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Abstract: Plenty of diesel particulate matter (PM) is emitted into the atmosphere in the forms of 

raw PM and partially oxidized PM. Comprehensive investigations of PM oxidation behavior and 

kinetics contribute to lower PM emission and optimize the PM capture device design. In this paper, 

diesel PM oxidation behavior was investigated using different temperature control programs, then, 

the oxidation kinetics were analyzed using Arrhenius equation. Nanostructure, Fourier Transform 

Infrared Spectroscopy (FTIR) and Raman characteristics were adopted to further clarify PM 

oxidation kinetics. The results indicated that PM oxidation showed multi-stage reactions, and 

reaction rate decreased rapidly in the isothermal process, with activation energy increasing. Heat 

transfer limitation significantly decreased the activation energy, also affected the following 

reactions. In the narrow temperature range 523°C~537°C, the activation energy of partially oxidized 

and aging PM was smaller than the values of the initial oxidation stage. The oxidation 

transformation phase had a huge potential of evolving into the heat transfer limitations. The 

activation energy of partially oxidized and aging PM was smaller than the value of raw PM at the 

end of oxidation, which was caused by the catalytic reaction of metal ash. Diesel PM nanostructure 

changed from the onion like to core-shell like structures after partial oxidation.

Keywords: Diesel particulate matter; oxidation behaviors; oxidation kinetics; activation energy; 

nanostructure

1. Introduction

Particulate matter suspending in the atmosphere has caused serious problems to human health and 

environment 1, especially at urban areas. The towers used for removing suspending particles in the 

air had been established in Xi’an of China, and a significant decrease of particle concentration was 

observed around the towers. It is a more effective approach of preventing the PM from emitting into 

the atmosphere to alleviate the issues caused by particles. PM from diesel engines makes a great 

contribution to the suspending particles. Sharma 2 from Massachusetts Institute of Technology 

(MIT) designed a professional device to capture diesel PM, and the captured PM was used to create 

air-ink for artists, which actually was to recycle air pollutant to make art. Nevertheless, diesel 

particulate filter (DPF) 3 is the most successful product to decrease PM emission in commercial 

field. What’s more, DPF regeneration problem must be resolved to decrease the fuel penalty caused 

by the increase of engine backpressure 4. Post fuel injection is commonly used to achieve DPF 

regeneration, with the results of diesel PM being partially oxidized. Due to the increase of specific 
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3

surface area and pore size after partial oxidation 5, it is easier to absorb organic compound (OC) 

when it is exposed into the atmosphere. PM oxidation behaviors and oxidation kinetics are vital to 

resolve DPF regeneration problems and optimizing the design. In addition, such researches 

contribute to decrease the PM emission from diesel engines, and lay the foundation of reducing PM 

in the atmosphere.

The commonly used method to test PM oxidation behaviors is thermogravimetric analysis (TGA), 

which monitors the sample mass changes at a given temperature program 6, 7. Based on the 

oxidation profiles, different methods were used to calculate kinetic parameters (activation energy, 

pre-exponential factors, and reaction rate constant) 7-9. Activation energy of diesel PM sampled at 

different conditions (engine operation conditions, engine types, fuel types, aftertreatment 

technologies) was in the range of 80 kJ/mol ~230 kJ/mol 10-17. The values, calculated using multiple 

ramp rate oxidation profiles (Kissinger, Akahira and Sunose method), increased generally with 

mass drop in the oxidation process. López-Fonseca et al. 7 obtained the oxidation kinetic lines using 

single-step oxidation profiles, with results that the temperature ramp rates (1.5 °C/min~7.5 °C/min) 

had a limited effect on activation energy. Due to the disadvantages of TGA method as mentioned in 

reference 
9, Gao et al. 11 put forward a differential scanning calorimetry (DSC) based method to 

investigate PM oxidation behaviors and calculate the oxidation kinetic parameters. This method 11 

accurately showed the mass loss history caused by the chemical reactions rather than OC 

volatilization.

PM oxidation behaviors presented closely related to physico-chemical properties which greatly 

depended on PM formation conditions 18-21. PM formed at high engine load conditions tended to 

contain less OC which could be divided into high volatilization OC and low volatilization OC, 

whose temperature ranges were 50 °C~200 °C and 200 °C~450 °C, respectively 22. Biodiesel PM 

was considered to be easier to oxidize than diesel PM because of higher oxygen content. In the 

oxidation process, the oxygen content decreased greatly when mass loss was more than 40% for 

biodiesel PM, while it was ~20% for diesel PM 23. Oxygen containing functional groups provided 

active sites for PM oxidation, and FTIR was used to detect the functional groups contained in PM 24, 

25.

PM oxidation activity is also partly dependent on nanostructure which generally were the onion and 

core-shell like structures. Additionally, it is widely accepted that the oxidative activity of diesel PM 
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4

with onion like structures were more active than that of core-shell like structures 15. During the 

oxidation, the nanostructure experienced the onion like structures, core-shell like structures, then 

densely arranged bands 26. Song et al. 27 hold the opinion that nanostructure had a smaller effect on 

PM oxidation behaviors than oxygen containing functional groups. It was demonstrated by the fact 

that the oxidation rate of biodiesel PM was five times higher than that of diesel PM although 

biodiesel PM nanostructure was more orderly arranged. High resolution transmission electronic 

microscopy (HRTEM) was an effective approach to observe the PM nanostructure 28. It is a 

milestone that nanostructure evolutions of individual PM during oxidation were observed directly29, 

which provided a strong foundation of PM oxidation modeling. Raman spectra contain vibration 

and rotation information of molecules, further the crystallite disorder degree and graphitization 

could be analyzed, which showed strong relations with PM oxidation behaviors 30, 31.

The oxidation kinetic changes in the oxidation process have been researched based on single-stage 

in many references 
7, 32, 33, nevertheless, detailed analysis of multi-stage oxidation of diesel PM was 

limited. In addition, details of the oxidation kinetics in the oxidation process were neglected if 

multiple ramp rate method was applied to calculate the kinetic lines 12. In the oxidation process, 

heat transfer limitation happened when much heat was released, which caused rapid mass drop. The 

apparent oxidation kinetic parameters and oxidation behaviors would be distorted when heat 

transfer limitation happened 11, 34, so that the heat transfer limitation was tried to avoid in researches. 

As indicated in reference 34, double peaks were observed in soot oxidation if heat transfer limitation 

happened that the first one was attributed to a thermal runaway reaction. The detailed characteristics 

of the TGA profiles changed with the experiment conditions 
35, such as sample mass, temperature 

ramp rate, oxygen content and carrier gas flow rate. However, to the authors’ knowledge, no 

reference was available to date the influence of the heat transfer limitation on normal oxidation 

reactions, also the effect of heat transfer limitation on apparent activation energy was seldom 

analyzed.

In this paper, detailed analysis of PM oxidation behaviors and oxidation kinetics were conducted in 

the multi-stage oxidation process (stage temperature control program) and single-stage oxidation 

process. Activation energy in the oxidation process was calculated using oxidation profiles and 

Arrhenius equation. The influence of heat transfer limitation on the normal stage of oxidation and 

activation energy was firstly analyzed. Then, the nanostructure, FTIR and Raman characteristics 
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5

were researched to further clarify the oxidation behaviors and oxidation kinetics.

2. Experimental section

2.1 The test engine

The tested engine was the power of a small generator which was widely used in construction sites, 

environmental sanitation and agricultural industries. The detailed specifications of the engine were 

shown in reference 36. The diesel engine was used less than 100 h, and the properties of the diesel 

fuel are listed in Table 1. The engine speed was a constant value (3000 r/min) because the output 

voltage of the generator was unchangeable (220 V). The engine load was adjusted by the electric 

power output of the generator.

Table 1 Properties of diesel fuel

Properties Value

Viscosity (20 °C) 4.1 mm2/s

Density 850 kg/m3

Cetane number 52

S content 0.0042%

H/C ratio 0.156

50% distillation points 290 °C

95% distillation points 340 °C

2.2 Instruments used in the experiments

Oxidation profiles of diesel PM were obtained at given conditions using a TGA device (DTG-60) 

that was made by Shimadzu. The detailed specifications of the TGA device were shown in 

reference 11. The nanostructure of diesel PM was obtained by transmission electron microscope 

(JEM-2100), and the magnifications were set as 40, 000× and 500, 000×. Low magnification 

HRTEM figures were used for the statistics of primary particle diameter distributions. Before the 

nanostructure test, suspensions were created by ultrasonication of PM within acetone. One drop of 

the suspension was deposited on a lacey C/Cu TEM grid, then, the TEM grid was dried under 

accent light to volatilize acetone. The functional groups of diesel PM were tested using a FTIR 

device (Shimadzu IRAffinity-1s), the wave scope of FTIR spectrum was 500 cm-1~4000 cm-1. An 

Invia Raman device with an Ar-ion laser source (633 nm) was used to obtain the PM Raman spectra 
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6

which contain the vibration and rotation information of the molecules, further to analyse the 

molecular structures. The first order Raman shift was in the range of 700 cm-1~2000 cm-1. Double 

peaks were observed generally in the first order Raman spectra, and their Raman shifts were 

corresponding to 1350 cm-1 (D peak) and 1590 cm-1 (G peak), respectively.

2.3 Diesel PM collections and preparations

In this paper, three kinds of diesel PM samples, namely raw PM, partially oxidized PM and aging 

PM, were used to conduct the experiments. Raw PM was collected at 80% engine load conditions, 

without any pre-treatment before test, and the distance between the exhaust valves and sampling 

position was ~2.0 m, where the exhaust temperature was 203 °C. It was collected using a self-made 

PM sampling filter, which was made of metal net. The metal net was pre-treated under oxygen and 

high temperature atmosphere, and the exhaust was undiluted. The raw PM was peeled off from 

metal net and was sealed stored at non-oxygen atmosphere as soon as PM was collected. In order to 

obtain the partially oxidized PM, raw PM was pre-treated at high temperature and air atmosphere. 

The pre-treatment process was as the following: raw PM was heated at 5 °C/min from room 

temperature (carrier gas: air) using TGA device, until 40% mass loss; then the air was switched as 

N2, and the sample was cooled to ambient temperature. In the whole process, the air and N2 flow 

rate was 100 mL/min. Aging PM was obtained by exposing partially oxidized PM in air for 40 days 

to imitate the aging process (aging PM).

2.4 TGA experiment conditions

In this paper, two temperature control programs were used to conduct TGA experiments. (a) Raw 

PM was heated at 5 °C/min from room temperature to 650 °C in air atmosphere (100 mL/min). In 

the process, it was kept at isothermal conditions for 15 min at three points 200 °C, 450 °C and 

550 °C. The multi-stage temperature program was used to simulate the multi-stage reaction process. 

The initial mass of raw PM in the process was 3 mg. (b) All the three kinds of PM samples were 

heated from room temperature to 700 °C at 5 °C/min in air (100 mL/min), then, cooling to room 

temperature. The initial mass was ~4 mg for raw PM, while it was ~3 mg for partially oxidized PM 

and aging PM.

3. Oxidation kinetics parameter extraction

Calculation of oxidation kinetic parameters is based on the Arrhenius equation format, as shown in 

Equation 1,
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7

     (1)-
dm

dt
= kmnpr

O2 = Aexp( -
E

RT
)mnpr

O2

Where m, t, k, n, pO2, r, A, E, R, T are sample mass, time, reaction rate constant, reaction order for 

carbon, partial pressure of oxygen, reaction order for oxygen, pre-exponential factor, activation 

energy, the universal gas constant (8.314 J/mol·K) and temperature. It is known that the surface 

area and pore size of the carbonaceous samples increased during oxidation 37. However, any 

changes in the surface area and pore size were not considered in the simplified kinetic expression. 

References 38, 39 showed that the reaction orders were close to unit that the values of n and r were 1. 

So that Equation 1 was transferred to Equation 2,

          (2)ln ( -
dm

m ∙ dt) = ln (Apo2
) -

E

RT

In a small temperature range, ln(-dm/(m·dt)) shows a linear correlation with -/(R·T). E and A can be 

calculated from the slope and intercept form Equation 2. In the whole oxidation process, the slopes 

and intercepts changed gradually due to the changes of physico-chemical properties 11, 15. PM 

surface area and pore size increased, also the catalytic reactions of ash enhanced during the 

oxidation process, however, oxygen containing functional groups decreased and graphitization were 

aggravated. The activation energy changes in the oxidation process depended on the joint actions of 

these factors 15, 40. Known from the reference 7, the single ramp rate method was adopted to obtain 

the oxidation kinetic lines, which demonstrated that the temperature ramp rate almost had no effect 

on apparent activation energy.

4. Results and discussion

In this part, the research was dived into two sections. Firstly, the oxidation behaviors and oxidation 

kinetics in the single- and multi-stage oxidation processes were researched, also the heat transfer 

limitation was analyzed; Then, PM nanostructure, FTIR and Raman characteristics were 

investigated to further clarify PM oxidation behaviors.

4.1 Oxidation behavior and kinetic analysis

PM oxidation profiles showed closely related to temperature histories and PM ingredients which 

were dependent on many factors, such as engine types 12, 22, fuel types 33, 41, engine operation 

conditions 11, 42, exhaust gas recirculation (EGR) 43 and sampling conditions 14. In TGA experiments, 

mass loss below 200 °C was caused by the oxidation and volatilization of high volatile OC, and it 

was low volatile OC in the range of 200 °C~450 °C. Soot oxidation dominated the mass loss when 
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8

the temperature was above 450 °C.

Figure 1(a) shows multi-stage oxidation profiles of raw PM under multi-stage temperature control 

program. The mass dropped slightly when temperature was lower than 450 °C, which was 

explained by the fact that a small amount of OC (low volatility and high volatility) was contained in 

raw PM due to high sampling temperature. Nevertheless, the mass loss was obvious when 

temperature was higher than 450 °C, where reaction rate increased with temperature in an 

exponential manner 44. The 200 °C isothermal stage was a transition phase where the reaction 

transferred from high volatility OC to low volatility OC. However, oxidation hardly happened in 

this stage, which was verified in the reference 11, where DSC method was used to test the heat 

release in oxidation process. The oxidation rate increased significantly in the end of the second 

stage (200 °C~450 °C); In the region of temperature higher than 450 °C, the mass loss percentage 

almost linearly increased with temperature. Mass loss rate decreased evidently when it was in the 

550 °C isothermal conditions compared with that of temperature-rise period (around 550 °C). In the 

isothermal conditions, graphitization was aggravated and oxygen content decreased, also the 

crystallites were more orderly arranged, which caused the oxidation activity to decrease 26. The 

oxidation rate was recovered gradually once the isothermal condition was interrupted.
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(a) Multi-stage oxidation profiles               (b) Single-stage oxidation profiles

Figure 1 TGA profiles under different temperature control programs

Figure 1(b) shows the oxidation profiles at the single-stage oxidation process. The pre-treatment 

temperature of partially oxidized PM in Section 2.3 was ~530 °C which was around the isothermal 

conditions (550 °C) in Figure 1(a). Sample mass began to drop ~450 °C for partially oxidized PM, 

where OC oxidation was almost finished. The ignition temperature of partially oxidized PM was 
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9

~20 °C higher than raw PM. In addition, the value decreased slightly after aging in air, however, it 

was still higher than raw PM, as indicated in Figure 1(b). The burn out temperatures were almost 

the same for these three kinds of PM samples, which implied that the pre-treatment had a limited 

effect on oxidation behaviors of high temperatures.

The activation energy changes in the oxidation process can be clearly shown in the oxidation kinetic 

lines which were obtained using Equation 1 and oxidation profiles. Figure 2 shows the oxidation 

kinetic curves under multi-stage temperature program. The slopes of the kinetic curves in Figure 2 

were activation energy. The calculated activation energy was anamorphic when temperature was 

low, since OC volatilization dominated mass loss, which had been demonstrated in reference 11. 

Mass loss was weak when temperature was lower than 400 °C, which led to serious fluctuations of 

differential mass loss. The influence of ambient conditions (vibrations and noise) on oxidation 

kinetic lines was more conspicuous if the mass loss rate was slow. The activation energy was 

almost the same before and after the second isothermal stage (450 °C), however, it increased after 

the third isothermal stage (550 °C). It was indicated that high temperature conditions (e.g. 550 °C) 

significantly decreased the oxidation activity, nevertheless, it was limited for low temperature 

pre-treatment (lower than 450 °C).
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Figure 2 Oxidation kinetic curves under multi-stage temperature program

Figure 3 shows the oxidation kinetic curves of the three PM samples in the single-stage temperature 

program, they covered the mass loss percentage range of 10%~90%. In the oxidation process, there 

was an abnormal phase for raw PM, where the apparent activation energy was much lower than 

conventional values, which was caused by the heat transfer limitation. Heat transfer limitation often 

happened around the point of maximum mass loss rate, where much heat was released, with the 
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10

results of rapid temperature increase in PM. The temperature of PM interior was much higher than 

the controlled value (apparent temperature) if heat transfer limitation happened, which caused 

higher reaction rate constant and faster oxidation, with the results of the second peak in differential 

thermogravimetric (DTG) curves, as indicated in Figure 4. There were several points being 

seriously deviated from the kinetic curves (fluctuations), as cycled in the Figure 4, which was 

caused by the ambient effect (vibrations and noise) that led to the sudden changes in DTG curves. 

The slopes of the three kinetic curves were similar when the temperature was in the range of 

592 °C~619 °C.
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Figure 3 Oxidation kinetic curves in the single-stage temperature program
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Figure 4 Differential thermogravimetric curves

The apparent activation energy of the three PM samples in the oxidation process is listed in Table 2. 

The activation energy during the oxidation process increased generally with oxidation temperature 8, 

which was different from the results in the paper. Because the Kissinger–Akahira–Sunose (KAS) 

method 8 was used to calculated the activation energy that the activation energy was discontinuous, 
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11

which led to the missing of detailed information at some points. Partial oxidation and aging in air 

had a limited influence on activation energy at the positions, where the oxidation temperature was 

higher than pre-treatment temperature (i.e. 450 °C in this paper). Activation energy of the partially 

oxidized PM and aging PM was slightly lower than raw PM samples in the range of 592°C~619 °C, 

which was caused by more serious catalytic reactions for partially oxidized PM and aging PM. 

Because both the two samples were pre-treated at high temperature which caused higher ash content 

compared with raw PM. It was demonstrated that metals in ash presented evident catalytic actions 

on PM oxidation 45, 46, with the clear results that Ca, Mg and Zn had high catalytic actions on soot 

oxidation, while Na showed an excellent performance on hydroxide reaction. For raw diesel PM, 

heat transfer limitation led to much heat release in the temperature range of 518 °C~556 °C, with 

the results that the apparent activation energy (10.8 kJ·mol-1) was much lower than normal values in 

other temperature regions (470~518 °C and 592 ~619 °C). The heat transfer limitation also brought 

about an effect on the activation energy (96.4 kJ·mol-1) in the following reactions (556 °C~592 °C) 

that the value was still smaller than the normal ones.

Table 2 Apparent activation energy of PM samples in the oxidation process (single-stage 

temperature program)

Samples Activation energy/ kJ·mol-1 (temperature range/ °C)

Raw PM 147.5 (470~518) 10.8 (518~556) 96.4 (556~592) 211.7 (592~619)

Partially oxidized 123.7 (495~537) 93.5(525~537) 210.8 (537~557) 196.4 (557~623)

Aging 120.5 (480~523) 87.0 (523~548) 205.4 (548~622)

For the partially oxidized PM, the activation energy increased gradually, then, decreased slightly at 

the end of the oxidation process, which was consistent with López-Fonseca’s 8 investigation. It was 

caused by more severe catalytic actions of ash. The activation energy changes at the end of the 

oxidation process were also affected by graphitization that the joint effect dominated the activation 

energy changes. Another phenomenon was also observed that the activation energy dropped 

evidently in a narrow temperature range (~530 °C) for both partially oxidized and aging PM. It 

should be noted that the start point of the heat transfer limitation in raw PM was also around 530 °C. 

The potential relations of the heat transfer limitation and its temperature range will be explored in 

future work. In the process of aging in air, some organic compounds were adhered to PM surface so 
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12

that it caused slightly decrease of ignition temperature and activation energy compared with 

partially oxidized PM.

4.2 PM nanostructure, FTIR and Raman characteristics

Figure 5 shows the nanostructure of the three PM samples. In low resolution TEM figures, diesel 

PM presented the branch-like structures with many particles overlapped. Obviously, the primary 

particle diameters decreased after partial oxidation, meanwhile, aging in air had a small effect on 

the diameter distributions, as shown in Figure 6. The particle size distribution was the statistical 

results of more than 300 particles from low resolution TEM figures. The diameter corresponding to 

the peaks shifted to a smaller value for partially oxidized and aging PM compared with raw PM. All 

the particles were smaller than 100 nm for partially oxidized and aging PM. This statistical 

approach used for the primary diameter distributions was completely different from the professional 

methods, such as electrical low-pressure impactor (ELPI) and engine exhaust particle sizer (EEPS), 

scanning mobility particle sizer (SMPS) and condensation particle counter (CPC) 47-50. In this paper, 

the diameter was the geometry value, nevertheless, it was aerodynamic diameter for those tested 

using professional instruments 13, 51, 52. 

Raw PM Partially oxidized PM Aging PM

Figure 5 Nanostructure of different PM samples
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Figure 6 Primary particle size of diesel PM

In the high resolution TEM figures, primary particles showed the onion like and core-shell like 

structures, which were greatly dependent on the in-cylinder combustions 26, 41, 53. After partial 

oxidation, nanostructure was transformed from onion like structures to core-shell like structures 

with void cores and smaller diameters. Surface oxidation happened firstly due to large amounts of 

active sites on the surfaces, and their easier access to oxygen. Meanwhile, surface oxidation activity 

decreased gradually because of the drop of active sites. Then, oxidation was transferred from the 

surfaces into inner cores whose oxidation activity was still high. The inner cores contained 

oxygen-containing OC which provided active sites. This led to the activation energy drop ~530 °C 

for partially oxidized and aging PM, as mentioned above, this stage was named as transformation 

stage. Oxidation transferring from the outer surfaces into inner cores aggravated the chemical 

reactions with much more heat release in a short time, which was speculated as the origin of heat 

transfer limitation for raw PM in this paper. If under the conditions of huge sample mass, this 

caused PM oxidation to be out of control in a short time, further, the mass loss rate increased. 

Conclusions from the above, the transformation stage lasted only a short time in normal oxidation, 

and it presented the potentials of evolving into the reactions with heat transfer limitation. The 
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oxidation model was shown in Figure 7.

O2

C

Heat

Figure 7 PM model in the oxidation process

Oxidation behaviors, especially for the ignition temperature 27, presented closely related to organic 

compounds. Figure 8 shows the FTIR spectra which detected the functional groups contained in 

diesel PM. Due to non-vacuum of the FTIR device, two absorption peaks were observed at ~3300 

cm-1 and ~2349 cm-1, which were caused by H2O and CO2 in the air, respectively. The OC content 

of raw PM was the highest among the three PM samples, which was agreed with the results in 

Figure 1. No obvious absorption peak was observed in FTIR spectra for partially oxidized PM, 

which indicated that OC content almost dropped to zero. After long time aging in air, some OC was 

adhered to PM surface, which caused ignition temperature drop and low apparent activation energy. 

In addition, the adhered OC were dominated by low volatile OC, which was demonstrated in Figure 

1(b), where the mass loss was almost zero before 400 °C for aging PM. Although functional groups 

could be detected using FTIR spectra, Gas Chromatography-Mass Spectrometry (GC-MS) 54 device 

was needed to specific OC in future works, further to analyze the adsorption characteristics by PM.
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Figure 8 FTIR spectra of different PM samples

Figure 9 shows the Raman spectra of three PM samples. The information of molecular rotation and 

vibration can be obtained from Raman signals. Raman signals indicated the information of soot 

disorder and soot graphitization conditions 40, 55, 56, which were corresponding to the Raman shifts at 

~1380 cm-1 and ~1590 cm-1, respectively. As shown in the figure, the intensity ratio of G peak to D 

peak was higher for partially oxidized PM than raw PM and aging PM. Oxidation at high 

temperature led to higher intensity of G peak, which was caused by the stretching mode of E2g 

symmetry at sp2 sites 57. D peak intensity of partially oxidized PM was partly recovered after aging 

in air, which resulted from the OC adsorption.
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Figure 9 Raman spectra of different PM samples

5. Conclusion

A deep analysis of oxidation behaviors and kinetics was conducted based on three different kinds of 

PM samples that were raw PM, partially oxidized PM and aging PM. The PM oxidation behavior 

investigation was performed in different temperature control programs. In addition, the oxidation 
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kinetics were calculated using oxidation profiles and Arrhenius equation. Further, the analysis of 

nanostructure, FTIR and Raman characteristics were carried out to clarify PM oxidation behaviors. 

The main conclusions were as the following:

(1) In multi-stage temperature control program, the oxidation profiles presented evident multi-stage 

reaction process. The isothermal stage of 200 °C had a limited influence on the following process, 

however, the it was greatly affected by 450 °C and 550 °C isothermal stages. During the isothermal 

stages of 450 °C and 550 °C, the activation energy increased greatly, and isothermal stages caused 

the activation energy increase in the following process.

(2) Heat transfer limitation caused high oxidation rate, with the results of another peak in DTG 

curves at higher temperature. The activation energy was much lower than normal values due to 

much heat release when heat transfer limitation happened. Oxidation transferring from the surface 

into the inner cores caused activation energy to drop in a narrow temperature range; it was also 

considered as the origin of heat transfer limitation for raw PM.

(3) The primary diameter decreased evidently after partial oxidation at a high temperature that the 

peak of primary diameter distribution shifted to smaller diameters. The nanostructure of diesel PM 

changed from onion like structures to core-shell like structures with void cores. D peak intensity in 

Raman spectra decreased greatly after partial oxidation, and it was partly recovered after aging in 

air for a long time.
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