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Testing from Partial Finite State Machines
without Harmonised Traces

Robert M. Hierons, Senior Member, IEEE

Abstract—This paper concerns the problem of testing from a partial, possibly non-deterministic, finite state machine (FSM) S. Two

notions of correctness (quasi-reduction and quasi-equivalence) have previously been defined for partial FSMs but these, and the

corresponding test generation techniques, only apply to FSMs that have harmonised traces. We show how quasi-reduction and quasi-

equivalence can be generalised to all partial FSMs. We also consider the problem of generating an m-complete test suite from a partial

FSM S: a test suite that is guaranteed to determine correctness as long as the system under test has no more than m states. We prove

that we can complete S to form a completely-specified non-deterministic FSM S′ such that any m-complete test suite generated from

S′ can be converted into an m-complete test suite for S. We also show that there is a correspondence between test suites that are

reduced for S and S′ and also that are minimal for S and S′.

Index Terms—Software engineering/software/program verification, software engineering/testing and debugging, systems and soft-

ware, checking experiment, partial finite state machine.

F

1 INTRODUCTION

T ESTING is probably the most important approach to
verification and validation but is typically manual,

error prone and expensive. There has thus been much
interest in automating software testing, one of the most
promising approaches (called model-based testing (MBT))
being to base automation on a model. Many MBT meth-
ods take as input a state-based model expressed as a
(possibly non-deterministic) finite state machine (FSM).
While the tester might not produce an FSM, a tool might
map a model to an FSM. There has thus been significant
interest in testing from an FSM [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]. Industrial experience has shown that the
use of MBT can significantly reduce the cost of testing
[11].

In the context of testing from an FSM, there has been
much interest in automatically generating a test suite
with a given fault detection power. This class of problem
has been formalised in terms of a fault model1: a set F of
FSMs such that the tester believes that the system under
test (SUT) behaves like an unknown element of F (see,
for example, [13]). Given fault model F , a test suite T is a
checking experiment if all faulty elements of F fail T . The
standard fault model is the set of FSMs with the same
input and output alphabets as the specification FSM S
and at most m states (for some given m). A test suite T
is said to be m-complete if it is a checking experiment for
this fault model and many methods have been devised
to generate m-complete test suites [4], [8], [9], [14], [15].
One of the advantages of using m-complete test suites
is that they have guaranteed fault detection ability: we

• R. M. Hierons is with the Department of Computer Science, Brunel
University London, UK.
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1. This is similar to the notion of a test hypothesis [12].

know that if the SUT passes an m-complete test suite
then either the SUT is correct or it has more than m
states. In practice the value of m chosen will depend on
the judgment of the tester and this parameter provides
a trade-off between test suite size and effectiveness.

An FSM M is completely-specified if for every state
s and input x the behaviour of M when it receives x
in state s is specified; otherwise it is partial. Almost
all work on generating m-complete test suites has as-
sumed that the specification S is completely-specified.
However, it has been observed that in practice many
FSMs are partial [10]. A partial FSM might be used, for
example, for a component that receives input from other
components since this places restrictions on the inputs
received [10]. Sometimes, when an FSM specification S
has no transition with input x from state s, this means
either that x should not be applied in state s or that
the environment will never supply input x when S is in
state s [10]. In such cases, in testing we should not apply
x when S is in state s. These observations have led to
the development of a few techniques for generating m-
complete test suites from a partial FSM [10], [16], [17],
[18].

In order to reason about test effectiveness, it is nor-
mal to assume that the SUT behaves like an unknown
completely-specified FSM I. Having made this assump-
tion, it is possible to define correctness in terms of a
relationship between two models: the specification FSM
S and the unknown FSM I that models the SUT. This
relationship is typically said to be an implementation
relation. In this paper we consider the two implemen-
tation relations, quasi-equivalence and quasi-reduction,
normally used when testing from a partial FSM. These
were previously developed for testing from a partial
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deterministic FSM (DFSM) and from an observable2 non-
deterministic FSM with harmonised traces3 [9], [10], [17].
Under quasi-equivalence and quasi-reduction, if an in-
put x is not specified in some state s that can be reached
by input sequence x̄ then the all outputs are allowed
in response to x being received after x̄. We show that
the current definitions of quasi-equivalence and quasi-
reduction have properties that mean that they are not
suitable for testing from a partial non-deterministic FSM
that does not have harmonised traces. While this is not
surprising, since these implementation relations are not
designed to deal with a wider class of partial FSMs,
these results show that previous devised techniques for
testing from a partial non-deterministic FSM can only
safely be applied to FSMs that are observable and have
harmonised traces; even if such test generation tech-
niques are sound for the general case, there is the need to
prove this. We generalise these implementation relations
to form what we call generalised-quasi-equivalence and
generalised-quasi-reduction.

An FSM M has harmonised traces if for every input
sequence x̄, input x and pair of states s, s′ that can be
reached from the initial state of M by applying x̄, we
have that either x is specified in states s and s′ or it is not
specified in either of these states. Let us suppose that we
have to apply input sequence x̄ if we wish to take M to
state s and M does not have harmonised traces. Further,
let us suppose that x̄ can also take M to state s′ and that
input x is specified in s but not s′. The problem caused in
testing is as follows: we cannot use the input sequence
x̄x to test what happens when x is applied in state s
because x̄ can also take M to state s′ and we should
not apply x when M is in s′. This helps motivate the
interest in FSMs with harmonised traces since it avoids
scenarios such as the one above and allows us to safely
use test sequences (input sequences) chosen to achieve
certain objectives such as applying x in state s.

We make two main changes in order to generalise
quasi-reduction and quasi-equivalence. For the first
change, let us suppose that M produces output sequence
ȳ if x̄ takes M to state s and produces output sequence
ȳ′ if x̄ takes M to state s′. If we have that ȳ 6= ȳ′

then the above scenario is not problematic if we allow
testing to be adaptive, with the next input being chosen
based on the input/output sequence so far observed.
Specifically, a test case can choose to apply input x if ȳ is
produced in response to x̄ but not if ȳ′ is produced. This
observation immediately allows us to weaken the notion
of harmonised traces to require the following: for every
input/output sequence x̄/ȳ, input x and pair of states
s, s′ that can be reached from the initial state of M by
x̄/ȳ, we have that either x is specified in states s and s′

or it is not specified in either of these states. However,

2. FSM S is observable if for every state s and input/output pair
x/y, there is at most one transition from s with label x/y.

3. A non-deterministic FSM S has harmonised traces if, for each
input sequence x̄ that is the input portion of the label of a path of S,
the same sets of inputs are specified in all states reached by x̄.

requiring this condition would not generalise quasi-
equivalence and quasi-reduction to all partial FSMs. The
second change, which does achieve this, is to allow
scenarios in which input/output sequence x̄/ȳ takes M
to states s and s′ and input x is specified in state s but
not s′ and, in such cases, to say that any behaviour is
allowed if x is received after x̄/ȳ. The motivation for
this is that if x is received after x̄/ȳ then it may well
have been received in state s′ and in such situations one
would say that all behaviours are allowed. In addition,
any behaviour is acceptable in such a situation since x
will not be received after x̄/ȳ; it does not matter how the
SUT behaves after x̄/ȳ. We will see that the proposed test
generation method will also ensure that no test applies
x after x̄/ȳ. These two changes, when combined, allow
us to generalise quasi-reduction and quasi-equivalence
to allow any partial FSM as specification. Naturally, if x
is not specified in a state reached by x̄/ȳ then we need
to ensure that no test case can apply x after x̄/ȳ.

Having generalised the notions of quasi-reduction and
quasi-equivalence, we focus on testing for generalised-
quasi-reduction and explore the problem of generating
an m-complete test suite from a deterministic or non-
deterministic partial FSM S . Rather than devising a
new test suite generation method, we generalise the
method of Petrenko et al. [9] for observable FSMs with
harmonised traces, which is to define a transformation
that produces a completely-specified FSM M(S) such
that any m-complete test suite T for M(S) can be trans-
formed to produce an m-complete test suite T1 for S . The
FSM M(S) returned is a non-deterministic FSM even if
S is deterministic. This result shows that methods for
generating an m-complete test suite from a completely-
specified FSM can be adapted to generate an m-complete
test suite from a partial FSM. In addition, the techniques
for testing from completely-specified FSMs are typically
less involved. Note that even if one or more test cases in
T can lead to an input x being applied after a trace x̄/ȳ
such that x is not specified in some state of M reached by
x̄/ȳ, importantly no test case in T1 can have this property.

We explore an additional issue not previously con-
sidered, which is whether efficient/reduced test suites
for M(S) lead to efficient/reduced test suits for S . We
say that an m-complete test suite T is reduced if, for
all t ∈ T , the test suite formed from T by replacing
t by a proper prefix of t is not m-complete. This says
that if we make T smaller, by removing a test case or
replacing a test case t with a proper prefix of t, then the
resultant test suite cannot be m-complete. We prove that
if an m-complete test suite T is reduced for M(S) then
the test suite T1 generated from T is also reduced for S .
We also prove that a smallest m-complete test suite T
for M(S) is transformed into a smallest m-complete test
suite for S . We therefore show that not only can we use
techniques for generating an m-complete test suite from
a completely-specified FSM but also that the notion of
minimality is preserved and the transformation does not
introduce redundancy.
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The results in this paper have a number of practical
consequences. First, they provide implementation rela-
tions that are not restricted to observable specifications
that have harmonised traces and so make it possible
to formally reason about test effectiveness when testing
from any partial FSM. They thus open up the possibility
to develop test generation methods that produce m-
complete test suites when testing from a partial FSM
that does not have harmonised traces. Second, the results
show that any method that returns an m-complete test
suite for a completely-specified non-deterministic FSM
can be used when testing from a partial FSM. This result
is of interest since there are many techniques for testing
from a completely-specified FSM4 (see, for example,
[8], [9], [14], [19], [20], [21], [22], [23], [24], [25], [26],
[27]) and such techniques tend to be less involved than
those devised for partial FSMs. Third, we show that this
approach, of using methods for testing from completely-
specified FSMs, does not introduce redundancy. In addi-
tion, by providing implementation relations that apply
to all partial FSMs, this work should provide a formal
framework within which it is possible to reason about
other problems related to partial FSMs. For example, if
we wish to devise methods for transforming a partial
FSM specification M into an observable partial FSM M ′

then we might wish to know that the same set of SUTs
are correct implementations of M and M ′.

The paper is structured as follows. We start by giving
preliminary definitions in Section 2. In Section 3 we
define implementation relations and in Section 4 we
define test cases for partial FSMs. Section 5 then shows
how the problem of generating an m-complete test suite
from a partial FSM can be mapped to the correspond-
ing problem for a completely-specified FSM. Section 6
then explores efficiency issues. Finally, in Section 7 we
summarise the paper and discuss possible future work.

2 PRELIMINARIES

Throughout this paper we use X to denote the set of
inputs that the SUT might receive and Y to denote the
set of outputs. Thus, if x ∈ X and y ∈ Y then x/y is
an input/output pair. If x1, . . . , xk ∈ X and y1, . . . , yk ∈
Y then ρ̄ = x1/y1 . . . xk/yk is an input/output sequence,
also called a trace, x1 . . . xk is the input portion of ρ̄, and
y1 . . . yk is the output portion of ρ̄. Given a set A we will
use A∗ to denote the set of finite sequences of elements
of A, with this including the empty sequence denoted ǫ.
If x̄ = x1 . . . xk ∈ X∗ and ȳ = y1 . . . yk ∈ Y ∗ then x̄ is
an input sequence, ȳ is an output sequence, and we also
use x̄/ȳ to represent the trace x1/y1 . . . xk/yk.

Given a set A of pairs we let π1(A) and π2(A) de-
note the sets of projections of elements of A and so
π1(A) = {a|∃b.(a, b) ∈ A} and π2(A) = {b|∃a.(a, b) ∈ A}.
The following defines non-deterministic finite state ma-
chines.

4. Many of these are based on what is called state-counting
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Fig. 1. Partial FSM S1

Definition 1: A partial non-deterministic finite state
machine (FSM) is defined by a tuple (S, s0, X, Y, h) in
which:

1) S is the finite set of states.
2) s0 ∈ S is the initial state.
3) X is the finite input alphabet.
4) Y is the finite output alphabet.
5) h is the transition relation of type S ×X ↔ S × Y .

We say that that x is defined in state s if there exist
s′ and y such that h relates (s, x) and (s′, y); this is the
case if ((s, x), (s′, y)) ∈ h. We let dom h denote the set of
pairs (s, x) on which h is defined. If h is defined on (s, x)
then we let h(s, x) denote the set of pairs (s′, y) such that
((s, x), (s′, y)) ∈ h: h(s, x) = {(s′, y)|((s, x), (s′, y)) ∈ h}.
If (s′, y) ∈ h(s, x) then tuple (s, s′, x/y) is said to be a
transition of M . M is observable if for all (s, x) ∈ S × X
and y ∈ Y there is at most one state s′ such that
(s′, y) ∈ h(s, x). If |h(s, x)| ≤ 1 for all s ∈ S and x ∈ X
then M is a deterministic FSM (DFSM). We will use
‘DFSM’ for finite state machines that are deterministic
and ‘FSM’ whenever a finite state machine might be
deterministic or non-deterministic. If |h(s, x)| ≥ 1 for
all s ∈ S and x ∈ X then M is completely-specified.
Note that M is still a partial non-deterministic finite state
machine (it satisfies the conditions of Definition 1) and
so completely-specified FSMs are a special case of partial
FSMs. Figure 1 gives an example of a partial FSM S1 with
input alphabet {x1, x2} and output alphabet {y, z}.

A sequence (s, s1, x1/y1)(s1, s2, x2/y2) . . . (sa−1, sa,
xa/ya) of consecutive transitions of M is a path that
has starting state s, label x1/y1 . . . xa/ya, and ending state
sa. Given state s of M we let LM (s) denote the set of
labels of paths of M that have starting state s and we
let L(M) = LM (s0) denote the set of traces of M . Given
trace ρ̄ ∈ LM (s) we let s-after-ρ̄ denote the set of states
s′ such that M has a path that has starting state s,
label ρ̄ and ending state s′. Thus, s-after-ρ̄ denotes the
set of states of M that can be reached from s through
trace ρ̄. Given completely-specified FSMs I and S with



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

the same input alphabets, we say that I is a reduction
of S if L(I) ⊆ L(S). Most methods for testing from a
completely-specified FSM test for reduction, although
there has been some work that looks at testing for
equivalence [24].

We can extend the function h to take input sequences
as follows: h(s, ǫ) = {(s, ǫ)} and h(s, xx̄) = {(s′′, yȳ)|∃s′ ∈
S.(s′, y) ∈ h(s, x) ∧ (s′′, ȳ) ∈ h(s′, x̄)}. For example, in S1

we have that h(s0, x1) = {(s1, y), (s3, z)} and so, since
there is no transition with input x1 leaving state s3,
h(s0, x1x1) = {(s0, yy), (s2, yy)}. To obtain the possible
output sequences in response to input sequence x̄ from
s we simply take the projection π2(h(s, x̄)). For example,
in S1 we have that π2(h(s0, x1)) = π2({(s1, y), (s3, z)}) =
{y, z} and π2(h(s0, x1x1)) = π2({(s0, yy), (s2, yy)}) =
{yy}.

Throughout this paper we assume that the specifica-
tion is a partial FSM S and that the SUT behaves like
some unknown completely-specified FSM I with the
same input and output alphabets as S .

3 IMPLEMENTATION RELATIONS

This section considers the notions of correctness (imple-
mentation relations) used when testing from a partial
FSM S . In this we use ΩS(s) to denote the set of input
sequences that are input portions of traces in LS(s) and
let Ω(S) denote ΩS(s0) [17]. In the following, P(X∗)
denotes the powerset of X∗.

Definition 2: Given FSM S , ΩS is the smallest function
from the state set S of S to P(X∗) such that the following
hold for all s ∈ S.

1) ǫ ∈ ΩS(s)
2) If (s′, y) ∈ h(s, x) and x̄ ∈ ΩS(s

′) then xx̄ ∈ ΩS(s).

If s0 is the initial state of S then Ω(S) denotes ΩS(s0).
Consider again the FSM S1. Here we have that x1x1 ∈

Ω(S1) since there is a path (s0, s1, x1/y)(s1, s2, x1/y) from
s0 whose label has input portion x1x1. Since there is
no transition from s0 with input x2, no input sequence
starting with x2 is in Ω(S1).

An FSM M is said to have harmonised traces if when-
ever two or more states of M can be reached from the
initial state by a common input sequence, these states
have the same sets of specified inputs. More formally,
FSM M has harmonised traces if for all x̄ ∈ ΩM (s0) and
all s, s′ ∈ π1(h(s0, x̄)), we have that (for all x ∈ X) h(s, x)
is defined if and only if h(s′, x) is defined.

Note that S1 does not have harmonised traces since
input x1 can take S1 to states s1 and s3 and x2 is defined
in s3 but not s1. Clearly, S1 also is not observable since
there are transitions from s1 with label x1/y to states s0
and s2. Note that x2 is defined in s2 but not s0 and so we
cannot use the standard technique for transforming an
FSM into an observable FSM; this transformation would
form a state defined by the set {s0, s2} of states and x2

would be defined in this new state (since x2 is defined
in state s2) despite x2 not being defined in state s0. Test

techniques might then lead to test cases in which x2 can
be applied when S1 could be in state s0.

We now give relations that have been defined for states
of an observable partial FSM with harmonised traces [9].
States s1 and s2 of M are equivalent if the same sets of in-
put sequence are defined from them and the correspond-
ing output sequences are identical. We therefore have
that s1 and s2 are equivalent if ΩM (s1) = ΩM (s2) and for
all x̄ ∈ ΩM (s1) we have that π2(h(s1, x̄)) = π2(h(s2, x̄)).
FSMs S and I are equivalent if their initial states are
equivalent5. The following is clear.

Proposition 1: States s1 and s2 of FSM M are equiva-
lent if and only if LM (s1) = LM (s2).

Equivalence thus corresponds to the classical notion
of equivalence for finite automata. Quasi-equivalence
requires the SUT to be defined where the specification is
defined and for such input sequences it requires that I
and S have the same sets of traces [9], [17].

Definition 3: Given observable FSM M with har-
monised traces, state s1 is quasi-equivalent to state s2
if ΩM (s2) ⊆ ΩM (s1) and for all x̄ ∈ ΩM (s2) we have
that π2(h(s1, x̄)) = π2(h(s2, x̄)). Further, given observable
FSMs I and S with harmonised traces, I is quasi-
equivalent to S if the initial state of I is quasi-equivalent
to the initial state of S .

Finally, we have the notion of a quasi-reduction [9],
[17], which relaxes quasi-equivalence by allowing the
SUT to be less non-deterministic than the specification.

Definition 4: Given observable FSM M with har-
monised traces, state s1 is a quasi-reduction of state s2
if ΩM (s2) ⊆ ΩM (s1) and for all x̄ ∈ ΩM (s2) we have
that π2(h(s1, x̄)) ⊆ π2(h(s2, x̄)). Given observable FSMs
I and S with harmonised traces and the same input and
output alphabets, we say that I is a quasi-reduction of
S if and only if the initial state of I is a quasi-reduction
of the initial state of S .

Since the SUT is completely-specified and we are
interested in cases where the specification is partial, we
will not want to test for equivalence. However, quasi-
equivalence and quasi-reduction are potential imple-
mentation relations when testing from a partial FSM.
Note that for DFSMs the notions of quasi-equivalence
and quasi-reduction coincide and it is normal to use the
term quasi-equivalence (see, for example, [10]).

Let us suppose that we take a partial specification S
and create a completely-specified FSM I by adding tran-
sitions to S. Further, let us suppose that every transition
added to S , in forming I, has a starting state s and input
x such that x is not defined in state s of S . The added
transitions all correspond to state/input pairs (s, x) such
that x should not be applied in state s and so we would
expect I to be a correct implementation of S under either
quasi-reduction or quasi-equivalence.

We now explore what happens if we remove the
restriction to observable FSMs that have harmonised

5. We can use definitions regarding comparing two states of an FSM
when comparing two FSMs by taking the disjoint union of these FSMs.
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traces. Consider again the partial FSM S1 shown in
Figure 1. Since x1/y x1/y ∈ L(S1) we have that x1x1 ∈
Ω(S1). Now let us suppose that we try to complete S1 to
form an FSM I1 that is a quasi-reduction of S1. By the
definition of quasi-reduction, we must have that every
trace produced by I1 in response to an element of Ω(S1)
is also a trace of S1. Thus, every response of I1 to the
input sequence x1x1 ∈ Ω(S1) must also be a response
of S1 to x1x1. This cannot be the case since I1 has been
formed by completing S1 and so must have at least one
path whose label has input portion x1x1 and an output
portion that starts with z. However, we formed I1 from
S1 by adding transitions such that every transition added
to S1 has a starting state s and input x such that x is not
defined in state s of S1. We would therefore expect I1
to be a correct implementation of S1 if we were using a
suitable implementation relation. A similar observation
may be made with respect to quasi-equivalence but the
situation is even worse, in the sense that there may be
no completely-specified FSM that is quasi-equivalent to
the specification.

Proposition 2: There exists a partial FSM S such that
no completely-specified FSM is quasi-equivalent to S .

Proof: We will prove that no completely-specified
FSM is quasi-equivalent to S1. Proof by contradiction:
let us suppose that completely-specified FSM I1 is quasi-
equivalent to S1. First consider the input sequence x1 ∈
Ω(S1). Since I1 is quasi-equivalent to S1 we have that
I1 has a path with label x1/z. However, since I1 is
completely-specified this implies that I1 has a path with
label x1/z x1/z

′ for some output z′. This cannot be the
label of a path of S1 and so, since x1x1 ∈ Ω(S1), this
contradicts I1 being quasi-equivalent to S1 as required.

There is nothing pathological about S1 and so the
above observations and results suggest that the current
definitions of quasi-equivalence and quasi-reduction for
FSMs cannot be applied if we do not restrict attention to
FSMs that are observable and have harmonised traces.
This motivates our interest in devising new implemen-
tation relations and we will now explore how this issue
can be eliminated by generalising these definitions.

The results regarding S1 are a consequence of having
an input sequence x1 that can lead to two different states
(s1 and s3) such that there is an input x1 that is specified
in one of these states but not the other. The problem
was that ΩS does not differentiate between the different
traces that lead to these two states. Thus, the traditional
definitions of quasi-equivalence and quasi-reduction are
too strong when S does not have harmonised traces since
to test for these notions of correctness one might have
to apply an input x after a trace ρ̄ such that the input
portion of ρ̄ is a defined input sequence but x is not
specified in a state of S reached by ρ̄. For example,
when testing from S1 we should not apply input x1

after trace x1/z since x1 is not specified in the state
s3 reached by x1/z. However, x1x1 is a defined input
sequence for S1 and so the traditional definitions of

quasi-equivalence and quasi-reduction allow x1x1 to be
applied, even if the response to the first x1 is z. This goes
against the philosophy behind quasi-equivalence and
quasi-reduction and explains why these implementation
relations were defined for FSMs with harmonised traces.

Let us suppose that if, after observing trace ρ̄, the
specification S might be in a state s where input x is
not specified. Then x should not be supplied after ρ̄
even if there is also a state s′ that can be reached using
ρ̄ such that x is specified in s′. The reason for this is
that x should not be supplied in the first scenario and
we can’t distinguish between these cases. This leads to
the following definition of what we will call generalised-
quasi-reduction in order to distinguish it from the earlier
definition.

Definition 5: Given states s1 and s2 of FSM M , s1 is
a generalised-quasi-reduction (GQR) of s2 if for all ρ̄ ∈
LM (s1) ∩ LM (s2) and x ∈ X , if x ∈ ΩM (s) for all
s ∈ s2-after-ρ̄ then:

1) for all s′ ∈ s1-after-ρ̄ we have that x ∈ ΩM (s′); and
2) {y′ ∈ Y |ρ̄x/y′ ∈ LM (s1)} ⊆ {y′ ∈ Y |ρ̄x/y′ ∈

LM (s2)}.

Given FSMs I and S with the same input and output
alphabets, we say that I is a GQR of S if and only if the
initial state of I is a GQR of the initial state of S .

In the above, LM (s1)∩LM (s2) is guaranteed to be non-
empty since ǫ is in both LM (s1) and LM (s2). The first
condition above requires that if the response to x after ρ̄
is specified (for every state reached via ρ̄) and ρ̄ is a trace
of I then the response of I to x after ρ̄ is also specified.
The second part requires that for such a trace ρ̄ we have
that all responses of I to x after ρ̄ are also responses of
S to x after ρ̄. The above definition does not require us
to consider the situation in which trace ρ̄ reaches states s
and s′ from state s2 of M and x is specified in state s but
not state s′. The key is that the definition of GQR places
no requirements of the behaviour of M if x is received
after ρ̄ is observed when testing from s1: all possible
outputs are allowed in response to x and from then on all
outputs are allowed in response to any additional inputs
received. This is consistent with how quasi-reduction
and quasi-equivalence deal with the input of x after an
input sequence x̄ if x is not specified after x̄. Naturally, in
such situations x should not be applied after ρ̄ in testing.
Later we will see how test generation can avoid applying
an input x in such situations.

Consider the FSM S1 and the above definition of GQR.
We have that only one state (s1) of S1 is reached by trace
x1/y and so an SUT that is a GQR of S1 must produce
output y if it receives input x1 after trace x1/y. However,
S1 has two possible states, s0 and s2, after x1/yx1/y and
x2 is defined in only one of these. Thus, an SUT that is a
GQR of S1 can produce any output if it receives x2 after
x1/y x1/y has been observed.

Now consider the FSM I1 in Figure 2 in which, for
example, we use a label such as x1/y, x2/z to denote
there being two corresponding transitions: one with label
x1/y and the other with label x2/z. Since S1 has a path
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s0

x1/y

88

x1/z,x2/y

��

s1

x1/y

��

x1/y,x2/z

xx

s3
x2/y

//

x1/z

VV
s2

x1/z

``

x2/z

VV

Fig. 2. Completely-specified FSM I1

whose label has input portion x1x1, in order for I1 to be a
quasi-reduction of S1 we require that all traces in L(I1),
that have input portion x1x1, are also traces of L(S1).
Thus, since I1 has a path with label x1/z x1/z and S1

does not, we know that I1 is not a quasi-reduction of
S1. However, if we consider this trace x1/z x1/z then we
find that x1/z takes S1 to state s3 and x1 is not specified
in this state. Thus, under GQR the SUT is allowed to
produce any output in response to x1 after trace x1/z.
In fact, it is not too hard to show that I1 is a GQR of
S1. This is because the only transitions added to S1 to
create I1 involve state/input pairs (s, x) such that x is
not specified in state s of S1; under GQR all behaviours
are allowed for such pairs.

More generally, if we complete an FSM specification S
to form a completely-specified FSM I in this way then
I must be a GQR of S .

Definition 6: FSM I is a completion of partial FSM
S = (S, s0, X, Y, h) if I is completely-specified and is
equivalent to an FSM S ′ = (S′, s0, X, Y, h′), with S ⊆ S′,
that can be formed from S by adding states and transi-
tions in a manner such that if x is defined in state s of
S then h′(s, x) = h(s, x).

Proposition 3: Given partial FSM S , if I is a completion
of S then I is a GQR of S .

Proof: We use proof by contradiction and so assume
that I is a completion of S and I is not a GQR of S .
By the definition of GQR, since I is completely-specified
there must exist ρ̄ ∈ L(S)∩L(I), input x that is specified
in all states of S reached by paths with label ρ̄, and
output y such that ρ̄ x/y ∈ L(I) and ρ̄ x/y 6∈ L(S).
Since I is a completion of S , I is equivalent to an FSM
S ′ = (S′, s0, X, Y, h′), with S ⊆ S′, that can be formed
from S by adding states and transitions in a manner such
that if x is defined in state s of S then h′(s, x) = h(s, x).
But since x is defined in all states of S reached by paths
with label ρ̄, this implies that ρ̄ x/y ∈ L(I) if and only
if ρ̄ x/y ∈ L(S). We therefore obtain a contradiction as
required.

We now define generalised-quasi-equivalence.

Definition 7: Given states s1 and s2 of FSM M , s1 is
generalised-quasi-equivalent (GQE) to state s2 if for all ρ̄ ∈
LM (s1) ∩ LM (s2) and x ∈ X , if x ∈ ΩM (s) for all s ∈
s2-after-ρ̄ then:

1) for all s′ ∈ s1-after-ρ̄ we have that x ∈ ΩM (s′); and
2) {y′ ∈ Y |ρ̄x/y′ ∈ LM (s1)} = {y′ ∈ Y |ρ̄x/y′ ∈

LM (s2)}.

Given FSMs I and S with the same input and output
alphabets, we say that I is generalised-quasi-equivalent
to S if and only if the initial state of I is generalised-
quasi-equivalent to the initial state of S .

Similar to GQR, if we complete a partial FSM then we
obtain a correct implementation.

Proposition 4: Given partial FSM S , if I is a completion
of S then I is GQE to S .

These notions of correctness only consider the applica-
tion of an input x after trace ρ̄ if x is specified in all states
of the specification that are reached by ρ̄. If this is not
the case (there is at least one state of the specification,
reached by ρ̄, in which x is not specified) then there
are no constraints on the behaviour of the SUT. This
restriction, to when we consider the response to x after
ρ̄, is an inevitable consequence of the requirement not
to apply an input x in states where x is not defined. If
this is too weak then the tester might consider producing
a more complete specification. An alternative is to add
probes to the SUT so that the test system can distinguish
between different paths that have the same trace.

When testing from a completely-specified FSM the
notions of correctness can be defined in terms of the
traces of the specification. Thus, if specifications S and
S ′ are completely-specified and have the same set of
traces then an SUT is a reduction of S if and only
if it is a reduction of S ′. However, for partial FSMs
the underlying assumption is that if an input x is not
specified in state s then x will not be applied in state
s and this allows us to define FSMs S and S ′, with the
same set of traces, such that there is some FSM that is
a GQR of S but not S ′. To see this consider the FSMs
in Figure 3. It is straightforward to see that these FSMs
have the same traces. However, after x1/y the first FSM
S can be in a state where x1 is not specified or in a state
in which x2 is not specified. Thus, under GQR the SUT
can produce any output in response to either x1 or x2

after x1/y. In contrast, after x1/y the second FSM S ′ must
be in a state q1 in which both x1 and x2 are specified.
Thus, if an SUT is a GQR of S ′ then after x1/y it must
produce output y in response to x1 and z in response to
x2.

GQE and GQR reduce to quasi-equivalence and quasi-
reduction if one considers observable FSMs with har-
monised traces.

Proposition 5: If FSM M is observable and has har-
monised traces and s1 and s2 are states of M then:

1) s1 is a generalised-quasi-reduction of s2 if and only
if s1 is a quasi-reduction of s2.

2) s1 is generalised-quasi-equivalent to s2 if and only
if s1 is quasi-equivalent to s2.
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s1

x1/y

��

s0

x1/y

>>

x1/y

  

q0
x1/y

// q1

x1/y

zz

x2/z

dd

s2

x2/z

kk

Fig. 3. FSMs S and S ′ with the same traces

Proof: We will prove the first part; the proof of the
second is similar.

First assume that s1 is a GQR of s2 and we are required
to prove that s1 is a quasi-reduction of s2. It is sufficient
to prove that if x̄ is a defined input sequence for s2 then x̄
is also a defined input sequence for s1 and π2(h(s1, x̄)) ⊆
π2(h(s2, x̄)). We will use proof by induction on the length
of x̄. The result immediately holds for the base case ǫ.
We will assume that it holds for all sequences of length k
or less and that x̄ is a defined input sequence for s2 that
has length k+1. Thus, x̄ = x̄′x for an input sequence x̄′

of length k and an input x.
By the induction hypothesis, x̄′ is a defined input

sequence for s1 and π2(h(s1, x̄
′)) ⊆ π2(h(s2, x̄

′)). Thus,
there is a trace ρ̄ ∈ LM (s1) ∩ LM (s2) with input portion
x̄′. Since x̄′x is a defined input sequence for s2 and M
has harmonised traces, x is specified in all states reached
from s2 by x̄′. Thus, since s1 is a GQR of s2 we know
that x is specified in all states that can be reached from
s1 by x̄′. Thus, x̄ is a specified input sequence from s1.

By the definition of quasi-reduction, it is now sufficient
to prove that π2(h(s1, x̄)) ⊆ π2(h(s2, x̄)). By the inductive
hypothesis we know that π2(h(s1, x̄

′)) ⊆ π2(h(s2, x̄
′)). If

we consider some ρ̄ ∈ π2(h(s1, x̄
′)) ∩ π2(h(s2, x̄

′)) then,
by Definition 5, we have {y′ ∈ Y |ρ̄x/y′ ∈ LM (s1)} ⊆
{y′ ∈ Y |ρ̄x/y′ ∈ LM (s2)} The result therefore follows.

Now assume that s1 is a quasi-reduction of s2 and
we are required to prove that s1 is a GQR of s2. We
therefore assume that ρ̄ ∈ LM (s1) ∩ LM (s2), x ∈ X , and
for all s ∈ s2-after-ρ̄ we have that x ∈ ΩM (s) and we are
required to prove that:

1) for all s′ ∈ s1-after-ρ̄ we have that x ∈ ΩM (s′); and
2) {y′ ∈ Y |ρ̄x/y′ ∈ LM (s1)} ⊆ {y′ ∈ Y |ρ̄x/y′ ∈

LM (s2)}.

Let x̄ denote the input portion of ρ̄. Since s1 is a quasi-
reduction of s2, ΩM (s2) ⊆ ΩM (s1) and so x̄x is a defined
input sequence for s1. Thus, since M has harmonised
traces, x is defined in all s′ ∈ s1-after-ρ̄ and so the first
property holds. The second property is immediate from
the definition of s1 being a quasi-reduction of s2.

GQR is appropriate when non-determinism corre-
sponds to there being several acceptable behaviours. In
this paper we focus on the problem of testing for GQR
and later we prove (Proposition 6) that this is a suitable
implementation relation. Note that unlike [9], we do not
require the SUT to be deterministic. However, if the SUT
is non-deterministic then it is necessary to run each test
case used multiple times and the completeness of a test
suite typically relies on the use of a fairness assumption.

4 TEST CASES AND TEST SUITES

This section defines test cases and test suites for a partial
FSM S . A test case will be similar to what has been called
an adaptive test case [17]. Adaptivity allows the tester
to choose an input on the basis of the observed trace.
This will be crucial where the response to input x, after
input sequence x̄, is specified after a trace ρ̄ but not after
another trace ρ̄′; adaptivity allows the tester to apply x
after ρ̄ but not after ρ̄′. A test case and the SUT will
interact through synchronising on common actions until
a failure occurs or the test case terminates. We follow
the previously proposed approach of representing a test
case as an acyclic partial FSM [17]. A test case will be
deterministic in that at each state of the test case there
is at most one input that is specified.

Definition 8: Given partial FSM S , a test case for S is an
observable partial acyclic FSM t, with transition relation
h′ and initial state t0, that satisfies the following.

1) For each state s of t there is at most one input x
such that h′(s, x) is defined;

2) If ρ̄ ∈ L(t) and x is defined in the unique state
in t0-after-ρ̄ then h(s, x) is defined in every state
s ∈ s0-after-ρ̄;

3) If ρ̄x/y ∈ L(t) then {y′|ρ̄x/y′ ∈ L(S)} = {y′|ρ̄x/y′ ∈
L(t)}.

The application of a test case will operate as follows. If
a test case t with transition relation h′ is in state s then:

1) If no transitions leave s then testing terminates.
2) Otherwise, we find the input x that labels transi-

tions from s, we apply x to the SUT, and observe
the output y. t moves to the state s′ such that
(s′, y) ∈ h′(s, x); if there is no such state s′ then
testing terminates and a failure has been observed.

The first condition in Definition 8 requires that the
next input is uniquely defined. The second condition
requires that input x can only be applied if S must be
in a state s such that h(s, x) is defined and so we know
that we can apply x. The last condition requires that the
corresponding outputs of the test case and specification
are the same. Thus, if an output not specified in t is
observed then it corresponds to a failure.

We let T (S) denote the set of all possible test cases for
S . T (S) is exactly the test cases we might wish to use: if a
test case is not in T (S) then either it includes input after
a trace not in L(S) (so this does not help testing), or it
could apply input in a state where this is not allowed, or
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it has output that is not consistent with the specification.
We will call a set of test cases a test suite.

We now define what it means for the SUT to pass/fail
a test case from T (S). Essentially, a model I of the SUT
fails test case t if some execution of I with t leads to a
trace that is not a trace of S . This is the case if t has a
path with label ρ̄ to a state s where it applies input x
such that the SUT can produce an output y in response
to x after ρ̄ such that ρ̄x/y 6∈ L(S) (or, equivalently, that
ρ̄x/y 6∈ L(t)).

Definition 9: Given completely-specified FSM I that
models an SUT and (possibly partial) FSM S that acts
as the specification, I fails a test case t ∈ T (S) if and
only if there exists ρ̄x/y ∈ L(I) and y′ ∈ Y such that
ρ̄x/y′ ∈ L(t) and ρ̄x/y 6∈ L(t). Otherwise, I passes t.

The following result shows that the notion of passing
a test case has the expected relationship to GQR. In the
following, sI

0
is the initial state of I.

Proposition 6: Given completely-specified FSM I that
models an SUT and partial FSM S that acts as the
specification, I is a GQR of S if and only if for all
t ∈ T (S) we have that I passes t.

Proof: First let us suppose that I passes all test cases
in T (S) and we are required to prove that I is a GQR of
S . Let us suppose that ρ̄ ∈ L(I)∩L(S), x ∈ X , and for all
s ∈ s0-after-ρ̄ we have that x ∈ ΩS(s). Below we define a
test case t = tS(ρ̄x/y). Essentially, tS(ρ̄1) has trace ρ̄1 and
‘completes’ this by allowing other outputs where these
are consistent with the specification. The important point
is that ρ̄1 is a trace of tS(ρ̄1) and tS(ρ̄1) is a test case in
T (S).

Test case tS(ρ̄1) has initial state t0, a path with label
ρ̄1, and for every prefix ρ̄2x/y of ρ̄1 we have that: for
all y′ ∈ Y \ {y} there is a transition with label x/y′ from
the unique state in t0-after-ρ̄2 to a state s′ if and only if
ρ̄2x/y

′ is a trace of S6. Here, s′ is a ‘terminating’ state of
tS(ρ̄1): no transitions have s′ as a starting state.

Since ρ̄ ∈ L(I) ∩ L(S) and I is completely-specified,
for all s ∈ sI

0
-after-ρ̄ we have that x ∈ ΩI(s). By the

definition of GQR it is sufficient to prove that {y′ ∈
Y |ρ̄x/y′ ∈ L(I)} ⊆ {y′ ∈ Y |ρ̄x/y′ ∈ L(S)}. However,
this follows from I passing tS(ρ̄x/y) as required.

Now let us suppose that I is a GQR of S and we are
required to prove that I passes all test cases in T (S).
Proof by contradiction: let us suppose that I fails test
case t ∈ T (S) and so there is some trace, that can be
observed when testing I with t, that is not a trace of S .
Let us suppose that ρ̄ is some minimal such trace and so
ρ̄ = ρ̄′x/y for some x ∈ X , y ∈ Y and ρ̄′ ∈ L(I) ∩ L(S).
By the definition of T (S), for all s ∈ s0-after-ρ̄ we have
that x ∈ ΩS(s). But this contradicts I being a GQR of S .

The notion of passing a test case is entirely natural (all
observations that can be made when testing the SUT are
allowed by the specification) and the notion of a test case

6. Recall that the traces of a test case are traces of the specification;
if a different output is produced then we have failure.

is quite general (it allows test cases to be adaptive). This
result thus demonstrates the suitability of the definition
of GQR given in this paper. In Section 7 we briefly
discuss how the overall approach might be extended to
GQE.

5 GENERATING AN m-COMPLETE TEST SUITE

This section explores test suite generation. We first say
what it means for a test suite to be m-complete.

Definition 10: Given partial FSM S that acts as the
specification and integer m, test suite T ⊆ T (S) is m-
complete for S if for every completely-specified FSM I
with the same input and output alphabets as S and at
most m states we have that if I is not a GQR of S then
I fails some test case from T .

The following, previously defined [9] construction,
completes a partial FSM S to form a completely-specified
FSM M(S).

Definition 11: Given FSM S = (S, s0, X, Y, h), M(S) is
the FSM (S ∪ {e}, s0, X, Y, h′) in which e 6∈ S and h′ is
defined by the following:

1) If s 6= e and (s, x) ∈ dom h then h′(s, x) = h(s, x).
2) If s = e or (s, x) 6∈ dom h then h′(s, x) = {(e, y)|y ∈

Y }.

The FSM S1 (also shown in Figure 1) and its com-
pletion are shown in Figure 4. As before, for example,
the label x2/y, x2/z on an arc means that there are two
transitions, with labels x2/y and x2/z, with the same
start and end states.

The FSM M(S) (Definition 11) behaves like S until it
receives an input x in a state s such that h is not defined
on (s, x) and it then moves to the new state e and all
outputs are possible in response to an input. We now
show how testing from partial FSM S for GQR relates
to testing for reduction from the (completely-specified)
FSM M(S); this generalises the result of Petrenko et al.
[9] that was for observable FSMs with harmonised traces.

Proposition 7: Given partial FSM S that forms the spec-
ification and completely-specified FSM I that models an
SUT, I is a GQR of S if and only if I is a reduction of
M(S).

Proof: First let us suppose that I is a GQR of S and
we are required to prove that I is a reduction of M(S).
We will prove that every trace of I is also a trace of
M(S). Proof by contradiction: let us suppose that there
are traces of I that are not in L(M(S)) and let ρ̄ be a
minimal such trace and so ρ̄ = ρ̄′x/y for some trace ρ̄′,
x ∈ X , and y ∈ Y . Trace ρ̄ cannot take M(S) to state
e, since in this case all outputs would be possible when
M(S) is given x after ρ̄′ (contradicting the minimality
of ρ̄). Thus, ρ̄′ is a trace of S and in S the response to x
is specified in all states reached by ρ̄′. But, by definition,
since ρ̄ = ρ̄′x/y is a trace of I and I is a GQR of S , we
have that ρ̄ is a trace of S . It is now sufficient to observe
that L(S) ⊆ L(M(S)).

Now let us suppose that I is a reduction of M(S) and
we are required to prove that I is a GQR of S . Proof
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``
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Fig. 4. Partial FSM S1 and its completion M(S1)

by contradiction: let us suppose that I is not a GQR of
S . Since I is completely-specified we have some ρ̄′ ∈
L(I)∩L(S), x ∈ X , and y ∈ Y such that the response of
S to x is specified in all states reached by ρ̄′ and ρ̄′x/y ∈
L(I) \ L(S). But, by definition, since the response of S
to x after ρ̄′ is specified we must have that S and M(S)
have the same set of possible outputs in response to x
after ρ̄′. This contradicts I being a reduction of M(S) as
required.

We therefore know that to test whether the SUT is
a GQR of S it is sufficient to determine whether an
FSM I that models the SUT is a reduction of M(S). The
following two results will allow us to reason about the
effectiveness of test suites when testing from partial FSM
S and completely-specified FSM M(S).

Proposition 8: Given partial FSM S that forms the spec-
ification and completely-specified FSM I that models an
SUT, if I fails test case t ∈ T (S) when testing from S
then I fails test case t when testing from M(S).

Proof: Since I fails t when testing from S there is
some trace ρ̄ = ρ̄′x/y in L(I) such that ρ̄′x/y′ ∈ L(t) for
some y′ ∈ Y and ρ̄ 6∈ L(S). Let ρ̄ be a minimal such trace.
By the definition of T (S) the response to x is specified
in all states of S reached by ρ̄ and so by the definition
of M(S) we have that the set of possible responses to
x after ρ̄′ are the same in S and M(S). But this implies
that I fails t when testing from M(S).

In the proof of Proposition 9 below we will use the
notion of a prefix of a test case, which can be constructed
by deleting subtrees. We use the observation that if
t 6∈ T (S) then the set of prefixes of t that are in T (S)
(pref(t) ∩ T (S)) contains a unique maximal element.

Proposition 9: Given specification (partial) FSM S and
completely-specified FSM I that models an SUT, if I fails
test case t ∈ T (M(S)) when testing from M(S) then
I fails the maximal prefix t′ of t that is in T (S) when

testing from S .
Proof: Since I fails test case t when testing from

M(S) we have that I can produce a trace ρ̄, in response
to t, that is not a trace of M(S). Let ρ̄ be some minimal
such trace. Then ρ̄ = ρ̄′x/y for some ρ̄′ ∈ L(S) and input
x and, by the definition of M(S) and ρ̄, we have that
the response to x is specified in all states of S reached
by ρ̄′. Thus, as in the proof of Proposition 8, the possible
responses to x after ρ̄′ are the same in S and M(S).
Further, the maximal prefix t′ of t that is in T (S) must
have a state reached by ρ̄′ from which input x is applied.
This implies that I fails t′ when testing from S and so
the result follows.

We can therefore convert a test suite T for reduction to
M(S) into a test suite (called R(T )) for checking whether
the SUT is a GQR of S (we use maximal prefixes that
are in T (S)). Thus, we can use methods for testing from
a completely-specified FSM when testing from a partial
FSM.

Theorem 1: Given partial FSM S , if T is m-complete
when testing from M(S) then the test suite R(T ) is m-
complete when testing from S .

Proof: This follows from Proposition 9.
In the next section we explore the efficiency of m-

complete test suites generated from M(S).

6 TEST SUITE EFFICIENCY

We now address the issue of efficiency, where a test suite
T is efficient if T achieves the test objective (in this case,
being m-complete) and T is minimal for some notion
of minimality. We consider what happens to reduced
m-complete test suites for M(S) when adapted for use
with S . We would like the process of converting a test
suite for M(S), for use with S , to not introduce any
redundancy: if we generate a non-redundant test suite T
for M(S) then the test suite R(T ) is guaranteed not to
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be redundant for M(S). In this section we prove that the
above property holds and then consider other notions of
minimality.

In this section we first define what we mean by a test
suite being reduced, with this essentially requiring that
the test suite is m-complete but loses this property if we
make it smaller (by replacing any test case by its proper
prefixes).

Definition 12: Given partial FSM S , m-complete test
suite T ⊆ T (S) is reduced for S if for every test case
t ∈ T we have that (T ∪pref(t))\{t} is not m-complete.

First we prove a result regarding reduced test suites.

Proposition 10: Given partial FSM S , if m-complete test
suite T is reduced for M(S) then T ⊆ T (S).

Proof: Proof by contradiction: assume that m-
complete test suite T is reduced for M(S) and T 6⊆ T (S).
Let t ∈ T be such that t 6∈ T (S) and let t′ be the maximal
prefix of t that is in T (S). Since T is m-complete and
reduced for M(S) there is some FSM I with at most
m states such that I fails t but passes t′. But since t′

is the maximal prefix of t that is in T (S), all outputs
are allowed by M(S) in response to the inputs in t that
follow t′. Thus, since I passes t′ it must pass t and this
provides a contradiction as required.

We obtain the following result, which shows that if we
take a test suite T that is reduced for M(S) then the test
suite R(T ) is reduced for S .

Theorem 2: Given partial FSM S , if T is m-complete
and reduced for M(S) then the test suite R(T ) is m-
complete and reduced for S .

Proof: By Theorem 1, R(T ) is m-complete for S . Since
T is reduced for M(S), by Proposition 10 we know that
T ⊆ T (S) and so we have that R(T ) = T . Consider
some test case t ∈ T . Since T is reduced for M(S) there
is some FSM I with at most m states that fails t when
testing from M(S) but that passes all test cases in (T ∪
pref(t))\{t} when testing from M(S). Since t ∈ T (S), by
Proposition 9, I fails t when testing from S . Further, by
Proposition 8, I passes all test cases in (T ∪pref(t))\{t}
when testing from S . The result thus follows.

This shows that reduced test suites for M(S) are
mapped to reduced test suites for S ; the mapping does
not introduce redundancy. We might be interested in
optimisations when generating an m-complete test suite
from M(S) and so we consider what happens to a
minimal test suite for M(S) for other notions of mini-
mality. However, there are several alternative notions of
minimal. For example, we want to minimise the number
of test cases if the reset between test cases is expensive
[28], [29], [30]. In other cases we are interested in the test
suite size: the sums of the lengths of the test cases. We
thus introduce the notion of a cost function.

Definition 13: Given test suite T , we have the follow-
ing three cost functions:

1) f1(T ) =
∑

t∈T
|t|

2) f2(T ) =
∑

t∈T
ℓ(t)

3) f3(T ) = |T |

Here |t| is the number of states in t, ℓ(t) is the length
of the longest trace in L(t), and |T | is the number of test
cases in T (the number of resets used with T ).

Definition 14: Given partial FSM S and integer m, test
suite T is minimal for S and cost function fi if T is m-
complete and for every test suite T ′ that is m-complete
for S we have that fi(T ) ≤ fi(T

′).
We now show that minimality is preserved.
Theorem 3: Given partial FSM S and cost function fi,

1 ≤ i ≤ 3, if T is minimal for M(S) and fi then R(T ) is
minimal for S and fi.

Proof: First consider f1. By definition, a minimal
test suite for f1 is reduced. Thus, since T is reduced,
by Proposition 10 we have that R(T ) = T and by
Theorem 2 we have that R(T ) is reduced for S . Proof by
contradiction: let us suppose that T is not minimal for S .
Then there is an m-complete test suite T ′ for S such that
f1(T

′) < f1(T ). However, since T ′ is m-complete for S ,
by Proposition 8 we have that T ′ is also m-complete for
M(S) and this contradicts the minimality of T for M(S)
as required. The proof for f2 follows in a similar way.

Now consider f3. Since T is minimal for M(S) there
is a reduced m-complete test suite T2 for M(S) with
|T | = |T2| and this is also minimal. Since f3(T ) = f3(T2)
it is sufficient to prove that T2 is minimal for S . By Propo-
sition 10 we have that R(T2) = T2 and by Theorem 2 we
have that T2 is reduced for S . Proof by contradiction: let
us suppose that T2 is not minimal for S . Then there is an
m-complete test suite T ′ for S such that f3(T

′) < f3(T2).
However, since T ′ is m-complete for S , by Proposition
8, T ′ is also m-complete for M(S) and this contradicts
the minimality of T for M(S) as required.

The above results show that reduced/minimal test
suites for M(S) get mapped to reduced/minimal test
suites for S (three notions of minimality). Thus, the
mapping from test suites for M(S) to test suites for
S does not introduce redundancy and there is value in
finding a minimal test suite for M(S).

7 CONCLUSIONS

This paper considered the problem of generating an
m-complete test suite from a partial FSM S . We ex-
plored implementation relations for the case where
a completely-specified FSM I models the SUT and
a partial FSM S is the specification. We considered
quasi-equivalence and quasi-reduction but found that
the previous definitions for observable partial FSMs
with harmonised traces could not be used in the
more general setting. We therefore generalised these
to generalised-quasi-equivalence (GQE) and generalised-
quasi-reduction (GQR).

Having defined GQE and GQR, we concentrated on
testing for GQR. We found that we can complete S to
form a completely-specified FSM M(S) such that we
can map an m-complete test suite for M(S) to an m-
complete test suite for S . Thus, we can use methods for
testing from a completely-specified FSM to test from any
partial FSM.
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We then considered efficiency. We defined the notion
of an m-complete test suite T being reduced: for all t ∈
T , if we remove t from T or replace t by a proper prefix
of t then the resultant test suite is not m-complete. We
proved that reduced test suites for M(S) are mapped to
reduced test suites for S . Similarly, a minimal test suite
for M(S) is mapped to a minimal test suite for S .

One of the main contributions of this paper was to
show that the problem of testing (for GQR) from a partial
FSM can be expressed in terms of the better understood
problem of testing from a completely-specified FSM.
One problem for future work is to determine whether
the approach can be extended to testing for GQE. The
approach used in this paper was based on proving that
I is a GQR of S if and only if I is a reduction of M(S).
One might look to prove that I is GQE to S if and only if
I is equivalent to M(S). However, such a result will not
generally hold since an FSM I that is quasi-equivalent to
S does not have to implement all of the transitions added
to S to form M(S). For example, if x is not specified in
a state of S reached by trace ρ̄ then M(S) produces all
possible outputs in response to x after ρ̄ but an FSM
I that is GQE to S might only produce some of these
outputs in response to x after ρ̄. Fortunately, in such
circumstance the test generation process removes any
test cases that check the output in response to x after
ρ̄. As a result, it may still be possible to utilise a test
suite T that tests whether I is equivalent to M(S); we
test the SUT with R(T ). Testing for GQE is a topic for
future work.

The ideas in this paper have the potential to have
an impact elsewhere. For example, if we wish to devise
methods for transforming a partial FSM specification M
into an observable partial FSM M ′ then we might wish
to know that the same set of SUTs are correct imple-
mentations of M and M ′; we require general implemen-
tation relations to reason about this. There is also the
interesting question as to whether the results, regarding
the completion M(S), have any implications regarding
the problem of distinguishing states and whether, for
example, we can map the problem of distinguishing a set
of states of a partial FSM M to a corresponding problem
of distinguishing a set of states of completely-specified
FSM M(S). This might allow us to reuse techniques,
complexity results and bounds.
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