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Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models
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We introduce a family of nonintegrable 1D lattice models that feature robust periodic revivals under a
global quench from certain initial product states, thus generalizing the phenomenon of many-body scarring

recently observed in Rydberg atom quantum simulators. Our construction is based on a systematic
embedding of the single-site unitary dynamics into a kinetically constrained many-body system. We
numerically demonstrate that this construction yields new families of models with robust wave-function

revivals, and it includes kinetically constrained quantum clock models as a special case. We show that
scarring dynamics in these models can be decomposed into a period of nearly free clock precession and an
interacting bottleneck, shedding light on their anomalously slow thermalization when quenched from

special initial states.
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Introduction.—The understanding of ergodicity and
thermalization in isolated quantum systems iS an open
problem in many-body physics, with important implica-
tions for a variety of experimental systems [1-5]. On the
one hand, this problem has inspired important develop-
ments such as the eigenstate thermalization hypothesis
(ETH) [6-8], which establishes a link between ergodicity
and the properties of the system’s eigenstates. On the other
hand, strong violation of ergodicity can result in rich new
physics, such as in integrable systems [9], Anderson
insulators [10], and many-body localized phases [11-13].
In these cases, the emergence of many conservation laws
prevents the system, initialized in a random state, from fully
exploring all allowed configurations in the Hilbert space,
causing a strong ergodicity breaking.

A recent experiment on an interacting quantum simulator
[14] has reported a surprising observation of quantum
dynamics that is suggestive of weak ergodicity breaking.
Utilizing large 1D chains of Rydberg atoms [14-16], the
experiment probed a “global quench” [17] by exciting the
atoms into an out-of-equilibrium state drawn from an
“infinite temperature” ensemble. For the initial Néel state,
the experiment observed persistent revivals of local observ-
ables in the quantum dynamics, while other initial states
exhibited fast equilibration without any revivals. The stark
sensitivity of the system’s dynamics to the initial states
appeared at odds with a “strong” ETH [18-20].

In Refs. [21,22] the nonergodic dynamics of a Rydberg
atom chain was interpreted as a many-body generalization
of the classic phenomenon of quantum scars [23]. For a
quantum particle in a stadium billiard, scars represent an
anomalous concentration of the particle’s trajectory around
(unstable) periodic orbits in the corresponding classical
system, which has an impact on optical and transport
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properties [24-26]. By contrast, in the strongly interacting
Rydberg atom chain initialized in the Néel state, quantum
dynamics remains concentrated around a small subset of
states in the many-body Hilbert space; thus it is effectively
“semiclassical” [22]. While recent works [27,28] have
shown that revivals can be significantly enhanced by
certain perturbations to the system, a general understanding
of the conditions that allow scars to occur in a many-body
quantum system is still lacking.

The observation of periodic dynamics was linked to the
existence of atypical eigenstates at evenly spaced energies
throughout the spectrum of the system [21,29,30]. Highly
excited eigenstates with low entanglement have previously
been analytically constructed in the nonintegrable Affleck-
Kennedy-Lieb-Tasaki model [31,32]. A few of such exact
eigenstates are now also available for the Rydberg atom
chain model [33]. In a related development, it was proposed
that atypical eigenstates of one Hamiltonian can be
“embedded” into the spectrum of another, ETH-violating,
Hamiltonian [34]. However, although the collection of
models that feature atypical eigenstates is rapidly expand-
ing [35-41], their relation to periodic dynamics remains
largely unclear.

In this Letter we systematically construct interacting
lattice models that exhibit periodic quantum revivals when
quenched from a Néel state. The basic building block has a
Hilbert space containing N, states (“colors”) and a time-
independent Hamiltonian that yields periodic unitary
dynamics, U(r+ T) = U(r). The interacting models are
defined by coupling these building blocks under a kinetic
constraint. Intriguingly, the dynamics in these models
decomposes into periods of nearly free precession, in
which the local degrees of freedom coherently cycle
through the available states on a single site, followed by
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an interacting segment of dynamical evolution, reminiscent
of a kicked quantum top [42]. In all cases, the existence of
atypical scarred eigenstates underpins the revivals. We
show that our construction includes known models, such
as chiral clock models [43], which are shown to support
scars, and also gives a way of enhancing the revivals in
spin-s generalizations of the Rydberg chain [22]. In
selected cases for small values of N., we numerically
explore general deformations of the models, verifying that
our construction yields optimal models with the highest
amplitude of the wave function revivals.

PXP model.—We start by briefly reviewing the model of
a 1D Rydberg atom chain [44-47]. The system can be
modeled as coupled two level systems (with states |0), |1))
described by an effective “PXP” Hamiltonian

=3 PLXpLe E0)0L ()
where X ; = |0j>( ;| +11;)(0;| denotes the Pauli matrix. The
model in Eq. (1) describes a kinetically constrained para-
magnet [48]: each atom can flip only if both its neighbors
are in |0) state.

The Hamiltonian in Eq. (1) is nonintegrable [21], yet it
exhibits unconventional thermalization. For example, the
model has atypical (ETH-violating) eigenstates with low
entanglement at high energy densities [29]. Moreover,
when the system is quenched from the Néel initial state,
lwo) = |0101...), local observables such as domain wall
density [14] and even the many-body wave function
fidelity, F(t) = [(wolw(2))|?, all revive with the same
frequency [21,39,49]. At the same time, quenches from
other initial states, such as |0000...), do not lead to
observable revivals [14]. The revival frequency from the
Néel state is set by the energy separation between atypical
eigenstates, as the same eigenstates also maximize the
overlap with the Néel state [21]. Thus, the quench dynamics
from the Néel state is largely restricted to few many-body
eigenstates, and can be viewed as precession of a large spin,
which traces a periodic orbit that can be accurately captured
by the time-dependent variational principle (TDVP) on a
manifold spanned by weakly entangled states [22].

Construction of scarred models.—Consider now a sys-
tem with a local basis |0), |1), ..., [N, — 1), and an arbitrary
time independent Hamiltonian # whose unitary dynamics is
periodic, such that U? = exp(—ihT) =1 for arbitrary T
(not necessarily an integer). The eigenvalues of U are
A, = exp(i2zk,/T), with the corresponding eigenvectors
|w,), where k, are arbitrary integers. We obtain candidate
Hamiltonians % by choosing particular {1,} which guar-
antee a periodic U/ and taking its logarithm

h—zz ) @)

The many-body lattice Hamiltonian is defined by taking a
tensor product of /& and imposing the kinetic constraint that

h only acts on sites whose neighbors are in some unlocking
state |y):

N-1

H: ij—lh’jpj-‘rl’
=0

P;= b(j><)(j|? (3)

where N is the number of lattice sites. The only other
condition we place on % is that the many-body system
possesses a particle-hole symmetry p, which anticommutes
with H, {H, p} = 0, leading to the symmetry E <> —E of
the energy spectrum. This is motivated by the fact that the
PXP model in Eq. (1) possesses such a symmetry, and its
revivals are improved by perturbations which preserve this
symmetry [27,28]. Precise form of p is unimportant here
and can be found in Ref. [50]. We thus focus on cases
where {k, } are symmetric around zero, resulting in / being
off-diagonal and compatible with p. A particularly illus-
trative example of this construction is when {/ is interpreted
as the shift operator of a quantum clock [43,51,52], as we
explain next.

Scars in clock models.—The scarred clock models are
defined by choosing T = N, which gives

=Y fn+ 1. @
n=0

In this case, 4, =-exp(2zik,/N.) and |y,)=
Zj\’;a : (1/2)|j). For odd N., k, takes the values
=[(N.-1)/2],...,0,....[(N. = 1)/2]. For N, even, we
need to double the period, 7 = 2N, in order to make A
off-diagonal in the |j) basis. This allows us to choose
k=-[(N.=1)/2],....=3. 4 . [(N.—1)/2], and
Eq. (4) continues to be valid for V.. even after performing
a gauge transformation, |j) — e™/Ne|j).

The inspiration behind Eq. (4) is that local dynamics is a
cyclic rotation around the basis of N, “clock” states |j),
Fig. 1(a). With % in Eq. (2) denoted by C, Eq. (3) defines a
many-clock “PCP” Hamiltonian,

clock ZP/ IC/ J+1° (5)

Without loss of generality, the projector can be chosen onto
any of the clock basis states, e.g., P = |0)(0|. Thus, each
site precesses around the clock if both its neighbors are in
|0) state, otherwise it remains frozen, Fig. 1(a). Note that
the PXP model in Eq. (1) is equivalent to N, = 2 clock.

We have studied the PCP model in Eq. (5) using exact
diagonalization [53] with periodic boundary conditions.
For any N, < 12 accessible to us numerically, we find long-
lived oscillatory dynamics when the system is quenched from
any Néel-like state, ) ...), etc. Figure 1(b)
summarizes the result for N, = 4. The dynamics proceeds in
two steps. First, each unfrozen clock nearly freely cycles
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(a) A schematic of scarred clock models. Green clock can precess because both of its neighbors are in the unlocking state |0)

(white), unlike the frozen red clock. (b) Dynamics of fidelity, |{¢|e~"]1010...)|?, for N, = 4-color clock model in Eq. (5). Different
curves correspond to several choices of |¢) indicated in the legend. (c) Overlap of all eigenstates of N, = 4-color clock model with the
Néel state |0101...). Each dot corresponds to a single eigenstate | E) with energy E shown on the x axis. Color scale indicates the density
of data points. Scarred states are marked by red circles. (d) Entanglement entropy § of all eigenstates of N. = 4-color clock model,
plotted as a function of their energy E. Red circles indicate the matching scarred states from (c), while a few additional scar states,
associated with the a “defected Z,” state, |20002030103000), are marked by blue circles. Plots (b), (c) are for system size N = 16, while
(d) is for N = 14. In all cases, we resolve translation and inversion symmetry, and plot both [k = 0, P = +] and [k = =, P = —| sectors.

through its states, |1) — |2) — ...|N. — 1). After this coher-
ent process is complete, the many-clock state shifts,
IN,—1,0,N,—1,0...) - |0101...). In this second step,
interactions kick in and some fidelity is lost to thermalization.
We now see that the PX P model is special in that it lacks free-
precession dynamics. On the other hand, similar to the PXP
case, in scarred clock models coherence also remains
protected to a large degree during the interacting part of
the process, allowing the wave function to keep returning to
the initial state.

In order to visualize the dynamics, in Fig. 1(b) we plot
the fidelity |(¢|exp(—itH)|1010...)|> with respect to sev-
eral product states |¢) corresponding to either the initial
state, the internal shift of each clock, or to the overall
translation of the initial state. The duration of individual
clock ticks (e.g., [1010...) — |2020...)) matches that of the
unconstrained clock model. Following the convention that
C is rescaled such that nearest neighbor hoppings have
magnitude one, the frequency of the putative free preces-
sion is found to be =0.902 (in units 7 = 1) while the
frequency of the single site precession (in the absence of a
constraint) is ~0.900. We note that time evolution of local
observables is consistent with the presented picture of the
underlying dynamics [50].

Figure 1(c) shows the overlap of all eigenstates with the
Néel state [0101...), while Fig. 1(d) shows the bipartite
entanglement entropy S = —trp, Inp,, where p, is the
reduced density matrix of one-half of the chain. The scar
states are easily identifiable as a band of special eigenstates
(circled in red) that extend throughout the spectrum. The
total number of special states is (N, — 1)N + 1. Similar to
the PXP model, the special eigenstates are distinguished by
their high overlap with the Néel state, or alternatively as
ones with atypically low entanglement. Note that some of
the eigenstates with small entanglement belong to a differ-
ent band of scarred states associated with a “defected Z,”

state [20002030103000) [blue circles in Fig. 1(d)]. Apart
from these special states, there are tower structures in the
spectrum which reflect the clustering of neighboring
eigenstates around the energies of the scarred eigenstates.
Deep in the bulk of the spectrum, the density of states
[indicated by color scheme in Fig. 1(c)] appears uniform, as
expected from the ETH. Indeed, at N = 14 we find a mean
level spacing ratio [56] of (r) = 0.5218, consistent with
Wigner-Dyson statistics. We have confirmed that the
frequency of the revival to the initial state matches the
energy separation between special eigenstates in Fig. 1(c).

Relation to spin-s and chiral clock models.—In Ref. [22]
the TDVP approach was generalized to spin-s PXP models
with the kinetic constraint P°. Periodic revivals were
numerically demonstrated for s = 1, 2. Both spin-s PXP
model and N, =2s+ 1 colored PCP clock models are
obtained from our construction in Eq. (3) by taking
k= —s,...,s. Thus by performing a basis rotation, the
clock Hamiltonian can be expressed in the spin basis,
Heoer = _; P X; P’ ,, where P’ is a deformation of P°
in Eq. (5) [50]. We have numerically found that the number
of scarred states remains the same for PXP models
expressed in terms of either the spin PY or P'; however,
for N, odd the amplitude of the revivals is always higher
when using P’ instead of spin P° [50]. Thus, our con-
struction shows how to improve the revivals in the standard
PXP models. In addition, mapping to the clock represen-
tation allow us to clearly delineate nearly-free precession
from the interacting part of the dynamics, which is not
transparent in the spin representation.

Furthermore, our construction includes models for which
C is not related to spin matrices via a change of basis. One
family of models for even N_. is obtained by choosing
k=—(N./2),....,—1,1,...,(N./2), with P° as above. For
N, =4, this results in the 4-color chiral clock model
(CCM) at the fixed point in the disordered phase
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[43,50,57]. This model exhibits two types of oscillatory
behavior: quenches from [0202...) result in slowly
decaying fidelity revivals, while quenches from
[1010...), |3030...) essentially freeze out the O sublattice
and the system oscillates like a nearly free paramagnet [50].

General phase diagram of scarred models.—We now
perform an extensive search for scarred models with the
fixed kinetic constraint P°. By varying elements of C, we
scan all models of the form Eq. (5). We map out the phase
diagram of these models based on the quality of scars, i.e.,
the first revival maximum of the fidelity from the Néel-like
states. We restrict the matrix C to be purely imaginary and
off-diagonal, as this preserves the desired particle-hole
symmetry [50].

Consider the N. = 4 case. Allowed distortions involve
varying five matrix elements in C, so we take slices where
only two parameters are simultaneously varied. We con-
sider two cases, (a) vary the next-nearest-neighbor hop-
pings Cyp, = Cy3 = ai, while also varying Cy3 = —fi, or
(b) switch off next-nearest-neighbor hoppings, while vary-
ing Cj, = —ai and Cy3 = —pi. The corresponding phase
diagrams are shown in Fig. 2. These diagrams include
several limiting cases at special values of (f,a). For
variation (a), we have (i) (1,1/v/2) is N, =4 clock,
and (ii) (—=1,0) is the N, =4 CCM model. For varia-
tion (b), (iii) (0,2/V/3) is spin3 PXP, (iv) (1,-1) is
also N.=4 CCM, and (v) at (0,0), we have
C =i 02 1/)(j + 1] = H.c., which (with P°) can be
viewed as the sum of a spin-; PXP and a free s =4
paramagnet. Points marked F correspond to decoupled free
paramagnets.

The maximum fidelity at first revival for N, even is
generally comparable between clock and spin-s PXP mod-
els. For example, for N. = 4 in Fig. 2, F . = 0.761 (clock)

0.2

FIG. 2. The phase diagram of scarred models with N. = 4 and
projector P*. Shown in (a),(b) are two slices of the phase diagram
obtained by varying the matrix elements of C, defined in the text.
Color scale represents the maximum of the first fidelity revival for
quenches from any of the states [0101...), [0202...), [0303...).
Results are for system size N = 10. Labels on the diagrams refer
to special limiting cases defined in the text. Scarred models can
be accurately predicted based on the commensurability of the
eigenvalue spectrum of C, as denoted by lines and explained in
the text.

and F ., ~ 0.783 for spin3 PXP. For N, = 6 and N = 8,
we obtain F,, =~ 0.813 (spin) and F,,, ~ 0.802 (clock),
while for N. =8, N = 8 we find F,, = 0.793 (spin) and
Fax = 0.806 (clock). On the other hand, for N odd, we find
a considerable improvement in the fidelity of a clock
compared to the spin-s PXP model. For example, for
N, = 3, the maximum fidelity of the clock model is F',, =
0.724 vs F .« =~ 0.653 for spin-1; for N, =5, N = 10, the
improvement is even bigger, F .« = 0.563 vs F ., = 0.766
(clock) [50]. Thus, our construction for odd N, gives
us a way to improve the revivals over corresponding
s = (N.—1)/2 PXP models.

Since the phase diagram in Fig. 2 is quite rich, we look
for a simple guiding principle that predicts the most robust
scarring models. The commensurability of the eigenvalue
spectrum of C provides such a criterion—see lines and dots
in Fig. 2. White lines mark the models for which C has
equidistant energy levels, E, = ke, k€ Z. Our N, =4
clock model lies on one of these lines, as shown in
Fig. 2(a). We can consider further commensurability
conditions where the energy spacings of C are in simple
ratios such as 1:2 (purple lines). Finally, red points mark
the cases where C contains one pair of degenerate eigen-
values. One of these points is the N, = 4 CCM at its fixed
point in the disordered phase. Another one, along the
diagonal in Fig. 2(b), hosts a combination of the free
paramagnet and spin—% PXP model. In fact, revivals in
models lying on red lines are generically due to the model
effectively becoming a free paramagnet when quenched
from specific Néel-like states, due to one of the sublattices
being frozen out. We note, however, that our simple
criterion based on the noninteracting spectrum of C only
serves as a rough indicator of scarring models; i.e., it
overpredicts the number of models as one would expect
from a single-particle criterion. The precise parameter
values where such models are realized are determined by
the nontrivial interplay between this condition and the
kinetic constraint, i.e., PP.

Conclusion.—We have presented a systematic construc-
tion of nonintegrable PCP models exhibiting many-body
revivals and quantum scars. The construction is based on
embedding local unitary precession, UT = 7T =1, into
an interacting quantum system. The obtained models are
expressed in terms of kinetic constraints which arise in
quantum simulators in the Rydberg blockade regime
[14,39,58]. Kinetic constraints of this kind also emerge
naturally in lattice gauge theories, which have recently been
realized in periodically driven optical lattices [59,60]. The
strongest reviving models are predicted by considering the
commensurability of C’s eigenvalues. For odd N, and
equidistant eigenvalues for C, the obtained models revive
better than the corresponding spin s = (N.—1)/2 PXP
model. Rotating C — X, P — P’, our construction thus
provides a prescription for improving PXP revivals. If we
do not restrict to equidistant eigenvalues of C, our
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construction yields further families of scarred models not
related to PXP by rotation. Further, clock models provide a
simple physical picture of the underlying dynamics—a
period of nearly free precession followed by an interacting
bottleneck. This “effective drive” is reminiscent of kicked
systems, where mixed phase space dynamics (both recur-
rent and thermalizing behavior) can emerge due to the
presence of a continuous spectrum in the Floquet operator
[61]. Taking the same constraint U7 =1, one can also
engineer time-translation symmetry breaking in driven
systems [62,63]. These observations suggest a deeper
connection between oscillatory scarred models and time
crystals, complementing the recent description of scarred
PXP states as # magnon condensates which possess long
range order in both space and time [30].

In compliance with EPSRC policy framework on
research data, this publication is theoretical work that does
not require supporting research data.
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