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Highlights 
 Skeletal muscle is heterogeneous in capillary distribution and oxidative 

demand 
 The extent of capillarisation is a key predictor of muscle aerobic capacity 
 Exercise-induced angiogenesis is driven by both chemical and mechanical 

signals 
 Simply increasing the number of capillaries may not be an optimal response  
 Understanding spatial distribution will facilitate the design of specific 

exercise regimes 

 

Abstract 
Skeletal muscle is among the most plastic of tissues, remodelling to accommodate 
altered demands. Exercise induces a range of adaptations, notably a growth of 
capillaries (angiogenesis), while inactivity results in a loss of capillaries 
(rarefaction). As endurance activity relies on an adequate O2 supply to support 
oxidative phosphorylation, hypoxia within working muscle may act as an 
angiogenic stimulus, but additional candidates include chemical factors such as 
metabolic by-products (e.g. acidosis) or release of signalling molecules (e.g. 
VEGF, NO), and mechanical factors including response to muscle contractions 
(strain) or increased blood flow (hyperaemia). Optimising training interventions, 
for performance or rehabilitation, will benefit from better understanding of the 
local environment controlling the pattern of capillary distribution and its 
consequences for tissue oxygenation. (120/120 words). 
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Introduction 
Capillaries are present within almost all organs, with fine structure (continuous, 
fenestrated, sinusoidal) differing according to functional demand. In skeletal 
muscle their principal role is gaseous and metabolite exchange at the blood-tissue 
interface. A capillary has a narrow aperture that produces resistance to blood flow 
through viscous drag, generating significant levels of shear stress. However, the 
large cumulative lumen surface area of capillaries actually provides less resistance 
than that of upstream arterioles. This leads to a lower linear velocity compared to 
that of larger vessels, which provides a sufficiently long transit time for the 
diffusive exchange of oxygen and nutrients (Fig. 1). Despite low perfusion 
velocity, the small diameter combined with low compliance means that individual 
capillaries may experience high levels of shear stress, which will be elevated 
during exercise in an intermittent manner determined by the duty cycle involved. 
The potential exists to mitigate effects of systemic hypoxaemia and/or local 
hypoxia, and contribute to improved exercise tolerance, by expanding the capillary 
bed and as a consequence increase surface area and reduce erythrocyte transit time. 
Growth of capillaries is accomplished by the process of angiogenesis, which shares 
some similarities but many differences with other forms of vascular growth or 
remodelling that are often not adequately differentiated by use of loose 
terminology such as ‘neovascularisation’. 
 
Skeletal muscle mass is an independent predictor of peak oxygen uptake (VO2) in 
healthy individuals and non-cachectic patients. A variety of skeletal muscle 
abnormalities contribute to exercise intolerance in those with cardiorespiratory 
limitations, i.e. may be due to peripheral changes rather than to central 
haemodynamic dysfunction. As VO2 during exercise occurs predominantly in the 
active muscles, due to local vasodilatation and blood shunting from the splanchnic 
region, this offers a viable therapeutic target. Given this relationship between 
skeletal muscle mass and exercise capacity, peak VO2 should increase with training 
regimes that increase skeletal muscle bulk, hence ‘exercise as medicine’ is 
increasingly thought to offer a cost-effective intervention strategy. Aerobic 
(endurance) muscle performance relies on an adequate arterio-venous O2 
difference, which in turn is limited by either mitochondrial oxidative capacity or 
blood-tissue diffusive exchange within the microcirculation. Consequently, any 
supply/demand mismatch needs to have a dynamic response – acutely this may 
involve metabolic (functional) hyperaemia, but chronically requires growth of new 
vessels from the existing capillary bed (angiogenesis).  
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This review aims to summarise current understanding of angiogenic regulation in 
skeletal muscle, and identify some exciting new avenues of investigation, that may 
help optimise microvascular performance in health and disease. 
 
Quantification of microvascular supply 
 
Deriving a consensus position on what benefits accrue from exercise-induce 
angiogenesis, and which training regimes may be most effective, requires 
agreement on validated methods of quantifying size of the capillary bed. This has 
been a significant contributor to sometimes wide-ranging estimates of muscle 
capillary supply in the literature [1]. Histochemical staining has become the most 
common method of identifying capillaries, where previously injection of dyes into 
the microvasculature was used [2]. Early identification of capillaries utilised a stain 
for alkaline phosphatase, an enzyme with high activity in the endothelium [3] but 
reproducibility differs among staining methods, and its validity as a marker have 
been questioned [1]. With the development of immunohistochemistry there are an 
array of antibodies available to probe for endothelial cell components, such as 
adhesion molecules such as CD31 (PECAM-1), and growth factor receptors such 
as Flk-1 and Tie-2. An increasingly common marker used to visualise capillary 
location are various lectins, polysaccharides that bind to the glycocalyx of 
capillaries, due to the relative simplicity of staining. However, alternative markers 
for endothelial cells generate disparate results when used to stain the same muscle 
sections (Fig. 2a). As such, it is important to be aware of the markers used to 
identify capillaries when using data from the literature, in particular whether they 
identify newly formed or mature vessels, and the varied sensitivity/specificity of 
markers among species in comparative studies.  
 
Microvascular sensors  
 
Adaptive tissue remodelling is most likely a result of feedback regulation, so 
identifying the origin of proximate signals may help direct therapeutic 
interventions, or optimise training strategies. Key to the integrated exercise 
response is translation of acute reactions mediated by ergoreceptors [4], that e.g. in 
the presence of poor capillarisation may promote the sensation of breathlessness 
and facilitate improved cardiac output, and translation of chronic signals into 
structural remodelling. Metaboreceptor stimulation by metabolite spillover is 
accompanied by metabolic heat generation during muscle activity, and passive heat 
therapy has recently been shown to have angiogenic potential [5]. Three major 
candidate areas receiving a lot of attention are detection of altered tissue 
oxygenation, linkage with metabolic activity, and response to haemodynamic 
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disturbance. These clearly need to invoke an appropriate signalling response on 
repetition (e.g. part of regular physical activity or structured exercise), as structural 
remodelling is energetically costly and hence endothelial responses to acute stimuli 
(e.g. running to catch a bus) are not readily translated into angiogenesis. 
 

1) Endothelial O2 sensing.  
While it is clear that maximal rates of O2 diffusion in muscle are limited by both 
the blood carrying capacity and extent of capillarisation, diffusional conductance 
between the microvasculature and mitochondria represents a significant limitation 
to maximal VO2 in health and disease states [6]. The dynamic sensing of changes 
in local metabolic demand during exercise is therefore key to optimising aerobic 
capacity, and although the location has been subjected to some debate there is good 
evidence to suggest this is found at the level of individual capillaries, likely 
associated with release of ATP from erythrocytes [7]. There is clearly a need to 
provide both an adequate convective supply of O2 to working muscle, but also to 
ensure an effective distribution within a tissue of heterogeneous composition (e.g. 
different fibre types). Linking endothelial responses to the local environment, e.g. 
by alteration of metabolism [8], to ascending dilatation within the supplying 
arterioles [9] provides a mechanism for such coordination. It is likely that such a 
feedback loop would also include stimulation of angiogenesis, providing the 
necessary cues to maintain optimal microvascular topology [10-12]. For example, 
in a recent voluntary running wheel training study on mice, exercise-induced 
angiogenesis was accompanied by changes in capillary fine structure and tortuosity 
[13]. Such a downstream response will be mediated by associated changes in the 
chemical and/or mechanical microenvironment surrounding capillaries. 
 

2) Endothelial chemotransduction 
Intimately linked with O2 sensing is the response to local disturbance in tissue 
oxygenation by any supply/demand mismatch, leading to pockets of relative 
hypoxia during muscle activity. This may invoke a range of transcriptional 
responses [14, 15], orchestrated largely by HIF-1 though requiring a more subtle 
regulation than implied by the usual description of a hypoxic ‘switch’ [16]. 
Investigations into release of classical pro-angiogenic signals has centred around 
the roles of vascular endothelial growth factor (VEGF) [17-23], as both a mitogen 
and vasodilator. This has expanded in recent years to include the potential 
involvement of exercise-induced release of endothelial microparticles and changes 
in microRNAs [24], potentially modifying the response to altered levels of pro-
angiogenic or angiostatic factors quantified by e.g. Western blot or ELISA. In 
addition, there is renewed interest in the role of perivascular cells in regulating 
adaptive angiogenesis, providing a paracrine influence of e.g. pericytes and 
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satellite cells on the endothelium [25] offering an additional site for sensing both 
chemical and physical changes in the local environment and hence influencing the 
response to exercise. However, the role of endothelial chemotransduction in 
driving angiogenesis is extensively covered in the literature, largely driven by 
tumour angiogenesis investigations; the main players in skeletal muscle are 
summarised in [26] and some new angles explored in [8]. We shall therefore 
emphasise the less well reviewed concept of mechanotransduction, and identify 
areas of complementarity. 
 

Mechanotransduction-driven angiogenesis 
 
The ability of endothelium to respond to mechanical stressors is well known, with 
a majority of studies emphasising the link with atheroma development and 
inflammation [27]. It has been noted that the signals underlying exercise-induced 
angiogenesis are likely multi-facetted, in both origin and effects. An impressive 
functional response of the microvasculature and the skeletal muscle it supports has 
been demonstrated across a variety of species. As little as four weeks training in 
humans is required  to significantly increase capillary content [28-31], with similar 
microvascular remodelling seen after four to six weeks of voluntary wheel running 
or treadmill training in rodents [21, 32-35]. Interestingly some changes in 
capillarity can be seen as early as seven days [32, 33], suggesting that in these 
instances angiogenesis precedes the altered fibre type composition [32, 36], and 
that microvascular changes are permissive for other adaptive responses rather than 
being simply reactive. However, while changes in fibre type following training 
usually occur very slowly, exercise-induced alterations in mitochondrial respiration 
are very fast, and it may be that angiogenesis is reactive to the accompanying 
stimuli (below). 
 
Attempts to isolate the components largely have concentrated on elements of 1) 
and 2) (above), but recognition has been growing that the dynamic physical 
environment experienced by endothelial cells (EC) during a duty cycle (stretch and 
compression, elevated shear stress, increased transmural pressure) are all factors 
that may affect EC phenotype in vitro. Isolating these mechanical signals from any 
accompanying chemical signals in vivo has proved difficult, but there has been a 
recent surge in the translation of isolated mechanotransductive animal models [35, 
37, 38] to human investigation, of particular interest is the use of passive leg 
exercise [39, 40] and supplementation of the vasoactive Į1 adrenoreceptor 
antagonist terazosin [41, 42]. Briefly, passive leg movement drives a modest 
increase in blood flow (hyperaemia) and longitudinal stretch of myofibrils without 
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the metabolic demand typically induced through active exercise [43]. Passive 
exercise, with no muscle activity to compound the signal, demonstrates that 
mechanoreceptors can drive angiogenesis in vivo [44]. Similarly, the well-
established shear stress-induced angiogenesis model (typically through prazosin, 
an 1 adrenoreceptor antagonist, supplemented in drinking water of rodents) has 
for the first time been tested in humans. Four weeks of terazosin (another 
vasodilator) supplementation resulted in a 12.5% increase in capillary to fibre ratio 
(C:F) and 24% increase in capillary density (CD) within the vastus lateralis of 
healthy adults. Sustained elevations in shear stress within the microcirculation 
induced by terazosin, again represent primarily a vascular signal lacking input 
from surrounding muscle, and parallels the influence of functional hyperaemia on 
exercise-induced angiogenesis [41]. When applied in a chronic setting, hyperaemia 
and the accompanying release of endogenous mediators of angiogenesis (VEGF, 
eNOS and MMP2) increases the microvascular content of skeletal muscle [40]. 
The associated markers of angiogenesis are also increased both within healthy 
adults [39] and those with peripheral arterial disease (PAD) [44]. Whether a similar 
translational benefit of overload-induced angiogenesis [45] could be realised is 
unknown.  

Emphasising quality, not quantity of microvascular supply 
 
The functional relevance of any terazosin-driven angiogenic response (increase in 
CD) have yet to be fully examined.  However, despite the associated increase in 
capacity for O2 flux and metabolite removal, key for improved aerobic exercise 
performance, there is increasing evidence that highlights the importance of fine 
spatial control of capillary distribution needed to optimise oxygen transport [12, 
46, 47]. Terazosin supplementation (an attempt to isolate the exercise hyperaemia 
response) showed no shift in distribution of the area of muscle supplied by 
individual vessels (or capillary domain [47]), representing the heterogeneity of 
capillary spacing, after four weeks (Fig. 3a). This indicates a stochastic location of 
new vessels that does not affect the microvascular topology seen in controls, 
suggesting the shear stress driven response is not responding to tissue metabolic 
demand. In contrast, the exercise response recruits targetted neovascularisation that 
is seen to reduce the supply area for individual capillaries, and hence optimise 
muscle oxygenation [46], to support the higher energy demand of active muscle 
(Fig. 3b). The terazosin data is consistent with findings of prazosin in rodent 
models of diabetes where, despite a significant increase in microvasculature, there 
was little or no improvement in the functional readouts reported [35]. 
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The interaction of capillary spatial heterogeneity (supply) and muscle fibre type 
composition (demand) is becoming a prominent topic of investigation in response 
to exercise and disease [18, 48-52]. Although strictly the demand is set by 
mitochondrial function, fibre type is used as a surrogate due to the difficulty of 
relating dynamic ATP production with capillary location on biopsy sections. We 
have recently highlighted the importance of spatial heterogeneity in skeletal 
muscle functional capacity within two distinct components of the rat EDL, a 
‘mixed’ muscle often considered to be of homogeneous composition [50]. Within 
the same muscle it is possible to have varying functional characteristics and 
optimum working conditions, which are likely to be driven by functional demand 
(Fig. 4). These data emphasise the need to understand the functionality of a muscle 
for the development of effective targetted rehabilitation and therapeutic regimes.  
 
Until recently, the calculation of fine scale indices of capillary supply has been a 
laborious and undervalued technique, which may explain the lack of attention to 
this area of morphometric quantification. A handful of research groups have 
attempted to use more refined indices of capillary supply, specific to individual 
fibre types [49, 53-55]. However, the methods used to derive these indices are 
inconsistent, and it is unclear how some offer appropriate representation of local 
capillary to fibre interactions. The recent boom in semi-automatic software 
packages for analysis of the phenotypic composition of skeletal muscle [56-59] has 
yet to allow researchers to extend this analysis and incorporate the fundamental 
oxygen supply component (capillary) onto muscle fibre boundary outlines, 
essential if one is to provide an anatomically realistic framework. However, a 
recent publication has made the first step in providing a means to generate valid 
local capillary indices, using a semi-automated data pipeline that processes 
immunohistochemically labelled skeletal muscle tissue, as illustrated in Fig. 4 [51].  
 

Exercise-induced angiogenesis in disease 
 
With national campaigns to increase levels of physical activity, and the drive for 
exercise as part of healthcare prescriptions, the animal data outlined above may be 
of particular interest for individuals with reduced exercise tolerance (e.g. chronic 
obstructive pulmonary disease (COPD), peripheral vascular disease (PVD) or 
chronic heart failure (CHF)), who could benefit from treatments that do not impose 
a large central cardiorespiratory or local metabolic demand, but could rectify poor 
microvascular supply in the periphery. The initial response in skeletal muscles may 
then subsequently facilitate a more active exercise program to drive central 
changes [35]. 
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Skeletal muscle inactivity [49, 51, 60, 61] and ageing [62-64] both result in marked 
decreases in fibre area and microvascular supply, that corelate highly with a 
reduced aerobic functional capacity. Interestingly, during healthy aging there 
appears to be local feedback that coordinates capillary rarefaction in order to 
preserve appropriate supply to the individual fibre requirements [63]. However, 
there are a number of pathologies that are accompanied by impaired peripheral 
microvascular supply that may not maintain this relationship; including COPD 
[65], CHF [66-68], diabetes [30, 35, 48, 69, 70], PVD [44] and spinal cord injury 
(SCI) [71]. This supply-demand mismatch is an obvious candidate driving 
development of the observed exercise intolerance, and hence exercise-induced 
angiogenesis would appear to be a worthwhile therapeutic goal. 
 
Surprisingly, the microvascular component of SCI is a largely ignored pathology in 
relation to trauma, and as a potential driver of functional recovery. In chronically 
injured patients there is a well-maintained hyperaemic response to functional 
electrical stimulation [72], which points to the microvasculature as the limiting 
interface leading to impaired fatigue resistance [71]. Following eight weeks of 
locomotor training combined with epidural stimulation it is possible to 
significantly blunt the microvascular rarefaction seen in skeletal muscle innervated 
caudal to the lesion [71]. There is also evidence that passive limb movement [73] 
and functional electrical stimulation [72] promote muscle hyperaemia, and applied 
early enough following trauma these may be able to alleviate some of the capillary 
rarefaction observed. The parallels with exercise-induced angiogenesis are clear, 
but it remains to be tested whether the signals induced are the same. 
 
Given the established role of skeletal muscle microcirculation in mediating glucose 
homeostasis exercise-induced angiogenesis is an attractive, non-pharmacological 
intervention for the burgeoning diabetic population. Again, any exercise-
intolerance may be alleviated by invoking shear-stress induced angiogenesis to 
improve insulin sensitivity [74], with the hope of subsequently encouraging more 
traditional exercise therapy. The increasing prevalence of diabetes and CHF as 
comorbidities poses a complex therapeutic niche [75, 76]. As standalone 
pathologies, both diabetes [30, 35, 48, 69, 70, 77, 78] and CHF [66-68, 79-81] 
present with modest microvascular rarefaction, and those suffering with both are 
likely to have more pronounced rarefaction. To further complicate matters the 
metabolic response to these isolated pathologies is mixed, with evidence that 
diabetes may preserve [82] or increase oxidative demand of muscle, while CHF 
tends to present with a reduced oxidative capacity in locomotor muscles [83, 84]. 
Diabetes [30, 35, 69, 78, 85, 86] and CHF [81, 84] induced rarefaction are both 
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attenuated with increased activity, with concomitant increases in oxidative demand 
of skeletal muscles [86, 87], although the functional benefits of these structural and 
enzymatic changes are still to be determined. When considering the effects of 
exercise as a holistic response, differences in phenotype among tissues may have 
important consequences for targetted angiotherapy, e.g. endothelium in the central 
and peripheral nervous systems are different from skeletal muscle, hence 
addressing diabetic exercise intolerance may need to distinguish between poor 
oxygenation and neuropathy [88, 89]. 
 
 
Difficulty in unpicking the proximal causes and subsequent aetiology of many 
diseases mean that tailoring the most efficient exercise regime represents a 
significant challenge. It is possible to increase microvascular content using 
conventional endurance exercise such as cycling and running [29, 30, 78, 85, 90], 
but often these modalities are poorly tolerated. However, it is also possible to 
modify microvascular composition and muscle metabolism through moderate 
intensity interval training (MIIT) [53, 90, 91], high intensity interval training 
(HIIT) [14, 91, 92] or resistance training [15, 31, 55, 93], offering the potential for 
disease- and patient-specific interventions. It remains a fine balance between 
optimising any exercise intervention to avoid overloading the central 
(cardiorespiratory) systems, while inducing peripheral adaptations to modify the 
metabolic status (demand) and/or the microvascular composition (supply) 
sufficiently to impact exercise tolerance. The use of pharmacologically-induced 
rise in shear stress and/or passive movement to avoid these central challenges are 
likely to be beneficial, particularly in the early stages of rehabilitation.  
 

Conclusions and future directions 
 
The realisation that even previously assumed ‘homogeneous’ muscles actually 
contain functionally and structurally distinct regions demands a reappraisal of both 
the analytical approach when handling biopsies, and interpretation of resulting data 
describing the outcomes of different training regimes. This will allow improved 
understanding of the local factors that drive tissue remodelling, and consequently 
help deliver more effective therapeutic exercise interventions that offer the 
equivalent of ‘personalised medicine’ for individual conditions. There is a wealth 
of recent research to suggest that exercise adaptation differs greatly among 
individuals who receive the same activity stimulus. This may be underpinned by 
differential molecular responses [94-96], but surprisingly is not accounted for by 
genetic variation [97]. One unexplored avenue that may complement such studies 
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is how vicarious events and lifestyle influence the microvascular distribution in 
skeletal muscle, and the importance of spatial heterogeneity in utilising the 
intrinsic capacity for oxygen transport to tissue that ultimately may define an 
individual’s endurance exercise performance. 
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Figure legends 
 
Figure 0. Vascular cross-sectional area (red line) and mean linear flow (blue 
line). Note the large cumulative surface area in the capillary bed (exchange 
vessels), which compensates for the slow perfusion rate to effect adequate 
diffusive supply of oxygen and other nutrients. Adapted from [98].  

 
Figure 2. (a) C:F of the mouse EDL using multiple markers for capillary 
location. Adapted from J Williams, PhD Thesis, University of Birmingham 
(2005), * P<0.05 from Lectin (n=6). (b) Representative histological samples. There 
may also be a species effect, as the discrepancy among markers in rat EDL is less 
pronounced (unpublished data). ALP; alkaline phosphatase, CD31; platelet 
endothelial cell adhesion molecule (PECAM-1), Lectin; biotinylated Griffonia 
Simplicifolia Lectin I.  
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Figure 3. Capillary domain distributions for human angiogenic models.  (a) 
Percutaneous needle biopsies from m. vastus lateralis following supplementation 
with terazosin for four weeks (modified from Mortensen, et al., 2017). (b) 
Percutaneous needle biopsies from the lateral quadriceps muscle, pre- and post- 
isokinetic training at 60% maximum voluntary contraction using 
a Cybex Orthotron KT2 (Egginton & Jakeman, unpublished data). Note: both 
interventions produced significant increases in C:F, but the capillary domain area 
distributions differ greatly.  

 
Figure 4. Structural and functional heterogeneity within the EDL. The 
heterogeneous oxygen supply capacity of the muscle is demonstrated by density of 
rhodamine labelled capillaries (histology top row, i-iv). The increased oxidative 
supply medially across the muscle is matched by an increasing oxidative demand, 
in the form of greater oxidative fibre content (histology bottom row, i-iv). 
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