

This is a repository copy of *The use of polymeric meshes for Pelvic Organ Prolapse: current concepts, challenges and future perspectives*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/147644/

Version: Accepted Version

Article:

Mancuso, E orcid.org/0000-0003-1742-1656, Downey, C orcid.org/0000-0001-9818-8002, Doxford-Hook, E et al. (2 more authors) (2020) The use of polymeric meshes for Pelvic Organ Prolapse: current concepts, challenges and future perspectives. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 108 (3). pp. 771-789. ISSN 1552-4973

https://doi.org/10.1002/jbm.b.34432

© 2019 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Mancuso, E, Downey, C, Doxford-Hook, E et al. (2019) The use of polymeric meshes for Pelvic Organ Prolapse: current concepts, challenges and future perspectives. Journal of Biomedical Materials Research - Part B Applied Biomaterials. ISSN 1552-4973, which has been published in final form at https://doi.org/10.1002/jbm.b.34432. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

STAGE	CONDITION
0	no prolapse
I	distal prolapse >1 cm proximal to the hymen
II	distal prolapse within 1 cm of the hymen, either proximal or distal
III	distal prolapse >1 cm below the hymen without complete eversion
IV	complete vaginal eversion

Table 1: Stages of POP–Q system measurement (adapted from [13])

 Table 2: Traditional (non-mesh) surgical options for POP [145,146]

Prolapse	Short précis of the operation	Advantages	Disadvantages
operation			
Posterior	Midline plication of rectovaginal	80-90% success	Constipation, dyspareunia, 30% chance of
Colporrhaphy	fascia and perineal body		needing further surgery
	reconstruction		
Anterior	Midline plication of pubocervical	70—90% Success	Urinary Tract Infection, Bladder injury,
Colporrhaphy	fascia		30% chance of needing further surgery
Hysterectomy	Removal of the uterus (tubes,	Approximately 80% success rate	Depending on route of hysterectomy:
	cervix and ovaries if a 'total'		Infection, haemorrhage, visceral injury,
	hysterectomy). Approached		voiding changes
	laparoscopically, transabdominally		
	or vaginally.		

McCall	Involves the uterosacral and	76% success rate	Increase surgery time, bowel and ureteric
culdoplasty	cardinal ligaments into the repair		damage
	of the vaginal vault after removal		
	of uterus at hysterectomy.		
Sacrospinous	Using a suture to secure vaginal	80-90% success, can be done as part	Buttock pain
Fixation	vault to sacrospinous ligament	of vaginal hysterectomy	
Moschcowitz	Attempts to prevent posterior	Less successful than McCall	Increase in surgery time, bowel injury
procedure	prolapses by obliterating posterior	Culdoplasty	
	cul-de-sac at hysterectomy.		
Colpocleisis	Complete vaginal closure to	90-95% success	Haematoma, regret
	support apical structures		

Tissue	State	Elastic modulus	Ultimate tensile	Ultimate
Tissue	State	[MPa]	Ultimate tensile strength [MPa] 0.79 ± 0.05 0.42 ± 0.03 0.60 ± 0.02 027 ± 0.03	strain
Healthy vaginal tissue	Pre-menopause	6.65 ± 1.48	0.79 ± 0.05	0.68
, , , , , , , , , , , , , , , , , , , ,	Post-menopause	ost-menopause 10.26 ± 1.10	0.42 ± 0.03	0.37
Prolapsed vaginal tissue	Pre-menopause	9.45 ± 0.70	0.60 ± 0.02	0.50
	Post-menopause	12.10 ± 1.10	027 ± 0.03	0.14

Table 3: Mechanical properties of the vaginal tissue derived from uniaxial tensile tests (adapted from [147])

Product Name	Material	Key properties	Mesh weight	Pore size	Mesh Design	Advantages	Disadvantages
& Manufacturer	Component		(g/m²)				
Artisyn	poliglecaprone-	Y-Shaped, partially	28 (post-	2.4 x 1.6 mm	Automation (11)111111	Easy to handle,	Most of the
181	25	absorbable mesh	absorption)			resists wrinkling	mesh remains in
	monofilament	with blue and				and folding,	situ, retaining
	fiber and non-	natural stripes				partially absorbed	risks of
	absorbable PP					to reduce risk of	retraction,
	monofilament					complications	extrusion and
	fiber						infection
Gynecare	Monofilament	Rectangular, non-	100	2.47 x 1.68 mm		Very strong,	Associated with
Gynemesh	РР	absorbable				material known to	retraction and
181		knitted mesh with				surgeons, easy to	extrusion, early
		blue and natural				cut to custom	associations
		stripes				shape, most	

Table 4: Types and properties of commercially available synthetic POP Meshes [73,148–154]

						published evidence	with
						including	dyspareunia
						retrospective and	
						prospective studies	
Upsylon™ Y-	Monofilament	Y-shaped, blue	25	1.7 mm ²	_	Small surface area	No prospective
Mesh	PP	non-absorbable			K	to minimise	or retrospective
Boston		knitted mesh with				contact with	evaluations to
Scientific		a natural centre				vaginal tissue	date
		stripe					
Uphold	Monofilament	Non-absorbable	25	2.8 mm ²		Small surface area	Requires
Boston	РР	blue mesh with			Comments of the second	to minimise	specific sutures
Scientific		natural center				contact with	and suturing
		Stripe				vaginal tissue	device to fixate

Restorelle	Monofilament	Rectangular, non-	20	1.80 x 1.83 mm	Customisable and	Evidence limited
Colopolast	РР	absorbable			shaped meshes	to animals,
		knitted mesh			available, low	prospective trial
					extrusion rates	in progress
VitaMESH™	Monofilament	Rectangular, non-	52	2.4 mm ²	 Some positive	Evidence limited
ProxyBiomedica	РР	absorbable mesh			evidence in hernia	to animals
I					repair	
Dvnamesh – PR	Monofilament	Rectangular non-	n/a	n/a	Atraumatic limited	Non-
6			ny a	., «		
soft FEG	PVDF	absorbable			tissue reaction	customisable,
Textiltechnik		knitted PVDF				limited evidence
mbH						

Table 5: A summary of mesh-related complications and their incidence

[35,102,104,105,155]

Complication	Symptoms	Incidence in the literature
Mesh erosion	Dependent on organ involved. Typically	3-40% depending on
	vaginal bleeding/discharge, dyspareunia,	technique
	pain, bladder symptoms	
Mesh infection	Pain, dyspareunia, vaginal	0-8%
	bleeding/discharge, fistula, abscess,	
	sepsis	
Mesh	Pain, dyspareunia, defecatory and/or	0-100%
retraction	urinary dysfunction	
Other	Foreign body reactions, fibrosis, chronic	Variable
	pain, recurrent UTIs	

Table 6: Nanofiber based surgical mesh materials and properties

Electrospun	Fiber diameter	Tensile strength	Key findings	Reference
material		(MPa)		
PLA	2.3±0.2 μm	3.5 ±0.4	Using an in vivo model and after 90 days of implantation into	
			rabbit abdominal wall, PLA and PU meshes integrated better than	
			commercial available meshes (PP and PVDF), with no sign of	[115]
PU	1.0 ±0.1 μm	1.9 ±0.2	inflammation. Also, PLA mesh showed a much greater degree of	[113]
			cell infiltration, neovascularization along with better mechanical	
			properties in comparison to PU mesh.	
			Following human clinical trial, PLCL/Fibrinogen mesh showed a	
PLCL/Fibrinogen	306 ± 91 nm		better effect on improving patient anterior vaginal prolapse than	[127,156]
			PP mesh.	

			Small fibers result in better mechanical behaviour (more ductility	
PLGA/PCL	1.0 ± 0.05 μm	3.6 ±0.02	and less stiffness) than the 8- μ m meshes. Although the small pore	[157]
	8.0 ± 0.2 μm		dimensions' compromises cell adhesion.	
PLA random		1.2 ± 0.1	A broad spectrum of mechanical properties can be achieved	
PLA hybrid		3.6 ± 0.2	according to the fiber alignment. All the scaffolds showed prompt	
PLA mainly aligned		4.8 ± 0.3	cell infiltration, neovascularisation and collagen formation. PLA	[46]
			mainly aligned scaffolds exhibited the highest values for total	
PLA aligned		22.2 ± 1.1	collagen production.	
Nylon	117 ± 7.81 nm	15.4 ± 3.3	All electrospun matrices showed mechanical properties close to	
PCL/Gelatin	204 ± 37.5 nm	12.4 ± 1.6	the soft pelvic tissues. Both healthy and POP-derived cells	[128]
	004 ±115 pm	25+00	showed good adhesion and proliferation onto all the meshes	[120]
PLGA/PCL	994 ±115 mm	3.5 ± 0.9	along with the production of new matrix over time.	
PLA		0.7 ± 0.05	Adhesion, proliferation and metabolic activity of adipose-derived	
			stem cells was positive on both fiber-based scaffolds. The level of	[122]
PLGT		0.8 ± 0.04	collagen type I and III was higher on PLGT scaffolds than on PLA.	

Even though the Young's modulus of PLTG was lower than that of

PLA.

PLA	1.06 ±0.72 μm	0.6 ± 0.04	Scaffolds containing both the derivatives showed better	
PLA/L-ascorbic	0.99 ±0.60 μm	1.4 ± 0.8	mechanical properties in comparison to bare PLA scaffolds.	
acid			Fibroblast grown on the ascorbic acid releasing scaffolds	[139]
PLA/ascorbate-2- phosphate	1.04 ±0.56 μm	1.6 ± 1.1	produced more collagen respect to the control.	
PU/17-β-estradiol	0.8 ÷ 2.2 μm	5.9 ± 1.5	PU/17- β -estradiol scaffolds exhibited better integration in comparison to both PU alone and PP commercial available meshes. The presence of 17- β -estradiol increased the proangiogenic potential of human adipose mesenchymal stem cells.	[140]
PCL/PEO	7.49 ± 0.45			[124]

			After 4, 8 and 24 weeks in a rat abdominal wall model, the	
			explanted samples were tested in terms of mechanical	
PCL/PEO/bFGF			performance and composition of connective tissue. Although the	
			PCL-based mesh revealed a promising approach for new tissue	
			formation, with adequate mechanical strength, the incorporation	
			of bFGF within the implant did not represent a favourable	
			solution either in the short or long term.	
PCL/PEO/bFGF			Two different fiber-based PCL meshes, hallow and solid,	
hallow fibers	7.49 ± 0.45	1.4 ± 0.5	delivering different dosage of bFGF, and CTGF together with rat	
PCL/PEO-			MSCs were investigated. After 24 weeks of implantation in a rat	
fibrinogen/bFGF			abdominal wall model, multiple complications were observed	5
solid fibers			except from the solid PCL-CTGF mesh delivering rMSC, which	[143]
PCL/PEO-	1.61 ± 0.13	1.5 ± 0.4	showed better biomechanical as well as biochemical outcomes in	
fibrinogen/CTGF			comparison to the same mesh incorporated with bFGF.	
solid fibers				