

dence of commuting trips but difer in the other trip purposes 

they are more likely to include besides leisure. VDC4 shows an 

overrepresentation of education and escort trips (relected in 

high occupancy levels), as well as business and personal busi-

ness trips. It also shows the highest diversity of trip purposes 

undertaken during the day among all clusters. he prevalence 

of escort education trips may explain the strong concentration 

of vehicle use at a speciic time of day during the aternoon 

(Figure 1) possibly corresponding to the end of school hours. 

Figure 1. Density plots for the vehicle-day clusters identiied. 
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Vehicle days in VDC5 are the most likely to include at least one 

shopping trip and have high levels of personal business travel 

as well. 

To sum up, our results shows a relatively clear distinction be-

tween two ‘commuting’ clusters, characterized by trips at ‘peak 

times’ and accounting for roughly 30 % of days, and the other 

clusters, characterized by trips at noon and in the aternoon, 

but distinct from each other in terms of the (non-commuting) 

trips that they tend to include. hese diferences are relected 

in the distribution of VDCs across days of the week (Figure 2), 

showing an overrepresentation of VDC1 and 2 on weekdays, 

and a higher share of VDC3, VDC5, and vehicle days with no 

use on weekends. 

CLUSTERING OF VEHICLE-WEEKS

Out of 2,817 vehicle-week sequences with a least one day of car 

use, there are 2,306 ‘unique’ observations, i.e. diferent types of 

sequences. Again, this highlights high levels of heterogeneity in 

the weekly patterns of vehicle use, even with the simpliication 

aforded by considering only six diferent types of vehicle-days. 

hrough OM we identify seven vehicle-week clusters (VWC in 

the following), which are illustrated with spineplots in Figure 3, 

along with an additional ‘no use’ cluster for the 8.1 % of se-

quences consisting of seven consecutive ‘no use’ days (VDC0), 

which were excluded from second-stage OM (henceforth re-

ferred to as VWC04). 

Besides VWC0, there is another large cluster (VWC1, 

24.1 %) with low levels of vehicle use: on average, vehicles in 

this cluster were used for less than three days on the diary 

week. VWC2 (4.9%) and VWC3 (10.3 %), have a very diferent 

proile, corresponding to a stereotypical working week, with 

4. Respondents were asked about reasons for the lack of use of a vehicle dur-

ing the travel diary week. For vehicles included in VWC0, 29.5 % indicated that 

the vehicle was not ‘in everyday use’, 24.2 % ‘other’ reasons, and 46.3 % did not 

provide any information. 

vehicles used in the morning and the aternoon from Monday 

to Friday, and a greater incidence of no use (VDC0), midday 

(VCD5) and aternoon use (VDC3) on weekends. he two 

clusters difer with regard to the type of commuting day that is 

prevalent on weekdays, with VWC2 characterised by later out 

and return trips (VCD2). 

VWC4 (3.4 %) is the smallest cluster, and from Monday to 

Friday sees a prevalence of morning and mid-aternoon use 

patterns (VDC4), which our analysis suggests are particularly 

associated with the school run. he remaining three clusters 

are characterized by a lower prevalence of one type of day over 

the others, although VWC5 (13.0 %) shows an overrepresen-

tation of aternoon use patterns (VDC3), and VWC6 (8.8 %) 

of midday use patterns (VDC5), particularly on the irst days 

of the week. Both VW5 and VW6 also show little diferentia-

tion in the timing of car use between weekdays and weekends, 

although vehicles are somewhat less used on Saturdays and 

Sundays (higher prevalence of VCD0). VWC7 is the largest 

cluster (27.5 %) and shows an overrepresentation of morning 

Table 1. Proiles of vehicle-day clusters.

 

Figure 2. Distribution of vehicle-day clusters for each day of the 

week.

VDC0 VDC1 VDC2 VDC3 VDC4 VDC5 Full sample

Mean no. of stages* 0.0 2.83,4 3.03,4 3.3A 4.1A 2.93,4 3.1

Mean travel time (minutes)* 0.0 64.74,5 60.83,4,5 66.52,4,5 90.7A 50.1A 64.5

Mean travel distance (miles)* 0.0 26.82,4,5 21.51,3,4 27.12,4,5 38.9A 19.31,3,4 26.1

Days with long-distance (> 50 miles) stages (%)* � 4.12,4 2.4A 5.02,4 9.4A 4.12,4 4.7

Average occupancy* � 1.43,4,5 1.43,4,5 1.6A 1.7A 1.5A 1.5

Whether vehicle 

used for trip 

purpose on day 

(%) 

Commuting � 58.53,4,5 60.23,4,5 23.51,2,5 20.31,2,5 15.7A 38.8

Business � 9.14,5 9.85 9.04,5 12.31,3,5 6.2A 8.9

Education (including escort) � 4.72,3 13.8A 5.9A 30.3A 3.62,3,4 8.6

Shopping � 18.63,4,5 16.43,4,5 40.4A 33.1A 46.3A 29.9

Other escort � 15.23,4 16.33,4 19.5A 25.4A 16.73,4 17.6

Personal business � 12.5A 19.41,4 21.41,4 26.4A 21.41,4 18.5

Leisure & other � 36.2A 29.4A 49.11,2,5 46.61,2,5 41.7A 40.2

Mean no. of different trip purposes � 1.452,3,4 1.541,4,5 1.591,4,5 1.79A 1.41A 1.52

Items in superscript indicate which values are signiicantly diferent from each other, with ‘A’/grey-shading indicating it difers from all other 

clusters. VWC0 was excluded from signiicance tests and from the values in the ‘full sample’ column. * Denotes that only car driver stages 

were considered (to avoid double-counting).
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Items in superscript indicate which values are signiicantly diferent from each other, with ‘A’/grey-shading indicating it difers from all other 

clusters. VWC0 was excluded from signiicance tests and from the values in the ‘full sample’ column. * Denotes that only car driver stages 

were considered (to avoid double-counting).

Table 2. Proiles of vehicle-week clusters (usage during travel diary week).

VWC0 VWC1 VWC2 VWC3 VWC4 VWC5 VWC6 VWC7 Full sample

Mean no. of stages* 0.0 7.2A 18.61,4,5 18.21,4,5 27.5A 21.51,3,4,6,7 17.01,4,5 17.21,4,5 15.8

Mean travel time 

(minutes)*
0.0 165.6A 405.21,6 433.11,6,7 474.11,6,7 402.41,6 309.5A 364.81,3,4,6 329.3

Mean travel 

distance (miles)*
0.0 71.2A 155.71 185.21,6,7 164.11 155.51,6 117.21,3,5,6 149.51,3,6 132.9

Mean no. of 

different �time slots� 

in which the car 

was in use

0.0 11.4A 28.61,4,6 29.01,4,6,7 36.2A 30.71,4,6,7 24.11,2,3,4,5 26.21,3,4,5 23.7

Mean no. of 

different trip 

purposes for which 

the car was used 

0.0 2.2A 3.41,4 3.21,4,5 4.2A 3.61,3,4,6 3.21,4,5 3.41,4 3.1

Vehicles driven 

by more than one 

driver (%)

� 15.04,5,6,7 14.04,5,7 15.54,5,7 25.21,2 30.11,2,3,6 21.01,5 25.21,2,3 21.1

Longest spell of 

non-use (mean no. 

of half-hour slots)

336 177.9A 61.81,6,7 63.71,6,7 62.81,6,7 69.21,6,7 89.11,2,3,4,5 84.61,2,3,4,5 101.8

Average 

occupancy*
� 1.62,3,4,7 1.41,4 1.31,4,5,6,7 1.9A 1.63,4 1.53,4 1.51,3,4 1.5

 
Figure 3. Distribution of vehicle-day clusters (VCD) by day of the week, for each vehicle-week cluster (VWC) identiied.
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and aternoon use patterns associated with commuting (VDC1 

and 2) although, as compared to other commuting week clus-

ters (VWC2 and 3), there is a more substantial share of other 

types of days (including no-use days), and a less clear distinc-

tion between weekdays and weekends. 

PROFILING OF VEHICLE-WEEK CLUSTERS 

In this section, we proile the vehicle weeks clusters described 

above against various NTS variables, starting with variables de-

rived from the travel diary (Table 2). 

Unsurprisingly, levels of car use (in terms of stages, travel 

time and distance) are very low for VCW1, and much higher 

for VWC3 and 4 – although diferences are not always statisti-

cally signiicant perhaps due to small sample size for some clus-

ters. VCW4 is also characterized by the highest average vehicle 

occupancy, which is consistent with the high share of escort 

trips. he total duration of vehicle use over the week is particu-

larly low for VWC6, characterized by the prevalence of midday 

use patterns. VWC4 also shows the greatest diversity of vehicle 

use, both in terms of diversity of travel purposes and diferent 

times of day at which the vehicle was used during the week, 

which may be the result of greater overall usage. Interestingly, 

in all clusters only a minority of vehicles were driven by more 

than one household member over the week, and this igure 

appears particularly low for the typical ‘commuting weeks’ in 

VCW2 and 3. For each cluster, we estimated the average length 

of the longest spell of non-use during the week, which is inter-

esting from an EV charging perspective. For all clusters, the 

value is over 60 half-hours, i.e. one day and six hours, and this 

is even longer for VCW6 and 7 as well as obviously for low-use 

vehicle-weeks (VCW0 and 1). 

he NTS includes a wealth of vehicle-related variables on 

which to proile the clusters (Table 3). Overall, many difer-

ences are not statistically signiicant, which may be related to 

small sample size or the lack of any statistically signiicant dif-

ferences found between clusters in terms of propulsion type. 

Whilst this suggests, somewhat surprisingly, that fuel type and 

temporal patterns are not linked, we did ind a strong associa-

tion with vehicles that were not used during the travel week 

(VWC0). hese cars stand out from the others as they are older, 

more likely to be secondary cars and to be parked in a garage. 

hey also have the lowest annual mileage, demonstrating that 

it would be wrong to see them as ‘unused cars’ – rather, they are 

less frequently used and thus include some travel which would 

be included in the analysis if the survey had been for two weeks, 

a month, or a whole year. he distribution of frequency of use 

has necessarily been truncated and the result must be that there 

is some loss of information about a potentially important seg-

VWC0 VWC1 VWC2 VWC3 VWC4 VWC5 VWC6 VWC7 Full sample

Mean vehicle age (years) 12.6A 8.40 7.30 7.20 7.60 7.00 7.60 7.30 8.0

Average engine Capacity 

(litres)

1.845,6,7 1.70 1.72 1.70 1.72 1.630 1.630 1.680 1.69

Mean annual mileage 

(1,000 miles)

5.92,3,4,5,7 6.42,3,4,5,7 8.90,1 10.10,1,5,6,7 9.10,1 8.20,1,3 7.13,7 8.70,1,3,6 7.9

Mean total mileage (1,000 

miles)

67.0 56.90 54.80 67.50 60.2 58.1 55.4 59.9 59.6

Average CO
2
 emission 

factor (gCO
2
/km)

175.6A 154.60 149.30 149.00 155.10 147.10 148.20 149.50 152.5

Mean annual CO
2
 

emissions (ton CO
2
)

1.512,3,4,7 1.552,3,4,5,7 2.140,1 2.400,1,5,6,7 2.250,1 1.930,3 1.710 2.020,1,3 1.89

Type of 

household 

car (%) 

Only car 29.71,4,5,6 40.10,6 34.86 35.35,6 46.50,7 43.80,3,6,7 51.40,1,2,3,5,7 35.44,5,6 38.7

Primary 

car 

19.82,3,7 23.32,3,7 32.80,1,6 33.00,1,3,6 23.5 26.4 21.62,3,7 30.70,1,6 26.9

Secondary 

car 

50.5A 36.60,5,6 32.40 31.70 30.10 29.90,1 27.00,1,7 34.00,6 34.3

Company car (%) 2.32 1.62,3,7 7.3 0,1,5,6 4.51 4.3 2.42,7 1.62,7 5.01,5,6 3.4

Propulsion 

type (%)

Petrol 64.0 62.3 57.6 60.9 63.6 63.2 61.8 60.4 61.6

Diesel 34.9 36.3 41.7 38.6 34.4 35.9 37.5 38.8 37.4

Other 1.1 1.3 0.7 0.5 2.1 0.9 0.7 0.8 1.0

Vehicle 

is usually 

parked 

overnight... 

(%)

...in garage 21.11,2,3,4,5,7 14.80,2,4,5,7 2.90,1,5,6 5.3 0,1,6 4.20,1,6 9.30,1,2,6 15.42,3,4,5,7 6.50,1,6 10.3

...other 

private

48.2A 57.20 62.50 62.60 63.00 62.50 61.50 61.80 59.9

...on street 

or other

30.7 28.0 34.56 32.16 32.7 28.1 23.12,3,7 31.86 29.9

Table 3. Proiles of vehicle-week clusters (vehicle characteristics).

Items in superscript indicate which values are signiicantly diferent from each other, with ‘A’/grey-shading indicating it difers from all other 

clusters. 
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ment of the population of cars, and their owners. Yet low annu-

al mileage means that VWC0 has the lowest estimated annual 

CO
2
 emissions, despite having the highest CO

2
/km emission 

factor. VWC1 (low use week) has a similar proile, albeit less 

pronounced.

VWC3 (commuting week) has sort of the opposite proile, 

with the highest annual mileage and associated emissions. 

hese vehicles are also most likely to be the primary – but not 

the only – household vehicle. VWC2 has a similar proile to 

VWC3, plus an overrepresentation of company cars. he third 

‘commuting-heavy’ cluster (VCW7) also shows high annual 

mileage. Finally, the highest percentage of ‘vehicles in one-car 

households’ (‘only car’) is found in clusters characterized by 

a mix of type of days (VWC5 and 6). his suggests that their 

fuzzier proile might be the result of the car being used for a 

variety of activities, relecting the needs and preferences of 

several household members. hese vehicles are also relatively 

more likely to be parked in a garage. 

he vehicle-week clusters difer from each other also in 

terms of the characteristics of the households that own them 

(Table 4). he economic status of the household reference per-

son (HRP) is one of the most discriminating variables here, 

with more than 95 % of HRPs employed in typical ‘commut-

ing week’ clusters (VWC2 and 3) but a relatively high share 

of retired householders for clusters with more varied temporal 

patterns of vehicle use (i.e. those centered around midday and 

the aternoon (VWC5 and 6), or low vehicle use (VWC0 and 

1)). VWC5 and 6 also have some of the lowest values for house-

hold income and household size. VWC4 is characterized by the 

highest percentage of HRPs in part-time employment or ‘other’ 

economic status (including people in education), although not 

all diferences are statistically signiicant. his cluster, which is 

characterized by the importance of education and related es-

cort trips, also shows the largest values for household size and 

number of children. Vehicles that were not in use during the 

week (VWC0) tend to belong to households with more vehicles 

(more than two on average), despite relatively low household 

size. here are no statistically signiicant diferences in type 

of residential area, suggesting, perhaps surprisingly, no spa-

tial variation in the temporal patterns of vehicle use. We also 

looked at type of dwelling and, once again, the diferences were 

inconclusive.

Finally, we ind the clusters difer in terms of the character-

istics of their main driver (Table 5). In most clusters, males 

account for over 50 % of main drivers, with the signiicant ex-

ception of VWC4 where roughly two thirds are female. Main 

drivers in part-time employment or in ‘other’ non-employment 

are also overrepresented in VWC4. his is consistent with the 

importance of education and escort-related travel in this cluster. 

Part-time employment is similarly overrepresented in VWC5, 

which may go some way to explaining its variable pattern of 

vehicle use over the week. Overall, the share of self-employed 

and of working from home is higher for clusters that diverge 

from the stereotypical commuting week (although diferences 

are mostly not statistically signiicant). he average age of the 

main driver is lowest for commuting week clusters (VWC2 and 

3) and highest for vehicle weeks dominated by midday (VWC6) 

and aternoon (VWC5) travel patterns, as well as for vehicle 

weeks with little reported use (VWC1). 

Discussion and conclusion 

Our study provides a descriptive picture of current temporal 

patterns of household vehicle use in England. We contend that 

this analysis has the potential to introduce some new thinking 

to the planning and projection of infrastructure requirements 

to support the introduction of plug-in electric vehicles (EVs) 

and associated potential to ‘lex’ electricity demand. Studies of 

EVs and their charging regimes are dominated by an actual or 

conceptual focus on commute trip patterns (Koyangi and Urui, 

1997; Smith et al., 2011), or at least on the home arrival time 

ater the last trip of the day (Weiller, 2011). his focus comes 

from a tendency to supply EVs to employees in vehicle trials, 

or by assumptions about the prevalence of the journey to work 

in structuring daily car use. hese studies start or end with the 

premise that, unless inluenced by time of use charging tarifs 

and smart charging infrastructure, drivers are likely to charge 

their EVs in the evening at home thus exacerbating peak power 

demand events. We ofer three main critiques of these simplis-

tic representations on evening peak-time charging.

Firstly, our results suggest the focus on commuting is mis-

placed. It is true that our analysis inds employment status of the 

vehicle’s main driver to be the variable that best discriminates 

between diferent patterns of vehicle use – while the clusters dif-

fer little on other dimensions that may have been considered as 

crucial (including various socio-demographics, type of residen-

tial area and vehicle propulsion type). However, not all vehicles 

conform to the rhythms of commuting, with our study reveal-

ing only roughly 15 % with a stereotypical working week proile 

(VWC2 and 3). Even when adding VWC7 – with a similar preva-

lence of commuting days but a fuzzier proile – the total share of 

vehicles with commuting-dominated weeks is still below 50%. 

Moreover, these igures are likely overestimates given our delib-

erate focus on a ive-month period (February to June) in which 

holiday and active travel are known to be lower. his suggests 

that assessing the potential distribution of electricity demands 

across the day, week as well as from place to place, requires de-

tailed understanding of heterogeneity in these patterns, most of 

which are not rigidly structured by the journey to work.

Secondly, our results suggest that attempts to encourage 

of-peak and lexible charging behaviour may beneit from fo-

cusing on a much more diverse set of times of day and types 

of user than are typically the subject of current research and 

policy discourses. It is true to say that existing studies ind the 

majority of charging events in this early EV market occur at 

home in the evening or at public chargers coincident with peak 

commuting times (Carrol et al., 2013; Hardman et al., 2018; 

Langbroek et al., 2017; Robinson et al., 2013). hese studies 

not only infer from this that it is related to commuting activ-

ity, but also deduce that the only real solution for managing 

peak demand as the EV market grows will be to encourage a 

shit to overnight charging. Whilst overnight charging could 

indeed bring capacity beneits to the electricity grid (Sovacool 

and Hirsh, 2009), it could also bring its own problems (e.g. the 

fact that other vehicle with considerable demands (eg vans and 

buses) arguably have a greater need to use capacity at this time), 

and sufer from behavioural resistance (Hardman et al., 2009). 

However, it is possible that these empirical indings are based 

on behaviour representative of the early adopters of EVs which 

are disproportionately used with commuting-based temporal 
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Table 4. Proiles of vehicle-week clusters (household characteristics).

Items in superscript indicate which values are signiicantly diferent from each other, with ‘A’/grey-shading indicating it difers from all other clusters. 

VWC0 VWC1 VWC2 VWC3 VWC4 VWC5 VWC6 VWC7 Full sample

Average no. of cars/vans 2.3A 1.80 2.00 1.90 1.70 1.80 1.60,7 1.90,6 1.9

Mean income (1,000£ per year) 48,8 47,53 57,5 57,11 54,7 43,72,3,7 38,42,3,4,7 54,21,5,6 50,1

Average household size 2.62,4 2.52,3,4,7 3.10,1,6 3.01,4,6 3.60,1,3,5,6,7 2.74 2.52,3,4,7 2.91,4,6 2.8

Average no. of children 0.32,4 0.42,4 0.70,4 0.64 1.40,1,2,3,5,6,7 0.54 0.44 0.54 0.5

Economic 

status of 

household 

reference 

person 

(HRP) (%)

Employed full time 59.91,2,3,6,7 49.20,2,3,4,7 85.10,1,4,5,6,7 90.30,1,4,5,6,7 67.21,2,3,5,6 53.42,3,4,6,7 43.10,2,3,4,5,7 70.10,1,2,3,5,6 63.0

Employed part time 9.63 12.92,3 5.01,4,5,7 4.80,1,4,5,6,7 12.32,3 12.92,3 10.43 11.02,3 10.6

Retired 25.91,2,3,4,6,7 33.60,2,3,4,6,7 6.30,1,5,6,7 3.30,1,4,5,6,7 9.30,1,3,5,6 31.92,3,4,6,7 42.2A 16.00,1,2,3,5,6 22.9

Other 4.6 4.34,5 3.64 1.54 11.21,2,3,5,6,7 1.81,4 4.34 2.84 3.5

HRP self-employed (%) 19.42,3 18.92,3 10.70,1,4 9.60,1,4,5,6,7 24.22,3,7 16.83 15.33 15.13,4 16.0

Type of area 

(%)

Metropolitan area 26.1 24.4 29.35,6 27.1 26.5 20.42 19.72 24.1 24.2

Large urban 19.4 17.7 12.13 20.32 15.5 16.6 17.8 15.6 17.0

Medium urban 21.82,7 26.7 31.60 28.4 27.3 28.3 28.2 29.30 27.8

Small urban 11.7 13.4 10.7 9.65 9.3 14.83 14.8 12.5 12.6

Rural 21.0 17.8 16.3 14.65 21.4 20.03 19.6 18.6 18.4
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VWC0 VWC1 VWC2 VWC3 VWC4 VWC5 VWC6 VWC7 Full sample

Average age (years) 50,42,3,6 53,32,3,4,7 42,70,1,5,6 41,90,1,5,6,7 45,21,6 51,62,3,6,7 57,40,2,3,4,5,7 46,21,3,5,6 49,1

Sex: male (%) 63,71,4,5,6,7 52,90,3,4 54,44 61,91,4,5,6 33,8A 50,80,3,4 50,40,3,4 56,40,4 54,7

Economic 

status (%)

Employed full time 54,01,2,3,5,6,7 40,70,2,3,6,7 82,8A 90,6A 42,82,3,7 41,90,2,3,6,7 33,10,1,2,3,5,7 61,5A 55,0

Employed part time 12,33,4,5 16,62,3,4,5 9,11,4,5,6,7 6,20,1,4,5,6,7 29,00,1,2,3,6,7 22,80,1,2,3,7 16,52,3,4 17,12,3,4,5 16,0

Retired 28,92,3,4,6,7 33,92,3,4,6,7 5,30,1,3,5,6,7 1,1A 8,80,1,3,5,6 29,32,3,4,6,7 43,0A 14,30,1,2,3,5,6 22,2

Other 4,84 8,82,3,4 2,91,4,6,7 2,11,4,5,6,7 19,4A 6,13,4 7,42,3,4 7,12,3,4 6,8

Self employed (%) 24,22,3,6,7 18,62,3,7 4,60,1,4,5,6,7 10,00,1,5,6 18,52,3 18,42,3,7 15,60,2,3 13,40,1,2,5 15,6

Works from home at least once a 

week (%)

9,7 14,52,3,7 7,11,6 6,41,3,6 10,8 11,93 15,42,3 10,01 10,6

Education 

level (%)

No qualiication 9,83 12,32,3,7 5,71 4,60,1,5,6 6,5 9,13 9,73 6,61 8,5

Qualiication below 
degree

59,72 54,95,6 45,90,3,4,5,6,7 57,42,5,6 60,82 65,81,2,3,7 66,01,2,3,7 58,62,5,6 58,6

Degree or above 30,62 32,82,5,6 48,4A 38,02,5,6 32,72 25,11,2,3,7 24,31,2,3,7 34,82,5,6 32,9

Table 5. Proiles of vehicle-week clusters (main driver characteristics).

Items in superscript indicate which values are signiicantly diferent from each other, with ‘A’/grey-shading indicating it difers from all other clusters.
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patterns, even though, as we have shown, this is not representa-

tive of the activities being undertaken by the vehicle leet at 

large. Although the sample of EVs in our study is too small 

to conirm that this is how they are mainly being used so far, 

previous research suggests that early EV adopters tend to be 

higher-income, middle-aged males in multi-person house-

holds, who use the vehicle for regular, well-planned journeys 

like commuting (Carroll et al., 2013; Jensen & Mabit, 2017; 

Morton et al., 2017; Plötz et al., 2014; Sovacool et al., 2018). 

In our indings, all these characteristics are associated with the 

stereotypical working week clusters (VWC2 and 3). hus, as 

the EV market develops, recharging at peak load times may 

become (relatively) less prevalent as EV penetration reaches 

broader sectors of the population, i.e. the other clusters in our 

classiication. Our indings indicate that for many vehicles – i.e. 

those with fuzzier proiles and frequent midday or aternoon 

use, or low levels of use – recharging at of-peak times might 

be easier than for cars constrained by the rhythms of commut-

ing (which also tend to be those with the highest mileage). 

Although it could be assumed that the less routine or predict-

able nature of non-commute-dominated proiles might actu-

ally command less lexible charging regimes as cars need to be 

‘ready at all times’ to fulil journey needs, this patterning still 

allows much more distributed charging patterns through the 

day, much of this at home. Moreover, although our 7-day data 

cannot conirm this, even a more complex activity pattern can 

be part of a regular routine, as has been found in other studies 

(Axhausen et al., 2002) 

hirdly, even if initial uptake of EVs were to be dictated by 

household commute patterns, that does not account for the 

dynamic nature of behavioural adaptation by individuals and 

between individuals within households. Most research and 

policy-making has assumed that the EV transition will (have 

to) play out as a mere ‘technological substitution’, which leaves 

current patterns of car use unaltered (Bergman et al., 2017). 

Not only is this assumption theoretically lawed (Hui, 2017), 

the few existing studies that have examined what happens ater 

a household adopts an EV show that it starts to be used difer-

ently to the users’ initial expectations, oten being ‘promoted’ 

to the primary household car and used for the majority of miles 

(Daramy-Williams et al., 2019). his is yet more evidence to 

suggest that the simpliied assumptions and conceptualisations 

of daily activity patterns and the associated temporal rhythms 

of car use are in danger of leading to overly constrained and 

prescriptive ways of attempting to foster lexible patterns of 

electricity demand. 

Further analysis using this data and approach will use the 

vehicle-week typologies to examine aspects of out-of-home 

charging potential in more detail. his will include the rela-

tionship between journey distances, locations and parking du-

ration (and battery capacity) and the relevance (and scope for) 

sharing of vehicles across household members and primary and 

secondary cars. Examining the shortest and longest spells of 

non-use and the synchronicity of these in time and space are 

key to assessments of the impacts of electric vehicle grid inte-

gration. Future research on EV charging would beneit from 

integrating consideration of this heterogeneity and less con-

strained thinking about the scope for lexibility and capacity 

management in the future. 
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