

This is a repository copy of *Expansion of CEM I and slag-blended cement mortars* exposed to combined chloride-sulphate environments.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/147641/

Version: Accepted Version

Article:

Ukpata, JO, Basheer, PAM and Black, L orcid.org/0000-0001-8531-4989 (2019) Expansion of CEM I and slag-blended cement mortars exposed to combined chloride-sulphate environments. Cement and Concrete Research, 123. 105794. ISSN 0008-8846

https://doi.org/10.1016/j.cemconres.2019.105794

© 2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 Expansion of CEM I and slag-blended cement mortars exposed to combined chloride-

- 2 sulphate environments
- 3
- 4 Joseph O. Ukpata^{1,2}, P. A. M. Basheer² and Leon Black²
- 5 ¹ Department of Civil Engineering, Cross River University of Technology, Calabar, Nigeria
- 6
- 7 ² School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- 8

9 Abstract

10 This study investigates the effects of specimen curing duration, temperature, and slag 11 composition on expansion of CEM I and composite slag-cement mortars exposed to a combined NaCl and Na₂SO₄ solution for up to 664 days. Test prisms prepared at 0.5 w/b ratio, 12 13 were wet-cured for either 7 or 28 days prior to submersion in a combined salt solution at 14 temperatures of 20 or 38°C, to simulate temperate or warm tropical climates respectively. 15 Equivalent reference specimens were stored in saturated limewater at 20°C and tested in parallel. Mortar samples were used to investigate expansion and sorptivity, while 16 17 corresponding paste specimens were prepared, cured and exposed under similar conditions 18 for chemical and microstructural investigation. Such characterisation was performed on specimens immediately prior to exposure to salt solution and after the onset of expansion. The 19 20 results show significant resistance to sulphate-induced expansion for specimens cured and 21 exposed at 38°C. For slag blends, the influence of exposure temperature was found to be 22 more pronounced than curing duration. Differences in slag composition and curing duration also played key roles on the expansion resistance of mortar specimens. Expansion was 23 24 attributed to the formation of ettringite crystals due to the reaction of aluminate phases of the 25 binders with sulphate ions, although Friedel's salt and Kuzel's salt were also formed. The 26 presence of chloride mitigated sulphate expansion of CEM I. For slag blends, it was shown 27 that sulphate expansion was significantly reduced with increasing slag contents.

- 28 Keywords: slag, cement, expansion. Chloride, sulphate
- 29

30 **1.0 Introduction**

31 Sulphate attack is a concern for concrete durability wherever concrete may come into contact with sulphate ions, potentially leading to expansion, cracking and spalling of mortars and 32 33 concretes. A number of hypotheses have been given to explain the mechanisms of expansion of cement systems due to sulphate attack [1, 2]. The most acceptable hypothesis is related to 34 35 crystallization pressure theory [3-7]. This relates expansion to pressures due to the formation of ettringite crystals from pore solutions which have been supersaturated with respect to 36 37 ettringite, following continuous ingress of sulphate ions. Such crystals growing in confined 38 pore spaces exert expansive forces on the pore walls leading to expansion. Yu et al. [5] 39 explained that the penetrated sulphate ions first react with monosulphate, buffering any 40 increase of sulphate ions in the pore solution until all transformable alumina had been used. 41 Then, the concentration of sulphate in the pore solution would increase and become 42 oversaturated, which triggers its reaction with monosulphate, leading to ettringite precipitation 43 within the hardened cement paste. According to Müllauer et al. [8], expansion and degradation 44 in mortar specimens occurred when the stresses generated (approximately 8 MPa) due to

ettringite formation in small pores (10-50 nm) had exceeded the tensile strength of the bindermatrix (3-4 MPa).

47 Further work by Yu et al. [9] differentiated sulphate-oriented degradation between CEM I and slag-blended cement mortars. It was reported that CEM I showed initial generalised slow 48 49 expansion, followed by rapid increase in expansion up to failure. For the slag blends, however, 50 expansion was not generalised due to limited penetration of sulphate solution. Hence, damage 51 was localized and occurred in stages from the surface region and increasing to greater depths, as damage in the outer region allowed further ingress of sulphate ions into deeper sections. 52 53 Slag blends are generally known to be more resistant to sulphate attack than plain CEM I due 54 to the buffering role of their more refined pore structure [10-15]. It has also been reported that the formation of both monocarboaluminate and ettringite due to the addition of limestone 55 56 reduced sulphate attack in slag blends [13]. Also, Kunther et al. [16] found that sulphate 57 expansion in mortar specimens was reduced in blends with lower Ca/Si ratios of the C-S-H, such as is observed in slag blends. This behaviour was attributed to decreased 58 59 supersaturation of the pore solution with respect to ettringite caused by leaching and decalcification of C-S-H and portlandite. Furthermore, decreased C₃A content in cement is 60 known to lessen the effects of sulphate attack [17, 18]. No significant difference in expansion 61 62 was observed due to changes in attacking sulphate concentration, although damage was 63 found to increase as sulphate concentration was increased from 3 to 30g/l [9].

64 In addition to their presence in groundwater, sulphates present in seawater are a major 65 concern for concrete durability [19]. In seawater, sulphate ions are naturally present along with other anions, typically, chlorides and the investigation of sulphate attack is thus more plausible 66 using combined solutions. The influence of chloride on sulphate attack is still controversial and 67 68 depends on many factors, including the nature of attacking sulphate ions and environmental 69 conditions. Many researchers have reported on the mitigating role of chlorides on sulphate 70 attack [19-22]. However, others have found neither positive nor negative effects of chlorides 71 when sodium is the cation [10], but an aggravating effect when magnesium is the cation [23]. 72 Also, there are indications that the mitigating effect of chloride on sulphate attack could be more significant in CEM I than slag cements [24, 25], because the alumina in slags do not 73 74 react directly with incoming sulphate ions to form ettringite but are bound in C-S-H. 75 monosulphate and hydrotalcite during the hydration of slag [1].

76 The dependence of sulphate attack on temperature and binder type has also been studied 77 [23]. However, differences in cement materials and the investigated temperature ranges in the 78 literature have left gaps and conflicting findings, necessitating further investigation. Hossack 79 and Thomas [26] studied the effect of temperatures between 1 and 23°C on Portland cement blended cements, with resistance to external sulphate attack of the blended cements 80 improving with increasing temperature. Similarly, Maes and de Belle [23] looked at CEM I, 81 82 sulphate resisting cement and a 50% cement-PC slag blend and found that chlorides did not affect magnesium sulphate damage for CEM I and sulphate resistant cement at 20°C, but that 83 84 there was increased degradation for the slag blend at 5°C. There appears to have been more 85 emphasis on the effects of low temperatures, likely due to concerns over the thaumasite form 86 of sulphate attack, where temperatures below 15°C are associated with thaumasite formation 87 [12, 23, 27-31]. Investigations into performance at higher temperatures are less common. 88 Although, it was reported that raising temperature of exposure solution from 20 to 40°C did not accelerate sulphate attack [32]. Conversely, Santhanam et al. [33] found that expansion 89 90 of PC mortars increased with increasing temperature and sulphate concentration. Given the 91 contradictory nature of the literature, the present study investigates the influence of elevated 92 temperature, curing duration and binder type or slag composition, on external sulphate attack from combined chloride-sulphate solutions. 93

94 2.0 Experimental details

95 **2.1 Materials and specimen preparations**

Two slags of different basicity ratios $(CaO + MgO)/SiO_2 = 1.28 \& 1.18)$, designated as slags 96 97 1 and 2, were each blended with CEM I 52.5 R to produce 30 wt.% slag blends. These slag 98 blends were used in this study, together with a plain CEM I 42.5 R. This approach reflects 99 industrial practice where composite cements can often be blended with a slightly finer clinker. 100 The chemical and physical properties of the cements and slag are as previously reported [34]. 101 but are presented in Tables 1 and 2 for completeness. The particle size distributions were similar for the binders. Fine aggregate used for mortar specimens was natural siliceous sand 102 103 sieved to 2.0mm maximum particle size. Mortar prisms (25x25x200mm) for expansion tests 104 were cast in steel moulds at 0.5 w/b ratio (Table 3) and cured at either 20°C or 38°C for 7 or 105 28 days. The natural water content of the fine aggregate prior to mixing was 0.81%, while the 106 water absorption was 2.26%, giving an effective w/b ratio of 0.493. The specimens were then 107 soaked for 24 hours in deionised water before immersion in a combined NaCl (30g/l) and 108 Na₂SO₄ (3g/l) solution at either 20°C or 38°C for up to 66 4 days. The concentrations of chloride 109 and sulphate were similar to those in typical seawater, and also chosen to replicate those used 110 in similar earlier studies looking at chloride [35] and sulphate [11] attack. The liquid to solid 111 ratio was approximately 4. The test solution was renewed monthly. Parallel specimens were 112 immersed in lime water for reference measurements.

113 Microstructural development and the development of the phase assemblages were followed 114 by preparing paste specimens of identical binder composition to the mortar samples. Pastes 115 were mixed by hand for 3 minutes before being poured into \emptyset 14 x 50 mm plastic vials. The lids were closed and sealed before the vials were rotated for 24 hours to prevent bleeding. 116 Samples were then placed in plastic bags, vacuum sealed and placed in water baths at either 117 118 20 or 38°C for either 7 or 28 days before demoulding and exposure to the salt solution. 119 Specimens were then taken from the centre of the paste specimens at different ages (i.e. 7, 120 28 and 180 days), to mark the periods just before exposure to the combined salt solution and 121 after the onset of significant expansion.

122

123 **Table 1: Chemical compositions of cementitious materials** (As received)

Component	Unit	CEM I 42.5R (C1)	CEM I 52.5R (C2)	Slag 1 (S1)	Slag 2 (S2)
SiO ₂	%	20.17	20.50	36.58	40.14
AI_2O_3	%	5.33	5.43	12.23	7.77
TiO ₂	%	0.29	0.29	0.83	0.30
MnO	%	0.05	0.05	0.64	0.64
Fe ₂ O ₃	%	2.65	2.51	0.48	0.78
CaO	%	63.01	63.43	38.24	37.90
MgO	%	1.45	1.51	8.55	9.51
K ₂ O	%	0.76	0.79	0.65	0.55
Na ₂ O	%	0.14	0.17	0.27	0.36
SO ₃	%	3.33	3.43	1.00	1.47
P_2O_5	%	0.12	0.14	0.06	0.02
LOI 950℃	%	2.12	1.37	1.66	0.40
Total at 950℃	%	99.42	99.62	99.88	99.43
Glass content	%	na	na	99.3	97.1

Property	Unit	CEM I 42.5R (C1)	CEM I 52.5R (C2)	Slag 1 (S1)	Slag 2 (S2)
Blaine	cm²/g	3490	7357	5995	5540
Density	g/cm ³	3.14	3.16	2.93	2.91
D10	μm	3.54	2.94	2.27	2.87
D50	μm	16.29	9.43	11.56	12.91

125 **Table 2: Physical properties of cementitious materials**

127 **Table 3:** Mix design for mortar specimens

Binder	W/B ratio	CEM I (g)		GGBS (g)			Sand
		42.5 R	52.5R	S1	S2	— (g)	(g)
C1	0.5	450	0	0	0	225	1350
C2S1	0.5	0	315	135	0	225	1350
C2S2	0.5	0	315	0	135	225	1350

128

129 2.2 X-ray diffraction

X-ray diffraction (XRD) was performed on bulk powder specimens, using a Bruker D2 phaser
diffractometer with a Cu Kα source and 1D mode Lynxeye detector, operating at 30 KV and
10 mA. Prior to XRD analysis, specimens were hydration stopped using the isopropanol
solvent replacement method. Scanning was performed from 5° to 70° 2θ, at 0.034° increment
with a scan time of 2 s and specimen rotation of 15 rpm. BRUKER XRD DIFFRAC.SUITE V3.0
software was used for phase identification in conjunction with published data in the literature.

136

137 **2.3 Chemically bound water from thermal analysis**

Thermogravimetric analysis (TGA) was performed on hydrated paste powder specimens using a Stanton Redcroft 780 series thermal analyser. Specimens were heated at temperatures of 20°C to 1000°C at a constant heating rate of 20°C/mi n, under nitrogen gas at a flow rate of 50 ml/min. The initial specimen weights were kept fairly uniform at 16±1 mg. Bound water was taken as the mass loss between 50°C and 550°C [35]. Withi n this range of temperatures, it was assumed that all water-containing phases would have been decomposed. Bound water content (W_b) was calculated according to Equation 1.

145

$$W_b = \frac{(W_{50} - W_{550})}{W_{550}} x \ 100$$

146

- 147 Where
- 148 W_b is the bound water (%);
- 149 W_{50} is the residual mass at 50°C; and
- 150 W_{550} is the residual mass at 550°C.

(1)

152 **2.4 Degrees of hydration and capillary porosity from SEM image analysis**

153 In order to follow the hydration of CEM I clinkers and slag blends, polished, resin-embedded 154 paste specimens were examined by scanning electron microscopy. Thirty backscattered electron images (BSE) were randomly obtained per specimen using a Carl Zeis EVO MA 15 155 156 scanning electron microscope (SEM) at 800x magnification at working distance of 8.0-9.0mm 157 and accelerating voltage of 20KeV. According to Scrivener et al. [36], 10-20 images were adequate for reasonable statistical accuracy, at moderate (30-40%) replacement levels. BSE 158 images for the slag-blended paste specimens were supplemented with energy dispersive x-159 ray spectroscopy (EDX) The lack of magnesium mobility during hydration was exploited to 160 161 determine the degree of slag hydration. Mg elemental maps were used to locate the original 162 location of unhydrated slag, and ImageJ software was used to overlay this over BSE maps 163 identifying slag [37]. The degree of clinker hydration at any given age was calculated according 164 to Equation 2.

165

$$\alpha_{PC} = \frac{V_{anh,PC}(t=0) - V_{anh,PC}(t)}{V_{anh,PC}(t=0)}$$
(2)
166 Where:
167 α_{PC} = degree of hydration of CEM I (PC)
168 $V_{anh,PC}(t=0)$ = volume fraction of initial anhydrous PC
169 $V_{anh,PC}(t)$ = volume fraction of unreacted PC remaining at time t (in days)

170

171 Also, the degree of slag hydration at any given time was calculated from Equation 3, in line 172 with [38].

173

174

175

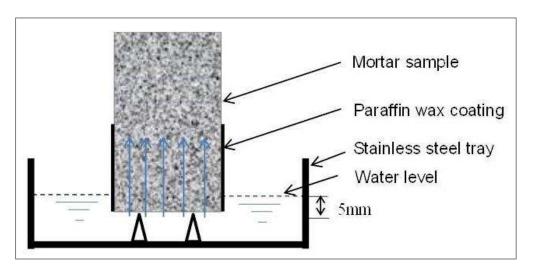
176

177

178

$$\begin{aligned} \alpha_{slag} &= \frac{v_{anh.slag}(t=0) - v_{anh.slag}(t)}{v_{anh.slag}(t=0)} \end{aligned} \tag{3} \\ \text{Where:} \\ \alpha_{slag} &= \text{degree of slag hydration} \\ V_{anh. slag}(t=0) &= \text{volume fraction of initial anhydrous slag} \\ V_{anh. slag}(t) &= \text{volume fraction of unreacted slag remaining at time t (in the total state)} \end{aligned}$$

BSE images were also analysed using ImageJ to quantify the coarse capillary porosity at 7
and 28 days. On a BSE image the pores can be identified as the darkest regions and a
threshold was implemented following the method suggested by Scrivener [39] and adopted by
many researchers [35, 40].


days).

183

184 **2.5 Mortar sorptivity**

Sorptivity was measured using 28 mm ϕ x 50 mm cylindrical mortar specimens. The schematic of the test set-up is shown in Figure 1. The mortar specimens were conditioned to constant weight in an oven at (40 ± 2) °C, according to BS EN 13057 [41] and later cooled to ambient temperature (ca. 20°C). The near bottom perimeter of each specimen was coated in paraffin
wax to allow only unidirectional uptake of water. Each specimen was then suspended on a
stainless steel wire mesh in a tray containing deionised water at ca. 20°C, such that only about
5 mm of the specimen was submerged in water.

193

Figure. 1. Schematic set-up for measuring the rate of water absorption in mortar specimens.

195

The mortar masses were measured at 1, 4, 9, 16, 25, 36, 49 and 64 minutes, similar to the procedure used by other researchers [42, 43]. The sorptivity coefficient was obtained from the slope of the plot of cumulative water absorption (g/mm²) against the square root of time (min^{0.5}), in line with Equation 4.

(4)

200

```
201 i = K\sqrt{t}
```

202

- 203 Where:
- 204 i = cumulative water absorption (g/mm²),
- t = time (minutes), and
- 206 $k = \text{sorptivity } (g/mm^2/min^{0.5}).$
- 207

208 **2.6 Expansion measurements**

Expansion of mortar prisms (25 x 25 x 200 mm) was measured regularly, in triplicate, using a length comparator test rig equipped with a digital dial gauge. Details of the exposure conditions are given in Table 4. Expansion measurements were made weekly for the first month, then after weeks: 8, 13, 15, 24, 36, 45, and 52, for the first year. Subsequently, regular monthly measurements were taken, up to a total exposure period of 664 days. Expansion was calculated in line with Equation 5. This approach is consistent with the literature for length change measurements in cement systems [40, 44].

$$\delta_l = \frac{(L_x - L_l)}{L_l} x \, 100\% \tag{5}$$

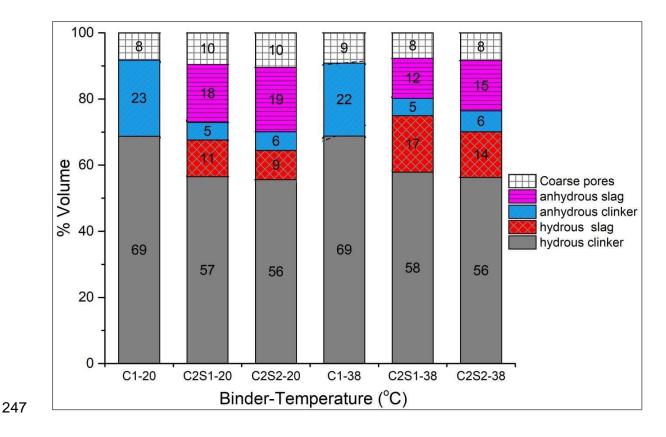
218 Where δ_L = length-change or expansion (%), L_x = measured length (mm) at a given period of

219 exposure (in weeks), L_i = initial baseline measurement for the same specimen.

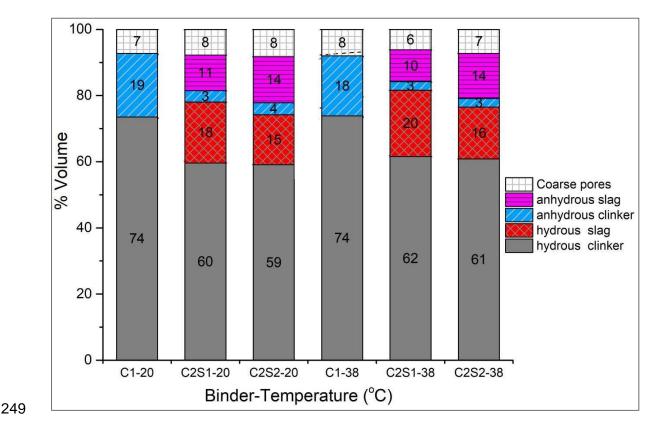
220

221 **Table 4.** Exposure conditions.

Exposure type	Initial curing	Exposure environment	Exposure temperature
X1	7 or 28 days in water	immersed in saturated lime water	20°C or 38°C
X2	7 days in water	immersed in combined chloride-sulphate solution	20°C or 38°C


222

223 **3.0 Results and discussion**


3.1 Hydration and characterisation before and after exposure to salt solution

225 The relative volumes of anhydrous and hydrated slag and clinker, together with the coarse 226 capillary porosity, are presented in Figures 2 and 3, following hydration of each binder for 7 and 28 days respectively. The volumes in Figures 2 and 3 were based on the degrees of 227 228 hydration (Table 5) and coarse porosities (Table 6) derived from scanning electron 229 microscopy-image analysis (SEM-IA)). This was a slight simplification and did not account for 230 bound water and porosity less than ~2 µm [37]. After 7 days' hydration at 20°C, the total 231 volume of hydrated products in plain CEM I was greater than that in either of the 2 slag blends. 232 However, this trend was reversed at 38°C due to accelerat ed slag hydration. This change also 233 led to lower coarse porosity in the slag blends. By 28 days, the volumes of hydration products 234 in the slag blends were greater than those of plain CEM I irrespective of temperature. This is 235 due to the more gradual hydration of slag, which continues over longer periods than CEM I. 236 The coarse porosity of the specimens cured at 38°C were still lower for slag blends than CEM 237 I, while at 20°C, it was the CEM I specimen which showed slightly lower porosity. The trends 238 are consistent with the weighted degrees of hydration shown in Table 5, and the coarse 239 porosity in Table 6.

It is worth comparing the data from the specimens cured for 28 days and those from the specimens cured for 7 days and then immersed in the combined salt solution for 21 days, i.e. specimens 28X2 in Tables 5 and 6. The weighted degrees of hydration were always slightly greater following immersion in the combined chloride-sulphate solution. This reflects the common knowledge that chlorides accelerate hydration of the silicate phases in clinker [45, 46] and also that sulphates can accelerate slag hydration [37, 47]. This resulted in more hydration products, thereby reducing coarse porosity as shown in Table 6.

248 Figure 2: Hydrous and anhydrous clinker and slag contents for each binder at 7 days

Age		Degree of hydration (%) at 20℃				Degree of hydration (%) at 38℃			
(day)	Mix	Slag	Clinker	Weighted	Error	Slag	Clinker	Weighted	Error
	C1	-	74.9	74.9	0.74	-	75.8	75.8	1.02
7	C2S1	38.7	91.3	75.6	0.80	58.6	91.7	81.8	0.50
	C2S2	31.3	90.8	73.0	0.99	47.6	89.9	77.2	0.79
	C1	-	79.3	79.3	0.70	-	80.3	80.3	0.65
28	C2S1	63.2	94.5	85.2	0.60	67.6	96.0	87.5	0.52
	C2S2	52.1	94.3	81.6	0.76	53.5	95.9	83.2	0.49
	C1	0.0	79.5	79.5	0.40	0.0	82.6	82.6	0.87
28X2	C2S1	64.3	95.0	85.8	0.44	69.4	96.4	88.3	0.58
	C2S2	54.5	95.6	83.3	0.60	57.2	97.1	85.2	0.49

252 Table 5: Weighted degrees of hydration as determined by SEM-IA

254 **Table 6**: Capillary porosity (%) as determined by SEM-IA

Age (day)	Mix	20°C	Error	38°C	Error
	C1	9.0	0.41	10.1	0.21
7	C2S1	10.5	0.20	8.3	0.15
	C2S2	11.7	0.23	9.1	0.21
28	C1	7.8	0.09	8.7	0.11
	C2S1	8.4	0.20	6.6	0.12
	C2S2	9.0	0.13	7.8	0.14
28X2	C1	7.7	0.10	8.5	0.13
	30S1	8.2	0.13	7.1	0.14
	30S2	8.0	0.20	7.2	0.18

255

The extent of hydration was also probed by examining bound water contents, obtained from thermogravimetric analysis (TGA) and shown in Figure 4. Bound water contents increased generally from 7 to 28 days, indicating increasing hydration, consistent with SEM data presented earlier. Furthermore, there was generally an increased degree of hydration following exposure to the salt solution.

261

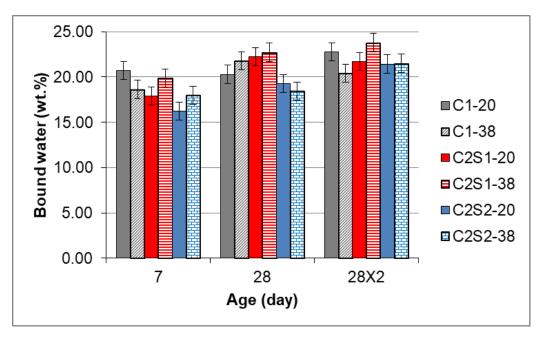
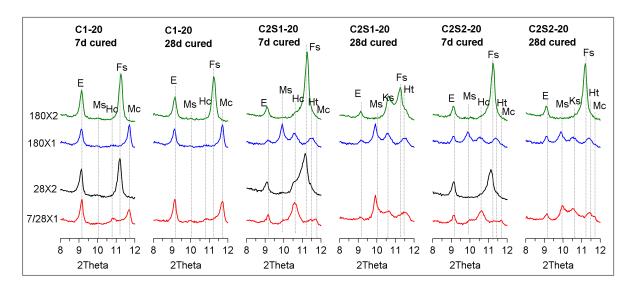


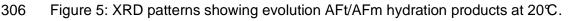
Figure 4: Bound water content from TGA (X2: specimens exposed to salt solution from 7 days, i.e. 28X2 refers to test age of 28days for specimens exposed to salt solution).

266

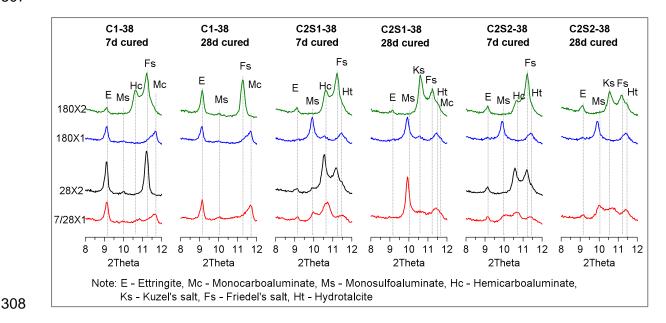
267 **3.1.1 Evolution of hydration products from XRD**

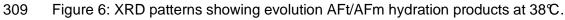

Figures 5 and 6 show XRD patterns obtained from specimens cured for 7 or 28 days at 20 and 38°C respectively. The figures focus on the reflections due to AFt and AFm phases. Before exposure to the salt solution, the main phases present in the CEM I pastes cured at 20°C were ettringite and monocarboaluminate [48, 49]. The monocarboaluminate reflection increased from 7 to 28 days, while ettringite slightly converted to monosulfoaluminate.

273 Slag blends cured at 20°C revealed lower ettringite le vels than did CEM I specimens, because 274 higher aluminate contents led to increased monosulfoaluminate levels. Slag hydration also led 275 to hydrotalcite formation [50, 51]. The monosulfoaluminate and hydrotalcite reflections 276 increased with curing. Monosulfoaluminate and hydrotalcite reflections were more intense still 277 for slag blends cured at 38°C. Furthermore, while differences between the 2 slag blends were 278 slight at 7 days, by 28 days when slag hydration had advanced significantly, monosulphate 279 reflections were clearly more intense in the blend containing slag 1 than that containing slag 2, confirming the increased reactivity of slag 1, as shown by SEM data and bound water 280 281 contents.


282 On exposure to salt solution, ettringite levels in the CEM I specimen increased, while 283 monocarboaluminate converted to Friedel's salt (FS) [10, 21, 52]. Ettringite reflections were 284 lower in the specimens cured for 28 days prior to exposure than for specimens cured for 7 285 days. This indicates reduced sulphate penetration due to a more refined microstructure, and 286 reflects the reduced expansion observed (see later). Comparing 28 day old CEM I specimens between specimens cured in water and those exposed to the salt solution from 7 days shows 287 intense reflections due to ettringite and Friedel's salt from the specimens exposed to salt 288 289 solution. The reflections were also more intense at 38°C than 20°C. Hydration of CEM I is 290 known to be activated at elevated temperature, but leads to a more porous microstructure [53, 291 54], allowing increased salt penetration. Hence, the higher levels of ettringite and Friedel's salt 292 observed at 38℃.

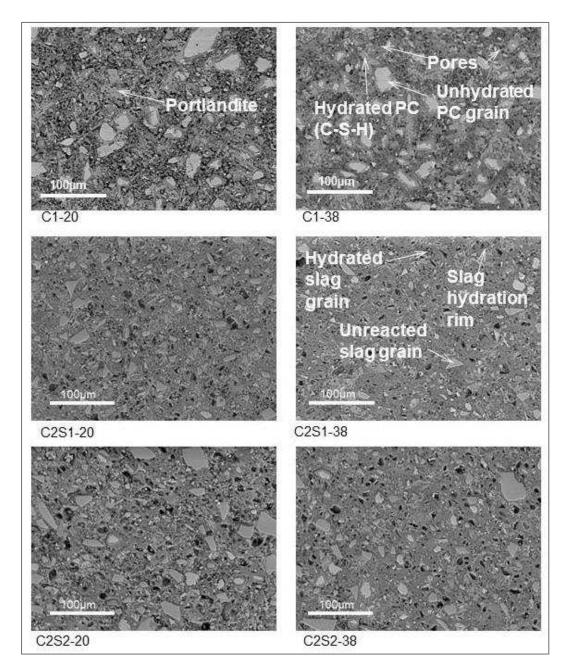
293 Exposure of the slag blends to salt solution led to ettringite formation alongside the formation 294 of Friedel's and Kuzel's salt. Kuzel's salt reflections were more intense at 38°C than 20°C. 295 Monosulfoaluminate levels increased more significantly between 7 and 28 days for the more 296 reactive, alumina-rich slag 1 than slag 2. This highlights the importance of slag composition 297 on performance of blended cements, as shown by the different behaviours of slag 1 and 2 298 blends regarding the effects of curing duration at 20°C. As slag hydration was activated at the 299 elevated temperature of 38° , the 2 slag blends exposed to salt solutions displayed much more similar hydrate assemblages than at 20°C. Ettringite reflections decreased due to 300 301 prolonged curing before exposure to salt solution, while reflections due to Friedel's salt were 302 slightly diminished compared with specimens cured for only 7 days before exposure. These behaviours are consistent with the expansion behaviours of mortar prisms. 303

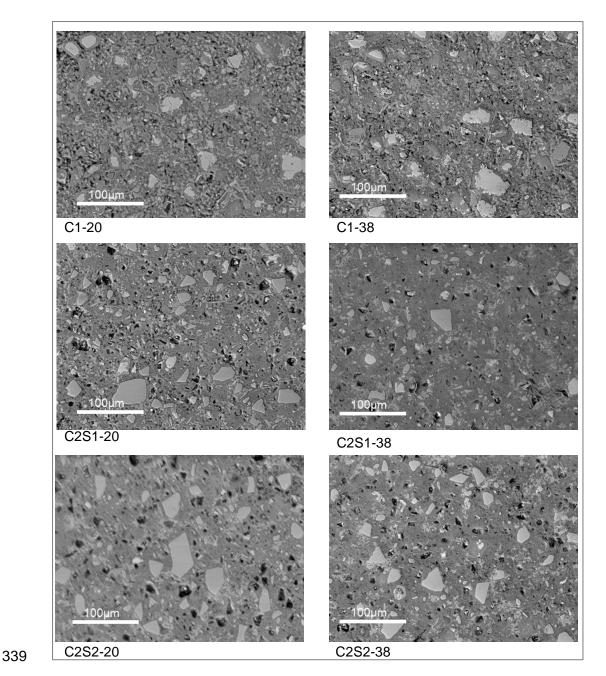

304



305

307




311 3.1.2 Microstructure

312 Backscattered electron images are presented in Figures 7 and 8, showing the microstructures 313 of binders hydrated for 7 and 28 days respectively. The diminished presence of bright, anhydrous particles confirmed that hydration was accelerated at elevated temperature for both 314 315 slags and CEM I systems. This difference between the two curing temperatures was more 316 noticeable at 7 days than at 28 days. With reference to the degrees of hydration reported in 317 Table 5, each of the slag blends had hydrated faster than CEM I (C1), despite the retarding effects of slags on hydration of blends. This is due to the different cement used in the different 318 319 mixes. The slag blends were prepared with CEM I 52.5R, as is common practice in industry. 320 Increasing cement fineness is known to increase the rate of hydration [39, 55].

321 The micrographs showed increased presence of C-S-H from 7 to 28 days. The positive 322 influence of elevated temperatures on slag hydration was marked by finer microstructures. 323 Coarse porosity decreased upon hydration at 38°C for the slag blends, in line with their more refined microstructures. Elevated temperature accelerated slag hydration, thus reducing the 324 325 porosity by more than the increase in porosity induced by curing cement at higher temperatures. Conversely, coarse porosity increased for the CEM I specimens at elevated 326 327 temperature, resulting in a more porous microstructure. This confirms earlier findings in the 328 literature [53, 54], such that while hydration was accelerated, densification of the hydration 329 products leads to increased porosity.

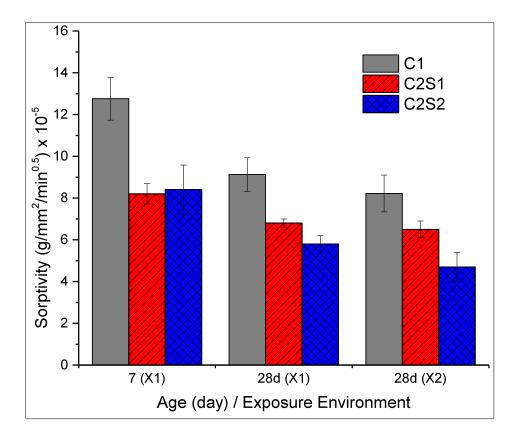
332 Figure 7: SEM-BSE micrographs of pastes hydrated for 7 days.

- 340 Figure 8: SEM-BSE micrographs of pastes hydrated for 28 days.
- 341


342 3.1.3 Sorptivity

Sorptivity coefficients were determined after 7 and 28 days, before exposure to salt solutions. The results are presented in Figures 9 and 10 for exposure at 20 and 38°C respectively . In all cases, there was a reduction in sorptivity, in line with the reduction in coarse porosity as measured by image analysis, with prolonged hydration, irrespective of temperature. Similarly, sorptivity decreased when curing temperature was increased. Prolonged curing appeared more beneficial at 20°C than at 38°C, particularly for the slag blends. This was to be expected, where the degree of hydration showed similar behaviour (Table 5).

Sorptivity was also determined at 28 days for specimens that had been cured for 7 days prior
 to exposure to a salt solution. In all cases bar one, exposure to the salt solution led to a lower


sorptivity than curing alone. This can be attributed to increased silicate hydration in the
 presence of chlorides and the formation of Friedel's salt, Kuzel's salt and ettringite upon
 reaction of chloride and sulphate with hydrated aluminate phases (Figures 5 & 6). These new
 products tend to fill-up pore spaces, leading to reduced sorptivity as observed.

357

358 Figure 9: Sorptivity of specimens cured at 20°C.

361 Figure 10: Sorptivity of specimens cured at 38°C.

362

363 **3.2 Expansion of mortar prisms**

Expansion results for each binder under different exposure conditions are presented in Figures
 11, 12 and 13 for CEM I, slag 1 blend and slag 2 blend respectively.

Reference specimens submerged in limewater showed minimal dimensional change upon exposure for up to 664 days, suggesting that any expansion was due to salt ingress. It is now well accepted that expansion occurs in cement systems based on crystallisation pressure theory [5, 7, 8]. The nucleation and growth of ettringite crystals in small pore spaces can exert crystallisation pressures on the pore walls, leading to expansion.

371 In this study, temperature was the dominant factor, with expansion being significantly less for 372 all mortars cured and exposed to salt solutions at 38°C than at 20°C. This was the case for 373 the CEM I systems, but was especially so for slag blends. Indeed, both slag blends, when 374 cured at 38°C showed no expansion for the entire duration of the study whether cured for 7 or 375 28 days before exposure. This behaviour can be attributed to changes in the microstructure. 376 The foregoing discussion also agrees with increase in flexural strengths reported for similar 377 samples elsewhere [34], as increase in flexural strength will tend to improve the resistance 378 towards internal stress development and reduce micro cracking. Ettringite decomposes at 379 elevated temperatures greater than 50°C [64, 65], the temperature used in this study is below 380 this, and should not have any significant effect. As shown earlier, CEM I was more porous 381 than the slag systems at elevated temperature, with the composite systems showing a dense, 382 well-developed microstructure. Hence, there would have been greater ingress of the salts into 383 the CEM I specimens. As expansion occurs due to the formation of ettringite exerting crystal 384 pressures in confined pore spaces [5, 8], any increase in penetration of sulphate laden solution can cause increased ettringite formation in the presence of hydrated aluminates, leading tomore expansion.

387 For other situations, the situation was less clear cut. Generally, expansion was reduced in mortars which were cured for 28 days before exposure, irrespective of temperature. This is 388 389 due to more refined microstructure after 28 days of hydration compared with 7 days. The only 390 exception was the more reactive, alumina-rich slag 1 blend exposed at 20°C, which rather 391 showed greater expansion after curing for 28 days than 7 days before exposure. This is contrary to the known positive influence of prolonged curing and the common practice of 392 393 allocating longer curing durations for SCMs due to their slow hydration [46, 56-59]. However, 394 it underscores the importance of considering the influence of slag composition in determining 395 curing duration to prevent expansion in combined chloride-sulphate environments.

396 The above expansion behaviour of slag 1 blend may be explained by the slag's higher degree 397 of hydration and the role of slag alumina content. Increasing slag alumina contents may cause 398 slag blends to be more susceptible to sulphate attack. However, the alumina in slag is not 399 readily available to react with the penetrating sulphate to form ettringite [11], but is 400 incorporated in C-S-H and hydrotalcite-like phases during slag hydration, while the remainder 401 converts slowly to monosulfoaluminate, which may subsequently react with the penetrating 402 sulphate ions to form ettringite. However, expansion requires that the pore solution be 403 supersaturated [1, 60-62]. Hence, at 7 days when the degree of slag hydration was still 404 relatively low, there would be less alumina available to form monosulfoaluminate, compared 405 with hydration at 28 days. The higher levels of monosulfoaluminate present after prolonged 406 hydration, possibly, favoured more rapid ettringite formation, which led to the greater 407 expansion observed. This is confirmed by the increasing level of monosulfoaluminate formed 408 between 7 and 28 days, as observed by XRD analysis (Figure 5). Slag 2 behaved slightly 409 differently due to microstructural changes and slag composition. Both the CEM I and slag 2 410 specimens showed greater expansion after curing for 7 days before exposure. This can be 411 attributed to their more porous microstructure compared with the slag 1 blend, as shown by 412 the capillary porosity discussed earlier.

413

414

415

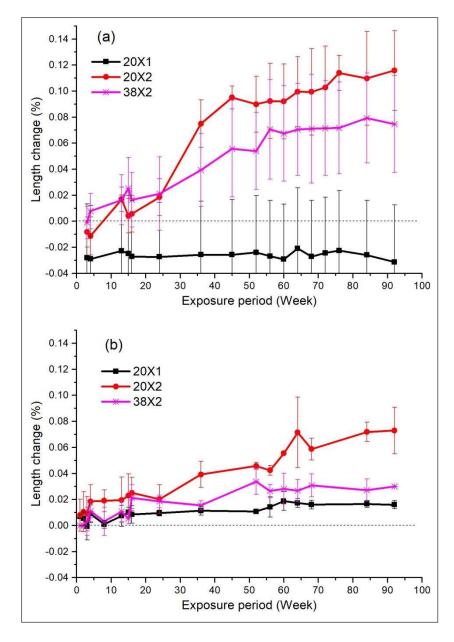


Figure 11: Length-change/expansion of CEM I: (a) cured for 7 days, (b) cured for 28 days,
before exposure.

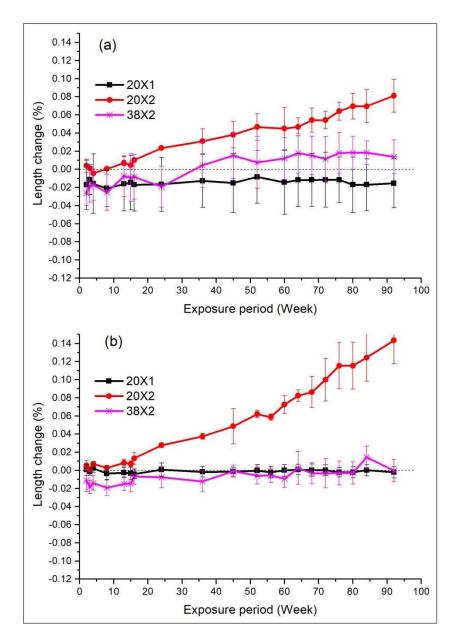


Figure 12: Length-change/expansion of slag 1 blend: (a) cured for 7 days, (b) cured for 28
days, before exposure.

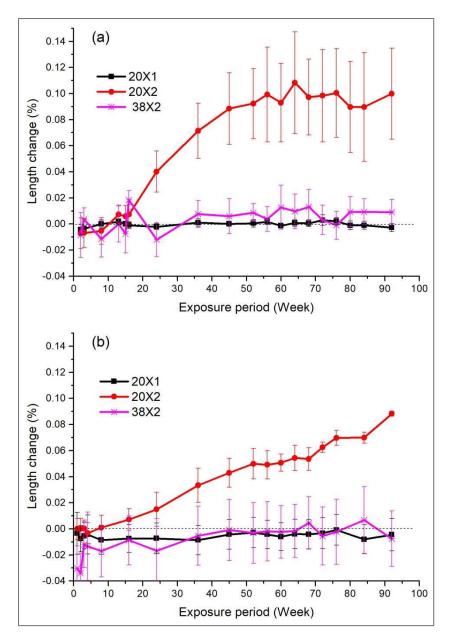
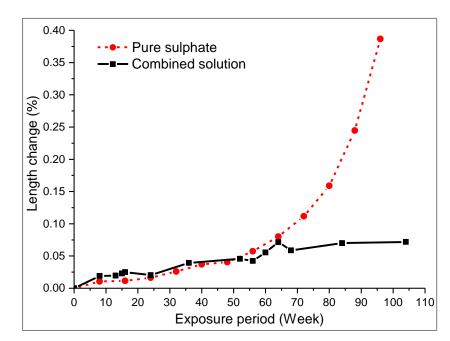
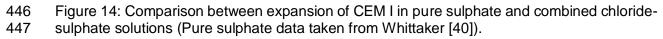


Figure 13: Length-change/expansion of slag 2 blend: (a) cured for 7 days, (b) cured for 28
days, before exposure.


432


429

433 **3.2.1 Influence of chloride presence and slag contents on expansion**

The influence of the presence of chloride on sulphate expansion is observed in Figure 14, showing comparison between expansion of CEM I in pure sulphate [40] and a combined chloride-sulphate solution. Expansion was similar in the 2 media until about 55 weeks, where the mitigating role of chloride on sulphate attack became evident. This is consistent with the literature [20, 21, 63]. It must be noted that similar specimens, sulphate concentrations and conditions were used in the present study as in [40].

Generally, the interactions of ions in complex solutions seem to reduce the effects of attack in comparison to single salt solution [7, 10]. This is due to increased solubility of ettringite in chloride solution [66, 67] with reduced impact on crystallization pressure.

448

449 **3.3 Visual observation**

450 Specimens were examined visually, with Figure 15 showing mortar prisms immersed in saturated lime water (X1) and combined chloride-sulphate solution (X2) pre-cured for 7 and 451 452 28 days. No significant macro cracks were visible within the period of this study. However, 453 slight surface loss was observed in both reference and test specimens, which may be related 454 to the activity of water continuously present in the specimens, rather than sulphate attack. This 455 is particularly so since similar observations were made on reference specimens which were stored in saturated lime water. No trend could yet be established linking expansion with the 456 457 surface losses or popouts observed in various test specimens subjected to different 458 conditions. At a similar exposure period, Whittaker [40] observed significant macro cracks in 459 similar CEM I mortar prisms immersed in a pure sulphate solution. This difference further 460 confirms the mitigating role of chloride on sulphate-oriented expansion and damage in 461 cementitious materials, consistent with the literature [20-22].

Figure 15: Visual appearance of CEM I and slag blends exposed to lime water (X1) and salt water (X2) after 664 days.

465

462

466 **4.0 Conclusions**

467 The expansion and sulphate-oriented damage of CEM I and slag-blended cement mortars 468 exposed to combined chloride-sulphate solutions has been investigated under various 469 conditions, supplemented by microstructural characterisation and determination of specimen 470 transport properties prior to exposure. The results highlight important effects of temperature, 471 curing duration and slag composition on sulphate attack of CEM I and slag blends, including 472 the influence of chloride presence on sulphate attack of CEM I.

473 Resistance to sulphate attack was significantly improved by curing and exposing slag blend 474 mortar prisms at 38°C. This behaviour was attributed to accelerated slag hydration at elevated 475 temperature, leading to more refined microstructures and greatly decreased penetration of the 476 salt solution. The slag specimens showed approximately no expansion irrespective of curing 477 duration, indicating that prolonged curing beyond 7 days, when specimens are exposed within 478 climates having such elevated temperature seemed unnecessary. Hence, the costs and time 479 losses associated with prolonged curing when these slags are used may thus be saved. This finding is significant for the practical application of these slag blends to control combinedchloride-sulphate attack in warm tropical climates.

482 At 20°C, however, prolonged curing becomes important, although the influence of slag 483 composition must be considered carefully. This study has shown that shorter curing periods 484 are not too problematic in terms of expansion, but there is increased chloride penetration. 485 Nevertheless, the less reactive slag 2, with lower alumina content, showed improved resistance to sulphate expansion as a result of prolonged curing duration, consistent with the 486 487 behaviour of CEM I. This finding has highlighted the importance of considering slag 488 composition and curing/exposure conditions if the desired performance of slag blends must be achieved. This study has highlighted the influence of slag composition, and particularly, the 489 490 role of alumina contents of slags, regarding curing duration in combined chloride-sulphate 491 aggressive environments to enhance proper application and durability of structures 492 incorporating slag blends.

493

494 Acknowledgements

The authors gratefully acknowledge the support of Niger Delta Development Commission (NDDC), Nigeria for providing the PhD scholarship for this research.

497

498 References

- 500 [1] J. Skalny, J. Marchand, I. Odler, Sulfate Attack on Concrete, 1st ed., Spon Press, London, 2002.
- 501 [2] M. Whittaker, L. Black, Current knowledge of external sulfate attack, Adv. Cem. Res. 27(9) (2015) 532-545.
- 503 [3] G.W. Scherer, Stress from crystallization of salt, Cem. Concr. Res. 34(9) (2004) 1613-1624.
- [4] R.J. Flatt, G.W. Scherer, Thermodynamics of crystallization stresses in DEF, Cem. Concr. Res. 38(3)(2008) 325-336.
- 506 [5] C. Yu, W. Sun, K. Scrivener, Mechanism of expansion of mortars immersed in sodium sulfate 507 solutions, Cem. Concr. Res. 43 (2013) 105-111.
- 508 [6] G.W. Scherer, Crystallization in pores, Cem. Concr. Res. 29(8) (1999) 1347-1358.
- 509 [7] W. Kunther, B. Lothenbach, K.L. Scrivener, On the relevance of volume increase for the length 510 changes of mortar bars in sulfate solutions, Cem. Concr. Res. 46 (2013) 23-29.
- 511 [8] W. Müllauer, R.E. Beddoe, D. Heinz, Sulfate attack expansion mechanisms, Cem. Concr. Res. 52 512 (2013) 208-215.
- 513 [9] C. Yu, W. Sun, K. Scrivener, Degradation mechanism of slag blended mortars immersed in sodium 514 sulfate solution, Cem. Concr. Res. 72 (2015) 37-47.
- 515 [10] M. Maes, N. De Belie, Resistance of concrete and mortar against combined attack of chloride and 516 sodium sulphate, Cem. Concr. Compos. 53 (2014) 59-72.
- 517 [11] M. Whittaker, M. Zajac, M. Ben Haha, L. Black, The impact of alumina availability on sulfate 518 resistance of slag composite cements, Constr. Build. Mater. 119 (2016) 356-369.
- 519 [12] A.M. Hossack, M.D.A. Thomas, Varying fly ash and slag contents in Portland limestone cement 520 mortars exposed to external sulfates, Constr. Build. Mater. 78(0) (2015) 333-341.
- 521 [13] S. Ogawa, T. Nozaki, K. Yamada, H. Hirao, R.D. Hooton, Improvement on sulfate resistance of 522 blended cement with high alumina slag, Cem. Concr. Res. 42(2) (2012) 244-251.
- 522 Diended cement with high alumina sidg, cem. Conci. Nes. 42(2) (2012) 244-251.
- 523 [14] M. Santhanam, M.D. Cohen, J. Olek, Mechanism of sulfate attack: a fresh look: Part 2. Proposed 524 mechanisms, Cem. Concr. Res. 33(3) (2003) 341-346.
 - 23

- 525 [15] A. Fatemeh, R.D. Hooton, Sulfate Resistance of Portland and Slag Cement Concretes Exposed to 526 Sodium Sulfate for 38 Years, Materials Journal 114(3) (2017) 477-490.
- 527 [16] W. Kunther, B. Lothenbach, J. Skibsted, Influence of the Ca/Si ratio of the C–S–H phase on the
- interaction with sulfate ions and its impact on the ettringite crystallization pressure, Cem. Concr. Res.69 (2015) 37-49.
- 530 [17] A.M. Hossack, M.D.A. Thomas, Evaluation of the effect of tricalcium aluminate content on the
- 531 severity of sulfate attack in Portland cement and Portland limestone cement mortars, Cem. Concr.
 532 Compos. 56(0) (2015) 115-120.
- [18] C. Ouyang, A. Nanni, W.F. Chang, Internal and external sources of sulfate ions in portland cement
 mortar: two types of chemical attack, Cem. Concr. Res. 18(5) (1988) 699-709.
- 535 [19] M. Santhanam, M. Cohen, J. Olek, Differentiating seawater and groundwater sulfate attack in 536 Portland cement mortars, cement & Concrete Research 36(2006) (2006) 2132-2137.
- 537 [20] G. Li, A. Zhang, Z. Song, S. Liu, J. Zhang, Ground granulated blast furnace slag effect on the
 538 durability of ternary cementitious system exposed to combined attack of chloride and sulfate, Constr.
 539 Build. Mater. 158 (2018) 640-648.
- 540 [21] S.-T. Lee, D.-W. Park, K.-Y. Ann, Mitigating effect of chloride ions on sulfate attack of cement
- 541 mortars with or without silica fume, Canadian Journal of Civil Engineering 35(1) (2008) 1210-1220.
- 542 [22] M. Zhang, J. Chen, Y. Lv, D. Wang, J. Ye, Study on the expansion of concrete under attack of sulfate 543 and sulfate–chloride ions, Constr. Build. Mater. 39 (2013) 26-32.
- 544 [23] M. Maes, N. De Belie, Influence of chlorides on magnesium sulphate attack for mortars with 545 Portland cement and slag based binders, Constr. Build. Mater. 155 (2017) 630-642.
- 546 [24] O.S.B. Al-Amoudi, Mechanisms of Sulfate Attack in Plain and Blended Cements- A Review,
 547 Extending performance of concrete structures, International congress "creating with concrete",
 548 Dundee, 1999, pp. 247-260.
- 549 [25] O.S.B. Al-Amoudi, Attack on plain and blended cements exposed to aggressive sulphate 550 environments, Cement & Concrete Composites 24(1) (2002) 305-316.
- [26] A.M. Hossack, M.D.A. Thomas, The effect of temperature on the rate of sulfate attack of Portland
 cement blended mortars in Na2SO4 solution, Cem. Concr. Res. 73 (2015) 136-142.
- 553 [27] K. Sotiriadis, E. Nikolopoulou, S. Tsivilis, A. Pavlou, E. Chaniotakis, R.N. Swamy, The effect of 554 chlorides on the thaumasite form of sulfate attack of limestone cement concrete containing mineral 555 admixtures at low temperature, Constr. Build. Mater. 43(0) (2013) 156-164.
- [28] A. Abdalkader, C. Lynsdale, J. Cripps, Corrosion behaviour of steel rebar in mortars subjected to
 magnesium sulfate and sodium chloride mixtures at 5 and 20°C, Constr. Build. Mater. 153 (2017) 358363.
- [29] A.H.M. Abdalkader, C.J. Lynsdale, J.C. Cripps, The effect of chloride on cement mortar subjected
 to sulfate exposure at low temperature, Constr. Build. Mater. 78(0) (2015) 102-111.
- 561 [30] F. Abubaker, C. Lynsdale, J. Cripps, Investigation of concrete–clay interaction with regards to the 562 thaumasite form of sulfate attack, Constr. Build. Mater. 67, Part A(0) (2014) 88-94.
- 563 [31] C. Shi, D. Wang, A. Behnood, Review of Thaumasite Sulfate Attack on Cement Mortar and 564 Concrete, J. Mater. Civ. Eng. 24(12) (2012) 1450-1460.
- 565 [32] F. Aköz, F. Türker, S. Koral, N. Yüzer, Effects of raised temperature of sulfate solutions on the 566 sulfate resistance of mortars with and without silica fume, Cem. Concr. Res. 29(4) (1999) 537-544.
- 567 [33] M. Santhanam, M.D. Cohen, J. Olek, Modeling the effects of solution temperature and 568 concentration during sulfate attack on cement mortars, Cem. Concr. Res. 32(4) (2002) 585-592.
- [34] J.O. Ukpata, P.A.M. Basheer, L. Black, Performance of plain and slag-blended cements and mortars
 exposed to combined chloride–sulfate solution, Adv. Cem. Res. 30(8) (2018) 371-386.
- 571 [35] O.R. Ogirigbo, Influence of Slag Composition and Temperature on the Hydration and Performance
- of Slag Blends in Chloride Environments, School of Civil Engineering, The University of Leeds, 2016.
- 573 [36] K.L. Scrivener, B. Lothenbach, N. De Belie, E. Gruyaert, J. Skibsted, R. Snellings, A. Vollpracht, TC
- 574 238-SCM: hydration and microstructure of concrete with SCMs, Mater. Struct. 48(4) (2015) 835-862.

- 575 [37] M. Whittaker, M. Zajac, M. Ben Haha, F. Bullerjahn, L. Black, The role of the alumina content of 576 slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-577 slag blends, Cem. Concr. Res. 66 (2014) 91-101.
- 578 [38] V. Kocaba, E. Galluci, K.L. Scrivener, Methods for the determination of degree of reaction of slag 579 in blended cement pastes, Cement & Concrete Research 42 (2012) 511-525.
- 580 [39] K.L. Scrivener, Backscattered electron imaging of cementitious microstructures: understanding 581 and quantification, Cem. Concr. Compos. 26(8) (2004) 935-945.
- [40] M.J. Whittaker, The Impact of Slag Composition on the Microstructure of Composite Slag Cements
 Exposed to Sulfate Attack, School of Civil Engineering, University of Leeds, Leeds, 2014, p. 253.
- 584 [41] BS EN 13057, Products and systems for the protection and repair of concrete structures Test 585 methods — Determination of resistance of capillary absorption, BSI, 2002.
- 586 [42] E. Guneyisi, M. Gesoglu, A study on durability properties of high-performance concretes 587 incorporating high replacement levels of slag, Mater. Struct. 41 (2008) 479–493.
- 588 [43] B.B. Sabir, S. Wild, M. O'Farrell, A water sorptivity test for mortar and concrete, Materials and 589 Structures/Materiaux et Constructions 31(1) (1998) 568-574.
- [44] ASTM C1012, Annual Book of the ASTM standards, Standard test method for length change of
 hydraulic-cement mortars exposed to sulfate solution, ASTM International, United States, 2013, pp.
 539-543.
- 593 [45] I. Galan, F.P. Glasser, Chloride in cement, Adv. Cem. Res. 27(2) (2015) 63-97.
- [46] O.R. Ogirigbo, J.O. Ukpata, Effect of Chlorides and Curing Duration on the Hydration and Strength
- 595 Development of Plain and Slag Blended Cements, Journal of Civil Engineering Research 7(1) (2017) 9-596 16.
- 597 [47] S. Adu-Amankwah, L. Black, J. Skocek, M. Ben Haha, M. Zajac, Effect of sulfate additions on 598 hydration and performance of ternary slag-limestone composite cements, Constr. Build. Mater. 164 599 (2018) 451-462.
- [48] T. Matschei, B. Lothenbach, F.P. Glasser, The AFm phase in Portland cement, Cem. Concr. Res.
 37(2) (2007) 118-130.
- [49] A. Ipavec, R. Gabrovgek, T. Vuk, V. KauWiW, J. MaWek, A. Medenz, Carboaluminate Phases
 Formation During the Hydration of Calcite-Containing Portland Cement, J. Am. Ceram. Soc. 94(4)
 (2011) 1238-1242.
- 605 [50] Y. Elakneswaran, E. Owaki, S. Miyahara, M. Ogino, T. Maruya, T. Nawa, Hydration study of slag-606 blended cement based on thermodynamic considerations, Constr. Build. Mater. 124 (2016) 615-625.
- 607 [51] P.T. Durdziński, M. Ben Haha, M. Zajac, K.L. Scrivener, Phase assemblage of composite cements, 608 Cem. Concr. Res. 99 (2017) 172-182.
- 609 [52] J. Stroh, B. Meng, F. Emmerling, Deterioration of hardened cement paste under combined 610 sulphate-chloride attack investigated by synchrotron XRD, Solid State Sciences 56 (2016) 29-44.
- 611 [53] J.I. Escalante-García, J.H. Sharp, Effect of temperature on the hydration of the main clinker phases 612 in portland cements: part i, neat cements, Cem. Concr. Res. 28(9) (1998) 1245-1257.
- 613 [54] B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, P. Lunk, Effect of temperature on the pore 614 solution, microstructure and hydration products of Portland cement pastes, Cem. Concr. Res. 37 615 (2007) 483-491.
- 616 [55] M.M.C. Fernandez, Effect of Particle Size on the Hydration Kinetics and Microstructural
 617 Development of Tricalcium Silicate, Laboratoire des Matériaux de Construction, École Polytechnique
- 617 Development of Tricalcium Silicate, Laboratoire des Matériaux de
 618 Fédérale de Lausanne, Suisse, 2008, p. 199.
- 619 [56] BS 6349-4, Maritime works, Part 1-4: General Code of practice for materials, British Standard 620 Institution, London, 2013.
- 621 [57] N. Gowripalan, J.G. Cabrera, A.R. Cusens, P.J. Wainwright, Effect of Curing on Durability, Concr.
- 622 Int. 12(2) (1990).
- 623 [58] O. Idowu, L. Black, The effect of improper curing on properties that may affect concrete durability,
- 624 Magazine of Concrete Research 70(12) (2018) 633-647.

- [59] O.R. Ogirigbo, L. Black, The effect of slag composition and curing duration on the chloride ingress
 resistance of slag blended cements, Adv. Cem. Res. <u>31(5), 2019, 243-250</u>.
- 627 [60] R.S. Gollop, H.F.W. Taylor, Microstructural and microanalytical studies of sulfate attack. II. Sulfate-
- resisting Portland cement: Ferrite composition and hydration chemistry, Cem. Concr. Res. 24(7) (1994)
- 629 1347-1358.
- 630 [61] R.S. Gollop, H.F.W. Taylor, Microstructural and microanalytical studies of sulfate attack. I.
 631 Ordinary portland cement paste, Cem. Concr. Res. 22(6) (1992) 1027-1038.
- 632 [62] R.S. Gollop, H.F.W. Taylor, Microstructural and microanalytical studies of sulfate attack. IV.
- Reactions of a slag cement paste with sodium and magnesium sulfate solutions, Cem. Concr. Res. 26(7)(1996) 1013-1028.
- 635 [63] F. Shaheen, B. Pradhan, Influence of sulfate ion and associated cation type on steel reinforcement
- corrosion in concrete powder aqueous solution in the presence of chloride ions, Cem. Concr. Res. 91
 (2017) 73-86.
- [64] A. Jimenez, M. Prieto, Thermal Stability of Ettringite Exposed to Atmosphere: Implications for the
 Uptake of Harmful Ions by Cement, Environ. Sci. Technol. 49(13) (2015) 7957-7964.
- 640 [65] B. Lothenbach, P. Durdziński, K.D. Weerdt, Thermogravimetric analysis, in: K. Scrivener, R.
- 641 Snellings, B. Lothenbach (Eds.), A practical Guide to Microstructural Ananlysis of Cementitious
- 642 Materials, CRC Press, Taylor and Francis Group, London, 2016, pp. 177-212.
- 643 [66] K.M.A. Hossain, Performance of volcanic ash and pumice-based blended cements in sulphate and
- 644 sulphate chloride environments, Adv. Cem. Res. 18 (2006) 71-82.
- 645 [67] S. Mindess, J.F. Young, D. Darwin, Concrete, 2 ed., Prentice Hall, United States, 2002.