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ABSTRACT ABSTRACT ABSTRACT ABSTRACT     50 

Bromine and iodine chemistry has been updated in the Community Multiscale Air Quality 51 

(CMAQ) model to better capture the influence of natural emissions from the oceans on ozone 52 

concentrations. Annual simulations were performed using the hemispheric CMAQ model 53 

without and with bromine and iodine chemistry. Model results over the Northern Hemisphere 54 

show that including bromine and iodine chemistry in CMAQ not only reduces ozone 55 

concentrations within the marine boundary layer but also aloft and inland. Bromine and iodine 56 

chemistry reduces annual mean surface ozone over seawater by 25%, with  lesser ozone 57 

reductions over land. The bromine and iodine chemistry decreases ozone concentration without 58 

changing the diurnal profile and is active throughout the year. However, it does not have a strong 59 

seasonal influence on ozone over the Northern Hemisphere. Model performance of CMAQ is 60 

improved by the bromine and iodine chemistry when compared to observations, especially at 61 

coastal sites and over seawater. Relative to bromine, iodine chemistry is approximately four 62 

times more effective in reducing ozone over seawater over the Northern Hemisphere (on an 63 

annual basis). Model results suggest that the chemistry modulates intercontinental transport and 64 

lowers the background ozone imported to the United States. 65 

 66 

 67 

Keywords: bromine, iodine, ozone, background ozone, CMAQ   68 

  69 
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1.0 INTRODUCTION  70 

Although anthropogenic emissions of nitrogen oxides (NOx) and volatile organic compounds 71 

(VOC) within the United States (U.S.) have a large influence on ambient surface ozone (O3) 72 

concentrations, other processes such as natural emissions, stratospheric intrusions, and long-73 

range transport can affect surface O3 concentrations at some locations within the U.S. Among 74 

these natural emissions are chemical compounds from the ocean surface that can reduce 75 

atmospheric O3 concentrations through catalytic reactions. Bromine reactions deplete O3 in the 76 

tropical marine boundary layer (Dickerson et al., 1999) and when combined with iodine 77 

reactions, they can deplete O3 much faster than would have been expected if they acted 78 

individually (Saiz-Lopez et al., 2007; Mahajan et al., 2010). Bromine and iodine are produced in 79 

the ocean through both biotic and abiotic pathways resulting in measurable concentrations of 80 

both organic and inorganic species within the marine boundary layer. Several modeling studies 81 

have implemented marine bromine and iodine emission sources and chemistry with increasing 82 

levels of scope, ranging from one-dimensional models (e.g. von Glasow, et al., 2002a; von 83 

Glasow, et al., 2002b) to global chemical transport models (e.g. Ordóñez, et al., 2012; Saiz-84 

Lopez et al., 2012; Saiz-Lopez et al., 2014; Fernandez et al., 2014; Sherwen et al., 2016a; 85 

Sherwen et al., 2016b). 86 

 87 

A disconnect between anthropogenic precursor emissions and surface O3 concentrations at some 88 

U.S. sites has led to an increased focus on background O3 (Fiore et al., 2002; Fiore et al., 2003;  89 

Fiore et al., 2014). The U.S. Environmental Protection Agency (EPA) considers background O3 90 

to be any O3 formed from sources or processes other than U.S. manmade emissions of NOx, 91 

VOC, methane, and carbon monoxide (EPA, 2016). Previous photochemical modeling studies 92 
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(Parrish et al., 2009; Cooper et al., 2010; Zhang et al., 2011; McDonald-Buller et al., 2011) 93 

which estimated the contribution of background sources on U.S. O3 concentrations have found 94 

that (1) seasonal mean background concentrations are highest in the Intermountain West, (2) 95 

seasonal mean background concentrations are generally highest in the Spring and early Summer, 96 

(3) background impacts can occur on episodic and non-episodic scales, and (4) air quality 97 

models are not capable of estimating background values accurately on a daily basis. 98 

 99 

Background O3 levels in coastal areas are affected by marine boundary layer chemistry, which is 100 

influenced by atmosphere-ocean interactions. Several previous studies examined the impacts on 101 

O3 by bromine (e.g. Ordóñez, et al., 2012; Fernandez et al., 2014; Yang et al., 2005; Parrella et 102 

al., 2012; Schmidt et al., 2016; Breton et al. 2017) and iodine chemistry (e.g. Saiz-Lopez et al., 103 

2014; Sherwen et al., 2016a; Sherwen et al., 2016b; McFiggans et al., 2000; Long et al., 2014; 104 

Badia et al., 2017) using air quality models. Sarwar et al. (2015), Gantt et al. (2017), and Muñiz-105 

Unamunzaga et al. (2018) showed that including marine bromine and iodine chemistry in the 106 

Community Multiscale Air Quality (CMAQ) model not only reduces summertime marine 107 

boundary layer O3 concentrations by more than 5 ppbv, but also reduces O3 in the free 108 

troposphere and inland areas far from the coast. In this study, we refine the marine bromine and 109 

iodine chemistry in the CMAQ model and extend the simulations to examine its influence on 110 

annual, seasonal, diurnal, and background O3. 111 

 112 

2.0 METHODOLOGY 113 

CMAQ is a 3-D chemical transport model containing comprehensive treatments of many 114 

important atmospheric processes and is widely used for both regulatory and research purposes 115 
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(e.g. Appel et al., 2013; Appel et al., 2017; Ring et al., 2018; Qiao et al., 2018). We use the 116 

hemispheric version (Mathur et al., 2017) of CMAQ version 5.2 (www.epa.gov/cmaq) to 117 

simulate the year 2006 with meteorological fields generated from the Weather Research and 118 

Forecasting (WRFv3.8.1) model employing the Thompson microphysics option (Skamarock et 119 

al., 2008). WRF results were further processed using the Meteorology Chemistry Interface 120 

Processor (Otte and Pleim, 2010) (MCIPv4.3) to prepare CMAQ-ready meteorological files. The 121 

model vertical extent reaches to 50 hPa containing 44 layers of varying thickness and uses 108-122 

km horizontal grid spacings. The surface layer has a thickness of 20 meters. 123 

 124 

The 2005 Carbon Bond chemical mechanism (CB05e51) containing updated toluene, oxidized 125 

nitrogen, and isoprene reactions (Appel et al., 2017) is combined with the chlorine (Sarwar et al., 126 

2012), bromine, and iodine chemistry for this study. Sarwar et al. (2015) incorporated an initial 127 

version of bromine and iodine chemistry into CMAQ and examined its lower and upper limits of 128 

the impacts on O3. The upper limit included photolysis of higher iodine oxides while the lower 129 

limit did not. The model without the photolysis of iodine oxides yielded lesser reduction of O3 130 

over seawater (15%) compared to the model with the photolysis of iodine oxides which reduced 131 

O3 by 48%. Since this 48% reduction resulted in unrealistically low O3 concentrations in Sarwar 132 

et al. (2015), photolysis rates of higher iodine oxides have not been included in any publicly 133 

available version of the CMAQ model. Sarwar et al. (2015) also included one heterogeneous 134 

reaction of bromine nitrate.  135 

 136 

In this study, the CMAQ bromine and iodine chemistry described in Sarwar et al. (2015) is  137 

further improved to include photolysis of higher iodine oxides (Table S1-S2),  several 138 
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heterogeneous reactions of bromine and iodine species (Table S3) with aerosol chloride (Cl-) and 139 

bromide (Br-), and refined bromine and halocarbon emissions. In the previous CMAQ model, 140 

photolysis rates of higher iodine oxides were calculated using absorption cross-section and 141 

quantum yield from Saiz-Lopez et al. (2014). Sherwen et al. (2016a) used absorption cross-142 

section and quantum yield of iodine nitrate for calculating photolysis rates of higher iodine 143 

oxides which is now used in the CMAQ model.  144 

 145 

We also incorporate several aqueous-phase reactions of bromine species following Long et al. 146 

(2013) (Table S4). Cloud chemistry of bromine species was added to the CMAQ cloud module 147 

“AQCHEM-KMT” (Fahey et al. 2017) using the Kinetic PreProcessor (KPP) v.2.2.3 (Damian et 148 

al. 2002). AQCHEM-KMT simulates the evolution of species in and around cloud water by 149 

calculating kinetic mass transfer between gas and aqueous phases, interstitial aerosol scavenging, 150 

dissociation of ionic species, aqueous phase chemical reactions, and wet deposition. 151 

 152 

Sarwar et al. (2015) used halocarbon, inorganic bromine, and inorganic iodine emissions in the 153 

CMAQ model, the rates of which are refined in this study. For halocarbon species, the emission 154 

rates are calculated following the procedures of Ordóñez et al. (2012) and Yarwood et al. (2012): 155 

 156 

EHC = Ebase × (OF+SF) × AGC × fHC × fDP × chl-a        (1) 157 

 158 

where, EHC is the halocarbon emission rates (moles s-1), Ebase represents the halocarbon base 159 

emission rate (moles s-1), OF is the open ocean fraction of a grid cell, SF is the surf zone fraction 160 

of a grid cell, AGC is the grid cell area (m2), fHC is a species-dependent emission factor, fDP is a 161 
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diurnal profile factor, and chl-a is the monthly climatological chlorophyll value (mg m-3) from 162 

the Moderate Resolution Imaging Spectroradiometer (MODIS). 163 

 164 

In Sarwar et al. (2015), chl-a values were capped at 1.0 following Yarwood et al. (2012); in this 165 

study, we used the actual chl-a values from MODIS which can be greater than 1.0 in coastal 166 

areas. This change in chl-a values necessitated a revision in the base emission rate from 1.2×10-
167 

11 in Sarwar et al. (2015) to 6.9×10-12 to replicate the global estimates of halocarbon emissions 168 

reported by Ordóñez et al. (2012). This revision was done outside the CMAQ framework by 169 

using the native MODIS derived global land/ocean grid areas and chl-a values. We iterated the 170 

base emission rate until suitable agreement with the Ordóñez et al. (2012) estimates was reached. 171 

The use of the revised base emission rate and the actual chl-a values reduces the total 172 

hemispheric halocarbon emissions estimates by ~20% compared to the estimates of Sarwar et al. 173 

(2015). It also changes the allocation of halocarbon emissions to different grid-cells. More 174 

halocarbon emissions are now allocated to coastal areas and less are allocated to open oceans 175 

compared to the estimates of Sarwar et al. (2015). 176 

 177 

Refinement of the inorganic emissions included the replacement of the simplified treatment of 178 

directly emitting inorganic bromine emissions (Yang et al., 2005 and Sarwar et al., 2015) with 179 

the physically-based heterogeneous chemistry of bromine and iodine species (Table S3) 180 

following Fernandez et al. (2014) and Sherwen et al. (2016b). This required a revision to the sea 181 

spray emissions in CMAQ (Gantt et al., 2015) to include Br- in the chemical speciation. 182 

Specifically, the sea spray emissions are speciated by mass (gm/gm) following Millero (1996): 183 

Cl- = 0.5528, Na+ = 0.3080, SO4
2- = 0.0775, Ca2+ = 0.0118, Mg2+ = 0.0367, K+ = 0.0113, and Br- 184 

= 0.0019. We also updated the minimum wind speed in the inorganic iodine emissions 185 
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parameterization (McDonald et al., 2014) from 3 m s-1 in Sarwar et al. (2015) to 5 m s-1 186 

following the value used for the GEOS-Chem model (Sherwen et al., 2016a) which reduces the 187 

emissions estimates by ~15%. Hemispheric halocarbon and inorganic iodine emission rates, 188 

along with global estimates reported in previous studies, are shown in Table 1. Generally, our 189 

halocarbon emissions estimates for the Northern Hemisphere are lower than the reported global 190 

estimates while inorganic iodine emissions estimates fall between the reported ranges of global 191 

estimates.  192 

 193 

Table 1: Halocarbon and inorganic iodine emissions estimates 194 

Species  Hemispheric annual estimates in this 
study (Gg) 

Global annual estimates from published studies 
(Gg) 

CHBr3 301 533 
CH2Br2 51.5 67.3 

CH2BrCl 6.1 10.0 
CHBr2Cl 14.8 19.7 
CHBrCl2 14.5 22.6 

CH3I 135 303 
CH2ICl 148 234 
CH2IBr 54.4 87.3 
CH2I2 73 116 

HOI+ 2xI2 2052 1,900 – 3,230 
Note: Global annual estimates of halocarbon emissions are taken from Ordóñez et al. (2012), global annual 195 
estimates of HOI+2×I2 are taken from Saiz-Lopez et al. (2014) and Sherwen et al. (2016a) 196 
 197 
 198 

We performed six annual simulations for this study that can be grouped in three pairs. In the first 199 

pair, one simulation used CB05e51 along with the chlorine chemistry (hereto referred as 200 

“No_Br/I”), while the other added bromine and iodine chemistry (“Added_Br/I”). A second set 201 

of simulations was completed to investigate the influence of the bromine and iodine chemistry 202 

independently. In this second pair, one simulation added only bromine chemistry updates 203 

(“Added_Br”) while the other added only iodine chemistry updates (“Added_I”). The final set of 204 

simulations was completed to investigate the impact of bromine and iodine chemistry on 205 

background O3 over the U.S. For the third pair, the model chemistry was identical to the first pair 206 
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but with anthropogenic emission sources over North America were zeroed out 207 

(“No_Br/I_NoAnth” and “Added_Br/I_NoAnth”, respectively). All the annual simulations were 208 

completed with a three-month spin-up period (October – December of 2005) and initialized from 209 

previous model results (Xing et al., 2016). 210 

 211 

3.0 RESULTS AND DISCUSSSION  212 

 213 

3.1 Predicted BrO (bromine monoxide) and IO (iodine monoxide) 214 

BrO and IO are reaction products of the bromine and iodine chemistry. Annual mean daytime 215 

BrO and IO concentrations are shown in Figure 1. BrO concentrations of 0-0.8 pptv are predicted 216 

over large oceanic areas. However, higher values (>0.8 pptv) are also predicted over limited 217 

areas of mid-latitude oceans. In contrast, IO concentrations of 0-3.0 pptv are predicted over large 218 

oceanic areas and higher values (>3.0 pptv) are predicted only over limited oceanic areas.  219 

The current bromine/iodine chemistry enhances BrO and IO levels compared to the previous 220 

version of the chemistry without the photolysis of higher iodine oxides in CMAQ (Sarwar et al., 221 

2015). For example, predicted summertime BrO levels with the previous version rarely exceed 222 

0.5 pptv over the mid-latitude oceanic areas. In contrast, predicted BrO levels with the current 223 

version exceed 1.0 pptv over large portions of the mid-latitude oceanic areas. Overall, the current 224 

chemistry increases surface BrO levels by a factor of ~2.0 averaged over the entire seawater. 225 

Predicted summertime IO levels over most areas of seawater range from 0.5-1.5 pptv and 0.5-3.0 226 

pptv for the previous and current versions of the chemistry, respectively. Overall, the current 227 

chemistry increases surface IO levels by a factor of ~1.5 averaged over the entire seawater. The 228 

BrO enhancement occurs primarily due to the inclusion of aqueous-phase and heterogeneous 229 
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reactions while the IO enhancement occurs due to the inclusion of photolysis of higher iodine 230 

oxides and the heterogeneous reactions. 231 

 232 
Figure 1. Simulated annual mean daytime surface BrO and IO concentrations with the bromine and iodine chemistry 233 

(Added_Br/I). Annual mean concentrations were multiplied by 2.0 to estimate approximate annual mean daytime 234 

BrO and IO concentrations. 235 

 236 

We compare model predictions with published values from different years for an approximate 237 

evaluation of the bromine and iodine chemistry in CMAQ. Predicted BrO levels are lower than 238 

observed values at all locations (Table 2). CMAQ predicted values are also lower than ground-239 

based daytime BrO measurements of <0.5-2.0 pptv and ship-based daytime BrO measurements 240 

of <~3.0-3.6 pptv (Saiz-Lopez et al., 2012). Thus, CMAQ generally under-predicts BrO levels. 241 

In contrast, CMAQ predicted values are similar to observed IO levels at Cape Verde Islands; 242 

Tenrife, Spain; Dagebüll, Germany but are lower than observed values at Brittany, France and 243 

Mace Head, Ireland (Table 2). Dix et al. (2013) measured IO concentrations over the Pacific 244 

Ocean in January of 2010 and reported an average value of 0.5 pptv inside the marine boundary 245 

layer. CMAQ predicted surface layer values range from 0.4 to 1.0 pptv over the region. Saiz-246 

Lopez et al. (2012) reported that ground-based daytime IO measurements range from <0.2 to 2.4 247 
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pptv while ship-based daytime IO measurements range ~3.5 pptv. CMAQ predicted IO levels are 248 

similar to these reported observed values. Thus, CMAQ generally captures observed IO values. 249 

 250 

Table 2: A comparison of observed daytime BrO and IO concentrations with CMAQ predictions  251 

Location  Species  Observed value (pptv) Predicted value (pptv) 
Cape Verde Islandsa BrO 2.8 0.7 
Dagebüll, Germanyb BrO 0.4 0.1 

Brittany, Franceb BrO 1.5 0.03 
Mace Head, Irelandc BrO 2.3 0.05 
Cape Verde Islandsa IO 1.5 1.2 
Dagebüll, Germanyb IO 0.7 0.8 

Brittany, Franceb IO 1.5 0.2 
Mace Head, Irelandd IO 1.2 0.14 

Tenrife, Spaind IO 1.2 1.1 
Note: a - Mahajan et al., 2010; b – Peters et al., 2005; c – Saiz-Lopez et al., 2006; d – Allan et al., 2000. Cape Verde values represent daytime 252 
average of long-term measurements; CMAQ predicted annual daytime mean values are compared. Values at other locations represent daytime 253 
average over campaign; CMAQ predicted monthly daytime mean values are compared. Peters et al. (2005) reported average values for the entire 254 
campaign which we multiplied by 2.0 to estimate daytime average values. 255 

 256 

3.2 Influence on annual mean O3 257 

Annual mean surface O3 concentration over seawater without bromine and iodine chemistry is 258 

~25 ppbv and increases with altitude (Figure 2). Consistent with the results of Sherwen et al., 259 

(2016b), the bromine and iodine chemistry reduces mean surface O3 over seawater by 25% and 260 

reduces O3 throughout the lower troposphere. Such reduction occurs due primarily to the 261 

reactions of O3 with bromine and iodine radicals generated from photolysis and reactions of 262 

halocarbons and inorganic bromine and iodine species with hydroxyl radical. The influence of 263 

bromine and iodine chemistry on O3 decreases with altitude and is negligible at ~15 km. Saiz-264 

Lopez et al. (2014) and Sarwar et al. (2015) reported lower and upper limits (17-27% and 15-265 

48%) of the impacts on O3; and the O3 changes reported in this study fall within their published 266 

ranges. 267 
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 268 

Figure 2. Simulated annual mean O3 over seawater in the Northern Hemisphere without (No_Br/I) and with the 269 
bromine and iodine chemistry (Added_Br/I) and annual mean percent reduction of O3 by the bromine and iodine 270 

chemistry [100 x (Added_Br/I - No_Br/I) / No_Br/I] 271 

 272 

The spatial distribution of the annual mean O3 without bromine and iodine chemistry is shown in 273 

Figure 3a with the highest values over portions of Asia, Africa, and the western U.S. and lower 274 

values predicted over seawater (especially over remote oceanic areas). The inclusion of bromine 275 

and iodine chemistry reduces surface O3 by 3-12 ppbv over large areas of seawater (Figure 3b) 276 

and by 3-6 ppbv in many coastal areas including the Pacific, Gulf of Mexico, and Atlantic coasts. 277 

Its impact on O3 over land is smaller than that over seawater, although all areas of the U.S. have 278 

a predicted ~2 ppbv or greater reduction in O3 from the bromine and iodine chemistry. 279 

 280 
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Figure 3. (a) Annual mean surface O3 without the bromine and iodine chemistry (No_Br/I) (b) influence of the 282 

bromine and iodine chemistry on annual mean O3 (Added_Br/I - No_Br/I). Black square box is the area over which 283 

diurnal, day-to-day, and monthly variations are calculated as shown in Figure 4 and 5. 284 

 285 

The bromine and iodine chemistry in this study is more efficient in reducing O3 over seawater 286 

compared to the previous version of the chemistry without the photolysis of higher iodine oxides 287 

in CMAQ (Sarwar et al., 2015). For example, the previous chemistry reduces summer-time O3 288 

over seawater generally by 2-8 ppbv while the current chemistry reduces O3 over seawater by 3-289 

12 ppbv. Both versions of the bromine and iodine chemistry have similar impacts over land 290 

areas. 291 

 292 

3.3 Influence on diurnal variation of O3 293 

To examine the influence of the bromine and iodine chemistry on the diurnal variation of O3, we 294 

calculated a mean diurnal profile for an area over the Atlantic Ocean (see Figure 3a) by 295 

averaging across all days in the annual simulation for each hour of the day, as shown in Figure 296 

4a. The area is selected to minimize the influence of anthropogenic emissions on O3. Predicted 297 

O3 levels with the bromine and iodine chemistry are lower (by 7-8 ppbv) than those in 298 

simulations without the bromine and iodine chemistry. There is a pronounced diurnal cycle in 299 

both simulations, as O3 concentrations increase from midnight and peak in the morning, then 300 

decrease to a minimum value in the afternoon before increasing again. This diurnal variation 301 

results from low concentrations of O3 precursors over remote areas of seawater that limit O3 302 

production as has been previously reported by Read et al. (2008). In contrast, the O3 levels over 303 

land typically peak in the afternoon due to the higher concentrations of O3 precursors (David and 304 

Nair, 2011). When bromine and iodine chemistry are excluded, O3 is reduced primarily by the 305 

photolysis of O3 and its reaction with hydroperoxy radical (HO2). Adding bromine and iodine 306 
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chemistry creates more pathways to O3 reduction. Thus, the bromine and iodine chemistry 307 

reduces O3; however, it does not alter the diurnal profile of O3. While the diurnal cycle of O3 308 

without the bromine and iodine chemistry varies slightly with locations due to precursors, 309 

meteorology and other factors, the bromine and iodine chemistry does not alter the diurnal cycle 310 

at any location but rather simply reduces O3 concentrations. 311 

 312 

 313 

Figure 4. (a) Influence of the bromine and iodine chemistry on diurnal variation of surface O3 (b) influence of the 314 
bromine and iodine chemistry on the day-to-day variation of surface O3. Blue circle – No_Br/I and red circle – 315 

Added_Br/I. 316 

 317 

3.4 Influence on the day-to-day variation of O3 318 

To examine the day-to-day variation of the bromine and iodine chemistry impacts on O3, we first 319 

calculated daily-mean O3 values for each grid cell over seawater. We then calculated a mean 320 

daily value from the same area over the Atlantic Ocean (see Figure 3a). Bromine and iodine 321 

chemistry reduces O3 on each day of the year (Figure 4b), but the magnitude of the reduction 322 

varies from day to day. Such variation depends on multiple factors including existing 323 

atmospheric O3 levels and wind speed. The O3 levels can influence the daily variation in two 324 

ways: 1) higher O3 concentrations increase inorganic iodine emissions which react with and 325 
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reduce O3 and 2) higher O3 increases the reaction rates with bromine and iodine which reduces 326 

O3. Wind speed can influence the daily variation in two ways: 1) lower wind speed enhances 327 

inorganic iodine emissions (McDonald et al., 2014) which further reduce O3 and 2) lower wind 328 

speed increases available reaction time between O3 and bromine/iodine species which can also 329 

reduce additional O3. Bromine and iodine chemistry most efficiently reduces O3 at low wind 330 

speeds and high existing O3 concentrations.  331 

 332 

3.5 Seasonal variation of the influence on O3 333 

To examine the seasonal variation of the bromine and iodine chemistry impacts on O3, we first 334 

calculated monthly mean O3 from daily-mean values for each grid cell over seawater. We then 335 

calculated a mean value from the same area over the Atlantic Ocean (see Figure 3a). Mean O3 336 

levels are highest in cooler months and lowest in warmer months (Figure 5) due to the low O3 337 

precursor levels over seawater that limit O3 production and cause loss processes to control O3 338 

concentrations. Photolysis of O3 and its reaction with HO2 are two dominant loss processes over 339 

seawater (Breton et al., 2017). The loss via photolysis is highest in warmer months due to high 340 

actinic flux. Atmospheric HO2 levels are high in warmer months due to higher photochemical 341 

activity; thus, the loss of O3 via its reaction with HO2 is also high in warmer months. Bromine 342 

and iodine chemistry reduces monthly mean O3 by ~8-10 ppbv. The reduction of O3 from 343 

bromine and iodine chemistry is largest in December and lowest in July. Bromine and iodine 344 

chemistry reduces seasonal mean surface O3 in Winter (December-February) by 9.9 ppbv, Spring 345 

(March-May) by 9.5 ppbv, Summer (June-August) by 8.7 ppbv, and Fall (September-November) 346 

by 8.8 ppbv. If the entire seawater is considered, bromine and iodine chemistry reduces mean 347 

surface O3 over seawater by 6.9 ppbv, 6.8 ppbv, 5.9 ppbv, and 6.2 ppbv in Winter, Spring, 348 

Summer, and Fall, respectively. Slightly greater O3 losses occur in the Winter and Spring seasons 349 
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due primarily to the bromine chemistry and the fact that lower temperatures in cooler months 350 

promote efficient partitioning of hydrobromic acid into Br- which enhances heterogeneous 351 

production of ozone-reacting bromine species.  352 

 353 

 354 

Figure 5. Influence of the bromine and iodine chemistry on month-to-month variation of surface O3. Error bars are 355 
represented with two standard deviation. Blue circle – No_Br/I and orange circle – Added_Br/I 356 

 357 

 358 

3.6 Influence on background O3 359 

By comparing the pair of simulations with anthropogenic emission sources over North America 360 

zeroed out, we are able estimate the impact of iodine and bromine chemistry on background O3 361 

over North America. The bromine and iodine chemistry reduces seasonal mean background O3 362 

over the U.S. in all seasons (Figure 6) with the greatest reduction occuring in the Winter and 363 

Spring (2-6 ppbv) followed by the Fall (2-4 ppbv) and Summer (1-3 ppbv). For all seasons, 364 

bromine and iodine chemistry reduces more O3 over the western U.S. and coastal areas than over 365 

other inland areas, which is consistent with the results shown in Figure 3b. The springtime 366 

reductions in the western U.S. are in areas that have some of the highest background O3 367 
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concentrations in the U.S. (Dolwick, et al., 2016). These substantial reductions in background O3 368 

from the bromine and iodine chemistry suggest that atmospheric models without this chemistry 369 

potentially overpredict background O3. Our results corroborate the findings of Wang et al. (2015) 370 

who reported that halogen chemistry affects the intercontinental transport of O3. 371 

 372 

 373 

Figure 6. Influence of the bromine and iodine chemistry (Added_Br/I_NoAnth – No_Br/I_NoAnth) on seasonal 374 
mean background O3 over the U.S. (a) Winter (b) Spring (c) Summer (d) Fall. Winter: December- February; Spring: 375 

March-May; Summer: June-August; Fall: September-November. 376 
 377 

3.7 Isolating the impacts of bromine and iodine chemistry on O3  378 

Figure 7 shows that bromine and iodine chemistry have different impacts on O3 concentrations; 379 

bromine chemistry reduces annual mean surface O3 over limited areas of seawater by 2-4 ppbv 380 

(Figure 7a) while the iodine chemistry reduces O3 by 2-10 ppbv over most oceanic areas (Figure 381 

7b). Iodine chemistry affects model prediction over the entire U.S. and reduces annual mean O3 382 

by 1-2 ppbv over the eastern U.S., 2-3 ppbv over the western U.S., and 3-4 ppbv over some 383 

coastal areas. In contrast, bromine chemistry reduces annual mean O3 by <1 ppbv over U.S. On 384 

average, bromine chemistry reduces annual mean O3 over seawater by 1.2 ppbv while iodine 385 
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chemistry reduces O3 by 5.2 ppbv. Iodine chemistry is more efficient in reducing O3 than the 386 

bromine chemistry due to several factors. The rate constant for the I + O3 reaction is ~10% 387 

greater than that of the Br + O3 reaction (Ordóñez, et al., 2012). Iodine recycles at a faster rate 388 

than bromine due to higher photolysis rates of I2/HOI compared to Br2/HOBr as well as the 389 

presence of higher iodine oxides in the model. Additionally, the inorganic iodine emissions rates 390 

are a function of dissolved O3 and iodide present in seawater (Carpenter et al., 2013) and are 391 

higher when atmospheric O3 concentrations are higher. Such factors in iodine chemistry reduce 392 

O3 over seawater more efficiently than that of bromine chemistry. Lower O3 concentrations over 393 

the marine environment due to iodine chemistry are transported inland resulting in lower O3 over 394 

land. 395 

 396 

 397 

Figure 7. Changes in annual mean surface O3 with (a) bromine chemistry (Added_Br – No_Br/I) and (b) iodine 398 
chemistry (Added_I – No_Br/I)  399 

 400 

3.8 Influence of iodine and bromine chemistry on O3 model performance 401 

In addition to the direct comparison between model simulations, we have also evaluated the 402 

simulations without and with bromine and iodine chemistry against both ship-based and land-403 

based O3 observations. The ship-based surface measurements used for this evaluation are over 404 

the Gulf of Mexico from the 2006 Texas Air Quality Study (Parrish et al., 2009b) (TexAQS). 405 
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Observed O3 concentrations during the August 2006 period of the TexAQS campaign are 406 

generally less than 30 ppbv, though higher values were measured over some coastal waters off 407 

Texas, South Carolina and Georgia (Figure 8a). Model mean bias values (Figure 8b-c) show that 408 

neither model simulation captures the high observed values near some coastal waters which 409 

results in a negative bias. The model without the bromine and iodine chemistry, however, has a 410 

positive bias (median bias +4.7 ppbv) over most areas in the remote ocean while the model with 411 

the bromine and iodine chemistry typically has a slight negative bias (median bias -1.0 ppbv, 412 

95% of the observations have a bias within ±30 ppbv) for these areas. We also compared the 413 

performance of the simulations without and with bromine and iodine chemistry by calculating 414 

the difference in the absolute mean bias between the two simulations. In this calculation, positive 415 

values mean that the simulation with bromine and iodine chemistry has a higher absolute bias 416 

(further from observations) while negative values indicate that it has a lower absolute bias (closer 417 

to observations). The difference in absolute mean bias shown in Figure 8d reveals that the 418 

inclusion of bromine and iodine chemistry generally reduces the bias by 2-6 ppbv over the ocean 419 

without much degradation in other regions. 420 

 421 
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 422 

Figure 8. (a) Observed surface O3 concentrations from R/V Ronald H. Brown during August 2006 of the TexAQS 423 
campaign (Parrish et al., 2009b) (b) model mean bias for the model without any bromine and iodine chemistry 424 

(No_Br/I – Observations) (c) model mean bias for the model with the bromine and iodine chemistry (Added_Br/I – 425 
Observations), and (d) differences in the model absolute mean bias between simulations without and with bromine 426 
and iodine chemistry (|Added_Br/I – Observations| – |No_Br/I – Observations|). The green colors in (d) represent 427 

locations where the simulation with the bromine and iodine chemistry had a lower model bias (improved prediction), 428 
and purple colors represent locations where the simulation with the bromine and iodine chemistry had a higher 429 

model bias (worse prediction). All units are in ppbv. 430 
 431 
 432 

 433 

The simulations without and with bromine and iodine chemistry were also evaluated against  434 

observations in the U.S. from the Clean Air Status and Trends Network (CASTNET) and the 435 

USEPA’s Air Quality System (AQS).  CASTNET and AQS include sites at mainly remote and 436 

mainly urban locations, respectively. Monthly mean bias for the simulation without the bromine 437 

and iodine chemistry varies (-8 to +4 ppbv for CASTNET sites and -3 to +7 ppbv for AQS sites), 438 

with negative biases (underprediction) for several months (January - August and December at 439 

CASTNET sites and April – June for AQS sites) and positive biases (overprediction) for other 440 

months (Figure 9). The inclusion of bromine and iodine chemistry generally improves O3 441 

predictions in the Fall at both the CASTNET and AQS sites and deteriorates the model 442 

predictions in the Spring. In the Winter and Summer, the simulation with bromine and iodine 443 
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chemistry generally has degraded predictions at the CASTNET sites and improved predictions at 444 

the AQS sites. 445 

 446 

When only the coastal sites are considered, the monthly mean biases for the simulation without 447 

bromine and iodine chemistry are positive for January – February and July - December at 448 

CASTNET sites (Figure 10a) and for all months at AQS sites (Figure 10b). Differences between 449 

the simulations without and with bromine and iodine chemistry are more noticeable for the 450 

coastal sites, with a larger number of months having improved predictions when bromine and 451 

iodine chemistry is included. This is especially true at coastal AQS sites where the bromine and 452 

iodine chemistry improves model performance for all months except March and April. Gantt et 453 

al. (2017) compared model (using a 12-km horizontal grid resolution) predictions for August 454 

2006 with observations from the 2006 ship-based TexAQS and coastal AQS sites and reported 455 

that the model without bromine and iodine chemistry generally over-predicts O3 while the 456 

bromine and iodine chemistry improves the model performance. Model performance shown in 457 

Figures 8 and 10 for August is consistent with results of Gantt et al. (2017). 458 

 459 
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 460 

Figure 9. Monthly mean bias without (No_Br/I – Observations) and with (Added_Br/I – Observations) the bromine 461 
and iodine chemistry at all (a) CASTNET and (b) AQS sites. AQS observations falling within the same grid cell are 462 
first averaged prior to comparing to the model value. Lower bar in the box represents the 25th percentile, middle bar 463 
represents the median and the upper bar represents the 75 percentile values. The lowest horizontal bar represents the 464 

minimum value while the highest horizontal bar represents the maximum value. 465 
 466 

 467 

Figure 10. Monthly mean bias without (No_Br/I – Observations) and with (Added_Br/I – Observations) the bromine 468 
and iodine chemistry at coastal (a) CASTNET and (b) AQS sites. AQS observations falling within the same grid cell 469 
are first averaged prior to comparing to the model value. Lower bar in the box represents the 25th percentile, middle 470 
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bar represents the median and the upper bar represents the 75 percentile values. The lowest horizontal bar represents 471 
the minimum value while the highest horizontal bar represents the maximum value. 472 

 473 

The hemispheric domain also allows for model evaluation against O3 observations from monitors 474 

in Japan as part of the Acid Deposition Monitoring Network in East Asia (www.eanet.asia/eanet) 475 

(Figure 11). The simulation without bromine and iodine chemistry underpredicts O3 (by 2-9 476 

ppbv) during the cooler months (January-May and November) and overpredicts (by 2-19 ppbv) 477 

in the warmer months (June-September). Including bromine and iodine chemistry further 478 

deteriorates O3 model performance in the cooler months but improves model performance in 479 

warmer months. This seasonality is consistent with Kyo et al. (2019) which reported CMAQ 480 

overpredictions of O3 during the summertime over Japan. 481 

 482 

 483 

 484 

 485 

Figure 11. Monthly mean bias without (No_Br/I – Observations) and with (Added_Br/I – Observations) the bromine 486 

and iodine chemistry at monitoring sites in Japan. 487 
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4.0 SUMMARY 489 

Regional chemical transport models like CMAQ are routinely applied to specific geographic 490 

areas for developing air pollutant control strategies. Often the boundary conditions for the 491 

regional models are adapted from hemispheric and global models to capture the broader 492 

influence of global pollution on the focal region. The results of this study reveal that bromine 493 

and iodine chemistry not only affects O3 over seawater but also over land, improves model 494 

performance for coastal sites, and reduces the predicted background ozone. These combined 495 

impacts provide strong evidence that bromine and iodine chemistry should  be considered for 496 

inclusion in air quality models used for O3 applications. 497 

 498 

DISCLAIMER  499 

The views expressed in this paper are those of the authors and do not necessarily represent the 500 

views or policies of the U.S. EPA.   501 
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Highlights 

•  Bromine and iodine chemistry reduces ozone  

•  Iodine chemistry is more effective in reducing ozone than the bromine chemistry 

•  Bromine and iodine chemistry affects background ozone 

•  Bromine and iodine chemistry improves model performance  
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