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ABSTRACT: The defibrillation of lignocellulosic matter from pea waste using a dual approach 

of twin-screw extrusion and microwave hydrothermal treatment (MHT) in the presence of water 

alone from 120 to 200 oC is reported.  Gradual “scissoring” of biomass macrofibres to microfibrils 

was observed alluding to the Hy-MASS (Hydrothermal Microwave-assisted Selective Scissoring) 

concept. The morphology and properties of two types of MFC: PEA (non-extruded) and EPEA 

(extruded) were compared. The EPEA samples gave higher crystallinity index and thermal 

stability, reduced lignin and hemicellulose content, narrower fibril width, better water holding 

capacity slightly and higher surface area compared with their non-extruded counterparts (PEA). 

Twin screw extrusion as a pretreatment method followed by MHT represents a potential way to 

produce microfibrillated cellulose with improved physical performance from complex biomass 

sources.

KEYWORDS: microfibrillated cellulose, spent pea biomass (haulm), hydrothermal microwave 

treatment, twin-screw extrusion
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INTRODUCTION

As the second most important legume after the common green bean,1 peas (Pisum sativum ) are 

grown widely all over the world.2 In 2017, 40 thousand hectares of peas were grown in the UK, 

yielding an average of 4 tons per hectare.3 In general, more than 30% (w/w) waste is produced 

during pea harvesting, which is often left on farmland.4 Anecdotally, more than enough pea waste 

is left on land maintaining soil health and nutrition.  Thus, there is an excess which serves no 

additional benefit and probably decays.  Therefore, reutilization or valorization of unavoidable pea 

waste, e.g. leaves, vines, pods and stalks, (also known as haulm) represents a significant 

lignocellulosic resource for chemical and economic exploitation,5 but also an opportunity to 

improve the environment by divert waste .6-8, 13 Recently, nanocellulose has emerged as  

biomaterial with great promise because of its application in food,9 electronics,10 catalysis,11 

hydrocolloids,12 biomedical materials13,14 due to its excellent properties including high mechanical 

strength, high surface area and enhanced optical properties.15,16 The high demand of nanocellulose 

is expected to expand the market size from USD 240.7 million in 2017 to USD 661.3 million by 

2023 with a 18.4% growth rate.17  

Nanocellulose is commonly described as nano-sized cellulose fibrils which are derived from plant 

cell walls or bacteria.18 Generally, nanocellulose is classified into: i. nano-objects, namely, 

cellulose nanocrystals (CNC or NCC, width = 3-10 nm, aspect ratio = 5-50) and cellulose 

nanofibrils (CNF or NFC, width = 5-30 nm, aspect ratio>50); ii. nanostructured celluloses, namely, 

microcrystalline cellulose (CMC or MCC, width = 10-15 μm, aspect ratio<2), and; iii. 

microfibrillated cellulose (MFC or CMF, width = 10-100 nm, length=0.5-10 μm) according to 

TAPPI WI3021.19,20
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Traditionally, nanocellulose is made from wood pulp.  An extensive number of studies have been 

carried out on production of nanocellulose through conventional mineral acid-catalysed hydrolysis 

and/or enzymatic digestion followed by physical processing (e.g. ultrasound, mechanical 

shear).21,22 However, such treatments are deemed energy- and time-consuming, costly and 

environmentally-hazardous but are necessary due to the inherent, stable, inter-twined structure of 

the lignocellulosic matrix.23,24 Thus, pretreatment becomes one of the crucial techniques to change 

lignocellulosic biomass to high-value chemicals or materials.25,26 During the (pre)treatment of 

lignocellulosic biomass, both the physical macro- and micro-structure and the chemical 

composition of the biomass changes.27 For example, the degree of crystallinity of cellulose can be 

altered as amorphous lignin/hemicellulose which surrounds cellulose fibres are destroyed and the 

specific surface area (SSA) can be improved due to diminution of macrofibres.28,29 Normally, the 

pretreatment process can be classified into chemical (e.g. acid, alkali, ionic liquid treatment),30-34 

physical (mechanical splintered, microwave, ultrasound ),35-37 biological (e.g. white rot fungi, 

brown rot fungi, enzymatic)38 or physicochemical combined methods (e.g. steam explosion, CO2 

explosion).39,40 Therefore, alternative methods for nanocellulose production have been sought, for 

example, Chen et al. 41 reported that the recyclable organic acid hydrolyzed lap pulp at atmospheric 

pressure to produce the CNC and CNF, Nurul et al.42 produced CNC nanocellulose from catalytic 

ionic liquid hydrolysis, Prasad et al.43 used fungus to prepare cellulose nanowhiskers (CNW) by 

hydrolysing the microcrystalline region of cellulose. Matharu et al. and de Melo et al. reported a 

novel acid-free microwave hydrothermal treatment (MHT) method to obtain pseudo-

nanocellulosic fibrils and/or nanocrystals without any additional chemicals.20,44 

Herein, the importance of this study is to explore the potential valorization of pea waste (rather 

than traditional wood pulp) as a source of defibrillated celluloses using twin screw extrusion as a 
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pretreatment prior to microwave hydrothermal treatment (MHT) (Figure 1).  Twin screw extrusion 

was selected as the pretreatment for being continuous, low cost, requiring no heat and the 

application of  high shearing forces in the biomass45 facilitates cell wall rupture and removal of 

non-cellulosic matter.  The resultant physico-chemical properties of extruded pea waste (EPEA) 

will be compared with their non-extruded counterparts (PEA) so as to assess the influence of 

extrusion as a pretreatment method.

Figure 1. Process diagram to produce fibrillated cellulose pea waste using MHT.

EXPERIMENTAL

Materials
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Pea (Pisum sativum) waste including leaves, vines, stems (haulm) was collected immediately after 

harvest from farmland nearby York (England, United Kingdom). The fresh biomass was then 

passed through a twin-screw press juicer (Angelia, 7500 Series, 180W) with a continuous shearing 

force between the screws and barrel to obtain the extruded pea pulp. Subsequently, both non-

extruded pea waste and pressed pea waste were dried at room temperature for 2 weeks, milled in 

a knife miller (Retsch™ Knife Mill Grindomix GM300) and sieved (200 μm). The samples were 

subjected to Soxhlet extraction (ethanol, 24 h) to remove pigments and other organic compounds 

prior to the final microwave hydrothermal treatment (see Figure 1). The pea celluloses treated 

without extrusion pretreatment were coded PEA whereas, the extruded pretreated pea celluloses 

were coded EPEA.   All solvents used were analytical or high-performance liquid chromatography 

(HPLC) grade and purchased from Sigma-Aldrich or Fisher Scientific.

The appropriate raw materials (either PEA or EPEA) were processed with a CEM Mars 6® closed 

vessel Microwave, operating in 1200 W, 2.45 GHz. EasyPrep Plus® closed vessels (Teflon, 100 

mL). Dried pea or extruded pea (2 g) waste was mixed with distilled water (70 mL) with a ratio of 

1: 35 (w/v) and subjected to MHT at different temperatures and, subsequently, freeze-dried for 24 

h to obtain the desired MFC. Visual images of the product and hydrolysate are shown in Figure 2. 

The yield of the microfibrillated cellulose (MFC) was calculated according to equation (1):

Yield% = (mass of MFC / mass of dried raw material) × 100       (eq. 1)

The code used for each MFC is based on the MHT temperature used. For example, P120 refers to 

the non-extruded pea waste that was subjected to 120 °C MHT and EP160 refers to the extruded 

pea waste subjected to MHT at 160 °C.

Characterisation methods
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For physicochemical characterization of PEA and EPEA, TGA, ATR-IR, powder XRD, Solid 

State 13C CPMAS NMR, SEM, TEM, HPLC and nitrogen adsorption porosimetry were 

performed. Crystallinity index was calculated using the NMR C4 peak separation method.46 For 

TEM images, 2% mass ratio of the samples were dispersed in water with a 1500 W ultrasound bath 

for 20 min in order to get good clarity images. The widths of MFC were calculated by ImageJ 

software. Full instrument details are given in ESI. The water holding capacity (WHC: g H2O /g 

sample) was determined using literature methodology47.

Figure 2. a. PEA and EPEA residues post MHT (120 –200 °C), b. hydrolysates from PEA and 

EPEA post MHT (120 –200 °C)

RESULTS AND DISCUSSION

Yield and CrI (Crystallinity Index)

The yields of PEA and EPEA produced at several MHT temperatures (120 oC-200 oC) are shown 

in Figure 3. During MHT, the yield of PEA and EPEA falls from 52.7 % to 32.4 % and from 66.0 

% to 42.0 %, respectively as the processing temperature increases. In general, the EPEA samples 

display a higher yield than PEA at the same processing temperatures. The yield of PEA samples 
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starts to decrease sharply (approximately 6.1 %) after 140 oC. For EPEA celluloses, the yield 

appears to remain relatively stable from 120 to 160 oC and decrease sharply.  Higher yields with 

EPEA are probably due to the effect of extrusion which breaks the ordered structure of biomass 

and removes some hemicellulose and amorphous cellulosic matter by the shearing force between 

screws, biomass and barrel. Thus, the material is more cellulosic in character with less 

hydrolysable content.

Figure 3. The final yield (%) of PEA and EPEA, Error bars represent standard deviation (n = 3).

The change in CrI (crystallinity index) of PEA and EPEA, determined from 13C CPMAS 

spectroscopy, with respect to MHT processing temperature are presented in Figure 4. The EPEA 

samples display a higher CrI than their corresponding PEA counterparts.  With increasing MHT 

temperature, an obvious increase in the CrI is noted after 180 oC for PEA while the CrI of EPEA 

significantly increases after 160 oC (approx. Δ =1.65 %-6.3 % for PEA and 2.6 %–5 % for EPEA). 

These differences could be related to the two stages of the Hy-MASS concept44, i.e., in the first 

step, the amorphous part in biomass (starch, hemicellulose) are selectively and progressively 
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removed (scissoring) from the lignocellulosic matrix (120-180 oC)48 which correlates well with 

compositional data: NMR,XRD,TGA (see later), and, in the second step, softened amorphous 

cellulose and lignin embedded in cellulose microfibrils is released through a proton transfer 

mechanism at higher temperatures (>180 oC). Extrusion as a pretreatment “softens” the material 

such that it can be hydrolyzed easier at a lower temperature (160 oC compared with 180 oC).

Figure 4. Crystallinity Index (CrI) calculated from solid state 13C CPMAS NMR data for PEA 

and EPEA, the error bars display standard deviation (n = 3).

Thermogravimetric analysis (TGA)

The TGA, and respective first derivatives (DTG), thermograms of PEA and EPEA cellulose are 

shown in Figure 5. PEA gave a higher residue content than EPEA (approximately 25.6% for PEA 

and 19.2% for EPEA), probably due to the fact that during extrusion water-soluble inorganic salts, 

for example, potassium, phosphorus, aluminium and iron, present in the biomass were removed, 

which correlated well with the ICP analysis (see Fig. S1). Furthermore, during MHT dissolvable 

inorganic minerals, except calcium, were removed and thus, no significant difference in the final 
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10

residue mass was noted. Three main bands were observed from the DTG: i. loss of moisture and 

volatiles, (around 4% to 10%, Td=50-125 °C); ii. hemicellulose decomposition at front shoulder 

of the main peaks ranging from 250-280°C, and; iii. a mass loss (approximately 60%) between 

280-390 °C due to cellulose decomposition. The peaks indicative of hemicellulose (250-280 °C) 

for both PEA and EPEA samples started to disappear with increasing MHT temperature and at 200 

°C these peaks were no longer detectable (see blue arrows of DTG of PEA and EPEA in Figure 

5). The decomposition temperatures of cellulose are shifted to higher temperatures (see black 

arrows of DTG of PEA and EPEA in Figure.5) with increasing MHT temperature, i.e., for non-

extruded pea waste: native PEA (Td,313.2 oC); P120 (Td,344.1 °C); P140 (Td,346.8 °C); P160 

(Td,351.3 °C); P180 (Td,365.8 °C); P200 (Td,373.9 °C), and for; extruded pea waste: native EPEA 

(Td,335.3 °C); EP120 (Td,345 °C); EP140 (Td,345.7 °C); EP160 (Td,354 °C); EP180 (Td,364 

°C); EP200 (Td,373.2 °C), suggesting depletion of  amorphous regions of cellulose fibrils 49 whilst 

retention of highly compact crystalline cellulose resulting in higher decomposition temperature. 

EPEA samples gave a higher decomposition temperature than their PEA counterparts showing the 

effectiveness of pretreatment.
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11

Figure 5. TGA thermograms of PEA and EPEA: a) TG of PEA, b) DTG of PEA, c) TG of EPEA 

and d) DTG of EPEA.

X-Ray powder diffraction analysis (XRD)

The XRD patterns of PEA and EPEA are shown in Figure 6. Characteristic peaks for crystalline 

cellulose peaks were observed (2θ: 16.5°, 22.5° and 34.5°) and with higher MHT temperature the 

crystalline diffraction peaks at 16.5o seemed to be more intense which revealed higher crystallinity 

(as already evidenced by 13C CPMAS in Figure. 4). These results indicate that after high 

temperature MHT both PEA and EPEA samples have higher decomposition temperatures 

indicative of an increase in the degree of crystallinity, loss of amorphous cellulose and removal of 

hemicellulosic impurities.  The additional peaks at 15.1°, 24.4° and 30° are suspected to be 
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12

insoluble calcium salts (e.g. CaC2O4) which exist in plant cell wall and vacuoles.50 With the 

increasing MHT the XRD patterns for calcium oxalate in both PEA and EPEA samples became 

more intense due to the hydrolysis of amorphous polysaccharides and organic molecules from the 

lignocellulosic matrix. Also, the EPEA samples show a higher crystallinity and more intense 

calcium salts peaks than the non-extruded PEA, probably due to the extrusion disrupting cell wall 

structure of pea waste and aiding leaching of amorphous contents and soluble salts.

Figure 6. XRD diffractograms of a) PEA and b) EPEA varying from 120 to 200 oC. The 

cellulose peaks are shown in black and CaC2O4 peaks in red Planes.

ATR-IR

The ATR-IR analysis provides evidence for the presence of cellulose as the main component of 

the resulting product, as well as hemicellulose/lignin (see Figure 7). The O-H stretching vibration 

at about 3300 cm-1 was correlated to the hydroxyl moieties in cellulose I.51 Bands at 2920 cm−1 

refer to C-H stretch from cellulose/hemicellulose. The absorption bands at 1735 cm−1 were 

attributed to the carbonyl group from residual hemicellulose and lignin present in PEA and EPEA. 

The intensity of these bands decrease with increasing MHT temperature indicating that 
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13

hemicellulose/lignin were gradually removed from cellulose during the microwave treatment.52 

Minor O-H bending vibration at about 1620 cm-1 was attributed to bonded water existing in the 

material. The bands at 1030 cm−1 corresponded to C–O and C-C stretching53 confirming the 

presence of cellulose in PEA and EPEA, which became more evident at higher MHT temperatures 

since the non-cellulosic matter was gradually removed and therefore showed a purer cellulose 

spectrum.

Page 13 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



14

Figure 7. ATR-IR of a) PEA and b) EPEA varying from 120 to 200 oC.

Solid state 13C CPMAS NMR

The stacked 13C CPMAS spectra of PEA and EPEA samples with respect to increasing MHT 

temperature are shown in Figure 8. The signal at 175  ppm corresponds to the carbonyl carbon of 

carbonyl/carboxylic groups present in strongly bound cell wall polysaccharides (e.g. 

hemicelluloses) in pea waste.54 The signals for cellulose carbons (C1 to C6)55-58 are shown ranging 

from 110 ppm to 60 ppm. The peaks at 20 ppm may be attributed to acetyl group in polysaccharides 

(e.g. hemicelluloses) existing in the pea waste.59-64 With increasing MHT temperature the signals 

of hemicellulose and/or lignin started to disappear especially after 180 °C, indicative of hydrolysis 

and depolymerization of the non-cellulosic matter65.  At the same time, a significant change in 

cellulose structure was observed; the ratio of cellulosic surface/amorphous in C4 and C6 (84 ppm 

and 62 ppm, respectively) and interior/crystalline in C4 and C6 (89 ppm and 65 ppm, 

respectively)66 was observed (arrows in yellow area Figure 8).  The peaks representing crystalline 

regions starts to increase whilst the amorphous peaks start to reduce. This suggests that amorphous 

parts from the cellulose surface were also gradually hydrolyzed by MHT and the crystalline 

character of cellulose increased. These results correlate well with thermogravimetric data reported 

earlier and HPLC results to be discussed later. 
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Figure 8. 13C CPMAS NMR spectra of a) PEA and b) EPEA samples with a labelled illustration 

of a cellulose moiety. Arrows show the ratio of crystalline/interior: amorphous/surface cellulose

TEM and SEM

Microfibrillated cellulose (MFC) and cellulose nanocrystals (CNC) were successfully evidenced 

by TEM through measurement of their fibril dimensions (Figure 9). In MFC the microfibrils and 

elementary fibrils (3–5 nm in width and a few μm in length) in both amorphous and crystalline 

regions66-68 were present. The cellulose nanocrystals (width 5–70 nm and length <500 nm) which 

originated from crystalline regions of elementary fibrils were found in EP180, P200 and EP200 

after the hydrolysis of amorphous regions at high temperature (above 180 °C) (see ESI Figure S2). 

This further confirmed the effect of the Hy-MASS concept, i.e. during MHT non-cellulosic 

biopolymers and amorphous regions of cellulose are hydrolyzed and cellulose nanocrystals are 

released above 180 oC.69 Comparison of the two samples revealed that the EPEA series displayed 
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a narrower width than their non-extruded counterparts (difference of ca. 2-4 nm). Also, 

nanocrystals were detected only in EPEA samples at 180 oC possibly implying that amorphous 

regions of pea cellulose were breached during extrusion and thus became easier to hydrolyse 

during MHT.

The grey regions which surround the nanofibrils are possibly residual amorphous matter (mainly 

include hemicellulose, lignin and some probably amorphous superficial cellulose),44 with 

increasing MHT temperature, the gradual removal of grey regions occurred but some still persisted 

entangled with the nanofibrils and crystals even at a temperature of 200 oC (see ESI Figure S2). It 

could be that hemicellulose were “scissored” gradually during MHT but the residual lignin 

fragments could not be totally removed or the pseudo-lignin which is defined “an aromatic material 

that yields a positive Klason lignin value that is not derived from native lignin” were formed during 

the (MHT) process.70 Interestingly, the extruded samples presented a less dark grey area than 

compared with their non-extruded counterparts. These result also prove that there are two steps in 

MHT: i. the outside amorphous regions in microfibrillated cellulose were “cut” progressively by 

microwave treatment up to 180 oC, and; ii. the nanocrystals which existed in elementary fibrils 

were released after 180–200 °C.
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Figure 9.   TEM images of PEA (120 oC,180 oC) and EPEA ((120 oC,180 oC)) samples (scale 

bar = 200 nm). The width of the MFC were labeled.

The SEM images from the surfaces of PEA and EPEA varying from 120 to 200 oC are shown in 

Figure 10. In the PEA samples, the fibre matrix presented a rough and more intact structure whilst 

the EPEA samples displaed smoother, thinner and heavily distorted fibres due to high shear created 

by extrusion. The EPEA samples tended to exhibit a more porous and corrugated surface, implying 

that the pretreatment made it easier for MHT to disrupt the tissue network of MFC.71 
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Figure 10. Morphological features of PEA and EPEA varying from 120 °C to 200 °C (scale bar 

= 500 μm). The additional SEM images are shown as insets (scale bar = 2 μm).

HPLC

The HPLC analyses of the hydrolysate obtained from MHT of the two samples (PEA and EPEA) 

are presented in Figure 11. In general, the sugar yield from PEA hydrolysate remained higher than 

the EPEA series. The yield of glucose decreased with increasing MHT processing temperature, 5-

hydroxymethylfurfural (HMF) and furfural appeared after 180 °C. This can be related to the 

hydrolysis of polysaccharides in water below 220 °C.49 Glucose could be derived from amorphous 

cellulose and hemicellulose, and 5-hydroxymethylfurfural (HMF) is considered the major 

secondary byproduct from glucose degradation. Xylose is mainly derived from residual 

hemicellulose since, the hydrolysis product was mainly from the amorphous part of the biomass 

and the crystalline region would not take part in the MHT reaction, thus the high amount of 

amorphous cellulose and hemicellulose would induce a higher sugar yield. After 180 °C，the part 

of glucose converted to HMF led to a yield reduction. Conversely, the xylose conversion to furfural 

Page 18 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



19

did not affect its yield, hence, it may be reasonable to suppose that with higher temperature, 

hemicellulose has a higher conversion to monosaccharides.72
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Figure 11. HPLC data for hydrolysates from PEA and EPEA after MHT (a) Products and 

subproducts from lignocellulosic, (b) conversion pathways to 5-HMF and furfural.

Water Holding Capacity (WHC)

The water holding capacity (WHC) of cellulose samples is shown in Figure 12.  Both types of 

starting material (native biomass) have lower hydration capacity compared to their MFC products. 

The EPEA samples displayed a higher WHC than their non-extruded PEA counterparts 

(approximately 5% to 15% higher). It is well known that insoluble cellulose can hold water by 

absorbing water in their fibril network through swelling properties,44 and the water holding 

capacity of MFC is related to the particle size and specific surface area.47 During the gradual 

selective removal of amorphous cellulose by microwave treatment, particle size diminished and 

consequently the surface area of cellulose increased, improving hydration capacity. However, the 

water holding capacity of PEA and EPEA samples remained constant irrespective of MHT 

temperature (7 g and 8 g, respectively) which may due to the higher crystalline index of cellulose 

making it more hydrophobic.
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Figure 12. WHC of PEA and EPEA (g of water per g of dry sample). Values are average of 

duplicate experiments.

N2 Adsorption porosimetry

The BET surface area, BJH average pore size and BJH pore volume for PEA and EPEA samples 

are shown in Figure 13. Both types of MFC display considerable surface area and porosity. For 

PEA samples, the BET specific surface area decreases initially up to 160 oC, and then increases 

from 160 to 200 oC; the BET surface area of EPEA samples decreased significantly from 120 to 

160 oC (30 to 15 m2/g) and then rose from 160 to 200 oC (15 to 37 m2/g) which agrees with the 

scissoring of amorphous hemicellulose and lignin from cellulosic matrix. In general, EPEA 

samples displayed a higher BET surface area than their PEA counterparts (about 2-30 m2/g higher), 

which could be explained by the destructive nature of the extrusion process destroying the original 

lignocellulosic construct. 66,73 The BJH average pore size was approximately 10 nm (between 2 

and 50 nm) and thus these materials can be classified as mesoporous. 44 The pore volume of  both 

samples presents a same pattern as for BET surface area: the pore volume of PEA and EPEA 

samples slightly decrease at first but then increase.  The decrease in pore volume at may be 

associated with pores collapsing or becoming blocked which then become unblocked (melting and 

leaching of material from within pores) at higher MHT temperatures.  Nevertheless, even though 

some useful information was obtained from N2 adsorption porosimetry, this method is not the 

optimum technique for the analysis of “soft materials” such as cellulose since hornification, bound 

water and other artefacts can affect the results.
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Figure 13. Porosimetry data (BET Specific surface area – SSA, BJH pore volume and BJH 

average pore size) for PEA (a) and EPEA (b) samples.

CONCLUSIONS

The feasibility of adopting twin-screw extrusion as a pretreatment method followed by microwave 

hydrothermal treatment (MHT) to produce mesoporous MFC from waste pea biomass is 

demonstrated.  The amorphous regions in both samples were hydrolyzed in two stages during the 

microwave treatment evidencing the HyMass concept and scissoring of cellulose.  The EPEA 

samples presented relatively better physical properties (high crystalline index, high hydration 

capacity and large surface area) than their non-extruded PEA counterparts. Thus, within the 

concept of green and sustainable chemistry, utilisation of waste as a feedstock (namely, 

unavoidable food supply chain wastes) within the concept of a biorefinery could be used to yield 

chemicals, materials (in this case MFC) and bioenergy.  MFC production is much simpler and 

more environmentally-friendly than compared with conventional processing of wood pulp.
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TOC Graphic

Defibrillation of twin-screw extruded spent pea biomass via Hydrothermal Microwave Treatment 

(MHT) to yield micro-fibrillated cellulose (MFC) 
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