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Abstract 

Cold-formed steel (CFS) elements are increasingly used as main structural members in modern 

construction practice. While flexibility of CFS cross-sectional shape allows achieving higher load carrying 

capacities by using more efficient shapes, obtaining optimum design solutions can be a challenging task 

due to end-use constraints and complex behaviour of CFS elements controlled by local, global and 

distortional buckling modes. This study aims to develop a practical methodology for optimum design of 

CFS beam sections with maximum flexural strength and minimum deflection under ultimate and 

serviceability load conditions, respectively, in accordance with Eurocode 3 by taking into account 

manufacturing and end-use design constrains. Population-based Big BangʹBig Crunch Optimisation 

method is employed to obtain optimum design solutions for twelve different CFS cross-sectional 

prototypes. To verify the flexural strength and stiffness of the optimum beam sections, detailed 

nonlinear finite element (FE) models are developed using ABAQUS by considering both material 

nonlinearity and initial geometrical imperfections. It is shown that the optimised sections based on 

serviceability limit state (SLS) and ultimate limit state (ULS) can provide, respectively, up to 44% higher 

effective stiffness and 58% higher bending moment capacity compared to a standard lipped channel 

beam section with the same plate width and thickness. Using plain channel and folded-flange sections 

generally leads to the best design solutions for SLS and ULS conditions, respectively. Finally, the results of 

detailed FE models are used to evaluate the adequacy of EC3 proposed procedures to estimate CFS 

beam capacity and deflection at ULS and SLS, respectively. 
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1 Introduction 

Cold-formed steel (CFS) load-bearing members and structural systems are increasingly used in 

modern construction, for example in modular buildings, stud wall systems, purlins, trusses, side rails and 

cladding. Although CFS elements are susceptible to local/distortional buckling, they can be more 

economical and efficient compared to similar hot-rolled sections, due to their inherent advantages such 

as high strength-to weight ratio, speed and efficiency of construction, and especially higher flexibility in 

manufacturing various profiles and sizes through cold-rolling or press-braking process at ambient 

temperature. The flexibility in CFS cross-sectional shapes provides an excellent opportunity to achieve 

higher load carrying capacities by using more efficient design solutions. However, this can be a 

challenging task due to typical manufacturing and end-use design constraints and complex behaviour of 

CFS elements controlled by combinations of local, global and distortional buckling modes. In general, 

optimisation of CFS members may aim to obtain an optimal cross-sectional shape without considering 

any restriction on the general shape of the sections (i.e. self-shape optimisation) (e.g. [1-7]), or 

determine optimum relative dimensions of a predefined cross-section (i.e. size optimisation) (e.g. [8-23]).  

Different optimisation methods have been used for self-shape optimisation of thin-walled steel 

sections including Genetic Algorithm (GA) [1, 3, 4], Direct Multi-Search (DMS) method [2], graph theory 

and ant colony based algorithms [5], and gradient-based steepest descent method and simulated 

annealing [6]. In most of these studies, a steel sheet with a predefined total width is allowed to be bent 

at a certain number of locations, while the Direct Strength Method (DSM) [24] is generally adopted to 

estimate the compressive and bending capacity of the members. While considerable enhancement of 

strength were reported in all aforementioned self-shape optimisation methods, they may lead to 

impractical complex shapes with high manufacturing costs and/or difficulty in connecting to other 

structural components. 

Several investigations have previously been conducted to optimise predefined standard CFS profiles 

such as C channels, and I and Z shape beams (e.g. [15, 16, 18]). It is shown that optimising the cross-

sectional geometry of simply-supported CFS beams subjected to uniformly distributed vertical [10, 12, 13] 

or transverse load [14] can substantially improve their flexural capacity. However, due to cross-sectional 
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shape restrictions in size optimisation methods, the efficiency of the optimised sections may drop 

slightly from self-shape optimisation solutions [8, 9]. 

Ye et al. [25] extended the effective width method in EC3 [26] ƚŽ①ĚĞƐŝŐŶ①Ă①ŶĞǁ①ƚǇƉĞ①ŽĨ①͚ĨŽůĚĞĚ-ĨůĂŶŐĞ͛①

cross-section by considering the possible occurrence of multiple distortional buckling modes. 

Subsequently they used Particle Swarm Optimisation (PSO) method to increase the maximum flexural 

capacity of different cross-sectional prototypes and demonstrate the efficiency of the proposed folded 

flange sections. It was shown that, for the same amount of material, optimised folded-flange sections 

can provide up to 57% higher bending capacity compared to their standard counterparts. In another 

study, Ye et al. [10] adopted the Particle Swarm Optimisation (PSO) method to develop CFS beam 

sections with maximum flexural capacity, while Eurocode 3 (EC3) [26] design regulations and a number 

of manufacturing limitations were considered as design constraints. By using an extended EC3 effective 

width method, to take into account the possibility of multiple distortional buckling modes, they 

ĚĞǀĞůŽƉĞĚ①ĂŶ①ŽƉƚŝŵƵŵ① ŝŶŶŽǀĂƚŝǀĞ① ͚ĨŽůĚĞĚ-ĨůĂŶŐĞ͛① ĐƌŽƐƐ-section which could provide up to 57% higher 

flexural capacity compared to a standard benchmark section with the same plate width and thickness. In 

a follow-up study, Ye et al. [17] proposed an advanced shape optimisation framework to achieve 

maximum energy dissipation of CFS sections in uniaxial bending by providing a link between detailed 

nonlinear finite element analyses and PSO algorithm.  

Various size optimisation methods have been also used to increase the compressive capacity of CFS 

axial members, such as Genetic Algorithm (GA) [18, 19], Particle Swarm Optimisation (PSO) [22] and 

Hough Transform [20]. Lee et al. [19] and Tian and Lu [21] optimised the geometry of CFS columns under 

compressive axial loads and proposed optimum design curves for different prescribed load levels. The 

local-flexural buckling strength of single CFS channels and global buckling strength of the CFS storage 

pallet racking cross-sections, determined according to the relevant EC3 (EN1993-1-3), have been also 

optimised by Ye et al [22] and Pastor et al. [23], respectively. In both studies, the adequacy of the 

optimum cross-sections was examined by the results of detailed FE analysis and experimental tests.  

There is a general consensus that a structure must be designed to resist both service and extreme 

load conditions with the acceptable level of reliability during its effective life. However, the 

aforementioned literatures mainly focused on Ultimate Limit State (ULS), which conventionally 

represents the ultimate strength of the CFS structures under extreme load events. It should be noted 

that the level of slenderness for CFS elements is normally higher than hot-rolled steel counterparts, and 

therefore, the Serviceability Limit State (SLS) is generally more critical for CFS structures. For example, 

previous studies indicated that the serviceability criteria can govern the design of CFS frame systems 
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especially in low-seismic regions, e.g. under wind loads [27]. Violation of serviceability requirements (e.g. 

deflection limits) implies that the structure would be unfit for normal service operations. 

To address to above mentioned research gaps, this study aims to provide a new framework for size 

optimisation of CFS beam members under both serviceability and ultimate limit states by considering 

manufacturing and design constraints. To obtain optimum cross-sections designed according to 

Eurocode design guidelines [26, 28, 29], a computationally efficient Big BangʹBig Crunch (BB-BC) 

algorithm is adopted. The relative dimensions of the cross-sections, inclination of the flanges and lips, 

and adding features like different edge and intermediate stiffeners are considered as the main design 

variables in the proposed optimisation process. The efficiency of the optimum cross-sections is then 

compared with a standard conventional lipped-ĐŚĂŶŶĞů① ĐĂůůĞĚ① ͞ďĞŶĐŚŵĂƌŬ͟ section. Subsequently, 

detailed GMNIA Finite Element (FE) models accounting for both material nonlinearity and initial 

geometrical imperfections are employed using ABAQUS [30] to evaluate the adequacy of EC3 

methodology to estimate CFS beam capacity and deflection at ULS and SLS, respectively.    

 

2 Eurocode Design Principals 

Eurocode 3 (EC3) part 1-3 [26] specifies design requirements for CFS products made from thin gauge 

coated or uncounted steel sheet or strip. The EC3 design requirements are mainly based on limit state 

design, in which the structural performance is evaluated against various limiting conditions (e.g. ULS and 

SLS). In this paper, the flexural strength and stiffness of CFS beam elements are quantified according to 

the Effective Width Method adopted from EC3 part 1-3 [26] and EC3 part 1-5 [28]. The following 

subsections describe briefly the EC3 design procedure. 

2.1 Local buckling 

The EC3 effective width method can take into consideration the non-linear effect of local buckling, 

which leads to loss of strength in the middle of an internal plate element supported along both 

longitudinal edges, or in the free edge of an outstand element supported along one longitudinal edge. 

Therefore, the main load-bearing areas of the cross-section in compression zone are considered to be in 

the corner zones. Subsequently, the centroidal axis shifts towards the tensile part of the gross cross-

section. The effective width of each internal and outstand compression element is calculated through 

the following equation in EC3 part 1-5: 
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where  is the plate width reduction factor, and eb and b are the effective width and the total width 

of the plate, respectively. The effect of applied stress gradient is expressed by  , which is defined as the 

ratio of the plate end stresses.l  is the slenderness ratio against local buckling and relates the material 

yield stress yf  to the elastic local buckling stress of the plate  cr :  




 y
l

cr

f
      (2) 

Estimation of the effective cross-section subjected to bending moment in EC3 generally requires an 

iterative process. This is referred to the fact that the stress gradient is changed due to shift of neutral 

axis of the effective cross-section, which dependents on the loss of effective section in compression zone. 

While the iterative process is considered optional by EC3, in this study full iterations were carried out to 

achieve convergence. 

2.2 Distortional buckling 

Distortional buckling describes the distortion of the cross-section with rotation and translation at 

interior elements, leading to both in-plane and out-of-plane displacements of constituent plates. EC3 

takes into account the local buckling and distortional buckling of CFS sections by reducing the effective 

width and the effective thickness of the constituent plates, respectively. The distortional slenderness, d , 

can be calculated based on a simplified model, in which the restraining effects of the adjacent plates in 

the cross section are taken into account by using equivalent elastic springs: 

                                                                      ,/ d y cr sf                                                                              (3)                      

where , cr s is the elastic buckling stress of the plate-stiffener assembly given by: 

,

2
  s

cr s
s

KEI

A
      (4) 
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In the above equation, K and sA  are the stiffness of the spring (per unit length) and the effective cross-

sectional area of the stiffener, respectively. E  is the Young's modulus and sI  is the moment of inertia of 

the stiffener about the centroid parallel to the plate element. K is a function of the flexural stiffness of 

the adjacent plates and can be calculated based on the deflection of the stiffener assembly under a unit 

load 1u   (per unit length). EC3 also recommends to use an iterative process to update the local 

slenderness ratio of the plates, l , by replacing ,  l red l d . d  is the reduction factor 

corresponding to the distortional buckling resistance and can be calculated by using the relative 

slenderness d . It should be mentioned that fy should be substituted by =  com d yf   in each iteration 

for the calculation ofd . This optional iteration loop was considered in this study until , ,(n 1)  d n d . In 

this study, optional iteration loop was considered when the ratio of two consecutive loops (
,

,(n 1)


 

d n

d

) is 

between 0.99 and 1.01.  

 

2.3 Global buckling 

Based on EC3 part 1-1 [29], the design global buckling resistance moment of CFS beam members is 

taken as: 

                                                                  ,
1

LT eff y
b Rd

M

W f
M




                                                                             (5)                                

where effW  is the effective modulus of the cross section and 1 M  is the partial safety factor 

prescribed by EC3, which is equal to 1.0. Also, LT  is the reduction factor corresponding to the lateral-

torsional buckling (or global slenderness ratio), which is calculated based on the elastic critical moment 

of the beam member using the following equation: 

     
eff y

LT
cr

W f

M
         (6) 

In common practice the CFS beams are generally laterally restrained by a floor system, which means 

the global instability (e.g. lateral-torsional buckling) of the CFS beam elements are practically prevented. 

Therefore, the global buckling modes are not considered in the optimum design of CFS beams in this 

study. 
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3 Problem Definition 

The aim of the optimisation process in this study is to maximise the flexural capacity and stiffness of 

CFS beams under ULS and SLS conditions, respectively, calculated based on EC3. A standard lipped 

channel section that satisfies all EC3 design constraints (see Fig. 1) was selected as the starting point of 

the optimisation process. This section was also used as a benchmark to confirm the efficiency of the 

optimum design solutions. The total coil width of the steel plate 453L mmand its thickness 

1.8t mm  were kept constant during the proposed optimisation procedure to use the same amount of 

material in all cross sections. The radius of the rounded corners for all cross sections was assumed to be 

3 mm. The elastic modulus, yield stress ĂŶĚ①PŽŝƐƐŽŶ͛Ɛ①ƌĂƚŝŽ①of the steel material were taken as 210GPa,

450yf MPa , and 0.3, respectively.  

 

FŝŐ͘①ϭ͘①“ƚĂŶĚĂƌĚ①CF“①ůŝƉƉĞĚ①ĐŚĂŶŶĞů①ƐĞĐƚŝŽŶ①ƵƐĞĚ①ĂƐ①Ă①ďĞŶĐŚŵĂƌŬ①;ĚŝŵĞŶƐŝŽŶƐ①ŝŶ①ŵŵͿ 

 

In this study, 12 different prototypes were selected including conventional plain and lipped channels 

as well as those with single and double intermediate stiffeners (in web or flanges), single and double 

inclined edge stiffeners, and a newly developed folded flange channel. All selected shapes can be 

manufactured through cold-rolling or press-braking process (see Table 1) and can be potentially used in 

practical applications. Each prototype was individually optimised using different optimisation targets 
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(ULS and SLS). The following EC3 design constraints and practical and manufacturing limitations were 

imposed to each type of cross-sections as listed in Table 1: 

a) The minimum width of the flange (bearing width) was set to be 50mm as suggested by SCI Guide 

ED-017 guidance [31]. This criterion was imposed to provide enough space for the connection of gypsum 

or wood based boards and decking to the CFS beams by using screws. 

b) Based on the advice from the industrial collaborators of this project, the size of single and double 

lips was taken to be 10c  mm, and 5d  mm (see Table 1) to make the forming of edge stiffeners (lips) 

feasible by using conventional rolling or press-brake machines. 

c) The minimum depth of the channel sections was assumed to be 200 mm, which allows a bolted 

connection or bridging to be constructed. By considering the standard floor depth, the maximum height 

of the web (beam depth) was also limited to 400 mm. 

d) 1R  and 2R factors were determined so that the web and flange intermediate stiffeners would be 

placed within the web height and flange width, respectively. 

e) The EC3 limitations on the ƉůĂƚĞƐ͛①slenderness ratios (width to thickness), relative dimensions of 

the channels and angle of edge stiffeners were considered as design constraints as listed in Table 1.  

f) The opening angle and the leg length of the intermediate stiffeners used in the web and flanges 

were set to be / 6 and 15 mm, respectively, as recommended by the industrial partner of this project. 

Table 1. Selected CFS beam prototypes, design variables and optimisation constraints 

PƌŽƚŽƚǇƉĞƐ ༃ ༄ ༅ ༆ ༇ ༈ 

CƌŽƐƐ-ƐĞĐƚŝŽŶ 

      

DĞƐŝŐŶ①ǀĂƌŝĂďůĞƐ ǆсďͬL 
ǆϭсďͬL 

ǆϮсRϭ 

ǆϭсďͬL 

ǆϮсRϭ 

ǆϭсĐͬď 

ǆϮсďͬL 

ǆϯс ș1 

ǆϭсĐͬď 

ǆϮсďͬL 

ǆϯс Rϭ 

ǆϰс ș1 

ǆϭсĐͬď 

ǆϮсďͬL 

ǆϯс Rϭ 

ǆϰс ș1 

ECϯ①ĚĞƐŝŐŶ①
ĐŽŶƐƚƌĂŝŶƚƐ 

ďͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ďͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ďͬƚчϱϬ 

ŚͬƚчϱϬϬ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

ďͬƚчϲϬ 

ĐͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌͬϰчș1чϯͬϰʌ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

ďͬƚчϲϬ 

ĐͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌͬϰчș1чϯͬϰʌ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

ďͬƚчϲϬ 

ĐͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌͬϰчș1чϯͬϰʌ 

PƌĂĐƚŝĐĂů①Θ①
ŵĂŶƵĨĂĐƚƵƌŝŶŐ①
ůŝŵŝƚĂƚŝŽŶƐ①;ŵŵͿ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

Ϭ͘ϭчRϭчϬ͘ϵ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

Ϭ͘ϭчRϭчϬ͘ϰ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

Ϭ͘ϭчRϭчϬ͘ϵ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

Ϭ͘ϭчRϭчϬ͘ϰ 
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PƌŽƚŽƚǇƉĞƐ ༉ ༊ ་ ༌ ། ༎ 

CƌŽƐƐ-ƐĞĐƚŝŽŶ 

      

DĞƐŝŐŶ①ǀĂƌŝĂďůĞƐ 

ǆϭсĐͬď 

ǆϮсĚͬď 

ǆϯсďͬL 

ǆϰс ș1 

ǆϭсĐͬď 

ǆϮсĚͬď 

ǆϯсďͬL 

ǆϰс Rϭ 

ǆϱс ș1 

ǆϭсĐͬď 

ǆϮсĚͬď 

ǆϯсďͬL 

ǆϰс Rϭ 

ǆϱс ș1 

ǆϭсĐͬď 

ǆϮсďͬL 

ǆϯс Rϭ 

ǆϰс RϮ 

ǆϱс ș1 

ǆϭсĐͬď 

ǆϮсĚͬď 

ǆϯсďͬL 

ǆϰс Rϭ 

ǆϱс RϮ 

ǆϲс ș1 

ǆϭс ș1 

ǆϮс ș2 

ǆϯсď 

ǆϰсĐ 

ǆϱсĚ 

ECϯ①ĚĞƐŝŐŶ①
ĐŽŶƐƚƌĂŝŶƚƐ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

Ϭ͘ϭчĚͬďчϬ͘ϯ 

ďͬƚчϵϬ 

ĐͬƚчϲϬ 

ĚͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌͬϰ≤ș1≤ϯͬϰʌ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

Ϭ͘ϭчĚͬďчϬ͘ϯ 

ďͬƚчϵϬ 

ĐͬƚчϲϬ 

ĚͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌ/ϰ≤ș1≤ϯͬϰʌ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

Ϭ͘ϭчĚͬďчϬ͘ϯ 

ďͬƚчϵϬ 

ĐͬƚчϲϬ 

ĚͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌ/ϰ≤ș1≤ϯͬϰʌ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

ďͬƚчϲϬ 

ĐͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌ/ϰ≤ș1≤ϯͬϰʌ 

Ϭ͘ϮчĐͬďчϬ͘ϲ 

Ϭ͘ϭчĚͬďчϬ͘ϯ 

ďͬƚчϵϬ 

ĐͬƚчϲϬ 

ĚͬƚчϱϬ 

ŚͬƚчϱϬϬ 

ʌ/ϰ≤ș1≤ϯͬϰʌ 

7/12ʌчș1чϱͬϲʌ 
ʌͬϰчș2чϯͬϰʌ 
ϯϬчďчϰϴ 

ϱϬчĐчϲϬ 

ϭϱчĚчϲϬ 

PƌĂĐƚŝĐĂů①Θ①
ŵĂŶƵĨĂĐƚƵƌŝŶŐ①
ůŝŵŝƚĂƚŝŽŶƐ①;ŵŵͿ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

Ějϱ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

Ějϱ 

Ϭ͘ϭчRϭчϬ͘ϵ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

Ějϱ 

Ϭ͘ϭiRϭiϬ͘ϰ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

Ϭ͘ϭчRϭчϬ͘ϰ 

Ϭ͘ϮчRϮчϬ͘ϴ 

ϮϬϬчŚчϰϬϬ 

ďjϱϬ 

ĐjϭϬ 

Ějϱ 

Ϭ͘ϭчRϭчϬ͘ϰ 

Ϭ͘ϮчRϮчϬ͘ϴ 

ϮϬϬ 

чŚнϮďƐŝŶ;ș1Ϳч 

ϰϬϬ 

  It should be noted that the design constrains listed in Table 1, especially in terms of channel 

dimensions, are typically related to the other elements connected to the CFS beam such as trapezoidal 

decking, plywood boards and angle cleats.  

4 Big Bang-Big Crunch algorithm   

Big bang-big crunch (BB-BC) optimisation method was first proposed by Erol and Eksin [32] based on 

the big bang and big crunch theories of the universe evolution.  In this method, the randomness of the 

candidates and their convergence to the optimum solution represent the energy dissipation and 

gravitational attraction in nature. Previous studies demonstrated that, in general, the BBʹBC 

optimisation method can offer several advantages such as lower computational time, higher 

convergence speed, and simpler programming compared to other conventional heuristic algorithms such 

as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation [33-35]. This 

is especially important for the complex optimisation of CFS elements due to their nonlinear behaviour 

affected by local and distortional buckling modes. 
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In the BBʹBC optimisation process, the candidate solutions are randomly distributed over the search 

space (Big Bang phase) and then a convergence operation is used to calculate a weighted average of the 

candidate solutions (Big Crunch phase). In the big bang phase, the candidate solutions are uniformly 

distributed over the search space. The convergence operator in Big Crunch phase is then used to 

calculate the fitness function of each candidate and update its current position. TŚĞ①͞ĐĞŶƚƌĞ①ŽĨ①ŵĂƐƐ͟①ŝƐ①

defined as the weighted average of the position of candidate solutions with respect to the inverse of the 

penalized fitness function, and is calculated as: 

 1

1

1

1

nc

i

i i

cm nc

i i

X
f

X

f









                                                             (7) 

where cm
X and i

X are the position of the centre of mass and ith candidate in the n-dimensional search 

space, i
f  is the penalized fitness function for ith candidate, and nc  is the candidate population size.  

The positions of the candidate solutions for the next iteration of the Big Bang are normally distributed 

around the centre of mass, cm
X , using the following equation: 

new

i cm
X X                                                               (8) 

where 
new

i
X is the position of the new candidate solution i, and is the standard deviation 

corresponding to a subset of the search space. In the proposed method,  decreases inversely with each 

succeeding Big Bang iteration using the following equation: 

 max min
( )r X X

s

 
                                                             (9) 

where r is a random number from a standard normal distribution,  is a parameter used to limit the 

size of the search space, minX and maxX represent the lower and upper limits of the selected design 

variables, and s  is the number of Big Bang iterations. In this study, the number of candidate population 

size ( nc) and number of Big Bang iterations ( s ) were taken, respectively, as 150 and 100 for the first 6 

prototypes of cross-sections, and 200 and 150 for the other prototypes. Parameter  was also selected 

equal to 1.0. Fig. 2 shows the details of the flowchart for the BB-BC algorithm used in this study.  
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Yes No 

Iteration=Iteration+1 

It should be noted that, for the optimisation problems in this study, the only design constraints are 

EC3 and manufacturing restrictions imposed on the input design variables (see Table 1). Therefore, the 

constraints can be easily handled by using a domain (max and min values) for each design variable. 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Big Bang–Big Crunch algorithm flowchart. 

5 Optimum Design of CFS Beams 

The optimisation framework was conducted on the selected prototypes (see Table 1) by developing 

two programmes MATLAB [36] to design CFS beams based on EC3 design regulations and to carry out 

BB-BC. The optimisation process was aimed at obtaining the optimum relative dimensions of each cross-

section as well as the best positions of the edge and intermediate stiffeners in web and flanges.  

Select the best centre of 

mass 

Start                           

BB-BC algorithm (MATLAB) 

Generate a random initial 

population  

(cross-section dimensions) 

Start iteration 

Compute fitness function of each candidate 

(e.g. flexural strength and stiffness) 

Identify the centre of mass 

Iteration=Max iteration 

Regenerate new candidate around 

the centre of mass  

(cross-section dimensions) 

End 
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To ensure that the optimum results are consistent, each prototype was optimised three times using 

randomly selected candidates. While the maximum difference between the results obtained from the 

three runs was always less than 1%, the best design solution was selected. During the optimisation 

process, the convergence was normally achieved after approximately 20 and 50 steps for the ༃͕ to ༈ 

and ༉ to ༎ prototypes, respectively. As an example, the iteration history of the optimisation process 

for the prototype ༆① is shown in Fig. 3, where the convergence is achieved after 18 iterations for all 

three cases. 

 

Fig. 3. Iteration history of the optimisation algorithm (BB-BCͿ①ĨŽƌ①ƉƌŽƚŽƚǇƉĞ①༆ 

5.1 Optimisation for Ultimate Limit State (ULS) 

This section is aimed to optimise laterally braced CFS beams in order to maximize their bending 

capacity at ULS. In this case, the optimisation target can be represented as a function of the effective 

property of the cross-section defined by:  

               Max  
0eff y MM x W f               , ( 1, , )

L U

i i i
X X X i n                                (10) 

where  M x  and effW are the design moment resistance and effective section modulus of a cross-

section about the major axis, respectively. effW  is the ratio of effective second moment of inertia effI  to 

the distance from effective centroid to furthest compression fibre, calculated by considering the 

contribution of all effective parts of the cross section. 
0

 M  is a partial safety factor used for ultimate 

limit state and is considered to be 1.0 as prescribed by EC3 [29]. The lower and upper bound of each 

design variable ( L

i
X  and 

U

i
X ) are obtained based on the EC3 design requirements and the practical and 

manufacturing limitations listed in Table 1.  
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Table 2 compares the flexural capacity and dimensions of the standard section and those optimised 

based on maximum bending moment capacity for all selected prototypes using the same amount of 

material. The standard lipped channel section has been used as a benchmark to assess the efficiency of 

the proposed optimisation methodology. It is shown that the proposed optimisation method could 

considerably (up to 58%) increase the maximum bending capacity of the standard section. For better 

comparison, the effective cross-section of the optimum solutions are presented in Table 3, in which the 

effective parts of cross-sections are drawn by thick solid black lines. The thickness of the effective parts 

are reduced in the location of the intermediate and edge stiffeners to take into account distortional 

buckling modes as discussed in Section 2.2.  

Based on the ULS optimisation results in Table 2, the following conclusions can be drawn:  

 The flexural capacity of the benchmark lipped channel is increased by 30% only by optimising its 

relative cross-sectional dimensions (prototype ༆). An additional 10% higher flexural capacity can be 

obtained by using an optimised CFS channel with double edge stiffener (prototype ༉). It should be 

noted that the efficiency of the proposed optimisation method would be considerably increased by 

using more flexible design constrains (i.e. a wider range of input design variables). 

 In general, plain channel sections (prototypes ༃, ༄ and ༅) do not provide efficient design 

solutions even after optimisation. This is referred to the fact that plain channels are generally highly 

susceptible to the local buckling of flanges.  

 The flexural capacity of the optimum single and double lipped channels (prototypes ༆①and ༉) are 

not generally enhanced by incorporating intermediate stiffeners in the web (prototypes ༇, ༈, ༊͕①

ĂŶĚ①་).This is especially evident in the case of double intermediate web stiffeners (prototypes ༈ 

and ་). This shows the inefficiency of using web stiffeners in the tension zone of the cross-section. 

Besides, folding the intermediate stiffeners into the section results in a reduction of the web height 

(noting that total coil width is kept constant), which in turn reduces the flexural capacity of the 

section.  

 Comparison between prototypes ༈① and ༌, and prototypes ་ and ། indicates that adding 

intermediate flange stiffeners can increase (up to 17%) the moment capacity of the sections. The 

optimum location of the flange intermediate stiffener is approximately in the middle of the flange.  

 As a general trend, it can be seen that optimised cross-sections tend to adopt taller web and 

subsequently narrower flanges. Therefore, all prototypes were optimised towards minimum specified 

flanges of 50 mm. As shown in Table 2, using folded flange section (prototype ༎) provides the 

highest flexural capacity among all selected prototypes and offers 58% more flexural strength 
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compared to the benchmark section. The folded flange cross-section can be easily manufactured 

(only 6 bends are needed) compared to the channels with intermediate stiffeners, and therefore, can 

provide a practical and efficient design solution.  

Table 2. Dimensions and flexural capacity of standard and optimum CFS beams for different prototypes 

at ULS 

Prototype 
h 

(mm) 

b 

(mm) 

c 

(mm) 

d 

(mm) 
1  

 

2  

 
R1 

 

R2 

 

maxM  

(kN m) 

max

max,standard

M

M
 

Standard 261 79 17      16.47 1 

༃ 353 50       15.56 0.94 

༄ 338 50     0.842  17.16 1.04 

༅ 323 50     0.195  15.81 0.96 

༆ 305 50 24  89    21.40 1.30 

༇ 290 50 24  91  0.774  21.22 1.29 

༈ 274 50 25  92  0.215  19.68 1.19 

༉ 285 50 27 7 90    23.63 1.43 

༊ 276 50 24 7 135  0.760  22.03 1.34 

་ 263 50 24 6 135  0.250  20.41 1.24 

༌ 262 50 15  135  0.100 0.545 23.75 1.44 

། 258 50 12 6 135  0.256 0.555 21.86 1.33 

༎ 217 48 50 20 100 79   25.97 1.58 

Table 3. The effective cross-section of optimum CFS beams for different prototypes at ULS 

Prototypes Benchmark ༃ ༄ ༅ ༆ ༇ ༈ 

Effective 

sections 

       
Prototypes ༉ ༊ ་ ༌ ། ༎ 
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Effective 

sections 

      
 

5.2 Optimisation for Serviceability Limit State (SLS) 

The serviceability limit state (SLS) is generally defined as the condition beyond which a structure 

becomes unfit for service. Unlike ULS, SLS depends more on the stiffness rather than the strength of a 

structural system. Based on Eurocode [37], the structural reliability under either SLS or ULS can be 

represented by the following inequality: 

 d EdR R                                                                                  (11) 

where dR is the design resistance and EdR  is the design load effect calculated for persistent and 

transient design situations as follow:  

, , , ,
1

. .Ed G j k j Q l k l
j

R G Q 


                                                                  (12) 

In Eq. 12, ,G j  and ,k jG  are the partial safety factor and characteristic value for permanent action j , 

while ,Q l  and ,k lQ are the partial safety factor and characteristic value of the leading variable action l , 

respectively. Eurocode [37] distinguishes between SLS and ULS by means of partial safety factors, which 

are  , 1.35 G j   and , 1.5Q l   for ULS and , , 1  G j Q l  for SLS. While in general serviceability limit 

state loading condition should be determined for each specific project, the ratio of service to ultimate 

loads (or the ratio of average partial safety factors for SLS over those for ULS) in this study was taken as 

0.7 and kept constant for different prototypes during the optimisation process. Therefore, to design for 

serviceability based on EC3 [28], the maximum compressive stress , . com Ed ser in each cross-section was 

calculated based on the effective cross-section under ,Ed serM =0.7 maxM  as shown in Fig. 4: 
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Fig. 4. Beam deflection at SLS subjected to a uniform pure bending ( ,Ed serM )  

To determine the effective second moment of area ( effI ) of the CFS beam section, the slenderness ratio 

is calculated from: 

 
, ,

,
com Ed ser

p ser p
yf


                                                                       (13)   

For serviceability design, the optimisation problem can be formulated as a minimisation of beam 

deflection subjected to pure bending moment, which is defined by: 

Min 

2
,( )

8
Ed ser

fic

M L
f x

EI
     , ( 1, , )

L U

i i i
X X X i n                (14) 

where ( )f x  is the deflection of the CFS beam. 
i

X  is the design variables with the lower and upper 

bounds of 
L

i
X  and 

U

i
X , specified in Table 1, respectively. In order to provide reasonable comparison 

between the behaviour of each prototype at its SLS, the length of the beam is kept constant and equal to

5000L mm . ficI  is the effective second moment of area, which is based on the service load. Eurocode 

3 part 1-3 [26] stipulates that the properties of the effective cross section explained in Section 2 must be 

used in all SLS checks for CFS members. Also, it has been mentioned that the second moment of area of 

CFS sections can be estimated by an interpolation between effective and gross cross sections for the 

design load combination using the following expression: 

( ( ) )gr
fic gr gr effI I I I





                                                              (15) 

where grI is the second moment of area of the gross cross section, gr is the maximum compressive 

bending stress based on the gross cross section at serviceability limit state (SLS), and ( )effI   is the 

second moment of area of the effective cross section by considering local buckling estimated based on 
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maximum stress gr   (   is the highest absolute value of stress within the beam length). 

Subsequently,   and gr  can be calculated based on the following equations:  

  
, ,

,/
Ed ser Ed ser

gr
ser gr c ser

M M

W I z
                                                                    (16) 

 max
y

eff

M
f

W
                                                                           (17) 

In the above equations, serW  and effW are the section modulus for the SLS and ULS, respectively, and

,c serz represents the distance of neutral axis to extreme compression fibre in a CFS section associated 

with SLS. By substituting Eq. 10 in Eq. 17, the maximum stress corresponding to local buckling,  , would 

be equal to the yield stress yf . 

The cross-sectional dimensions, second moment of area and flexural capacity of optimum sections for 

each prototype under service load level are calculated as presented in Table 4. Based on the results, the 

following observations can be drawn:  

 The dimensions of the optimum plain channels (prototypes ༃, ༄ and ༅) for SLS are very similar 

to those optimised for ULS (the only difference is in the optimum locations of the web stiffeners). 

Unlike optimisation for ULS, optimum plain channels at SLS could provide considerably higher 

effective stiffness (up to 44%) compared to the benchmark lipped channel section. However, the 

flexural capacity of the sections may be slightly (up to 10%) lower than the benchmark channel. This 

implies that, in general, optimum plain channels are more efficient to satisfy SLS checks.  

 The flexural stiffness of optimum plain and single/double lipped channels (prototypes ༃, ༆①ĂŶĚ①

༉Ϳ①were reduced by incorporating intermediate web stiffeners. Similar to the ULS optimisation, 

this reduction is more evident in the case of double intermediate web stiffeners (prototypes ༅, ༈ 

and ་). However, it can be seen from Table 4 that using optimised intermediate flange stiffeners 

(prototypes ༌ and །) could increase the effective stiffness and capacity of the sections by up to 

10% and 27%, respectively.   

 By optimising the relative dimensions of the standard benchmark section at SLS, the flexural 

stiffness and capacity of the section can be increased by 37% and 11%, respectively. However, for 

the same amount of material, optimisation of the channel section with folded flanges (prototype 

༎) resulted in a noticeable increase (up to 52%) in both effective stiffness and capacity of the 
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standard section. This highlights the efficiency of folded flange sections for both ultimate and 

serviceability limit states. 

 While a negligible difference (less than 4%) is seen between the effective stiffness of the optimum 

beams with single and double edge stiffeners (prototypes ༆ ĂŶĚ①༉, respectively) at SLS, the 

flexural capacity of the section with double edge stiffener is 13% higher than the one with single 

edge stiffener. A similar trend is observed for the sections with the intermediated web stiffeners 

(prototypes ༇ and ༈ compared to prototypes ༊ and ་). 

 

Table 4. Dimensions, effective second moment of area and flexural capacity of standard and optimum 

CFS beams for different prototypes at SLS 

Prototype 
max

serM

M
 

h 

(mm) 

b 

(mm) 

c 

(mm) 

d 

(mm) 

1  

(deg) 

2  

(deg) 
R1 

 

R2 

 

ficI
6( 10 )  

(mm4) 
,standard

fic

fic

I

I
 maxM  

(kN m) 

max

max,standard

M

M

 

Standard 0.7 261 79 17      7.22 1 16.47 1 

༃ 0.7 353 50       10.39 1.44 15.53 0.94 

༄ 0.7 338 50     0.9  10.33 1.43 16.29 0.99 

༅ 0.7 323 50     0.1  9.01 1.25 14.86 0.90 

༆ 0.7 333 50 10  135    9.88 1.37 18.24 1.11 

༇ 0.7 318 50 10  135  0.9  9.20 1.27 17.68 1.07 

༈ 0.7 303 50 10  135  0.1  8.55 1.18 16.69 1.01 

༉ 0.7 323 50 10 5 90    9.65 1.34 20.61 1.25 

༊ 0.7 308 50 10 5 135  0.9  8.91 1.23 19.34 1.17 

་ 0.7 293 50 10 5 135  0.1  8.23 1.14 17.96 1.09 

༌ 0.7 273 50 10  135  0.1 0.800 9.31 1.29 22.29 1.35 

། 0.7 263 50 10 5 135  0.1 0.319 8.71 1.22 20.86 1.27 

༎ 0.7 227 48 50 15 105 65   10.10 1.41 24.99 1.52 

 

 

 Similar to the ULS optimisation, optimised cross-sections tend to use taller web and narrower 

flanges. Therefore, all optimised sections have the minimum specified flange width of 50 mm. The 

main differences between optimised shapes for ULS and SLS are the size and angle of the edge 

stiffeners and the location of the intermediate web and flange stiffeners.  
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 Optimisation of the CFS beam sections at SLS on average increased the flexural stiffness and 

strength of the standard benchmark section by 30% and 14%, respectively. However, comparisons 

between the results presented in Tables 2 and 4 indicates that the sections optimised at SLS exhibit 

on average 9% lower flexural strength compared to those optimised at ULS. 

6 Analytical Investigation 

The ultimate flexural capacity and deflection of the standard and optimised cross-sections listed in 

Table 1 were determined at ULS and SLS using detailed nonlinear FE models in ABAQUS [30], where the 

effects of material nonlinearity and initial geometric imperfections were taken into account. The results 

were then used to evaluate the efficiency of the proposed optimisation method in obtaining sections 

with reduced maximum deflection at SLS and increased ultimate capacity at ULS. The detailed FE models 

were also used to assess the accuracy of Eurocode predictions for different prototypes. It should be 

noted that the capability of detailed finite element (FE) models to simulate both pre- and post-buckling 

behaviour of CFS sections has been demonstrated in previous studies provided that appropriate element 

types, material models and geometric imperfections are adopted [22, 38-40]. The adopted FE models 

have been also validated against a series of experimental tests on CFS back-to-back channels conducted 

at The University of Sheffield by the authors [13]. 

6.1 Detailed FE models 

The detailed FE models of the CFS sections corresponding to the selected prototypes were developed 

in ABAQUS [30] using a 4-noded quadrilateral shell element with reduced integration (S4R). Based on a 

comprehensive mesh sensitivity analyses, a mesh size of 10 10mm  was found to be appropriate since a 

further mesh refinement did not make any noticeable change in the results. The stress-strain behaviour 

of CFS plates was modelled by using the widely adopted constitutive model proposed by Haidarali and 

Nethercot [41]: 

0.2
0.2

0.2
0.2 0.2

= 0.002

100( )
=

n

for
E

for
E

   


    

 
  

 


 

     (18) 

where 0.2  and 0.2  are the 0.2% proof stress and the total strain at 0.2 , respectively. n  is a shape 

parameter recommended by Gardner and Ashraf [42] to be taken as 28 for grades 350 and 450 steel, and 

E  is the elastic modulus which is taken equal to 210GPa. The effects of geometrical imperfections 
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were taken into account in CFS sections by performing eigenvalue elastic buckling analysis which is 

available in ABAQUS library [30] on the CFS beams. The obtained dominant buckling mode (either local 

or distortional) was then incorporated in the initial perfect geometry of the cross-section and scaled to 

the certain magnitude extracted from the Cumulative Distribution Function (CDF) values suggested by 

“ĐŚĂĨĞƌ① ĂŶĚ① PĞŬೌǌ① [43]. In this study, a CDF value of 50% was adopted (corresponding to 0.34t and 

0.94t for local and distortional imperfections, respectively). It should be mentioned that the adopted 

CDF values are valid for the sections with the thickness ( t ) less than 3mm [43], so they are suitable for 

the sections considered in this study. 

As shown in Fig. 5, the pinned support at the two ends of the CFS beam about major axis was 

simulated by coupling the nodes at each end section to the reference point defined in the mid-web, 

while the rotation about the minor axis was prevented. The end sections were also prevented from 

warping to be consistent with the assumption made for the EC3 design calculations in Section 5. To avoid 

lateral-torsional buckling, lateral bracings (representative of transitive beams in the roof systems) were 

used at each L/4 along the length of beam (see Fig. 5).  

  

 

 

 

Fig. 5. Boundary conditions in the FE models subjected to pure bending moment 

Uniform rotation applied at 

the end section 

Coupling the nodes 

of the end section 
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While the pure bending moments at SLS (equal to 70% of the calculated flexural capacity according to 

EC3) were directly imposed at the two end sections of the beam, the external loads at ULS were 

simulated by applying uniform rotations about the major axis of the two end sections using a 

ĚŝƐƉůĂĐĞŵĞŶƚ① ĐŽŶƚƌŽů① ƌĞŐŝŵĞ͘① FE① ĂŶĂůǇƐŝƐ① ǁĂƐ① ĐĂƌƌŝĞĚ① ŽƵƚ① ƵƐŝŶŐ① ͞“ƚĂƚŝĐ͕① GĞŶĞƌĂů͟① ŵĞƚŚŽĚ① ĂŶĂůǇƐŝƐ①

available in ABAQUS library [30], which has been shown to be capable of accurately predicting the 

flexural capacity and deformation of CFS elements at both pre- and post- buckling range [10, 17, 44].  

6.2 FE results of the standard and optimum sections 

The results of the non-linear FE analyses were used to assess the efficiency of the CFS beam sections 

optimised using different prototypes (obtained in Section 5) compared to the benchmark section. Table 5 

lists the maximum deflections and flexural capacities of the 12 selected prototypes as well as the 

benchmark channel predicted by EC and FE at SLS and ULS. Generally, the results obtained from EC are 

shown to be reliable for both SLS and ULS. The average ratios of the calculated mid-span deflection and 

flexural capacity using EC3 to the corresponding FE results were 1.01 and 1.02 with standard deviation of 

8% and 5%, respectively. This implies that effective stiffness ( ficI ) and effective second moment of area 

( effI ) calculated based on EC3 effective width method provide reasonable predictions.   

Fig. 6 compared the moment versus mid-span deflection curves for the CFS beam with standard and 

optimum cross-sections (under ULS) ĨŽƌ①ƉƌŽƚŽƚǇƉĞƐ①༆①ĂŶĚ①་ as representative examples. It is shown 

that the proposed optimisation algorithm could increase both stiffness and maximum capacity of the 

sections. Fig. 7 also illustrates the typical failure mode of the CFS beam at ULS, which is due to the 

local/distortional buckling at the compression zone.  

 

Table 5. EC3 and FE results of CFS beam with benchmark and optimum cross-sections in terms of 

maximum deflection and flexural capacity at SLS and ULS, respectively. 

Prototype 

SLS ULS 

EC  

(mm) 
FE  

(mm) 

EC

FE




 max,ECM   

(kN m) 

max,FEM  

(kN m) 

max,

max,

EC

FE

M

M
 

Benchmark 23.8 22.9 1.04 16.47 16.94 0.97 

༃ 15.5 17.6 0.88 15.56 14.94 1.04 

༄ 16.5 17.9 0.92 17.16 16.36 1.05 

༅ 17.2 18.0 0.95 15.81 15.11 1.05 

༆ 19.2 21.9 0.88 21.40 22.36 0.96 

༇ 20.0 21.4 0.94 21.22 21.93 0.97 
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༈ 20.3 19.4 1.05 19.68 19.62 1.00 

༉ 22.3 22.2 1.00 23.63 24.22 0.98 

༊ 22.7 20.3 1.12 22.03 22.68 0.97 

་ 22.8 21.1 1.08 20.41 19.72 1.03 

༌ 25.0 23.2 1.08 23.75 21.12 1.12 

། 24.9 23.1 1.08 21.86 19.97 1.09 

༎ 25.8 24.3 1.06 25.97 23.92 1.09 

①②ǀĞƌĂŐĞ  1.01   1.02 

“ƚĂŶĚĂƌĚ①ĚĞǀŝĂƚŝŽŶ  0.082   0.055 

 

Fig. 6. Moment versus mid-span deflection curve for the CFS beam with standard and optimum cross-

sections for prototypes ༆①ĂŶĚ①་ 

 

 

Fig. 7.Typical failure mode of the CFS beam at ULS 

 

7 Summary and conclusions 

A new optimisation framework was presented to develop more economical laterally braced CFS beam 

based on serviceability and ultimate limit states, according to EC3 effective width method, by optimising 

the relative dimensions of cross-sections and allowing for the inclined single or double edge lips and 

triangular intermediate web and flange stiffeners. To obtain optimum solutions, Big BangʹBig Crunch 

(BB-BC) optimisation algorithm was adopted while design variables were determined by taking into 

account EC3 design constraints as well as a range of manufacturing and end-use limitations. The 

proposed optimisation framework was applied on twelve different prototypes and the accuracy of the 
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results at both SLS and ULS was examined through detailed FE models. Based on the results presented in 

this paper, the following conclusions could be drawn: 

1. For the same amount of material, the proposed optimisation framework could increase the flexural 

capacity and stiffness of the standard benchmark section by 58% and 44%, respectively. In general, 

optimised cross-sections (at both SLS and ULS) tend to use taller web and narrower flanges. The main 

differences between optimised shapes for ULS and SLS are the size and the angle of edge stiffeners as 

well as the location of the intermediate web and flange stiffeners. 

2. The optimum dimensions of the plain channels for SLS are very similar to those obtained for ULS. 

While optimisation of plain channel sections (including those with intermediate stiffeners) at ULS did 

not provide efficient design solutions, using optimum plain channels at SLS could offer considerably 

higher stiffness compared to the benchmark lipped channel section. This implies that optimum plain 

channels are more adequate for SLS requirements. 

3. The flexural capacity and stiffness of the benchmark lipped channel at ULS and SLS was increased by 

30% and 37%, respectively, only by optimising its relative cross-sectional dimensions. While an 

additional 10% flexural capacity at ULS was obtained by using double edge stiffeners, a negligible 

improvement in flexural stiffness was observed at SLS. 

4. The flexural capacity and stiffness of the optimum single and double lipped channels at ULS and SLS, 

respectively, were not generally enhanced by incorporating intermediate stiffeners in the web. 

However, adding intermediate stiffeners in the flanges could increase the flexural capacity and 

stiffness of the sections at ULS and SLS by up to 17% and 10%, respectively. 

5. It was shown that the newly developed folded flange channel can be considered as the most 

desirable section owing to the fact that it is capable to provide 58% and 41% higher bending capacity 

and stiffness at ULS and SLS, respectively, compared to the standard lipped channel section with the 

same amount of material. 

6. The efficiency of the optimised CFS beam sections was assessed by using detailed FE models 

accounting for material non-linearity and initial geometric imperfections. The results of the FE 

simulations in general confirm the accuracy of the mid-span deflection and flexural capacity of the 

sections predicted by EC3 proposed methodology (less than 12% error).  
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