

This is a repository copy of Visual weight status misperceptions of men: Why overweight can look like a healthy weight.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/147671/

Version: Accepted Version

Article:

Oldham, M. and Robinson, E. (2016) Visual weight status misperceptions of men: Why overweight can look like a healthy weight. Journal of Health Psychology, 21 (8). pp. 1768-1777. ISSN 1359-1053

https://doi.org/10.1177/1359105314566257

Oldham, M. & Robinson, E., Visual weight status misperceptions of men: Why overweight can look like a healthy weight, Journal of Health Psychology (Volume 21 Issue 8) pp. 1768-1777. Copyright © 2015 The Author(s). DOI: 10.1177/1359105314566257

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 Abstract

Overweight men often underestimate their weight status. Here we examine whether underestimation occurs when visually judging the weight status of men and whether exposure to heavier body weights may be a cause of visual underestimation of male weight status. Participants systematically underestimated the weight status of overweight and obese men (Study 1) and participants reporting more frequent exposure to heavy male body weights were most likely to underestimate (Study 2). Experimental exposure to different body weights influenced underestimation of weight status (Study 3). Frequent exposure to heavier body weights may cause visual underestimation of the weight status of overweight men.

21 Introduction

22 In recent times there has been an increase in the prevalence of obesity in most of the western world (Swinburn et al., 2011). Although the negative economic and health 23 connotations of obesity are widely discussed (Mason, Moroney & Berne, 2013; Tsai, 24 25 Williamson & Glick, 2010) large proportions of overweight and obese individuals underestimate their own weight status and think they are of a healthier weight than they 26 27 actually are (Kovalchik, 2008; Kuchler & Variyam, 2003). The likelihood that an overweight or obese person underestimates their weight status is significantly higher 28 among men than in women (Kuchler & Variyam, 2003; Madrigal et al., 2000). A recent 29 meta-analysis also demonstrated that parents underestimate their overweight or obese 30 child's weight (Parry et al., 2008) and it has also been shown that clinicians may be 31 poor at visually recognising obesity in children (Smith, Gately & Rudolf, 2008). 32 33 Parental underestimation of child weight has been shown to be more pronounced for 34 male children (Jeffery et al., 2005).

35

Studies show that individuals who underestimate their own weight status may be less
motivated to control their body weight (Duncan et al., 2011; Kuchler & Variyam, 2003).
Likewise, a tendency to underestimate weight status in others may have public health
relevance, as parents (Golan, 2011) and healthcare professionals (Spurrier, Magarey &
Wong, 2006) are important agents of change in terms of motivating healthier behaviour

41	in others. Thus, it is important to understand the underlying causes of weight status
42	misperceptions. Although much research has examined weight misperceptions of one's
43	own weight status and amongst parents (Jeffery et al., 2005; Kuchler & Variyam 2003,
44	Parry et al., 2008) such underestimations may be influenced by self-serving biases
45	(Jansen et al., 2006). Moreover, we are not aware of any research that has systematically
46	studied visual weight status misperceptions. Here we examine visual perception of
47	weight status in others.
48	
49	It is possible that weight status misperceptions have been caused by the increased
50	prevalence of obesity. Burke, Heiland & Nadler (2010) compared national obesity rates
51	and self-perceptions of weight status across a ten year period from 1994 to 2004.
52	Although obesity increased in this time frame, less people identified themselves as
53	being overweight or obese in 2004 than 1994. Overweight and obese children with
54	obese parents or schoolmates have also been shown to be more likely to underestimate
55	their weight status than those with mostly thin social contacts (Ali, Amialchuk &
56	Renna, 2011; Maximova et al., 2008). Similarly, exposing participants to heavier body
57	weights increases the likelihood that participants agree an overweight man's weight
58	looks healthy (Robinson & Kirkham, 2013).
59	

60	A novel hypothesis based on these findings is that visual perceptions of what constitutes
61	a normal or healthy weight have been recalibrated as a consequence of exposure to
62	heavier body weights. Over time, increasing exposure to obesity may have caused
63	individuals to adjust their visual 'anchor' of what constitutes a normal weight (Epley &
64	Gilovich, 2006) which in turn may cause heavier body weights to appear more normal
65	and not be classed as overweight (Johnson, Cooke, Croker, & Wardle, 2008; Robinson
66	& Kirkham, 2014). Thus, a currently untested hypothesis is that recent increases in the
67	prevalence of adiposity may have resulted in people adjusting their visual perceptions of
68	what different weight statuses look like.

70 The aims of this work were to examine whether people visually underestimate the weight status of men with overweight and obesity and to test whether exposure to heavy 71 72 body weights may be a mechanism causing visual weight status misperceptions. Given 73 that weight status misperceptions seem to be particularly pronounced amongst men (Kuchler & Variyam, 2003; Madrigal et al., 2000) and a large proportion of men are 74 75 now overweight (Flegal et al., 2011), we concentrated on visual perceptions of male 76 weight in all studies. Study 1 examined whether a large, self-selected sample of UK participants were able to visually identify healthy weight, overweight and obese men. 77 Study 2 tested whether frequent exposure to heavier body weights is associated with an 78 increased likelihood to visually underestimate weight status. Study 3 built on these 79

80	findings and examined whether experimentally exposing participants to different body
81	weights impacts on weight status misperceptions. We hypothesised that participants
82	would underestimate the weight status of overweight and obese males and that this
83	tendency to underestimate may be explained by exposure to heavier body weights
84	adjusting visual perception.
85	
86	
87	STUDY ONE
88	Method
89	Participants
90	A total of 1660 participants registered interest in an online study by accessing a study
91	website. Of these participants, 660 were excluded from final analyses for registering
92	initial interest but then not completing the study (531) or for using a mobile phone to
93	complete the study (129), as participants were advised not to complete the study on a
94	mobile phone in order to keep image sizes constant. Participants were recruited via
95	social media and through online bulletins and announcements made to staff at a large
96	UK university. The advertisements stated participants were being invited to take part in
97	a short study which would examine their ability to accurately recognise and categorise
98	different weight statuses. In order to recruit a large and representative sample, no
99	eligibility criteria were set in terms of age. The final sample of 1000 participants' age

100	ranged from 18 to 75 years (M = 34.95 SD = 12.50). The samples (698 women and 302
101	men) mean body mass index (BMI) fell inside the overweight range (25.57, $SD = 7.96$,
102	calculated from self-reported weight/height2). The majority of participants were
103	Caucasian (83%). The study was approved by the authors' institutional ethics board (as
104	were Studies 2 and 3).
105	
106	Stimuli
107	The stimuli consisted of 15 photographs of Caucasian men aged 18-30 with varying
108	BMI's [BMI was calculated from measured weight (kg)/height ² (m)]. There were five
109	healthy weight (M BMI = 21.24, Range 19.38 - 22.40), five overweight (M = 27.23,
110	Range = $25.65 - 28.25$) and five obese (M = 31.60 , Range = $30.49 - 34.32$) men. The
111	age range of photographed men was 18-30 to ensure a similar age range across the three
112	weight statuses. We used full length photos of men with their arms at their sides
113	wearing normal fitting short sleeved t-shirts and full length trousers. The men were
114	dressed in order to mimic the way in which people are exposed to different body
115	weights in everyday life. For each male two photographs were displayed; one stood
116	front on and one side on, both next to a standardised door frame. None of the men
117	photographed had muscular builds (according to body composition) as high muscle
118	mass can confound BMI. In order to control for facial expression, the central section of
119	each subjects face was obscured. We conducted a pilot study with 50 participants who

rated the initial stimulus set on a number of scales including age, attractiveness, height,
how muscular they appeared and tightness of clothing in order to select healthy weight,
overweight and obese photograph sets matched for these variables. See Figure 1 for an
example image.

- **Figure 1.** Sample photograph from overweight range (BMI = 27)
- 136
- 137 Procedure
- 138 After providing consent, participants completed demographic information (gender, age,
- 139 weight and height). They were then told they would view five photographs and be asked

140	to make judgements about each one. Next participants were provided with World Health
141	Organisation (WHO) BMI guidelines for underweight (< 18.5), healthy weight (18.5-
142	24.9) overweight (25.0-29.9) and obese (\geq 30) weight statuses. Each participant was
143	then randomly assigned (using an online pseudorandom number generator) to view five
144	of the fifteen photographs consecutively on individual pages All but one participant saw
145	males from at least two of the three different weight categories. Participants were asked
146	to indicate the weight category they thought each male fell into and were also asked on
147	a five-point Likert type scale (strongly agree to strongly disagree) whether or not they
148	thought each male should 'consider losing weight'. Participants were then given
149	feedback on how accurate they were and debriefed.
150	

151 Analysis

Accuracy rates were determined for each photograph by calculating how many people correctly identified the weight status of the photographed male. Accuracy rates were then aggregated across the five photographs of each weight status resulting in overall accuracy scores for the healthy weight, overweight and obese photos. We examined overall accuracy in order to determine whether participants were performing at an above chance level using a 2x1 chi square (chance level = 25% accuracy). Chi squares were also used to determine whether accuracy rates differed according to the weight status of the photographed male and whether weight status misperceptions tended to be caused

160 by under- or overestimation.

161

- 162 **Results**
- 163 Accuracy of Weight Status Judgements
- 164 Across all photographs participants accurately categorised men as being the correct
- weight status 42.5% of the time, which is significantly higher than chance $[X^2(1, N =$

166 5000) = 816.67, p < .001]. We then tested whether accuracy was affected by

167 photograph weight status using a 2 X 3 Chi Square (*accuracy:* correct or incorrect and

168 *weight status of photographs*: healthy weight, overweight or obese). Participants were

significantly less accurate when the photos were obese (13%) or overweight (38%), as

170 opposed to when they were a healthy weight (76%), $[X^2(2, N = 5000) = 1368.46, p < 1000]$

171 .001]. See Table 1. Thus, participants miscategorised weight status and this was

172 particularly pronounced when judging the weight status of the overweight and obese.

173 We also tested whether participant characteristics were associated with greater visual

174 categorisation accuracy and found that participant weight status (*accuracy:* correct or

175 incorrect and weight status of participant: underweight, healthy weight, overweight or

obese) $[X^2(3, N = 4805) = .678, p = .878]$ and gender (*accuracy:* correct or incorrect and

177 gender of participant: male or female) $[X^2(1, N = 5000) = 1.59, p = .207]$ did not

significantly affect overall accuracy, indicating that the ability to visually recognise

179	weight status was similar regardless of participant weight or gender. A total of 39
180	participants failed to provide information about their height or weight and so were
181	excluded from analyses which examined the impact of participant body weight on
182	visual perceptions.
183	

- 184 **Table 1**
- 185 Number of accurate and inaccurate weight status categorisations according to the weight
- 186 status of the male model being judged for Study 1

	Ν	Accurate	Inaccurate
		Responses (%)	Responses (%)
Healthy Weight	1687	1280 (75.9)	407 (24.1)
Overweight	1646	625 (38.0)	1021 (62.0)
Obese	1667	220 (13.2)	1447 (86.8)

188 Underestimating weight status

- 189 We examined whether trials in which participants failed to correctly identify weight
- 190 status were more likely to be due to under- or over estimation of weight status.
- 191 Responses from the obese photos were excluded from this analysis as the highest weight
- 192 category participants could select was obese. If there was no tendency to under or
- 193 overestimate weight status, then underestimation and overestimation would occur 50%

194	of the time for incorrect trials. Participants were more likely to underestimate than
195	overestimate weight status [$X^2(1, N = 1428) = 1345.24, p < .001$]; 98.5% of the time
196	participants were wrong it was due to them underestimating weight status, whilst
197	overestimation only occurred 1.5% of the time. A 2 x 2 Chi Square (cause of error:
198	underestimation or overestimation and weight status of photographs: healthy weight or
199	overweight) indicated that this systematic tendency to underestimate increased with
200	weight status, $[X^2(1, N = 1428) = 28.77, p < .001]$, whereby underestimation was more
201	pronounced for overweight men than healthy weight men. See Table 2.
202	
203	Table 2
204	Number of over- and underestimations of weight status according to the weight status of

- 205 male being judged for Study 1
- 206 _

	Ν	Overestimate (%)	Underestimate (%)
Healthy Weight	407	17 (4.2)	390 (95.8)
Overweight	1021	4 (0.4)	1017 (99.6)

208 Conclusions

209	Participants were poor at	visually identifying the	weight status of men.	This was due to
-----	---------------------------	--------------------------	-----------------------	-----------------

a systematic tendency to underestimate weight status and this increased with the size of

211	the individual being judged, resulting in participants judging overweight and obese men
212	as being of healthier weight statuses than they actually were. Study 2 was designed to
213	test whether this tendency to underestimate weight status may be explained by exposure
214	to heavier body weights. If exposure to heavier body weights is partially responsible for
215	visual underestimation of weight status, then individuals with heavier male peers should
216	be particularly likely to underestimate the weight status of other men.
217	
218	STUDY TWO
219	Method
220	Participants
221	A total of 100 undergraduate students from a UK university completed a short paper-
222	based questionnaire in exchange for course credit; 10 participants were excluded from
223	analyses as they provided incomplete questionnaire responses. Participant age ranged
224	from 18 to 45 years (M age = 20.19 years, SD = 3.76). The samples' (80 women and 10
225	men) mean BMI was in the healthy weight range [21.85, $SD = 4.15$, calculated from
226	self-reported weight (kg)/height2 (m)]. We powered the study to detect a medium-sized
227	correlation between our variables of interest at 80 per cent power (using G*Power
228	software). We recruited slightly above this number to account for any participants
229	providing incomplete data.
230	

231 *Procedure*

232 After providing demographic information participants were shown a photograph of an 233 overweight male (BMI = 26.96) and were asked to indicate on a 10cm Visual Analogue 234 Scale (anchors: far lighter-far heavier) how the male's weight compared to other young 235 men they spent time with (size of peers) and how the males weight compared to other 236 young men in general (size of non-specific others). Both of these measures were self-237 devised for this study. We measured both frequency of exposure to heavier body 238 weights (size of peers) and perceptions of men in general, so we could control for the 239 latter in analysis. In order to distract from the aims of the study participants also 240 completed some short questionnaire measures about attitudes to overweight and obese 241 individuals. Participants were then given the same BMI information as in Study 1 and 242 were asked to categorise the weight status and estimate the BMI of five overweight and 243 five obese photographed men (see Study 1). The photographs were shown on separate 244 pages. The order in which they were presented was randomly assigned and the same for 245 each participant. We only included overweight and obese men, as it were these weight 246 statuses which participants were most likely to underestimate in Study 1.

247

248 Analysis

- 249 To construct a sensitive measure of degree of underestimation, BMI estimates were
- 250 converted into relative error scores by calculating how much participant BMI estimates

251	differed from the actual BMI of the male in each photograph. These were then averaged
252	to provide an average error score for all ten photographs, which reflected a participant's
253	tendency to underestimate or overestimate weight. A negative score indicated
254	underestimation, a positive score indicated overestimation and zero indicated perfect
255	accuracy. Forced entry regression analysis was planned to examine whether size of
256	peers (independent predictor variable) predicted BMI error scores (dependent variable),
257	while accounting for size of non-specific others (other independent variable) in the same
258	model. ¹
259	
260	Results
261	Participants were poor at identifying weight status. On average, participants
262	underestimated weight status for 8.46 (SD = 1.84) of the ten photographs, with an
263	average underestimation of -4.98 BMI points (SD = 1.77). There was variability in
264	responses to the size of peers measure (range = $2.60-9.60$ on the 10-cm scale, M = 5.28 ,
265	SD = 1.07) and in the size of nonspecific others measure (range = 2.50-6.90, M = 4.75,
266	SD = .88). The overall regression model was significant $F(2, 87) = 4.57$, p = .013, R ²
267	adjusted = .074). Size of peers was significantly related to overall BMI error [$t = -2.92$,
268	$p = .004$, $\beta = .303$). For each 1 SD increase in size of peers, total error scores increased
269	by303 (95% confidence interval (CI) = .161 and .844], indicating that having larger

not associated with BMI estimation error (t = .23, p = .820, $\beta = .024$). There was no evidence of multi-collinearity being high in the model (both variance inflation factors <273 <1.5).

274

275 We also examined whether participant characteristics were associated with BMI 276 estimation error. Gender [t (88) =.166, p=.869] and participant BMI [r (89)=.022, 277 p=.836] were not associated with overall error, but age was [r (89)=.245, p=.021]. Given that age was associated with BMI estimation error, we examined whether including age 278 279 in the aforementioned regression model impacted on the relationship between size of 280 peers and BMI estimation error. Controlling for age in the regression model did not 281 affect the significant relationship between size of peers and BMI estimation error 282 $(t=3.192, p=.002, \beta=.320).$ 283 Conclusions 284 285 Whether a participant had heavier male peers was associated with an increased visual underestimation of weight status of overweight and obese men, although the percentage 286

of explained variance was relatively small (7.4%). We predicted this effect would occur

due to a greater visual exposure to heavier body weights. In Study 3, we tested this

289 proposition experimentally.

291	STUDY THREE
292	In study 3, participants were exposed to images of either obese or healthy weight men
293	or neutral objects (eg. sofa, clothes) and were then asked to judge the weight status of an
294	overweight man. This paradigm was adopted from Robinson and Kirkham (2013). We
295	hypothesised that if exposure to heavier body weights/obesity is responsible for visual
296	underestimation, then exposing participants to images of leaner healthy weight
297	individuals may reduce underestimation.
298	
299	
300	Method
301	Participants
302	230 US participants (92 women and 138 men) were recruited to take part in an online
303	study via Amazon Mechanical Turk. Mechanical Turk is an online platform where
304	'workers' complete online tasks for a small cash sum. Participants were told they would
305	be taking part in a 10 minute, mood and perception survey. Sample size was calculated
306	based on detecting a medium sized effect between conditions at 90% power with a p $<$
307	.05. The samples mean BMI fell inside the overweight range [27.7, $SD = 6.91$,
308	calculated from self-reported weight (kg) $/height^{2}(m)$]. There was variability in terms of
309	participant BMI (range = 16.03-65.91) with participants falling in to underweight

(1.7%), healthy weight (37.4%), overweight (30.4%) and obese (29.5%) categories.

Participant age ranged from 18-79 (Mean = 34.52, SD = 11.54).

312

313 *Procedure*

314 After providing consent, participants were randomly assigned (via the randomisation feature on Qualtrics) to one of three conditions. They either saw ten photographs of 315 316 obese men (obese exposure, 78 participants), healthy weight men (healthy weight exposure, 77 participants) or neutral objects (control, 75 participants). The same image 317 318 set was used as in Studies 1 and 2. For the first ten photographs participants were asked 319 to make a non-weight related judgement (e.g. 'This man looks approachable' or 'This 320 teapot looks cheap' for control condition). All participants were then shown an 321 overweight male (BMI = 27) and indicated whether they thought he was underweight, 322 healthy weight, overweight or obese (as in study 1). They were then asked to provide 323 their own age, ethnicity and weight and height information (in their preferred unit of 324 measurements). Participants were then asked what they thought the aims of the study 325 were and debriefed.

326

327 Analysis

A 3x2 Chi Square analysis was planned in order to compare whether exposure type
(healthy weight, obese, control images) impacted on accurate identification (accurate or

330	inaccurate) of weight status. If a main effect of condition was observed we planned
331	individual Bonferroni corrected 2x2 Chi Squares to examine differences between the
332	exposure conditions.
333	
334	Results
335	No participants guessed the true aim of the experiment (that exposure to obese vs
336	healthy weight men would impact on weight status judgements about an overweight
337	male). Conditions were balanced for age, gender and BMI (All $p > .05$). There was a
338	significant effect of exposure condition on weight status categorisation of the
339	overweight male $[X^2(2, N = 230) = 31.44, p < .001]; 79.5\%$ in the obese exposure
340	condition underestimated his weight status compared to 73.3% in the control and 40.3%
341	in the healthy weight exposure condition (See Table 3). Participants in the healthy
342	weight exposure condition were less likely to underestimate weight than those in the
343	obese exposure condition $[X^2(1, N = 155) = 26.64, p < .001]$ and control condition
344	$[X^2(1, N = 152) = 16.92, p < .001]$. The obese exposure and control conditions did not
345	differ $[X^2(1, N = 153) = 1.20, p = .822]$. Participant weight status $[X^2(3, N = 227) =$
346	3.195 p = .362) and gender $[X^2(1, N = 230) = .013, p = .910]$ had no effect on accuracy.
347	

348 **Table 3**

349 Number of accurate and inaccurate weight status categorisations according to the

	Condition	N	Accurate	Inaccurate			
			Responses (%)	Responses (%)			
	Healthy Weight	77	46 (59.7)	31 (40.3)			
	Obese	78	15 (19.2)	63 (80.8)			
	Control	75	20 (26.7)	55 (73.3)			
351							
352							
353							
354							
355							
356	Conclusions						
357	Exposing participants to healthy weight men reduced the likelihood that participants						
358	underestimated the weight status of an overweight male, in comparison to when						
359	participants were exposed to obese men or neutral objects. Exposure to leaner men may						
360	have altered visual perceptions of what a 'normal' male body weight looks like (i.e.						
361	slimmer) which in turn reduced underestimation of male weight.						
362							
363		GENERAL I	DISCUSSION				

condition for Study 3

364 The present studies examined whether individuals are able to visually identify 365 overweight and obesity in men and whether exposure to heavier body weights may explain visual weight status misperceptions. In Study 1, we found that people were poor 366 at accurately recognising the weight status of men. This inaccuracy was characterised 367 368 by a systematic tendency to underestimate weight status, which resulted in overweight and obese men being perceived as being of healthier weight statuses than they actually 369 370 were. In Study 2 we found that participants with heavier male friends were more likely to underestimate the weight status of overweight and obese men, suggesting that more 371 frequent exposure to heavier body weights may cause visual underestimation of weight 372 status. This hypothesis was then tested experimentally in Study 3 and we found that 373 374 exposing participants to images of healthy weight or obese men impacted on their ability to accurately categorise weight status. 375

376 The present findings indicate that exposure to obesity may result in visual weight 377 misperceptions, whereby overweight and obese individuals appear as being a healthier weight status than they are. One possible explanation of these findings is that exposure 378 379 to heavier body weights adjusts or produces an upwards shift to visual perceptions of what a 'normal' body weight looks like (Robinson and Kirkham, 2013). Thus, when we 380 381 are frequently exposed to obesity, overweight and obese individuals may subsequently fall into what we perceive as being the 'normal' body weight range and are not 382 perceived as being overweight. The finding that participants in Study 1 systematically 383

underestimated weight status supports this. Study 3 also provides support for this
interpretation; underestimation of weight status was reduced by exposing participants to
healthy weight men, which may have produced a downward shift to visual perceptions
of what a normal male body size looks like.

388

389 Although much research has examined personal underestimation of weight status 390 (Kovalchik, 2008; Kuchler & Variyam, 2003), less research has examined perceptions 391 of other peoples' weight status (although see Vartanian et al. (2004)). As weight 392 misperceptions about one's own weight (and one's child) could be motivated by self-393 serving bias (Jansen et al., 2006), the present work makes a novel contribution by 394 studying visual weight status misperception in others. Our findings suggest that a 395 significant proportion of the population may not know what male overweight and obese 396 body weights now look like. The findings of the present work also have similarities to 397 research on personal weight misperceptions. For example, in Study 1 underestimation 398 was particularly likely when judging overweight and obese individuals and personal 399 weight status misperceptions occur most commonly in the overweight and obese (Kovalchik, 2008; Kuchler & Variyam, 2003). Similarly, Studies 2 and 3 suggested a 400 401 social exposure component to visual weight status underestimations and some 402 epidemiological research has hinted this may be important in explaining personal 403 weight status misperceptions (Ali et al., 2011; Burke et al., 2010; Maximova et al.,

404 2008). Further work directly examining whether distorted visual perception of body

- 405 weight underlies personal weight status misperceptions would now be of interest.
- 406

407	Turning to the findings of Study 3, participants exposed to obese men did not differ to a
408	control condition in terms of their later weight categorisation accuracy. This may be
409	because participants (from the US) were already used to seeing heavier body weights in
410	everyday life, so further exposure had little effect. However, exposure to healthy weight
411	men did reduce weight status underestimation. This may imply that repeated exposure
412	to information about what different weight statuses look like may reduce
413	underestimation of weight status. Given that the identification of adiposity is critical to
414	intervention (Kuchler & Variyam, 2003; Duncan et al., 2011) these findings could have
415	applied relevance.
416	Strengths and Future Work
417	Strengths of the present research were that we used different methods across three
418	studies, with both observational and experimental data supporting our hypotheses. Due
419	to the aims of the present studies we focused on male visual weight status judgments.
420	How these findings relate to female weight status perceptions now warrants
421	investigation, as there may be different social standards regarding weight status for men
422	and women (Miller & Lundgren, 2011). One other limitation of the current research was
423	the use of photographs throughout all studies. We used front and side on pictures but

424	future research could aim to replicate these findings using video footage as opposed to
425	static images. Replicating the present studies in more diverse populations would be
426	informative and enable us to understand whether the general public know what 'healthy'
427	and 'unhealthy' weight statuses look like and if correcting visual misperceptions could
428	help improve the identification of, and intervention efforts against, obesity.
429	
430	Conclusions
431	The findings of the present studies suggest that individuals are poor at visually
432	identifying overweight and obesity in men and systematically underestimate weight
433	status. A causal mechanism explaining this effect may be exposure to obesity adjusting
434	visual perceptions of body weight.
435	
436	Notes
437	¹ We also examined whether the same pattern of results was observed when using
438	number of times participants underestimated weight status as the main outcome
439	variable, as well as analyses for underestimation of BMI in overweight and obese
440	photographs separately. Regardless of the analysis method used, size of peers
441	significantly predicted underestimation.
442	

443 Declaration of Conflicting Interests

444	The authors declared that they had no conflicts of interest with respect to their
445	authorship or the publication of this article.
446	
447	Funding
448	This research received no external funding.
449	
450	Acknowledgements
451	The authors would like to thank Weight Concern for help in advertising Study 1X and X
452	conceived and carried out the experiments and analysed data. Both authors were
453	involved in writing the paper and had final approval of the submitted and published
454	versions.
455	
456	Supplementary Material
457	Data sets for all three studies are available on request. Please contact the corresponding
458	author.
459	
460	
461	
462	
463	

464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	References
477	
478	Ali MM, Amialchuk A and Renna F (2011) Social network and weight misperception
479	among adolescents. Southern Economic Journal 77(4): 827-842.
480	
481	Burke MA, Heiland FW and Nadler CM (2010) From overweight to about right:
482	evidence of a generational shift in body weight norms. <i>Obesity 18</i> (6): 1226-1234.

484	Duncan DT, Wolin KY, Scharoun-Lee M, Ding EL, Warner ET and Bennett GG (2011)
485	Does perception equal reality? Weight misperception in relation to weight-related
486	attitudes and behaviours among overweight and obese US adults. International Journal
487	of Behavioural Nutrition and Physical Activity 8(20).
488	
489 490	Epley N and Gilovich T (2006) The anchoring-and-adjustment heuristic; Why the adjustments are insufficient. <i>Psychological Science</i> 17(4): 311-318.
491	
492	Flegal KM, Carroll MD, Kit BB and Ogden CL (2012) Prevalence of Obesity and
493	Trends in the Distribution of Body Mass Index Among US Adults, 1999-2010. Journal
494	of the American Medical Association 307(5): 491-497.
495	
496	Golan M (2011) Parents as agents of change in childhood obesity- from research to
497	practice. <i>Pediatric Obesity 1</i> (2): 66-76.
498	
499	Jansen A, Smeets T, Martijn C and Nederkoorn C (2006) I see what you see: The lack
500	of a self-serving body-image bias in eating disorders. British Journal of Clinical
501	<i>Psychology</i> 45(1): 123-135.
502	

503	Jeffery AN, Voss LD, Metcalf BS, Alba S and Wilkin TJ (2005) Overweight families –
504	unaware and unconcerned: cross-sectional study within a cohort (earlybird 21). British
505	Medical Journal 330: 23-24.
506	
507	Kovalchik S (2008) Validity of adult lifetime self-reported body weight. Public Health
508	Nutrition 12(8): 1072-1077.
509	
510	Kuchler F and Variyam JN (2003) Mistakes were made: misperception as a barrier to
511	reducing overweight. International Journal of Obesity 27: 856-861.
512	
513	Madrigal H, Sanchez-Villegas A, Martinez-Gonzalez MA, Kearney J, Gibney MJ, De
514	Irala J et al. (2000) Underestimation of body mass index through perceived body image
515	as compared to self-reported body mass index in the European Union. Public Health
516	114(6): 468–473.
517	Mason RJ, Moroney JR and Berne TV (2013) The Cost of Obesity for Nonbariatric
518	Inpatient Operative Procedures in the United States: National Cost Estimates Obese
519	versus Nonobese Patients. Annals of Surgery 258(4): 541-533.
520	

521	Maximova K, McGrath JJ, Barnett T, Loughlin J, Paradis G and Lambert M (2008) Do
522	you see what I see? Weight status misperception and exposure to obesity among
523	children and adolescents. International Journal of Obesity 32: 1008-1015.
524	
525	Miller BJ and Lundgren JD (2010) An experimental study of the role of weight bias in
526	candidate evaluation. Obesity 18(4): 712-718.
527	
528	Parry LL, Netuveli G, Parry J and Saxena S (2008) A Systematic Review of Parental
529	Perception of Overweight Status in Children. Journal of Ambulatory Care Management
530	31(3): 253–268.
531	
532	Robinson E and Kirkham TC (2013) Exposure to obesity changes perceptions of what a
533	healthy weight looks like. International Journal of Obesity 38: 663-667.
534	
535	Smith SM, Gately P and Rudolf M (2008) Can we recognise obesity clinically?
536	Archives of Diseases in Children 93: 1065-1066.
537	
538	Spurrier NJ, Magarey A and Wong C (2006) Recognition and management of childhood
539	overweight and obesity by clinicians. Journal of Paediatrics and Child Health 42(7-8):
540	411-418.

542	Swinburn BA.	Sacks G.	Hall KD.	McPherson K.	Finegood DT.	Moodie ML et al.
0.12	D WIND GIN DI N	Ducino O,	IIMII ILD,	THE HEIDON IN,	I mogood D I	nioodie nill et di

- 543 (2011) The global obesity pandemic: shaped by global drivers and local environments.
- *The Lancet 378*(9793): 804-814.

546	Tsai AG,	Williamson DI	F and Glick	HA (2010)	Direct medical	cost of c	overweight and
-----	----------	---------------	-------------	-----------	----------------	-----------	----------------

547 obesity in the USA: a quantitative systematic review *Obesity Reviews 12*(1): 20-61.

- 549 Vartanian LR, Herman CP and Polivy J (2004) Accuracy in the estimation of body
- 550 weight: An alternate test of the motivated-distortion hypothesis. *International Journal*
- *of Eating Disorders 36:* 69-75.